度九年级数学下册第5章二次函数5.5用二次函数解决问题5.5.1利用二次函数解决销售利润最值问题导学课件新版

合集下载

九年级数学下册 第5章 二次函数 5.5 用二次函数解决问题作业设计 (新版)苏科版-(新版)苏科版

九年级数学下册 第5章 二次函数 5.5 用二次函数解决问题作业设计 (新版)苏科版-(新版)苏科版

用二次函数解决问题第1课时、第2课时1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件,则商店所获得的利润y(元)与每件商品售价x(元)之间的函数表达式为()A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350xD.y=-10x2+350x-73502.某产品的进货单价为每件90元,按100元一件出售时,每周能售出500件.若每件涨价1元,则每周销售量就减少10件,则该产品每周能获得的最大利润为() A.5000元 B.8000元C.9000元 D.10000元3.某商店出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.4.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,经市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值X围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出当销售价为多少元/件时,每天的销售利润最大,最大利润是多少.5.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,则池底的最大面积是()A .600 m 2B .625 m 2C .650 m 2D .675 m 26.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数表达式是________,当边长x 为________米时,花圃有最大面积,最大面积为________平方米.7.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室的一边长为x (m),占地面积为y (m 2).(1)如图5-5-3①,则饲养室的一边长x 为多少时,占地面积y 最大?(2)如图②,现要求在所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室的一边长x 比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.图5-5-38.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动的时间t (秒)之间的函数表达式是h =t -t 2,则小球的最大高度为________米.9.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是______m.10.小明大学毕业后回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,经调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?11.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫之间的距离为x (单位:千米),乘坐地铁的时间y 1(单位:分)是关于x 的一次函数,其关系如下表:(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间y 2(单位:分)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述,则李华应选择在哪一站出地铁,才能使他从文化宫回到家里所用的时间最短?并求出最短时间.12.某旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数.公司发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?参考答案1.B[解析] 由题意,得y =(x -21)(350-10x )=-10x 2+560x -7350. 2.C3.3[解析] 由题意可得y =(6-x )x ,即y =-x 2+6x ,当x =3时,y 有最大值. 4.解:(1)设y 与x 之间的函数关系式为y =kx +b ,把(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24,解得⎩⎪⎨⎪⎧k =-1,b =40.∴y 与x 之间的函数关系式为y =-x +40(10≤x ≤16).(2)W =(x -10)(-x +40)=-x 2+50x -400(10≤x ≤16).∵W =-x 2+50x -400=-(x -25)2+225,函数图像的对称轴是直线x =25,在对称轴的左侧,y 随着x 的增大而增大. ∵10≤x ≤16,∴当x =16时,W 最大,为144.即当销售价为16元/件时,每天的销售利润最大,最大利润是144元.5.B[解析] 设矩形的一边长为x m ,则其邻边长为(50-x )m ,设池底面积为S m 2,则S =x (50-x )=-x 2+50x =-(x -25)2+625.∴当x =25时,S 取得最大值,最大值为625.6.S =-2x 2+10x 52252[解析] 由题意知平行于墙的一边长为(10-2x )米,则S =x (10-2x )=-2(x -52)2+252(0<x <5),所以当x =52时,花圃有最大面积,最大面积为252平方米.7.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252(0<x <50),∴当x =25时,占地面积y 最大,即当饲养室的一边长x 为25 m 时,占地面积y 最大. (2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积y 最大.∵26-25=1(m)≠2 m ,∴小敏的说法不正确. 8.9.24[解析] ∵y =60t -32t 2=-32(t -20)2+600,∴当t =20时,飞机着陆后滑行到最大距离600 m ,然后停止滑行;当t =16时,y =576,∴最后4 s 滑行的距离是24 m.10.解:(1)W 1=(50+x )(160-2x )=-2x 2+60x +8000,W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=-2x 2+41x +8950(x 为整数). ∵-2<0,抛物线的开口向下,-412×(-2)=414,∴当0≤x <414时,W 随x 的增大而增大;当414<x ≤50时,W 随x 的增大而减小, 又∵x 取整数,故当x =10时,W 最大,W 最大=-2×102+41×10+8950=9160.即当x =10时,第二期培植的盆景与花卉售完后获得的总利润最大,最大总利润是9160元.11.解:(1)设乘坐地铁的时间y 1关于x 的一次函数表达式是y 1=kx +b .把x =8,y 1=18;x =10,y 1=22代入,得⎩⎪⎨⎪⎧18=8k +b ,22=10k +b ,解得⎩⎪⎨⎪⎧k =2,b =2, ∴y 1关于x 的函数表达式是y 1=2x +2.(2)设李华从文化宫回到家里所用的时间为y 分,则y =y 1+y 2, 即y =2x +2+12x 2-11x +78=12x 2-9x +80=12(x -9)2+792,∴当x =9时,y 最小值=792.∴李华选择从B 地铁口出站,才能使他从文化宫回到家里所用的时间最短,最短时间为792分钟. 12.解:(1)由题意,知若观光车能全部租出,则0<x ≤100,由50x -1100>0,解得x >22,∴22<x ≤100.又∵x 是5的倍数,∴每辆车的日租金至少应为25元. (2)设每辆车的净收入为y 元. 当0<x ≤100时,y 1=50x -1100. ∵y 1随x 的增大而增大,∴当x =100时,y 1有最大值为50×100-1100=3900; 当x >100时,y 2=(50-x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025,∴当x =175时,y 2有最大值为5025. ∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多.第3课时1.如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m)与水平距离x (m)之间的关系为y =-112x 2+23x +53,由此可知铅球被推出的距离是() A .10 m B .3 m C .4 m D .2 m 或10 m2.小敏在某次投篮中,球的运动线路是抛物线y =-15x 2+的一部分(如图).若命中篮圈中心,则他与篮底的距离l 是()A .3.5 mB .4 mC .4.5 mD .4.6 m3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y (单位:m)与飞行时间x (单位:s)之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.某某省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数表达式为y =-125x 2,当水面离桥拱顶的高度DO 是4 m 时,这时水面的宽度AB 为()A.-20 m B.10 m C.20 m D.-10 m5.建立如图所示的直角坐标系,某抛物线形桥拱的最大高度为16米,跨度为40米,则它对应的表达式为________________.6.如图是一个横断面为抛物线形的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,当水面下降1米时,水面的宽度为多少米?7.某广场有一个喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米8.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图所示,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷出的水柱的最大高度.9.冬天来了,晒衣服成了头疼的事情,聪明的小华想到一个好办法,他在家后院地面(BD)上立两根等长的立柱AB ,CD(均与地面垂直),并在立柱之间悬挂一根绳子.绳子的形状近似抛物线y =110x 2+bx +c ,如图①,已知BD =8米,绳子最低点离地面的距离为1米.(1)求立柱AB 的长度;(2)由于挂的衣服比较多,为了防止衣服碰到地面,小华用一根垂直于地面的立柱MN 撑起绳子(如图②),MN 的长度为米,通过调整MN 的位置,使左边抛物线F 1对应函数表达式的二次项系数为14,顶点离地面米,求MN 与AB 的距离.10.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为 2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?参考答案1.A[解析] 令y =0,则-112x 2+23x +53=0,解得x 1=10,x 2=-2,由此可知铅球被推出的距离是10 m. 故选A.2.B[解析] 当y =时,-15x 2+=,解得x 1=-1.5(舍去),x 2=,∴l =+=4(m). 故选B.3.解:(1)令y =15,有-5x 2+20x =15, 化简得x 2-4x +3=0, 解得x 1=1,x 2=3, 即飞行时间是1 s 或3 s.(2)飞出和落地的瞬间,高度都为0,故令y =0, 则有0=-5x 2+20x , 解得x 1=0,x 2=4,所以小球从飞出到落地所用时间是4-0=4(s). (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时y =20.故在飞行过程中,当飞行时间为2 s 时,小球的飞行高度最大,最大高度为20 m. 4.C 5.y =-125(x -20)2+16[解析] 由图可知抛物线的对称轴为直线x =20,顶点坐标为(20,16).可设此抛物线的表达式为y =a (x -20)2+16.又此抛物线过点(0,0),代入得(0-20)2a +16=0,解得a =-125,所以此抛物线的表达式为y =-125(x -20)2+16.6.解:建立如图所示的直角坐标系,可知OA 和OB 的长均为AB 的一半,即2米,抛物线顶点C 的坐标为(0,2),通过以上条件可设抛物线的函数表达式为y =ax 2+2.把(-2,0)代入y =ax 2+2,得出a =-, 所以y =-x 2+2.当y =-1时,有-1=-x 2+2, 解得x =±6,所以当水面下降1米时,水面的宽度为2 6米.7.A[解析] 直接根据二次函数的顶点坐标公式计算即可,最大高度为4ac -b24a =4×(-1)×0-424×(-1)=4,或将y =-x 2+4x 化为顶点式也可得出结论.8.解:(1)∵抛物线的顶点坐标为(3,5), ∴设y =a (x -3)2+5,将(8,0)代入,得a =-15,∴y =-15(x -3)2+5,即y =-15x 2+65x +165(0<x <8).(2)当y =时,即=-15x 2+65x +165,解得x 1=7,x 2=-1(舍去).答:王师傅必须站在离水池中心7米以内.(3)由y =-15x 2+65x +165,可得原抛物线与y 轴的交点坐标为(0,165).∵装饰物的高度不变, ∴新抛物线也经过点(0,165).∵喷出水柱的形状不变, ∴a =-15.∵直径扩大到32米, ∴新抛物线过点(16,0).设新抛物线的表达式为y 新=-15x 2+bx +c ,将点(0,165)和(16,0)代入,得b =3,c =165.∴y 新=-15x 2+3x +165=-15(x -152)2+28920,∴当x =152时,y 新的最大值为28920.答:扩建改造后喷出的水柱的最大高度为28920米.9.解:(1)由题意可知抛物线的表达式为y =110(x -4)2+1,即y =110x 2-45x +135.令x =0,得y =135,∴AB =135.答:立柱AB 的长度为135米.(2)由题意可以假设抛物线F 1的表达式为y =14x 2+mx +2.6.∵4×14×-m 24×14=,∴m =±1.∵抛物线F 1的对称轴在y 轴右侧,14>0,∴b <0,∴b =-1,∴抛物线F 1的表达式为y =14x 2-x +2.6.令y =,解得x 1=1,x 2=3, 当x =1时,不合题意,舍去, ∴x =3,∴MN 与AB 的距离为3米.10.解:(1)由题意可知函数y =at 2+5t +c 的图像经过点(0,0.5),,3.5), ∴错误!解得错误!∴抛物线的函数表达式为y =-2516t 2+5t +12=-2516(t -85)2+92,∴当t =85时,y 最大值=92.答:足球飞行的时间是85 s 时,足球离地面最高,最大高度是92 m.(2)把x =28代入x =10t ,得28=10t ,∴t =2.8.25 16×2+5×+12=<,∴他能将球直接射入球门.当t=时,y=-。

九年级下册第5章二次函数5、4二次函数与一元二次方程第2课时利用函数图像求一元二次方程根的近似值教学

九年级下册第5章二次函数5、4二次函数与一元二次方程第2课时利用函数图像求一元二次方程根的近似值教学

x2,不妨设x1<x2.先求在0和1之间的根
-2
-3
的近似值,利用计算器进行探索,列
-4
表如下:
-5 -6
-7
二次函数与x轴的交点与一元二次方程根的关系
y
x 0.1 … 0.5 0.6 0.7 0.8 0.9
4
y=x2-5x+3 3
y 2.51

0.75 0.36 -0.01 -0.36 -0.69
二次函数与x轴的交点与一元二次方程根的关系
练一练:下表是二次函数y=ax2+bx+c的自变量x与函数值y的对应值,
判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围
是( C )
x y=ax2+bx+c
… 6.17 6.18 6.19 6.20 … -0.03 -0.01 0.02 0.04
x

-1
0
1
3

y

-3
1
3
1

现给出下列说法:
①该函数图像开口向下;
②该函数图像的对称轴为过点(1,0)且平行于y轴的直线; ③当x=2时,y=3; ④方程ax2+bx+c=-2的正根在3与4之间. 其中正确的说法为___①__③__④____.(只需写出序号)
CONTENTS
4
利用二次函数的图像求-元二次方 程根的近似值的一般步骤: 1.画出二次函数y=ax2 +bx+c的图像; 2.确定函数图像与x轴公共点的位置,看公共点的横坐标介于哪两个 数之间,初步估值;
3.在(2)的范围内,借助计算器并利用缩小范围逐次逼近的方法进 行取值计算;

2020最新苏科版九年级数学下册(全套)精品课件

2020最新苏科版九年级数学下册(全套)精品课件

第5章 二次函数
2020最新苏科版九年级数学下册( 全套)精品课件
5.2 二次函数的图象和性质
2020最新苏科版九年级数学下册( 全套)精品课件
5.3 用待定系数法确定二次函数 的表达式
2020最新苏科版九年级数学下册( 全套)精品课件
5.4 二次函数与一元二次方程
2020最新苏科版九年级数学下册( 全套)精品课件
2020最新苏科版九年级数学下册( 全套)精品课件目录
0002页 0064页 0095页 0149页 0181页 0203页 0235页 0273页 0311页 0328页 0355页 0368页 0370页 0385页
第5章 二次函数 5.3 用待定系数法确定二次函数的表达式 5.5 用二次函数解决问题 6.1 图上距离与实际距离 6.3 相似图形 6.5 相似三角形的性质 6.7用相似三角形解决问题 7.1 正切 7.3 特殊角的三角函数 7.5 解直角三角形 第8章 统计和概率的简单应用 8.2 货比三家 8.4 抽签方法合理吗 8.6 收取多少保险费合理

新苏科版九年级数学下册《5章 二次函数 5.2 二次函数的图像和性质 y=ax^2+k、y=a(x+m)^2的图像》教案_27

新苏科版九年级数学下册《5章 二次函数  5.2 二次函数的图像和性质  y=ax^2+k、y=a(x+m)^2的图像》教案_27

学习目标:1.经历探索二次函数y=ax2+k(a≠0),y=a(x-h)2(a≠0)的图象作法和性质的过程;2.能够理解函数y=ax2+k(a≠0)、y=a(x-h)2与y=ax2的图象的关系,知道a、h对二次函数的图象的影响;3.能正确说出函数y=ax2+k(a≠0)、y=a(x-h)2的图象的性质.教学过程:一、探索二次函数y=ax2+k(a≠0)的图象和性质。

(2)在下图的直角坐标系中,描点并画出函数2y x=和21y x=+的图象;2.思考:函数y=x2+1的图象与y=x2的图象有什么关系?(1)形状相同吗?(2)相同自变量的值所对应的两个函数值有何关系?(3)从点的位置看,函数y=x2+1的图象与函数y=x2的图象的位置有什么关系?3.归纳:图象向上移还是向下移,移多少个单位长度,有什么规律吗?函数y=ax2 (a≠0)和函数y=ax2+ k (a≠0)的图象形状,只是位置不同;当k >0时,函数y=ax2+ k的图象可由y=ax2的图象向平移个单位得到;当k〈0时,函数y=ax2+c的图象可由y=ax2的图象向平移个单位得到。

二、探索二次函数y=a(x-h)2(a≠0)的图象作法和性质:1.操作:在上图右边直角坐标系中,描点并画出函数y=(x+3)2的图象;2.思考:函数y=(x+3)2的图象与y=x2的图象有什么关系?(1)形状相同吗?(2)从表格中的数值看,函数y=(x+3)2的函数值与函数y=x2的函数值相等时,它们所对应的自变量的值有什么关系?(3)从点的位置看,函数y=(x+3)2的图象与函数y=x 2的图象的位置有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?3.结论:函数y=(x+3)2的图象可以由函数y=x 2的图像沿x 轴向 平移 个单位长度得到,所以它是 ,这条抛物线的对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.4.①抛物线y=-3(x-1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位. ②图象向左平移还是向右平移,移多少个单位长度,有什么规律吗?三、例题:1.函数y=4x 2+5的图象可由y=4x 2的图象向 平移 个单位得到;y=4x 2-11的图象可由 y=4x 2的图象向 平移 个单位得到。

苏科版九年级下册《5.5用二次函数解决问题》强化提优检测(三)

苏科版九年级下册《5.5用二次函数解决问题》强化提优检测(三)

苏科版九年级下《5.5用二次函数解决问题》强化提优检测(三)利用二次函数解决建筑的问题(时间:90分钟满分:120分)一.选择题(共10题;共30分)1. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 m C.160 m D.200 m第1题图第2题图第3题图第4题图2. 三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米3.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=﹣x2+24x C.y=﹣x2+25x D.y=﹣x2+26x4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=-1/25x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为()A.-20m B.10m C.20m D.-10m5﹒如图,假设篱笆(虚线部分)的长度为16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2第5题图第6题图第7题图第8题图第10题图6﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面40/3m,则水流落地点B离墙的距离OB是()A.2mB.3mC.4mD.5m7.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A. 1.5m,1mB. 1m,0.5mC. 2m,1mD. 2m,0.5m8.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 2.76米B. 6.76米C. 6米D. 7米9.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为h=30t−5t2,那么水流从喷出至回落到地面所需要的时间是( )A. 6 sB. 4 sC. 3 sD. 2 s10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A. 1个B. 2个C. 3个D. 4二、填空题(共10题;共30分)11.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.12.一抛物线形拱桥如图所示,当拱顶离水面2m时,水面宽4m.当水面下降1m时,水面的宽为m.第12题图第13题图第14题图13. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.14.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为_____米.15.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m 2.第15题图 第16题图 第17题图16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为28m ,则能建成的饲养室面积最大为 m 2.17.某圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流,如图②所示,其上的水珠的高度y 米关于水平距离x 米的函数解析式为y =-x 2+4x +9/4,那么圆形水池的半径至少为________米时,才能使喷出的水流不落在水池外.18.如图所示的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________.第18题图 第19题图 第20题图19.如图(1)是一座横断面为抛物线形状的拱桥,当水面在直线l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的表达式是__________. 20.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.三.解答题(共8题;共60分)21.拱桥的形状是抛物线,其函数关系式为y =﹣x 2,当水面离桥顶的高度为m 时,水面的宽度为多少米?22如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O 点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?23.如图是一座拱桥的示意图,相邻两支柱间的距离为10米(即HF=FG=GM=MP=10米),拱桥顶点D到桥面的距离DG=2米,将其置于如图②所示的平面直角坐标系中,抛物线的表达式为y=ax2+6.(1)求a的值;(2)求支柱EF的高.24.一座拱桥呈抛物线形,它的截面如图所示,现测得,当水面宽AB=1.6 m时,拱桥顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,拱桥宽ED是多少?是否超过1 m?25.“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m ,另外三边由36 m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x m ,面积为y m 2(如图).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若矩形空地的面积为160 m 2,求x 的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.26.如图需在一面墙上绘制几个相同的抛物线形图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx 来表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该面墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线形图案?27.如图小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的函数表达式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?28..如图①,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =110x 2-45x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图②),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为14,设MN 离AB 的距离为m 米,抛物线F 2的顶点离地面的距离为k 米,当2≤k ≤2.5时,求m 的取值范围.教师样卷一.选择题(共10题;共30分)1. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50 mB .100 mC .160 mD .200 m【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.第1题图 第2题图 第3题图 第4题图 2. 三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为( ) A .43米 B .52米 C .213米 D .7米【答案】B 【解析】如图所示,建立平面直角坐标系.设大孔对应的函数关系式为y =ax 2+c ,过B (5,c -1.5),F (7,0),代入y =ax 2+c ,,解得a=0.06 c=0,94,∴大孔对应的函数关系式为y =-0.06x 2+2.94.当x =10时,y =-0.06×102+2.94=-3.06,∴H (0,-3.06).设右边小孔顶点坐标为D (10,1.44),则右边小孔对应的函数关系式为y =m (x -10)2+1.44,过点G (12,0),则0= m (12-10)2+1.44,解得m =-0.36,∴右边小孔对应的函数关系式为y =-0.36(x -10)2+1.44,当y =-3.06时,-3.06=-0.36(x -10)2+1.44,解得x=10±,52/2∴大孔水面宽度为20米,时单个小孔的水面宽度为52米.故选项B 正确. 3.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m 宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m .设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是( )A .y =﹣x 2+50xB .y =﹣x 2+24xC .y =﹣x 2+25xD .y =﹣x 2+26x【答案】D 解:设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是:y =x •(50+2﹣x )=﹣x 2+26x .故选:D .4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y =-1/25x 2,当水面离桥拱的高度DO 是4m 时,这时水面宽度AB 为( ) A .-20m B .10m C .20m D .-10m【答案】C 解答:根据题意B 的纵坐标为﹣4, 把y =﹣4代入y =﹣1/25x 2,得x =±10,∴A (﹣10,﹣4),B (10,﹣4),∴AB =20m .即水面宽度AB 为20m .故选:C .5﹒如图,假设篱笆(虚线部分)的长度为16m ,则所围成矩形ABCD 的最大面积是( ) A .60m 2 B .63m 2 C .64m 2 D .66m 2【答案】C 解答:设BC =x m ,则AB =(16﹣x )m ,矩形ABCD 面积为y m 2,根据题意得:y =(16﹣x )x =﹣x 2+16x =﹣(x ﹣8)2+64,当x =8m 时,y 最大值=64m 2,则所围成矩形ABCD 的最大面积是64m 2.故选:C .H M F G D C E O N C B A yx第5题图第6题图第7题图第8题图第10题图6﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面40/3m,则水流落地点B离墙的距离OB是()A.2mB.3mC.4mD.5m【答案】B 解答:设抛物线的解析式为y=a(x﹣1)2+40/3,把点A(0,10)代入a(x﹣1)2+40/3,得a(0﹣1)2+ =10,解得a=﹣10/3,因此抛物线解析式为y=﹣10/3(x﹣1)2+40/3,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选:B.7.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A. 1.5m,1mB. 1m,0.5mC. 2m,1mD. 2m,0.5m【答案】A【解析】试题分析:设长为x,则宽为,S=,即S=,要使做成的窗框的透光面积最大,则x=,于是宽为=1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m,故选A.8.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 2.76米B. 6.76米C. 6米D. 7米【答案】B【解析】试题解析:设该抛物线的解析式为y=ax2,在正常水位下x=10,代入解析式可得﹣4=a×102⇒a=﹣1/25故此抛物线的解析式为y=﹣1/25x2.因为桥下水面宽度不得小于18米所以令x=9时可得y=﹣3.24米此时水深6+4﹣3.24=6.76米即桥下水深6.76米时正好通过,所以超过6.76米时则不能通过.故选B.9.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为h=30t−5t2,那么水流从喷出至回落到地面所需要的时间是( )A. 6 sB. 4 sC. 3 sD. 2 s【答案】.A 解:水流从抛出至回落到地面时高度h为0,把h=0代入h=30t−5t2得:5t2−30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s. 故选A.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A. 1个B. 2个C. 3个D. 4【答案】C解:当x=0时,y=3,故柱子OA的高度为3m;(1)正确;∵y=-x2+2x+3=-(x-1)2+4,∴顶点是(1,4),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是4米;故(2)(3)正确;解方程-x2+2x+3=0,得x1=-1,x2=3,故水池的半径至少要3米,才能使喷出的水流不至于落在水池外,(4)正确.故选:C.三、填空题(共10题;共30分)11.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.【答案】6 解:∵h=30t﹣5t2,∴当h=0时,t=0或t=6,∴水流从喷出至回落到水池所需要的时间是:6﹣0=6,故答案为:6.12.一抛物线形拱桥如图所示,当拱顶离水面2m时,水面宽4m.当水面下降1m时,水面的宽为m.【答案】2.解:如图:以拱顶到水面的距离为2米时的水面为x轴,拱顶所在直线为y 轴建立平面直角坐标系,根据题意设二次函数解析式为:y=ax2+2把A(2,0)代入,得a=﹣,所以二次函数解析式为:y=﹣x2+2,当y=﹣1时,﹣x2+2=﹣1解得x=±.所以水面的宽度为2.故答案为2.第12题图第13题图第14题图13. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.【答案】48[解析] 建立如图所示的平面直角坐标系,设AB与y轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-136,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD +OE=24+24=48(m).14.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为_____米.【答案】0.2 【解析】如图,以C坐标系的原点,OC所在直线为y轴建立坐标系,设抛物线解析式为y=ax2,由题知,图象过B(0.6,0.36),代入得:0.36=0.36a∴a=1,即y=x2.∵F 点横坐标为﹣0.4,∴当x=﹣0.4时,y=0.16,∴EF=0.36﹣0.16=0.2米故答案为0.2.15.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m2.【答案】147 解:设中间隔开的墙EF的长为xm,建成的储藏室总占地面积为sm²,根据题意得AD+3x=42,解得AD=42-3x,则S=x(42-3x)= -3x²+42x=-3(x-7)²+147,故这两间长方形储藏室的总占地面积的最大值为:147m²,故答案为:147.点睛:本题考查了二次函数的应用,配方法,矩形的面积,有一定的难度,解答本题的关键是得到建成的储藏室的总占地面积的解析式.第15题图第16题图第17题图16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则能建成的饲养室面积最大为 m2.【答案】75 【解析】设垂直于墙的材料长为x米,则平行于墙的材料长为28+2-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,所以饲养室的最大面积为75平方米,17.某圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流,如图②所示,其上的水珠的高度y 米关于水平距离x 米的函数解析式为y =-x 2+4x +9/4,那么圆形水池的半径至少为________米时,才能使喷出的水流不落在水池外.【答案】.9/2 【解析】当y=0时,即-x 2+4x+9/4=0,解得x 1=9/2,x 2=-1/2(舍去).18.如图所示的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________.【答案】y =-19(x +6)2+4第18题图 第19题图 第20题图19.如图(1)是一座横断面为抛物线形状的拱桥,当水面在直线l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的表达式是__________.【答案】y =2x 220.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.【答案】1.2【解析】以水面所在水平线为x 轴,过拱桥顶点作水平线的垂线,作为y 轴,建立坐标系,设水平面与拱桥的交点为A (-2,0),B (2,0),C (0,2),利用待定系数法设函数的解析式为y=a (x+2)(x-2)代入点C 坐标,求得a=-1/2,即抛物线的解析式为y=-1/2(x+2)(x-2),令x=1,解得y=1.5,船顶与桥拱之间的间隔应不少于0.3,则木船的最高高度为1.5-0.3=1.2米.故答案为:1.2.三.解答题(共8题;共60分)21.拱桥的形状是抛物线,其函数关系式为y =﹣x 2,当水面离桥顶的高度为m 时,水面的宽度为多少米?解:在y =﹣x 2中,当y =﹣时,x =±,故水面的宽度为=(米).答:水面的宽度为米.22如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD -DC -CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?解:(1)M(12,0),P(6,6); (2)设y =a(x -6)2+6,把(0,0)代入得a =-16,∴y =-16(x -6)2+6; (3)设D(m ,n),则C(12-m ,n),设支架总长为S m ,∴AD =CB =n =-16m 2+2m ,DC =12-2m ,∴S =2AD +DC =-13m 2+2m +12,当m =-b 2a=3时,S 最大=15.答:“支撑架”总长的最大值为15米.23.如图是一座拱桥的示意图,相邻两支柱间的距离为10米(即HF =FG =GM =MP =10米),拱桥顶点D 到桥面的距离DG =2米,将其置于如图②所示的平面直角坐标系中,抛物线的表达式为y =ax 2+6.(1)求a 的值; (2)求支柱EF 的高.解:(1)根据题意可知A(-20,0),将其代入y =ax 2+6,得400a +6=0,解得a =-3200. (2)把x =-10代入y =-3200x 2+6,得y =-3200×(-10)2+6=92,∴EF =6+2-92=72(米).24.一座拱桥呈抛物线形,它的截面如图所示,现测得,当水面宽AB =1.6 m 时,拱桥顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,拱桥宽ED 是多少?是否超过1 m?解:由题意可知,点A(-0.8,-2.4),O C =2.4 m ,OF =0.9 m .设抛物线的表达式为y =ax 2,将点A 的坐标代入,得0.64a =-2.4,解得a =-154,∴y =-154x 2.把y =-0.9代入,得-154x 2=-0.9,解得x =±65,∴DE =2 65 m . ∵2 65=2425<1,∴离开水面1.5 m 处,拱桥宽ED 是2 65 m ,没有超过1 m25.“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m ,另外三边由36 m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x m ,面积为y m 2(如图).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若矩形空地的面积为160 m 2,求x 的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.解:(1)y =-2x 2+36x (9≤x <18)(2)由题意得-2x 2+36x =160,解得x 1=10,x 2=8(不符合题意,舍去).∴x 的值为10.(3)∵y =-2x 2+36x =-2(x -9)2+162,∴x =9时,y 有最大值162.设购买乙种绿色植物a 棵,购买丙种绿色植物b 棵,由题意得14(400-a -b )+16a +28b =8600,∴a +7b =1500,∴b 的最大值为214,即丙种植物最多可以购买214棵,此时a =2,需要种植的面积=0.4×(400-214-2)+1×2+0.4×214=161.2(m 2)<162 m 2,∴这批植物可以全部栽种到这块空地上. 26.如图需在一面墙上绘制几个相同的抛物线形图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx 来表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该面墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线形图案?解:(1)根据题意,得B(12,34),C(32,34).把B ,C 两点的坐标分别代入y =ax 2+bx ,得⎩⎨⎧34=14a +12b ,34=94a +32b ,解得⎩⎪⎨⎪⎧a =-1,b =2,∴拋物线的函数表达式为y =-x 2+2x ,∴图案最高点到地面的距离为-224×(-1)=1(m ).(2)令y =0,即-x 2+2x =0,解得x 1=0,x 2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线形图案.27.如图小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的函数表达式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)设抛物线的函数表达式为y =ax 2+11,由题意得B(8,8),则64a +11=8,解得a =-364,即y =-364x 2+11.(2)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 最多为11-5=6(米),那么6=-1128(t -19)2+8,解得t 1=35,t 2=3,∴35-3=32(时).答:需32小时禁止船只通行.28..如图①,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =110x 2-45x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图②),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为14,设MN 离AB 的距离为m 米,抛物线F 2的顶点离地面的距离为k 米,当2≤k ≤2.5时,求m 的取值范围.解:(1)∵a =110>0,∴抛物线的顶点为最低点.∵y =110x 2-45x +3=110(x -4)2+75,∴绳子最低点离地面的距离为75米.(2)由(1)可知,BD =8,令x =0,得y =3,∴A(0,3),C(8,3).由题意可得抛物线F 1的顶点坐标为(2,1.8),设F 1的表达式为y =a(x -2)2+1.8.将(0,3)代入,得4a +1.8=3,解得a =0.3,∴抛物线F 1的表达式为y =0.3(x -2)2+1.8.当x =3时,y =0.3×1+1.8=2.1,∴MN 的长度为2.1米.(3)∵MN =CD =3米,∴根据抛物线的对称性可知抛物线F 2的顶点在ND 的垂直平分线上,∴抛物线F 2的顶点坐标为(12m +4,k),∴抛物线F 2的表达式为y =14(x -12m -4)2+k.把C(8,3)代入,得14(8-12m -4)2+k =3,解得k =3-14(8-12m -4)2,即k =-116(m -8)2+3,从而k是关于m 的二次函数.又由已知条件得m <8,则二次函数k =-116(m -8)2+3在对称轴的左侧,k 随m 的增大而增大,∴当k =2时,-116(m -8)2+3=2,解得m 1=4,m 2=12(不符合题意,舍去);当k =2.5时,-116(m -8)2+3=2.5,解得m 1=8-2 2,m 2=8+2 2(不符合题意,舍去).∴m 的取值范围是4≤m ≤8-2 2.。

苏科版九年级数学下册课件:5.5 第3课时 用二次函数解决抛物线型拱桥问题 教学课件

苏科版九年级数学下册课件:5.5 第3课时 用二次函数解决抛物线型拱桥问题 教学课件

当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来 的,习惯是养成的,我的成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
脚踏实地过好每一天,最简单的恰恰是最难的。拿梦想去拼,我怎么能输。只要学不死,就往死里学。我会努力站在万人中央成为别 人的光。行为决定性格,性格决定命运。不曾扬帆,何以至远方。人生充满苦痛,我们有幸来过。如果骄傲没有被现实的大海冷冷拍 下,又怎么会明白要多努力才能走到远方。所有的豪言都收起来,所有的呐喊都咽下去。十年后所有难过都是下酒菜。人生如逆旅, 我亦是行人。驾驭命运的舵是奋斗,不抱有一丝幻想,不放弃一点机会,不停止一日努力。失败时郁郁寡欢,这是懦夫的表现。所有 偷过的懒都会变成打脸的巴掌。越努力,越幸运。每一个不起舞的早晨,都是对生命的辜负。死鱼随波逐流,活鱼逆流而上。墙高万 丈,挡的只是不来的人,要来,千军万马也是挡不住的既然选择远方,就注定风雨兼程。漫漫长路,荆棘丛生,待我用双手踏平。不 要忘记最初那颗不倒的心。胸有凌云志,无高不可攀。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后, 海绵才能吸收新的源泉。感恩生命,感谢她给予我们一个聪明的大脑。思考疑难的问题,生命的意义;赞颂真善美,批判假恶丑。记 住精彩的瞬间,激动的时刻,温馨的情景,甜蜜的镜头。感恩生命赋予我们特有的灵性。善待自己,幸福无比,善待别人,快乐无比, 善待生命,健康无比。一切伟大的行动和思想,都有一个微不足道的开始。在你发怒的时候,要紧闭你的嘴,免得增加你的怒气。获 致幸福的不二法门是珍视你所拥有的、遗忘你所没有的。骄傲是胜利下的蛋,孵出来的却是失败。没有一个朋友比得上健康,没有一 个敌人比得上病魔,与其为病痛暗自流泪,不如运动健身为生命添彩。有什么别有病,没什么别没钱,缺什么也别缺健康,健康不是 一切,但是没有健康就没有一切。什么都可以不好,心情不能不好;什么都可以缺乏,自信不能缺乏;什么都可以不要,快乐不能不 要;什么都可以忘掉,健身不能忘掉。选对事业可以成就一生,选对朋友可以智能一生,选对环境可以快乐一生,选对伴侣可以幸福 一生,选对生活方式可以健康一生。含泪播种的人一定能含笑收获一个有信念者所开发出的力量,大于个只有兴趣者。忍耐力较诸脑 力,尤胜一筹。影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野、事业和 成就,甚至一生。每一发奋努力的背后,必有加倍的赏赐。懒惰像生锈一样,比操劳更消耗身体。所有的胜利,与征服自己的胜利比 起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道挫折其实就是迈向成功所应缴的学费。在这个尘世上, 虽然有不少寒冷,不少黑暗,但只要人与人之间多些信任,多些关爱,那么,就会增加许多阳光。一个能从别人的观念来看事情,能 了解别人心灵活动的人,永远不必为自己的前途担心。当一个人先从自己的内心开始奋斗,他就是个有价值的人。没有人富有得可以 不要别人的帮助,也没有人穷得不能在某方面给他人帮助。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里 缠绵,昨天的太阳,晒不干今天的衣裳。今天做别人不愿做的事,明天就能做别人做不到的事。到了一定年龄,便要学会寡言,每一 句话都要有用,有重量。喜怒不形于色,大事淡然,有自己的底线。趁着年轻,不怕多吃一些苦。这些逆境与磨练,才会让你真正学 会谦恭。不然,你那自以为是的聪明和藐视一切的优越感,迟早会毁了你。无论现在的你处于什么状态,是时候对自己说:不为模糊 不清的未来担忧,只为清清楚楚的现在努力。世界上那些最容易的事情中,拖延时间最不费力。崇高的理想就像生长在高山上的鲜花。 如果要搞下它,勤奋才能是攀登的绳索。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。海浪的品格,就是无数次被礁石击 碎又无数闪地扑向礁石。人都是矛盾的,渴望被理解,又害怕被看穿。经过大海的一番磨砺,卵石才变得更加美丽光滑。生活可以是 甜的,也可以是苦的,但不能是没味的。你可以胜利,也可以失败,但你不能屈服。越是看起来极简单的人,越是内心极丰盛的人。

5.2 二次函数的图像和性质(第3课时)(课件)九年级数学下册课件(苏科版)

5.2  二次函数的图像和性质(第3课时)(课件)九年级数学下册课件(苏科版)

的两点,那么y1________y
2.(填“>”“<”或“=”)
当堂检测
9.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2)则a=____.
-2
10.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,
=2
>2
则k____;若顶点位于x轴下方,则k
<2 .
当堂检测
C )
A.开口向上
B.顶点坐标都是(0,0)
C.对称轴是y轴
D.在对称轴的右侧,y随x的增大而增大
5.已知函数y=x2-2,当函数值y随x的增大而减小时,x的取值范围是( D )
A.x<2
B.x>0
C.x>-2
D.x<0
当堂检测
6.在同一直角坐标系中,一次函数y=ax+k和二次函数y=ax2+k的
平移︱k︱单位.
第二种方法:描点法,三步即列表、描点和连线.
2.抛物线y=ax2+k 中的a决定什么?怎样决定的?k决定什么?它的对称
轴是什么?顶点坐标怎样表示?
a决定开口方向和大小,k决定顶点的纵坐标.
课堂小结
与y=ax2的关系 上加下减
开口方向由a的符号决定
二次函数y=ax2+k
的图像和性质
图像
又∵y轴是该抛物线的对称轴,
∴点A与点B关于y轴对称,
∴MA=MB=2,即点A的横坐标是2,

则其纵坐标y= ×22+1=2,即点A的坐标为(2,2),

故点M的坐标为(0,2).
大而______,当x=___时,取得最____值,这个值等于___.
0
5
减小

y轴

九下数学课件利用二次函数解决实际问题中的最值问题(课件)

九下数学课件利用二次函数解决实际问题中的最值问题(课件)

【归纳总结】
最大值问题的一般步骤:
(1)利用应用题中已知条件和学过有关数学公式列出关系数;
(2)把关系式转化为二次函数的关系式;
(3)求二次函数的最大值或最小值.
知识点一 根据文字语言解决问题
【变式1】某工厂2019年产品的产量为100吨,该产品产量的年平均增长
率为x(x>0),设2021年该产品的产量为y吨,则y关于x的函数表达式为
解:设药店每天获得的利润为W元,由题意得
W=(x-50)(-2x+220)=-2(x-80)2+1 800.
∵-2<0,
∴当x=80时,W有最大值,最大值是1 800.
答:每桶消毒液的销售价定为80元时,药店每天获得的利润最大,最
大利润是1 800元.
知识点二 根据函数的图像解决问题
【变式2】一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场
k=-500,

解得
5k+b=9 500,
b=12 000.
∴y=-500x+12 000.
知识点二 根据函数的图像解决问题
(2)在销售过程中要求售价不低于进价,且不高于15元/件.若某一周该商品的销
售量不少于6 000件,求这一周该商场销售这种商品获得的最大利润和售价
分别为多少?
解:根据“在销售过程中要求售价不低于进价,且不高于 15 元/
随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售
策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销
售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整
数).
(1)写出y与x的函数表达式;
知识点二 根据函数的图像解决问题

苏科版九年级下册《5.5用二次函数解决问题》强化提优检测(四)

苏科版九年级下册《5.5用二次函数解决问题》强化提优检测(四)

苏科版九年级下《5.5用二次函数解决问题》强化提优检测(四)利用二次函数解决最大利润的问题(时间:90分钟满分:120分)一.选择题(共8题;共24分)1. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为()A.1月和11月B.1月、11月和12月C.1月D.1月至11月2.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元3﹒某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是()A.30万元B.40万元C.45万元D.46万元4.某民俗旅游村为接待游客住宿需求,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出;如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.14元B.15元C.16元D.18元5.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能在15≤x≤22范围内,那么一周可获得的最大利润是(D)A.20 B.1508 C.1550 D.15586.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该旅游景点关闭.经跟踪测算,该旅游景点一年中某月的利润W(万元)与月份x之间满足二次函数W=-x2+16x-48,则该旅游景点一年中利润最大的月份是(C) A.4 B.6 C.8 D.107.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x之间的关系式为( )A.y=60(300+20x)B.y=(60-x)(300+20x)C.y=300(60-20x)D.y=(60-x)(300-20x)8. 某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()A. y=x2+aB. y=a(x-1)2C. y=a(1-x)2D. y=a(l+x)2二、填空题(共9题;共27分)9. 某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.10 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a的取值范围应为________.11. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)12.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为______元时,该服装店平均每天的销售利润最大.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.14.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y 与x之间的关系应表示为_____.15.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为____________.16.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0)。

新苏科版九年级数学下册《5章 二次函数 5.1 二次函数》教案_17

新苏科版九年级数学下册《5章 二次函数  5.1 二次函数》教案_17

5.1二次函数学习目标:1.使学生理解二次函数的概念.2.使学生能够根据实际问题列出二次函数关系式,了解如何确定自变量的取值范围.教学过程:一、知识回顾1.正方形的边长是x ,周长为y ,求y 与x 之间的函数表达式 .这是 函数。

2.已知长方形的长为x ,宽为y 。

若面积为 20,求y 与x 的函数表达式 .这是 ___________函数。

3.函数的定义:4.一次函数的关系式是y = ( );它的图像是 .5.反比例函数的关系式是y = ( ).它的图像是 .二、情景引入1.一粒石子投入水中,激起的波纹不断向外扩展.扩展的圆的面积S 与半径r 之间的函数关系式是 .2.用长16m 的篱笆围成长方形的生物园饲养小兔,求生物园面积y (m 2)与长(m )之间的函数关系式. 那么y 与x 之间的函数关系式为y = ,整理为y = .3.一面长与宽之比为2:1的矩形镜子,四周镶有边框(边框宽不计) 。

已知镜面的价格是每平方米120元,边框的价格是每米30元,加工费为45元.设镜面宽为x 米,求总费用y 与镜面宽x 之间的函数关系式.(1)镜面的费用 ;(2)边框的费用为 ;(3)其他费用为 ;(4)总费用y 为 .三、探究归纳:1.上述函数关系式有哪些共同之处?它们与一次函数、反比例函数关系式有什么不同?2.一般地,我们把形如:y = ( )的函数称为二次函数.其中 是自变量, 是因变量,这是 关于 函数.注意:(1)等号左边是变量y ,右边是关于自变量x 的整式.(2)a,b,c 为常数,且0 a .(3)等式的右边最高次数为2 ,可以没有一次项和常数项,但不能没有二次项.(4)通常,二次函数自变量x 可以取任意实数.但在实际问题中,他们的取值范围往往有所限制,你能说出上述三个问题中自变量的取值范围吗? ① ② ③四、典型评析例1.判断下列函数是否为二次函数.如果是,写出其中a 、b 、c 的值.墙x x ①123212+-=x x y ( ) ②)5(-=x x y ( ) ③231x y -=( ) ④23)2(3x x x y +-=( ) ⑤12312++=x x y ( ) ⑥652++=x x y ( ) ⑦1224-+=x x y ( ) ⑧c bx ax y ++=2( ) ⑨( ) 例2.已知函数()()12222-++-=-x m x m y m是二次函数,求m 的值. 若是一次函数呢?例3. 写出下列问题中y 与x 之间的函数表达式,并写出自变量的取值范围:(1)如图,在长200m 、宽140m 的矩形绿地内修建等宽的十字形道路,设道路宽为x(m),绿地面积为y (m 2)(2)某化肥厂10月份生产某种化肥200t ,设该厂11月、12月的月平均增长率为x ,12月份化肥的产量为y (t ).(3)如图,用长50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为x (m ),面积为y (m 2).五、课堂练习(1)如果函数11++=+kx x y k 是二次函数,则k 的值一定是______ .(2)如果函数 1232++=+-kx x y k k 是二次函数,则k 的值一定是______ . (3)如果函数()13232++-=+-kx x k y k k 是二次函数,则k 的值一定是______ .(4)写出正方体的表面积S (cm 2)与正方体的棱长a(cm)之间的函数表达式。

用二次函数解决问题

用二次函数解决问题

学习内容: 5.5 用二次函数解决问题(1) 学习目标:1.能通过分析表示实际问题中变量之间的二次函数关系,能运用二次函数的知识求出实际问题的最大值或最小值.2.经历探索最优化问题的过程,进一步获得用数学模型解决实际问题的经验,提高数学应用意识. 学习过程: 一、例题解析例1 某种粮大户去年种植水稻360亩,平均每亩收益440元.他计划今年多承租若干亩稻田,预计原360亩稻田平均每亩收益不变,新承租的稻田每增加1亩,其每亩平均收益比去年每亩平均收益少2元.该种粮大户今年应多承租多少亩稻田,才能使总收益最大?练习:去年鱼塘里饲养鱼苗10千尾看,平均每千尾鱼的产量为1000kg.今年计划继续向鱼塘里投放鱼苗,预计每多投放鱼苗1千尾,每千尾鱼的产量将减少50kg.今年应投放鱼苗多少千尾,才能使总产量最大?最大总产量是多少?例2 某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高920m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运行的轨迹为抛物线,篮圈距地面3m .(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中? (2)此时,若对方队员乙在甲前面1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m ,那么他能否获得成功?练习:小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度(铅球脱手时高地面的高度)为2m,如果出手后铅球在空中飞行的水平距离x(m)与高度y(m)之间的关系为二次函数y=a(x-4)2+3,那么小明掷铅球的出手点与铅球落地点之间的水平距离是多少?二、巩固练习1.从地面垂直向上抛出一小球,小球的高度h(m)与小球运动时间t(s)的函数表达式是h=9.8t-4.9t2.小球运动的最大高度是________m.2.某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均x棵橘子树,果园橘子总个数为y个,则当x=______ 每棵树就会少结5个橘子.设果园增种..时,y的值最大.3.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800 元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入 平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大收益是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?4.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同由这些数据,科学家推测出植物每天高度增长量是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你求出该函数的表达式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?三、课堂小结第 1 题编号 55 (家庭作业)初三班姓名成绩家长对孩子作业态度的评价签名1. 巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出水的最大高度为3米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数关系式是()A.2132y x⎛⎫=--+⎪⎝⎭B.21312y x⎛⎫=-+⎪⎝⎭C.21832y x⎛⎫=--+⎪⎝⎭D.21832y x⎛⎫=-++⎪⎝⎭2.体育测试时,初三一名高个学生推铅球,铅球所经过的路线为图1所示抛物线,且铅球在空中飞行的水平距离x(m)与高度y(m)之间的关系式为21212++-=xxy,则该同学的出手高度(铅球脱手时离地面的高度)是 m,铅球在运行过程中离地面的最大高度是 m,该同学的成绩是 m.图1 图23.如图2,某喷灌设备点喷头A高出地面1.2m,如果喷出的抛物线水流的水平距离x(m)与高度y(m)之间的关系为二次函数y=a(x-4)2+2。

5.5.1 用二次函数解决问题 苏科版数学九年级下册教案

5.5.1 用二次函数解决问题 苏科版数学九年级下册教案

主备人用案人授课时间年月日总第课时课题 5.5用二次函数解决问题(1)课型新授教学目标1.体会二次函数是一类最优化问题的数学模型。

2.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识。

3.求出实际问题的最大值、最小值。

重点求出实际问题的最大值、最小值难点掌握实际问题中变量之间的二次函数关系教法及教具自主学习,合作交流,分组讨论多媒体教学内容个案调整教师主导活动学生主体活动教学过程一.指导先学:1.函数y=2(x-1)2-3,当x= 时,函数y取得最值为。

2.函数y=-(x+2)2-1,当x= 时,函数y取得最值为。

3.函数y=x2-4x, 当x= 时,函数y取得最值为。

4.如果两个数的和是100,那么这两数积的最大值是多少?二.交流展示:某种粮大户去年种植优质水稻360亩,今年计划增加承租x(100≤x≤150)亩,预计,原种植的360亩水稻今年每亩可收益440元,新增地今年每亩的收益为(440-2x)元。

试问:该种粮大户今年要增加承租多少亩稻田,才能使总收益最大?最大收益是多少?分析:根据预测,原360亩稻田今年可收益元,这是个量,所以该种粮大户的今年总收益y(元)随着的变化而变化。

根据题意,可得函数关系式。

将函数的一般式化为顶点式:用二次函数解决实际问题中的最值问题一般需要经过哪些步骤?学生回顾所学知识,先给配成顶点式,写出最值让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论教学内容个案调整教师主导活动学生主体活动教学过程三.释疑拓展:1.去年鱼塘里饲养育苗10千尾,平均每千尾的产量为1000kg,今年计划继续向鱼塘里投放鱼苗,预计每多投放鱼苗1千尾,每千尾鱼的产量将减少50kg,应投放鱼苗多少千尾,才能使总产量最大?最大总产量是多少?2.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为(1)试写出每天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(毛利润=销售价-进货价)(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?3.如图,在△ABC中∠B=90º,AB=12cm,BC=24cm,动点P从A开始沿AB边以2cm/s的速度向B运动,动点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、Q分别从A、B同时出发。

2020苏科版九年级数学下册电子课本课件【全册】

2020苏科版九年级数学下册电子课本课件【全册】

第5章 二次函数2020来自科版九年级数学下册电子课 本课件【全册】
5.2 二次函数的图象和性质
2020苏科版九年级数学下册电子课 本课件【全册】
5.3 用待定系数法确定二次函数 的表达式
2020苏科版九年级数学下册电子课 本课件【全册】
2020苏科版九年级数学下册电子 课本课件【全册】目录
0002页 0046页 0061页 0063页 0133页 0148页 0211页 0251页 0281页 0345页 0385页 0445页 0489页
第5章 二次函数 5.3 用待定系数法确定二次函数的表达式 第6章 图形的相似 6.2 黄金分割 6.4 探索三角形相似的条件 6.6 图形的位似 第7章 锐角函数 7.2 正弦、余弦 7.4 由三角函数值求锐角 7.6 用锐角三角函数解决问题 8.1 中学生的视力情况调查 8.3 统计分析帮你做预测 8.5 概率帮你做估计

苏科版数学九年级下册5.5《用二次函数解决问题(第1课时)》讲教学设计

苏科版数学九年级下册5.5《用二次函数解决问题(第1课时)》讲教学设计

苏科版数学九年级下册5.5《用二次函数解决问题(第1课时)》讲教学设计一. 教材分析苏科版数学九年级下册5.5《用二次函数解决问题》一课时的内容是在学生已经掌握了二次函数的性质和图象的基础上进行的。

本节课主要让学生学会如何运用二次函数解决实际问题,培养学生的数学应用能力。

教材通过例题和练习题引导学生运用二次函数解决实际问题,从而加深对二次函数的理解和应用。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图象和性质有了初步的了解。

但是,学生对如何将实际问题转化为二次函数问题,以及如何运用二次函数解决实际问题的方法还不够熟练。

因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,并通过列式、画图等方式寻求解决问题的方法。

三. 教学目标1.理解二次函数在实际问题中的应用,培养学生的数学应用意识。

2.学会将实际问题转化为二次函数问题,掌握运用二次函数解决实际问题的方法。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.教学重点:二次函数在实际问题中的应用,如何将实际问题转化为二次函数问题。

2.教学难点:如何引导学生运用二次函数解决实际问题,培养学生解决问题的能力。

五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生主动探索、思考,培养学生的数学应用能力。

2.案例教学法:通过分析典型案例,使学生掌握运用二次函数解决实际问题的方法。

3.小组合作学习:鼓励学生分组讨论、合作解决问题,提高学生的沟通能力及团队协作能力。

六. 教学准备1.教学课件:制作课件,展示典型案例和实际问题情境。

2.练习题:准备一些相关的练习题,以便学生在课堂上进行操练和巩固。

3.教学道具:准备一些实物道具,以便在课堂上进行直观演示。

七. 教学过程1.导入(5分钟)教师通过展示一个实际问题情境,如抛物线形的跳板问题,引导学生思考如何运用数学知识解决此类问题。

2.呈现(10分钟)教师通过课件呈现典型案例,讲解如何将实际问题转化为二次函数问题,并演示解题过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.5 用二次函数解决问题
反思
某化工材料经销公司购进一种化工原料若干千克,价格为每千克 30元.物价部门规定其销售单价不高于每千克60元,不低于每千
克30元.当销售单价为x元/千克时,日销售量为(-2x+200)千
克.在销售过程中,每天还要支付其他费用450元.当销售单价为
多少元/千克时,该公司日获利W(元)最大?最大日获利是多少元?
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
例2 [教材补充例题]某商店购进一批进价为20元/件的日用商品,
第一个月,按进价提高50%的价格出售,售出400件,第二个月,
商店准备在不低于原售价的基础上进行加价销售.
根据销售经验,提高销售单价会导致销售量的减
少,销售量y(件)与销售单价x(元/件)的关系示意
图如图5-5-1所示.
图5-5-1
5.5 用二次函数解决问题
5.5 用二次函数解决问题
目标突破
目标一 能构造二次函数模型解决最大利润问题
例1 [教材问题2变式]某市某水产养殖中心2017年鱼塘饲养鱼苗10 千尾,平均每千尾鱼的产量为1000千克,2018年计划继续向鱼塘 投放鱼苗,每多投放鱼苗1千尾,每千尾的产量将减少50千克. (1)2018年应投放鱼苗多少千尾,可以使总产量达到10450千克? (2)该水产养殖中心2018年投放鱼苗多少千尾,可以达到最大总产 量?最大总产量是多少千克?
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
17
谢谢欣赏!
2019/5/25
最新中小学教学课件
18
(1)图中点 P 所表示的实际意义是______________________;销售 单价每提高 1 元时,销售量相应减少________件.
(2)请直接写出 y 与 x 之间的函数表达式:________;自变量 x 的 取值范围为________.
(3)第二个月的销售单价定为多少元/件时,可获得最大利润?最大 利润是多少?
5.5 用二次函数解决问题
总结反思
小结
知识点一 与利润相关的量的关系
(1)产品单件利润=单件售价-单件进价. (2)销售总利润=总收入-总成本.
售价-进价 (3)利润率= 进价 ×100%
5.5 用二次函数解决问题
知识点二 解决利润最值问题的基本步骤
(1)认真审题,读懂题意. (2)正确列出函数表达式. (3)对函数表达式进行配方或根据顶点坐标公式进行整理. (4)根据题意进行合理解释并作答.Leabharlann 5.5 用二次函数解决问题
解:(1)设2018年投放鱼苗m千尾,那么鱼塘里共有鱼苗(10+m)千尾,每千尾鱼的 产量为(1000-50m)千克. 根据题意,得(10+m)(1000-50m)=10450, 解得m1=1,m2=9. 答:2018年应投放鱼苗1千尾或9千尾,可以使总产量达到10450千克. (2)设2018年投放鱼苗x千尾,总产量为y千克,则y=(1000-50x)(10+x)=- 50(x-5)2+11250. 当x=5时,y的值最大,最大值是11250. 答:2018年投放鱼苗5千尾,能使总产量最大,最大总产量为11250千克.
5.5 用二次函数解决问题
(2)设 y 与 x 之间的函数表达式为 y=kx+b. 将点(30,400),(35,300)代入 y=kx+b 中, 得430000= =3305kk+ +bb, ,解得kb==1-00200., ∴y 与 x 之间的函数表达式为 y=-20x+1000. 当 y=0 时,x=50, ∴自变量 x 的取值范围为 30≤x≤50. 故答案为 y=-20x+1000;30≤x≤50
5.5 用二次函数解决问题
(3)设第二个月的利润为w元. 由已知,得w=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000 =-20(x-35)2+4500. ∵-20<0, ∴当x=35时,w取得最大值,最大值为4500. 故第二个月的销售单价定为35元/件时,可获得最大利润,最大利润是4500 元.
第5章 二次函数
5.5 用二次函数解决问题
第5章 二次函数
第1课时 利用二次函数解决销 售利润最值问题
知识目标 目标突破 总结反思
5.5 用二次函数解决问题
知识目标
1.通过建立二次函数模型,利用二次函数性质解决实际生活中 利润的最大(小)值问题. 2.通过对函数图像的分析,能用二次函数解决利润与图像信息 的相关问题.
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
5.5 用二次函数解决问题
解:W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-
65)2+2000.
∴当x=65时,W最大,W最大值=2000.
即当销售单价为65元/千克时,该公司日获利最大,最大日获利是 2000元. 找出以上解答中的错误,并改正.
5.5 用二次函数解决问题
图5-5-1
5.5 用二次函数解决问题
解:(1)图中点 P 所表示的实际意义是当售价定为 35 元/件时,销售量为 300 件; 第一个月该商品的售价为 20×(1+50%)=30(元/件), ∴销售单价每提高 1 元时,销售量相应减少的数量为(400-300)÷(35-30)= 20(件).故答案为当售价定为 35 元/件时,销售数量为 300 件;20.
解:错误:忽略了自变量的取值范围.改正: ∵30≤x≤60, ∴顶点的横坐标65不在自变量的取值范围内, ∴最大值不是顶点的纵坐标. 由函数的增减性可知,当x=60时,W有最大值, W最大值=-2×(60-65)2+2000=1950. 即当销售单价为60元/千克时,该公司日获利最大,最大日获利是1950元.
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
5.5 用二次函数解决问题
【归纳总结】利用二次函数求最值的“三注意” (1)要把实际问题正确地转化为二次函数问题. (2)列函数表达式时要注意自变量的取值范围. (3)若自变量的取值范围内函数图像不含抛物线的顶点,则应根 据函数的增减性来确定最值.
5.5 用二次函数解决问题
目标二 会解决利润与图像信息相关问题
相关文档
最新文档