吉林省长春市普通高中2020届高三数学质量监测(三模)试题(三)文
2020东北三省三模文科数学有答案解析
2020年东北三省四市教研协作体等值诊断联合考试2020年长春市高中毕业班第三次调研测试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回.注意事项:1.答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上). 1. 若i z i -=+123,则=z A.1522i -- B. 1522i - C.i 2521+ D.1522i -+ 2. 若集合{2,1,0,1,2}A =--,则集合{|1,}y y x x A =+∈= A.{1,2,3} B.{0,1,2} C.{0,1,2,3} D.{1,0,1,2,3}-3. 直线l :2x my =+与圆M :22220x x y y +++=相切,则m 的值为A.1或-6B.1或-7C.-1或7D.1或17-4. 各项都是正数的等比数列{}n a 中,13a ,312a ,22a 成等差数列,则1012810a a a a +=+ A.1 B.3 C.6 D.95. 对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是相关系数为1r 相关系数为2r相关系数为3r相关系数为4r A. 24310r r r r <<<<B. 42130r r r r <<<<C. 42310r r r r <<<<D. 24130r r r r <<<<6. 函数21()3cos log 22f x x x π=--的零点个数为 A.2 B.3 C.4 D.57. 一个算法的程序框图如图所示,若该程序输出的结果是631,则判断框内应填入的条件是 A.i <4 B.i >4C.i <5D.i >5 8. 函数()sin()6f x A x πω=+(0)ω>的图像与x 轴的交点的横坐标构成一个公差为2π的等差数列,要得到函数()cos g x A x ω=的图像只需将()f x 的图像A.向左平移6πB.向右平移3πC.向左平移23πD.向右平移23π 9. 若满足条件AB=3,C=3π的三角形ABC 有两个,则边长BC 的取值范围是 A.()1,2 B.()2,3 C.()3,2 D.()2,210. 现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为 A.13 B.23 C.12 D.3411. 双曲线22221(0,0)x y a b a b-=>>,过其一个焦点且垂直于实轴的直线与双曲线交于M 、N 两点,O 是坐标原点,满足OM ON ⊥,则双曲线的离心率为 A.172+ B.152+ C.132+ D.122+12.四棱锥S ABCD-的所有顶点都在同一个球面上,底面ABCD是正方形且和球心O在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于443+,则球O的体积等于A.423π B.823π C.1623π D.3223π第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 平面区域⎩⎨⎧≤-≤-≤+≤-1111y x y x 的周长为_______________.14. 某长方体的三视图如右图,长度为10的体对角线在正视图中的长度为6,在侧视图中的长度为5,则该长方体的全面积为________________.15. 等差数列{}n a 的首项为a ,公差为d ,其前n 项和为n S ,则数列{}n S 为递增数列的充分必要条件是________________.16. 如果直线2140ax by -+=(0,0)a b >>和函数1()1x f x m +=+(0,1)m m >≠的图像恒过同一个定点,且该定点始终落在圆22(1)(2)25x a y b -+++-=的内部或圆6正视图侧视图俯视图5上,那么b a 的取值范围是_______________. 三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17. (本小题满分12分) 在△ABC 中,向量(2cos ,1)m B =u r ,向量(1sin ,1sin 2)n B B =--+r ,且满足m n m n +=-u r r u r r . ⑴求角B 的大小;⑵求sin sin A C +的取值范围.18. (本小题满分12分)2020年2月份,从银行房贷部门得到好消息,首套住房贷款利率将回归基准利率. 某大型银行在一个星期内发放贷款的情况统计如图所示:⑴求本周该银行所发放贷款的贷款..年限..的标准差;⑵求在本周内一位购房者贷款年限不超过20年的概率;⑶求在本周内该银行所借贷客户的平均贷款年限(取过剩近似整数值). 19. (本小题满分12分)已知四棱柱1111ABCD A B C D -中,1AA ABCD ⊥底面, 90ADC ∠=o ,AB CD ||,122AD CD DD AB ====. ⑴求证:11AD B C ⊥;⑵求四面体11A BDC 的体积.20. (本小题满分12分)已知12,F F 分别为椭圆22221x y a b +=(0)a b >>的左右焦点, ,M N 分别为其左右顶 A 1CD 1D A B B 1C 1点,过2F 的直线l 与椭圆相交于,A B 两点. 当直线l 与x 轴垂直时,四边形AMBN 的面积等于2,且满足222MF AB F N =+u u u u r u u u r u u u u r .⑴求此椭圆的方程; ⑵当直线l 绕着焦点2F 旋转但不与x 轴重合时,求MA MB NA NB ⋅+⋅u u u r u u u r u u u r u u u r 的取值范围.21. (本小题满分12分)已知函数()ln f x x x =. ⑴讨论函数()f x 的单调性;⑵对于任意正实数x ,不等式1()2f x kx >-恒成立,求实数k 的取值范围; ⑶求证:当3a >时,对于任意正实数x ,不等式()()x f a x f a e +<⋅恒成立.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲.自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于,B C两点,且100BMP∠=o,40BPC∠=o.⑴求证:MBP∆与MPC∆相似;⑵求MPB∠的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系xOy中,曲线M的参数方程为sin cossin2xyθθθ=+⎧⎨=⎩(θ为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为:2sin()42tπρθ+=(其中t为常数).⑴若曲线N与曲线M只有一个公共点,求t的取值范围;⑵当2t=-时,求曲线M上的点与曲线N上点的最小距离.24.(本小题满分10分)选修4-5:不等式选讲.已知函数()|1||22|.f x x x=-++⑴解不等式()5f x>;⑵若关于x的方程1()4af x=-的解集为空集,求实数a的取值范围.2020年东北三省四市教研协作体等值诊断联合考试2020年长春市高中毕业班第三次调研测试数学(文科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.C2.C3. B4.D5.A6.B7.C8.A9.C 10.C 11.B 12.B 简答与提示:1. C 由已知i i i z 2521123+=-+=. 故选C. 2. C 将2,1,0,1,2--=x 逐一带入1+=x y ,得y=0,1,2,3,故选C. 3. B 圆的方程化为22(1)(1)2x y +++=,由直线与圆相切,可有2132=+-m m ,解得71m =-或. 故选B.4. D 由已知31232a a a =+于是232q q =+,由数列各项都是正数,解得3q =, 210128109a a q a a +==+. 故选D. 5. A 由相关系数的定义以及散点图所表达的含义可知24310r r r r <<<<. 故选A6. B 在同一坐标系内画出函数3cos 2y x π=和21log 2y x =+的图像,可得交点个数为3. 故选B.7. C 初始值15,0,1===P T i ,第一次循环后2,1,5i T P ===,第二次循环后3,2,1i T P ===,第三次循环后14,3,7i T P ===,第四次循环后15,4,63i T P ===,因此循环次数应为4次,故5i <可以作为判断循环终止的条件. 故选C.8. A 由条件知函数()f x 的周期为π,可知2ω=,即函数()sin(2)6f x A x π=+,()cos 2g x A x =,可将()g x 化为()sin(2)2g x A x π=+,由此可知只需将()f x 向左平移6π个单位即可获得x A x A x A x f 2cos )22sin(]6)6(2sin[)6(=+=++=+ππππ.故选A.9. C 若满足条件的三角形有两个,则应1sin sin 23<<=A C ,又因为2sin sin ==CAB A BC ,故A BC sin 2=,32BC <<. 故选C. 10. C 通过将基本事件进行列举,求得概率为21. 故选C.11. B 由题意可有:a b c 2=,由此求得251+=e . 故选B. 12. B 由题意可知四棱锥S ABCD -的所有顶点都在同一个球面上,底面ABCD 是正方形且和球心O 在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的半径R ,且四棱锥的高h R =,进而可知此四棱锥的四个侧面均是边长为2R 的正三角形,底面为边长为2R 的正方形,所以该四棱锥的表面积为2124(22sin 60)2R R R +⋅⋅⋅=o 2(223)443R +=+,于是2,22==R R ,进而球O 的体积3448222333V R πππ==⨯=. 故选B. 二、填空题(本大题包括4小题,每小题5分,共20分) 13. 42 14. 465+ 15.0d ≥且0d a +> 16. 34[,]43简答与提示:13. 画出图形,可得该区域图形为边长为2的正方形,故其周长为42.14. 由体对角线长10,正视图的对角线长6,侧视图的对角线长5,可得长方体的长宽高分别为5,2,1,因此其全面积为2(515212)465⨯+⨯+⨯=+.15. 由n n S S >+1,可得(1)(1)(1)22n n n n n a d na d +-++>+,整理得0>+a dn ,而*∈N n ,所以0d ≥且0>+a d . 因此数列{}n S 单调递增的充要条件是: 0d ≥且0d a +>.16. 根据指数函数的性质,可知函数1()1(0,1)x f x m m m +=+>≠恒过定点(1,2)-.将点(1,2)-代入2140ax by -+=,可得7a b +=.由于(1,2)-始终落在所给圆的内部或圆上,所以2225a b +≤.由22725a b a b +=⎧⎨+=⎩,解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,这说明点(,)a b 在以(3,4)A 和(4,3)B 为端点的线段上运动,所以b a 的取值范围是34[,]43.三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题借助向量的垂直与数量积考查三角函数的化简,并且考查利用三角函数的变换与辅助角公式求取三角函数的值域等有关知识. 【试题解析】解:⑴由m n m n +=-u r r u r r ,可知0m n m n ⊥⇔⋅=u r r u r r .然而(2cos ,1),m B =u r (1sin ,1sin 2)n B B =--+r ,所以有2cos sin 21sin 22cos 10m n B B B B ⋅=--+=-=u r r ,得1cos ,602B B ==o .(6分) ⑵)30sin(3cos 23sin 23)120sin(sin sin sin οο+=+=-+=+A A A A A C A .(9分) 又0120A <<o o ,则3030150A <+<o o o ,1sin(30)12A <+≤o , 所以 3sin sin 23≤+<C A ,即sin sin A C +的取值范围是3(,3]2.(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,具体涉及到统计图的应用、平均值的求取以及概率的初步应用.【试题解析】解:⑴贷款年限依次为10,15,20,25,30,其平均值20x =. 222222(1020)(1520)(2020)(2520)(3020)505s -+-+-+-+-==, 所以标准差52s =. (4分) ⑵所求概率123101025980808016P P P P =++=++=. (8分) ⑶平均年限101010152025252015302280n ⨯+⨯+⨯+⨯+⨯=≈(年). (12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面的垂直关系以及几何体体积的求法.【试题解析】解:⑴由四边形11A ADD 是正方形,所以D A AD 11⊥.又⊥1AA 平面ABCD ,ο90=∠ADC ,所以DC AD DC AA ⊥⊥,1,而1AA AD A =I ,所以DC ⊥平面D D AA 11,DC AD ⊥1.又1A D DC D =I ,所以⊥1AD 平面11DCB A ,从而C B AD 11⊥. (6分)⑵设所给四棱柱的体积为V ,则61=⋅=AA S V ABCD ,又三棱锥ABD A -1的体积等于三棱锥111C D A B -的体积,记为1V ,三棱锥111C D A D -的体积又等于三棱锥CBD C -1的体积,记为2V .而3221221311=⨯⨯⨯⨯=V ,3422221312=⨯⨯⨯⨯=V ,所以所求四面体的体积为22221=--V V V . (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到椭圆 方程的求法、直线与圆锥曲线的相关知识以及向量与圆锥曲线的综合知识.【试题解析】解:⑴当直线l 与x 轴垂直时,四边形AMBN 面积: ,222212=⋅⋅ab a 得12=b . 又2222,,b MF a c AB F N a c a =+==-u u u u r u u u r u u u u r ,于是c a a b c a -+=+222,得 2=ac ,又221a c =+,解得2a =.因此该椭圆方程为1222=+y x . (4分) (2)设直线1:+=my x l ,由⎪⎩⎪⎨⎧=++=12122y x my x 消去x 并整理得:012)2(22=-++my y m . 设),(),,(2211y x B y x A ,则有21,22221221+-=+-=+m y y m m y y . (6分) 由),2(11y x MA +=,),2(22y x MB +=,),2(11y x NA -=,),2(22y x NB -=,可得4)(22121++=⋅+⋅y y x x NB NA MB MA . (8分)1)()1()1)(1(2121221212121++++=+++=+y y m y y m y y my my y y x x 21222++-=m m ,所以2104)(222121+=++=⋅+⋅m y y x x NB NA MB MA . (10分) 由于m R ∈,可知MA MB NA NB ⋅+⋅u u u r u u u ru u u r u u u r的取值范围是(0,5]. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来研 究函数的单调性、极值以及函数零点的情况.【试题解析】解:⑴令()l n 10fx x '=+=,得1x e=.当1(0,)x e ∈时,()0f x '<;当1(,)x e∈+∞时,()0f x '>.所以函数()f x 在1(0,)e 上单调递减,在1(,)e+∞上单调递增. (3分)⑵由于0x >,所以11()l n l n 22fxxxk x k x x=>-⇔<+. 构造函数1()ln 2k x x x =+,则令221121()022x kx x x x-'=-==,得12x =.当1(0,)2x ∈时,()0k x '<;当1(,)2x ∈+∞时,()0k x '>.所以函数在点12x =处取得最小值,即m i n11()()l n 11l n 222k x k ==+=-. 因此所求的k 的取值范围是(,1l n 2)-∞-. (7分)⑶()()()ln()ln x x f a x f a e a x a x a a e +<⋅⇔++<⋅()ln()ln a x a a x a x a ae e+++⇔<.构造函数ln ()xx xg x e =,则问题就是要求()()g a x g a +<恒成立. (9分) 对于()g x 求导得 2(ln 1)ln ln 1ln ()x x x xx e x x e x x xg x e e +-⋅+-'==. 令()ln 1ln h x x x x =+-,则1()ln 1h x x x'=--,显然()h x '是减函数.当1x >时,()(1)0h x h ''<=,从而函数()h x 在(1,)+∞上也是减函数. 从而当3x >时,()()ln 1ln 20h x h e e e e e <=+-=-<,即()0g x '<,即函数ln ()x x xg x e=在区间(3,)+∞上是减函数.当3a >时,对于任意的非零正数x ,3a x a +>>,进而有()()g a x g a +<恒成立,结论得证. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明及其运算,具体涉及到圆的性质以及三角形相似等有关知识内容.【试题解析】解:⑴因为MA 为圆的切线,所以2MA MB MC =⋅ 又M 为PA 中点,所以2MP MB MC =⋅.因为BMP PMC ∠=∠,所以BMP ∆与PMC ∆相似. (5分) ⑵由⑴中BMP ∆与PMC ∆相似,可得MPB MCP ∠=∠. 在MCP ∆中,由180MPB MCP BPC BMP ∠+∠+∠+∠=o ,得180202BPC BMPMPB -∠-∠∠==o o . (10分) 23. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、直线与曲线的位置关系以及点到直线的距离等内容.【试题解析】对于曲线M,消去参数,得普通方程为2,12≤-=x x y ,曲线M 是抛物线的一部分;对于曲线N ,化成直角坐标方程为t y x =+,曲线N 是一条直线. (2分)(1)若曲线M,N 只有一个公共点,则有直线N 过点(2,1)时满足要求,并且向左下方平行运动直到过点(2,1)-之前总是保持只有一个公共点,再接着向左下方平行运动直到相切之前总是有两个公共点,所以2121t -+<≤+满足要求;相切时仍然只有一个公共点,由12-=-x x t ,得210,x x t +--=14(1)0t ∆=++=,求得54t =-. 综合可求得t 的取值范围是:2121t -+<≤+或54t =-. (6分)(2)当2-=t 时,直线N: 2-=+y x ,设M 上点为)1,(200-x x ,02x ≤,则823243)21(212002≥++=++=x x x d , 当012x =-时取等号,满足02x ≤,所以所求的最小距离为823. (10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明以及解法等内容.【试题解析】解:(1)⎪⎩⎪⎨⎧-<--<≤-+≥+=1,1311,31,13)(x x x x x x x f当1≥x 时,由513>+x 解得:34>x ;当11<≤-x 时,由53>+x 得2>x ,舍去; 当1-<x 时,由513>--x ,解得2-<x . 所以原不等式解集为4|23x x x ⎧⎫<->⎨⎬⎩⎭或.(5分)(2)由(1)中分段函数()f x 的解析式可知:()f x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增.并且min ()(1)2f x f =-=,所以函数()f x 的值域为[2,)+∞.从而()4f x -的取值范围是[2,)-+∞,进而1()4f x -(()40)f x -≠的取值范围是1(,](0,)2-∞-+∞U .根据已知关于x 的方程1()4a f x =-的解集为空集,所以实数a 的取值范围是1(,0]2-. (10分)。
吉林省吉林市普通高中2024届高三下学期三模考试语文试卷(含答案)
吉林省吉林市普通高中2024届高三下学期三模考试语文试卷学校:___________姓名:___________班级:___________考号:___________一、现代文阅读阅读下面的文字,完成下题。
导航卫星的原理就是不断地向地面播发导航电文,电文的核心内容就是:位置坐标和相应位置的时间等信息。
为了实现信息足够高的精度,卫星本身要有非常精确的计时功能,这种计时功能是由原子钟来实现的。
原子钟是一种精密测量设备,它是利用某种元素原子的能级跃迁来实现精确计时的。
原子是由原子核及围绕它旋转的电子组成的。
有些原子拥有相当多数量的电子,分成不同的电子层。
当原子从某一个能量大的层次跃迁到低一点的能量层次时,它就会释放出电磁波。
某一种元素的原子,它的能级跃迁变化频率是固定的。
1956年,美国科学家生产出了实用化的原子钟,它所用的元素是金属铯。
铯有一个很大的优点,用它来制作原子钟非常方便。
铯的共振频率是9192631770赫兹,规定它的原子核振动这么多次所用的时间就是一秒钟。
随着技术的发展和进步,人们还开发出了用铷、氢元素作为原料的原子钟,体积越来越小。
目前最先进的成果是用金属铝来制造原子钟,精度比前三种原子钟都高。
北斗导航卫星携带了四台中国自行研制的高精度原子钟。
其中两台工作,两台备份。
原子钟之间相互校准,免得工作的那一台发生了超过设计指标的误差。
卫星在太空中围绕地球做圆周运动,飞行轨迹就是卫星轨道。
我们知道北斗星座是几个全球卫星导航系统当中轨道设置最复杂的,包括了三种轨道类型,即地球静止轨道、地球倾斜同步轨道和中圆轨道,能够最大限度地给用户提供良好的服务。
卫星导航系统的工作主力是运行在中圆轨道上的卫星,它们在这个轨道上不断地向地面发射信号。
但是因为种种原因,包括宇宙射线、电离层和大气层的干扰,中圆轨道卫星所提供的信号,用户在使用的时候多多少少会存在一定程度的误差。
为了尽量减小误差,就需要提供改正信息。
2020届吉林省长春市高三质量监测(三)(三模)数学(文)试题(解析版)
B x lg x 1 x 0 x 10
A B x 0 x 1
故答案选 B
【点睛】本题考查了集合的运算,属于简单题型.
2.已知向量
a,b 满足
a
(2,1), b
(1,y),且 a
b ,则
a
2b
=(
)
A. 5
B. 5 2
C. 5
D. 4【答案】C【解 Nhomakorabea】【分析】
根据向量垂直的坐标表示列方程,由此求得 y ,根据向量模的坐标表示求得正确答案.
12
12
12
12
故选:B
【点睛】本小题主要考查三角函数的单调性,考查三角函数的周期性,属于基础题. 9.已知函数 f(x)是定义在 R 上的奇函数,在(0,+∞)上是增函数,且 f(﹣4)=0,则使得 xf(x)>0
w>0)的相邻两交点间的距离为π,则函数
f(x)
的单调递增区间为( )
A.
k
6
,k
5 6
,k
Z
B.
k
12
,k
5 12
,k
Z
C.
k
5 6
,k
11 6
,k
Z
D.
k
5 6
,k
11 12
,k
Z
【答案】B
【解析】
【分析】
根据周期求得 ,再根据单调区间的求法,求得 f x 的单调区间.
【详解】∵y=﹣2
6.函数
f
(x)
x3 ex ex
的图象大致为(
)
A.
B.
C.
D.
【答案】B 【解析】 【分析】
根据解析式求得函数奇偶性,以及 f 1 即可容易求得结果.
吉林省长春市普通高中2020届高三三模试卷(待公布)附复习资料
吉林省长春市普通高中2020届高三三模(待公布)附复习资料查询更多试卷答案解析,微博搜索:答案家族微信搜索:高中生家族送一些复习试题资料给大家,希望对你有所帮助!第Ⅰ卷(选择题共42分)一、(18分,每小题3分)1.下列词语中加点字的读音完全相同的一组是A.摘录动辄蛰居百折不挠重蹈覆辙B.梦魇敷衍俨然偃旗息鼓奄奄一息C.木匣狡黠统辖瑕不掩瑜挟山超海D.琢磨灼热卓越擢发难数弄巧成拙【答案】B(A中摘录,C中挟山超海,D中弄巧成拙,分别与其它三项的读音不同。
)2.下列词语中没有错别字的一组是A.陷井下马威出其不意天下乌鸦一般黑B.按装莫须有寥若晨星磨刀不误砍柴功C.气概口头禅幅员辽阔解铃还须系铃人D.过隐碰钉子越俎代庖无事不登三宝殿【答案】C(A中陷阱;B中按装;磨刀不误砍柴工D中过瘾)3.依次填入下列句子横线处的词语,最恰当的一组是①他是匿名发表文章的,完全可以不承认此事,后来他向公司坦白了,公司却似乎不鼓励诚实,而且对批评意见缺乏______。
②著名科学家扬振宁、李政道曾获诺贝尔物理奖,他们在瑞典皇家科学院参加了______仪式。
③在那里一呆就是六年,______教过我的老师不下二三位,印象深刻的是我的班主任和少先队辅导员。
A.包容授奖其间B.包涵受奖期间C.包涵受奖其间D.包容授奖期间【答案】A(包容:大度宽容。
包涵:请人原谅的客套话。
受奖:得到奖励。
授奖:颁发奖金、奖品或奖状。
其间:指某一段时间。
期间:某个时期里面,如春节期间、抗战期间。
)4.下列各句中加点的熟语使用恰当的一项是A.你先去找他说一说,然后我在旁边敲边鼓,说不定能行。
B.今年我国开始治理整顿互联网,因为各种不良信息遍布网络,已是不容置喙的事实。
C.在这样的一个关键性时刻,吉祥兄弟没有跟我提起申花积分暂列第一的辉煌战绩,却是带着浅浅的笑意,与我侃侃而谈他俩的所感、所悟、所想、所盼……D.有的年轻人,一走上领导岗位就雄心勃勃,认为该自己八仙过海,各显神通了。
2020届吉林省长春市高三质量监测(三)(三模)数学(理)试题(解析版)
长春市2020届高三质量监测(三)理科数学一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2{|4}A x Z x =∈…,{|42}B x x =-<< ,则A B =I ( )A.{|22}x x -<≤ B. {|42}x x -<≤C.{2,1,0,1,2}--D.{2,1,0,1}--【答案】D 【分析】根据集合的交运算,即可容易求得结果. 【详解】{|22}{2,1,0,1,2}A x Z x =∈-=--≤≤故可得{}2,1,0,1A B ⋂=--故选:D .【点睛】本题考查集合的交运算,属基础题. 2.已知复数()(12) ()z a i i a R =+-∈的实部为3,其中i 为虚数单位,则复数z 的虚部为( )A.1-B.-iC. 1D. i【答案】A 【分析】根据复数的乘法运算化简复数z ,由其实部即可求得参数a . 【详解】()(12)2(12)za i i a a i =+-=++-,231a a +=∴=∴121a -=-. 故选:A .【点睛】本题考查复数的乘法运算,实部和虚部的辨识,属基础题.3.已知向量(1,2)=-r a ,(3,3)b =-r ,(1,)c t r =,若向量a r 与向量b c +r r共线,则实数t =( )A.5B. 5-C. 1D.1-【答案】B 【分析】根据向量的加法运算,求得b c +r r的坐标,由向量共线的坐标公式,即可容易求得结果.【详解】因为b c +r r ()4,3t =-,又a r 与向量b c +r r共线故可得38t -=-,解得5t =-.故选:B .【点睛】本题考查向量共线的坐标公式,涉及向量的坐标运算,属基础题. 4.已知函数()cos 3sin 22x xf x =-的图象为C ,为了得到关于原点对称的图象,只要把C 上所有的点( )A. 向左平移3π个单位B. 向左平移23π个单位C. 向右平移3π个单位D. 向右平移23π个单位【答案】A 【分析】利用辅助角公式化简()f x ,再根据三角函数的奇偶性,即可求得结果.【详解】由()cos 3sin 2cos()()2cos()2223223x x x x f x f x πϕπϕ=-=+⇒+=++为奇函数,得+=+=+22323k k Z k ϕππππϕπ∈∴,当0k =时,3πϕ=.故为得到关于原点对称的图像,只要把C 向左平移3π个单位即可. 故选:A【点睛】本题考查辅助角公式,函数图像的平移,以及余弦型函数的奇偶性,属综合中档题.5.函数3()x xx f x e e-=-的图象大致为( ) A. B.C. D.【答案】B 【分析】根据解析式求得函数奇偶性,以及()1f 即可容易求得结果.【详解】因为()f x 的定义域为()(),00,-∞⋃+∞,且()()3x xx f x f x e e--==-,故()f x 为偶函数, 排除C ,D ,验算特值11(1)=0f e e-<-,排除A, 故选:B【点睛】本题考查函数图像的辨识,涉及函数奇偶性的判断和指数运算,属基础题. 6.在521()x x+的展开式中,一定含有( ) A. 常数项 B. x 项C. 1x -项D. 3x 项【答案】C 【分析】利用二项式的通项公式,即可容易求得结果. 【详解】由通项公式5521()r rr C xx-535r rC x -=代入0,1,2,3r =验证, 当0r =时,可得其含有5x 项;当1r =,可得其含有2x 项;当2r =时,可得其含有1x -项; 故选:C . 【点睛】本题考查二项式的通项公式,属基础题.7.已知直线,m n 和平面,,αβγ,有如下四个命题:①若,//m m αβ⊥,则αβ⊥;②若,//,m m n n αβ⊥⊂,则αβ⊥;③若,,n n m αβα⊥⊥⊥,则m β⊥;④若,m m n α⊥⊥,则//n α.其中真命题的个数是( )A. 1B.2C.3D.4【答案】C 【分析】根据面面垂直,线面垂直以及线面平行的判定,即可容易判断. 【详解】①若,//m m αβ⊥,则一定有αβ⊥,故①正确;②若,//,m m n n αβ⊥⊂,则n α⊥,又因为n β⊂,故可得αβ⊥,故②正确; ③若,n n αβ⊥⊥,故可得α//β,又因为m α⊥,故可得m β⊥,故③正确; ④若,m m n α⊥⊥,则//n α或n α⊂,故④错误; 综上所述,正确的有①②③. 故选:C【点睛】本题考查线面垂直,面面垂直的判定以及线面平行的判定,属综合基础题.8.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.下图是风雨桥中塔的俯视图.该塔共5层,若011223340.5m B B B B B B B B ====,008m A B =,则五层正六边形的周长和为( )A. 35mB.45mC.210m D. 270m【答案】C 【分析】根据题意,构造等差数列,即可由等差数列的前n 项和进行求解. 【详解】根据题意,设正六边形的中心为O ,容易知4433221100,,,,OA B OA B OA B OA B OA B n n n n n 均为等边三角形, 故4433221100,,,,A B A B A B A B A B 长度构成依次为6,6.5,7,7.5,8的等差数列 ∴周长总和为(68)562102+⋅⋅=, 故选:C【点睛】本题考查等差数列的前n 项和的求解,属基础题.9.已知圆E 的圆心在y 轴上,且与圆2220x y x +-=的公共弦所在直线的方程为30x -=,则圆E 的方程为( )A .22(3)2x y+-= B. 22(3)2x y ++= C. 22(3)3x y +-= D. 22(3)3x y ++=【答案】C 【分析】根据圆心的连线与公共弦所在直线垂直,即可求得圆心;再结合弦长公式,即可容易求得半径. 【详解】两圆圆心连线与公共弦垂直,不妨设所求圆心的坐标为()0,a ,又圆2220x y x +-=的圆心为()1,0,半径为1,故113a ⨯=--,解得3a =.故所求圆心为()0,3. 直线30x y -=截得2220x y x +-=所成弦长212134-=, 圆心()0,3到直线30x y -=的距离为32, 所以直线30x y -=截得所求圆的弦长223232r ⎛⎫-= ⎪⎝⎭, 解得3r =.故圆心坐标为(0,3),半径为3, 故选:C .【点睛】本题考查圆方程的求解,涉及两圆位置关系,属综合基础题.10.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是( )A. 除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图象几何” 在第三学段增加较多,约是第二学段的3.5倍.B. 所有主题中,三个学段的总和“图形几何”条目数最多,占50%,综合实践最少,约占4% .C. 第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多.D. “数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何”条目数,百分比都随学段的增长而增长. 【答案】D 【分析】根据统计图表,结合每个选项即可容易求得结果. 【详解】结合统计图表可知,除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加, 尤其“图象几何” 在第三学段增加较多,约是第二学段的3.5倍,故A 正确; 所有主题中,三个学段的总和“图形几何”条目数最多,占50%, 综合实践最少,约占4% ,故B 正确;第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多,故C 正确; 对D 中,显然“数与代数”条目数虽然随着学段的增长而增长, 而其百分比却一直在减少;而“图形几何”条目数, 百分比随着学段数先减后增,故D 错误; 故选:D【点睛】本题考查统计图表的辨识和应用,属基础题.11.已知数列{}n a 的各项均为正数,其前n 项和n S 满足2*42 ()n n n S a a n N =+∈,设1(1)nn n n b a a +=-⋅,n T 为数列{}n b 的前n 项和,则20T =( )A. 110B. 220C.440 D. 880【答案】D 【分析】利用,n n a S 之间的关系,即可容易求得n a ,则n b 得解,再用并项求和法即可求得结果.【详解】由242 n n n S a a =+得211142 (2)n n n S a a n ---=+…,作差可得: 1 2n n a a --=,又1=2 a 得2n a n =,则(1)22(1)4(1)(1)nnn b n n n n =-⋅⋅+=-⋅+所以12+b b =4[(1)1223]82-⋅⋅+⋅=⋅,34+4[(1)3445]84,b b =-⋅⋅+⋅=⋅56+4[(1)5667]86,b b =-⋅⋅+⋅=⋅…,1920+4[(1)19202021]820,b b =-⋅⋅+⋅=⋅所以20(220)1088802T +⋅=⋅=.故选:D .【点睛】本题考查利用,n n a S 的关系求数列的通项公式,涉及等差数列前n 项和的求解,属综合中档题. 12.设椭圆C 的左右焦点为12,F F ,焦距为2c ,过点1F 的直线与椭圆C 交于点,P Q ,若2||2PF c =,且114||||3PF QF =,则椭圆C 的离心率为( ) A.12B.34C.57D.23【答案】C 【分析】根据题意,求得112,,PF F Q F Q ,结合余弦定理,即可求得,a c 的齐次式,据此即可求得结果. 【详解】根据题意,作图如下:由2||2PF c =得1||22PF a c =-,13377||,||=22a c a c QF PQ --=,23||2a cQF +=由221cos cos F PQ F PF ∠=∠即22222222211222122PF PQ F QPF PF F F PF PQPF PF +-+-=,整理得2271250c ac a -+=, 则()()570a c a c --=,得57e =故选:C .【点睛】本题考查椭圆离心率的求解,涉及椭圆的定义,属中档题.二、填空题:本题共4小题,每小题5分.13.一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________ 【答案】0.88 【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可. 【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护", 所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=, 故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 14.等差数列{}n a 中,11a =,公差2[]1,d ∈,且391515a a a λ++=,则实数λ的最大值为_________.【答案】13- 【分析】根据等差数列的基本量,用d 表示出λ,分离参数求得函数的值域,即可容易求得结果. 【详解】由391515a a a λ++=得()()121811415d d d λ+++++=,整理得()181316d d λ+=-,又2[]1,d ∈,故1316151912[,]1818173d d d λ-==-+∈--++.故实数λ的最大值为13-.故答案为:13-.【点睛】本题考查等差数列基本量的求解,涉及分式函数值域的求解,属综合中档题. 15.若12,x x 是函数2()74ln f x x x x =-+的两个极值点,则12x x =____,12()()f x f x +=____.【答案】 (1). 2 (2). 654ln 24-【分析】根据极值点的定义,即可由方程的根与系数之间的关系,即可求得12x x 以及12x x +,再结合对数运算即可容易求得结果. 【详解】2121247()2702740,22f x x x x x x x x x '=-+=⇒-+=⇒+==,2212111222()()74ln 74ln f x f x x x x x x x +=-++-+21212121265()27()4ln()4ln 24x x x x x x x x =+--++=-. 故答案为:2;654ln 24-. 【点睛】本题考查利用导数求函数的极值点,涉及对数运算,属综合基础题.16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD 为等边三角形,线段BC 的中点为E ,若1PE =.则所需球体原材料的最小体积为___________. 【答案】82π 【分析】根据题意,讨论球体体积最小时的状态,求得此时的球半径,则问题得解.【详解】根据题意,取AD 中点为F ,连接EF ,取EF 中点为O ,连接PO ,如下所示:因为PAD n为边长为2的等边三角形,故可得3PF =又因为1,2PE EF ==,满足勾股定理, 故可得PE PF ⊥,则EPF n 为直角三角形,则111222PO EF BD ==<=若要满足题意,只需满足ABCD 在球大圆上时,点P 在球内部即可, 此时球半径最小为282π故答案为:823π. 【点睛】本题考查棱锥外接球问题,涉及棱锥体积的求解,属综合中档题.三、解答题:共70 分,解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第22~23 题为选考题,考生根据要求作答.(一)必考题:共60分.17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值X给宣纸确定质量等级,如下表所示:公式在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公式生产宣纸的年利润(单位:万元);(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值X的频率,如下表所示:其中X为改进工艺前质量标准值X的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.【答案】(1)400万元;(2)应该购买,理由见解析【分析】(1)由频率分布直方图求得100张宣纸中各类宣纸的数量,结合每种宣纸的盈亏即可容易求得结果;(2)由频率分布直方图求得X,即可求得各区间的频率分布,据此即可求得结果.【详解】(1)由频率分布直方图可知,一刀(100张)宣纸中有正牌宣纸100×0.1×4=40张,有副牌宣纸100×0.05×4×2=40张,有废品100×0.025×4×2=20张,所以该公司一刀宣纸的年利润为40×10+40×5+20×(-10)=400元,所以估计该公式生产宣纸的年利润为400万元;(2) 由频率分布直方图可得4(420.025460.05500.1540.05580.025)50X =⨯⨯+⨯+⨯+⨯+⨯=这种机器生产的宣纸质量指标X 的频率如下表所示:(48,52](44,56]0.68260.9544X频率则一刀宣纸中正牌的张数为100×0.6826=68.26张, 副牌的张数约为100×(0.9544-0.6826)=27.18张,废品的张数约为100×(1-0.9544)=4.56张,估计一刀宣纸的利润为:68.26×(10-2)+27.18×(5-2)+4.56×9(-10)=582.02, 因此改进工艺后生产宣纸的利润为582.02-100=482.02元,因为482.02>400,所以该公式应该购买这种设备.【点睛】本题考查由频率分布直方图计算概率以及平均数,涉及由样本估计总体,属综合基础题.18.在△ABC 中, 角,,A B C 所对的边分别为,,a b c ,且4cos a c B = .(1)求证:sin cos 3sin cos B C C B =;(2)求B C -的最大值.【答案】(1)证明见解析;(2)6π 【分析】(1)利用正弦定理将边化角,结合()sin sinA B C =+,即可容易求得;(2)根据(1)中所求得到,tanB tanC 之间的关系,再将()tanB C -转化为关于tanC 的函数,利用均值不等式求得函数的最值,则B C -的最值得解.【详解】(1)在ABC ∆中,由4cos a c B =及正弦定理,得sin 4sin cos sin()4sin cos A C B B C C B =⇒+=则4sinBcosC cosBsinC sinCcosB +=,sin cos 3sin cos B C C B ⇒=.(2)由(1)知sin cos 3sin cos tan 3tan B C C B B C =⇒=,2tan tan 2tan 2tan()=11+tan tan 1+3tan+3tan tan B C C B C B C C C C--== 又因为3tanB tanC =,故可得0tanC >,由均值不等式可得2313+3tan tan C C ≤,当且仅当3tan =3C 时等号成立 因此23tan()=123+3tan tan B C C C-=… , 即B C -的最大值为6π . 【点睛】本题考查利用正弦定理解三角形,涉及均值不等式求和的最小值,以及正切的差角公式,属综合中档题. 19.四棱锥-P ABCD 中,底面ABCD 为直角梯形,//BC AD ,AD DC ⊥,1BC CD ==,2AD =,PA PD =,E 为PC 的中点,平面PAD ⊥平面ABCD ,F 为AD 上一点,//PA 平面BEF .(1)求证:平面BEF ⊥平面PAD ;(2)若PC 与底面ABCD 所成的角为60︒,求二面角E BF A --的余弦值.【答案】(1)证明见解析;(2)77-【分析】(1)通过线面平行,推证出点F 的位置,再结合面面垂直,推证出BF⊥平面PAD ,即可由线面垂直推证面面垂直;(2)以F 点为坐标原点建立空间直角坐标系,由线面角求得PF 长度,进而再由向量法求得二面角的大小即可.【详解】(1)连AC 交BF 于G ,连EG ,如下图所示:因为//PA 平面BEF ,PA ⊂平面PAC ,平面PAC I 平面BEFEG =, 所以//PA EG ,又E 为PC 中点,所以G 为AC 中点,由AFG ∆≌BCG ∆, ∴112AF BC AD === ∴F 为AD 中点,∵//BC FD ,且BC FD =,则DCBF 为平行四边形,∵AD DC ⊥∴BF AD ⊥,又BF ⊂平面ABCD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD AD =, 故BF ⊥平面PAD ,又BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .即证.(2)连接PF ,∵PA PD =,F 为AD 的中点,∴PFAD ⊥, 又PF⊂平面PAD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD AD =, ∴PF ⊥底面ABCD ,又PF AD ⊥,以,,FA FB FC 分别为,,x y z 轴建立空间直角坐标系.设(0,0,),(1,1,0)P t C -,取平面ABCD 的法向量()10,0,1n =u r ,又(1,1,)PC t =--u u u r,(0,1,0)B ∴1213sin ||632||||2n PC t n PC t π⋅=⇒=⇒=⋅+u r uu u r u r uu u r ∴6)P ,116(,22E - 设平面EBF 的法向量2(,,)n x y z =u u r 所以2200n FE n FB ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r 即可得11602220x y z y ⎧-++=⎪⎨⎪=⎩令21,6,(6,0,1)z x n =∴==u u r设二面角--E BF A 的平面角为θ ∴1212||||7|cos |7||||n n n n θ⋅==⋅u r u u r u r u u r ,又θ为钝角 ∴7cos 7θ=- , 所以二面角E BF A --的余弦值为7. 【点睛】本题考查由线面垂直推证面面垂直,由线面角求线段长,以及用向量法求二面角的大小,属综合中档题. 20.已知点(0,1)A ,点B 在y 轴负半轴上,以AB 为边做菱形ABCD ,且菱形ABCD 对角线的交点在x 轴上,设点D 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点(,0)M m ,其中14m <<,作曲线E 的切线,设切点为N ,求AMN V 面积的取值范围.【答案】(1)24(0)xy x =≠;(2)(1,34) 【分析】(1)根据题意,求得菱形中心的坐标,进而由中心为,B D 中点,求得D 点坐标的参数形式,即可消参求得点D 的轨迹方程;(2)利用导数几何意义求得N 点处的切线方程,从而求得M 点坐标,据此求得,m a 之间的关系,再结合1MN AM k k ⋅=-,即可表示出面积,将其转化为关于a 的函数,利用函数单调性求函数值域即可.【详解】(1)设(0,)B t -,菱形ABCD 的中心设为Q 点,且x 在轴上,由题意可得2||||||OQ OA OB =则Q 又Q 为,B D 的中点,因此点)D t ,即点D 的轨迹为x y t⎧=⎪⎨=⎪⎩t 为参数且0t ≠) 化为标准方程为24(0)x y x =≠.(2)设点2(,)4a N a ,则点N 的切线方程为2()422a a a y x -=-. 可得(,0)2a M 因此2a m =由14m <<,可得28a << 又2,2MN AM a k k a ==-则1MN AM k k ⋅=- 即MN AM ⊥因此21(4)|||216a a S MN AM +=⋅= 令34y a a =+,则2340y a '=+>,故34y a a =+为单调增函数,故可知当(2,8)a ∈时,S 为关于a 的增函数,又当2a =时,1S =;当8a =时,34S =.因此S 的取值范围是(1,34).【点睛】本题考查抛物线轨迹方程的求解,以及抛物线中三角形面积的范围问题,涉及导数的几何意义,以及利用导数判断函数的单调性,属综合中档题.21.已知函数1()ln , () (0)x f x m x g x x x-==>. (1)讨论函数()()()F x f x g x =-在(0,+)∞上的单调性;(2)是否存在正实数m ,使()y f x =与g()y x =的图象有唯一一条公切线,若存在,求出m 的值,若不存在,请说明理由.【答案】(1)当0m ≤时,()F x 区间()0,+∞上单调递减;当0m >时,()F x 在10,m ⎛⎫ ⎪⎝⎭上单调递减;在1,m ⎛⎫+∞ ⎪⎝⎭上单调递增;(2)存在,1m = 【分析】(1)对函数进行求导,对参数进行分类讨论,即可容易求得函数的单调性;(2)利用导数的几何意义求得()(),f x g x 在任意一点处的切线方程,求得方程组,根据方程有唯一解,利用导数根据函数单调性,即可求得.【详解】(1)22111()()()ln ,()x m mx F x f x g x m x F x x x x x --'=-=-=-=, 当0m …时,()0F x '<,所以,函数()F x 在(0,)+∞上单调递减;当0m >时,由()0F x '<得10x m <<,由()0F x '>得1x m >, 所以,函数()F x 在1(0,)m 上单调递减;函数()F x 在1(,)m +∞上单调递增.(2)函数()=ln f x m x 在点(,ln )a m a 处的切线方程为ln ()m y m a x a a -=-,即ln m y x m a m a=+-; 函数1()x g x x -=在点1(,1)b b-处的切线方程为 211(1)()y x b b b --=-,即2121y x b b =-+ 由()y f x =与()y g x =的图象有唯一一条公切线,∴21 2ln 1?m a b m a m b ⎧=⎪⎪⎨⎪-=-⎪⎩①②,由①得2a m b =代入②消去m , 整理得22ln 0b b a a a --+= ③则此关于(0)b b >的方程③有唯一解,令22()2ln (1)ln 1g b b b a a a b a a a =--+=--+-,令()ln 1h a a a a =-+-,()ln h a a '=-由()0'>h a 得01a <<;由()0h a '<得1a >所以,函数()h a 在(0,1)上单调递增,在(1,)+∞上单调递减, 则()(1)0h a h =≤,(i )当()0h a <时,二次函数2()(1)ln 1g b b a a a =--+-在(1,)b ∈+∞上显然有一个零点,(0,1)b ∈时,由方程2ln 1m a m b-=-可得 2(ln 1)0b m a b--=< 而0m >所以ln 10a -<则(0)ln (ln 1)0g a a a a a =-+=-->所以二次函数2()(1)ln 1g b b a a a =--+-在(0,1)b ∈上也有一个零点,不合题意.综上,1m =.所以存在正实数1m =,使()y f x =与()y g x =的图象有唯一一条公切线.【点睛】本题考查利用导数对含参函数单调性进行讨论,利用导数由方程根个数求参数范围,涉及导数的几何意义,属压轴题.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22120,3sin 2πρθθ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭,直线l的参数方程为23x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数). (1)求曲线C 的参数方程与直线l 的普通方程;(2)设点过P 为曲线C 上的动点,点M 和点N 为直线l 上的点,且满足PMN V 为等边三角形,求PMN V 边长的取值范围.【答案】(1)C:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数,02πα≤≤),l :280x y +-=;(2)1515⎡⎢⎣⎦ 【分析】(1)利用公式即可容易化简曲线C 的方程为直角坐标方程,再写出其参数方程即可;利用消参即可容易求得直线的普通方程;(2)设出P 的坐标的参数形式,将问题转化为求点P 到直线距离的范围问题,利用三角函数的值域求解即可容易求得结果.【详解】(1)曲线C 的极坐标方程为22120,3sin 2πρθθ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭, 故可得2223sin 12ρρθ+=,则()222312x y y ++=,整理得223412x y +=,也即22143x y +=, 由0,2πθ⎡⎤∈⎢⎥⎣⎦,则可得0,0x y ≥≥,故其参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数,02πα≤≤);又直线的参数方程为235x y t ⎧=⎪⎪⎨⎪=+⎪⎩,故可得其普通方程为280x y +-=.(2)不妨设点P的坐标为()2cos αα, 则点P 到直线280x y +-=的距离d ==0,2πα⎡⎤∈⎢⎥⎣⎦, 容易知4sin 86y πα⎛⎫=+- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦的值域为[]6,4--,故可得55d ⎡∈⎢⎣⎦.则三角形PMN 的边长为3d ,故其范围为⎣⎦. 【点睛】本题考查极坐标方程、参数方程和直角坐标方程之间的相互转化,涉及利用参数求点到直线的距离的范围,属综合中档题.23.已知函数()2f x m x =--,m ∈R ,() 3g x x =+.(Ⅰ)当x ∈R 时,有()()f x g x ≤,求实数m 的取值范围. (Ⅱ)若不等式()0f x ≥的解集为[]1,3,正数a ,b 满足231ab a b m --=-,求+a b 的最小值. 【答案】(Ⅰ)(],5m ∈-∞(Ⅱ)()min 7a b +=【分析】 (I)根据不等式恒成立的等价不等式,可转化为求含两个绝对值的最值,利用绝对值的三角不等式求最值即可; (II)由不等式()0f x ≥的解集为[]1,3可求出m 的值,代入231ab a b m --=-并用a 表示b ,再把b 代入a b +利用基本不等式求出最小值.【详解】解:(Ⅰ)由题意得:()()f x g x ≤Q 在x R ∈上恒成立,23m x x ∴--≤+在x R ∈上恒成立.()min 32m x x ∴≤++-, 又()()32235x x x x ++-≥--+=Q ,当且仅当()()230x x -+≤,即[]3,2x ∈-时等号成立.5m ∴≤,即(],5m ∈-∞.(Ⅱ)令()0f x ≥,2x m ∴-≤,若0m ≤时,∴解集为∅,不合题意;若0m >时,2m x m ∴-≤-≤,[]2,2x m m ∴∈-+,又[]1,3x ∈Q ,1m ∴=,∴综上所述:1m =,22ab a b ∴--=,221a b a +∴=-00a b >⎧⎨>⎩Q ,∴解得1a >,2241311a a b a a a a +∴+=+=-++--,37a b ∴+≥=,当且仅当411a a -=-,即3a =时等号成立, 此时2241a b a +==-.∴当3a =,4b =时,()min 7a b +=. 【点睛】本题考查了绝对值的三角不等式,以及利用基本不等式求最值,属于一般题.。
2020年吉林省长春市高考数学三模试卷(文科)(含答案解析)
2020年吉林省长春市高考数学三模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. C. D.2.已知向量,满足,,且,则A. B. C. 5 D. 43.已知复数z满足,则z的共轭复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.某中学从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩满分100分的茎叶图如图所示,其中甲班学生成绩的众数是83,乙班学生成绩的平均数是86,则的值为A. 7B. 8C. 9D. 105.等比数列中,、是函数的两个零点,则等于A. B. 3 C. D. 46.函数的图象大致为A. B.C. D.7.设a,b是两条直线,,是两个平面,则的一个充分条件是A. ,,B. ,,C. ,,D. ,,8.已知直线与函数,其中的相邻两交点间的距离为,则函数的单调递增区间为A. B.C. D.9.已知函数是定义在R上的奇函数,在上是增函数,且,则使得成立的x的取值范围是A. B.C. D.10.若函数有且只有一个零点,则a的取值范围是A. B. ,C. D.11.已知双曲线与椭圆有相同焦点,,离心率为若双曲线的左支上有一点M到右焦点的距离为12,N为线段的中点,O为坐标原点,则等于A. 4B. 3C. 2D.12.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”如图是放在平面直角坐标系中的“太极图”整个图形是一个圆形.其中黑色阴影区域在y轴右侧部分的边界为一个半圆,给出以下命题:在太极图中随机取一点,此点取自黑色阴影部分的概率是当时,直线与白色部分有公共点;黑色阴影部分包括黑白交界处中一点,则的最大值为2;设点,点Q在此太极图上,使得,b的范围是.其中所有正确结论的序号是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知,,则______ .14.已知长方形ABCD中,,,现将长方形ABCD沿着对角线BD折起,使平面平面BCD,则折后几何图形的外接球表面积为______.15.若,是函数的两个极值点,则______;______.16.已知数列的各项均为正数,其前n项和为,满足,设,为数列的前n项和,则______.三、解答题(本大题共7小题,共82.0分)17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌优等品和合格品,某公司年产宣纸10000刀,公司按照某种质量标准值x给宣纸确定质量等级,如表所示:x,,质量等级正牌副牌废品公司在所生产的宣纸中随机抽取了一刀张进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.Ⅰ按正牌、副牌、废品进行分层抽样,从这一刀张纸中抽出一个容量为5的样本,再从这个样本中随机抽出两张,求其中无废品的概率;Ⅱ试估计该公司生产宣纸的年利润单位:万元.18.的内角A,B,C的对边分别为a,b,c,已知.Ⅰ求tan B;Ⅱ若,的面积为6,求BC.19.四棱锥中,,,,,平面ABCD,E在棱PB上.Ⅰ求证:;Ⅱ若,求证:平面AEC.20.已知O为坐标原点,抛物线E的方程为,其焦点为F,过点的直线1与抛物线相交于P、Q两点且为以O为直角顶点的直角三角形.Ⅰ求E的方程;Ⅱ设点N为曲线E上的任意一点,证明:以FN为直径的圆与x轴相切.21.已知函数,,若曲线与曲线都过点且在点P处有相同的切线l.Ⅰ求切线l的方程;Ⅱ若关于x的不等式对任意恒成立,求实数k的取值范围.22.以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线1的参数方程为为参数.Ⅰ求曲线C的参数方程与直线l的普通方程;Ⅱ设点P为曲线C上的动点,点M和点N为直线l上的点,且满足为等边三角形,求边长的取值范围.23.已知函数,,.Ⅰ当时,有,求实数m的取值范围.Ⅱ若不等式的解集为,正数a,b满足,求的最小值.-------- 答案与解析 --------1.答案:B解析:解:,,.故选:B.可以求出集合A,B,然后进行交集的运算即可.本题考查了描述法、区间的定义,对数函数的单调性,交集的定义及运算,考查了计算能力,属于基础题.2.答案:C解析:解:根据题意,,,且,则有,解可得,即,则,故;故选:C.根据题意,由向量垂直与数量积的关系可得,解可得y的值,即可得的坐标,进而计算可得向量的坐标,由向量模的计算公式计算可得答案.本题考查向量数量积的坐标计算,涉及向量模的计算和向量垂直与数量积的关系,属于基础题.3.答案:B解析:解:由,得,则,复数在复平面内对应的点的坐标为,位于第二象限.故选:B.把已知等式变形,再由复数代数形式的乘除运算化简,求出的坐标得答案.本题考查复数代数形式的乘除运算化简,考查复数的代数表示法及其几何意义,是基础题.4.答案:B解析:解:由茎叶图可知,茎为8时,甲班学生成绩对应数据只能是83,,85,因为甲班学生成绩众数是83,所以83出现的次数最多,可知.由茎叶图可知乙班学生的总分为,又乙班学生的平均分是86,总分又等于所以,解得,可得.故选:B.对甲组数据进行分析,得出x的值,利用平均数求出y的值,解答即可.本题主要考查统计中的众数与平均数的概念.解题时分别对甲组数据和乙组数据进行分析,分别得出x,y的值,进而得到的值.5.答案:B解析:解:、是函数的两个零点,、是方程的两个根,,由等比数列的性质可得:.故选:B.利用根与系数的关系求得,再由等比数列的性质得答案.本题考查等比数列的通项公式,考查了等比数列的性质,是基础的计算题.6.答案:B解析:解:函数的定义域为,,即函数为偶函数,其图象关于y轴对称,可排除CD;又,可排除A;故选:B.先判断函数的奇偶性,可排除选项CD,再由,可排除选项A,进而得出正确选项.本题考查利用函数性质确定函数图象,考查数形结合思想,属于基础题.7.答案:C解析:解:A、B、D的反例如图.故选:C.根据题意分别画出错误选项的反例图形即可.本题考查线面间的位置关系,同时考查充分条件的含义及空间想象能力.属于基础题.8.答案:B解析:解:与函数,其中的相邻两交点间的距离为,函数的周期,即,得,则,由,,得,,即函数的单调递增区间为,,故选:B.根据最值点之间的关系求出周期和,结合三角函数的单调性进行求解即可.本题主要考查三角函数单调性的应用,根据最值性求出函数的周期和,以及利用三角函数的单调性是解决本题的关键.难度不大.9.答案:D解析:解:函数是定义在R上的奇函数,在上是增函数,函数是在上是增函数,又,,由,得或,或.的取值范围是.故选:D.由奇函数的图象关于原点对称及在为增函数,可得函数是在上是增函数,结合,转化为不等式组求解.本题考查函数的单调性与奇偶性的应用,考查数学转化思想方法,是中档题.10.答案:B解析:解:当时,因为,所以有一个零点,所以要使函数有且只有一个零点,则当时,函数没有零点即可,当时,,,,所以或,即或,故选:B.当时,因为,所以有一个零点,所以要使函数有且只有一个零点,则当时,函数没有零点即可,即恒为负或恒为正,进而求出a的取值范围即可.本题主要考查了函数的零点与方程的根的关系,是中档题.11.答案:B解析:解:如图,为线段的中点,,双曲线的离心率为,,椭圆与双曲线的焦点相同,,则,即,.故选:B.由题意画出图形,利用三角形的中位线定理可得,再由已知椭圆方程及双曲线的离心率求解a,则答案可求.本题考查椭圆与双曲线的简单性质,考查数形结合的解题思想方法,是中档题.12.答案:A解析:解:对于,将y轴右侧黑色阴影部分补到左侧,即可知黑色阴影区域占圆的面积的一半,根据几何概型的计算公式,所以在太极图中随机取一点,此点取自黑色阴影部分的概率是,正确;对于,直线,圆的方程为,联立可得,,,但是两根之和为负,两根之积为正,所以两根都为负,即说明直线与白色部分没有公共点,错误;对于,设l:,由线性规划知识可知,当直线l与圆相切时,z最大,由解得舍去,错误;对于,要使得,即需要过点P的切线所成角大于等于90度,所以,即,于是,解得.故选:A.根据“太极图”和各选项对应知识,即可判断真假.本题主要考查图象的应用,考查学生识图用图以及运用相关知识的能力,涉及几何概型的计算公式,直线与圆的位置关系,以及线性规划知识的应用,属于较难题.13.答案:解析:解:,,,,则,故答案为:由的值及的范围,利用同角三角函数间的基本关系求出与的值,代入原式计算即可.此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.答案:解析:解:长方形ABCD中,,,可得,,作于E,可得,所以,,因为平面平面BCD,面ABD,平面平面,所以面BCD,由直角三角形BCD可得其外接圆的圆心为斜边BD的中点,且外接圆的半径,过作垂直于底面BCD,所以,所以,取三棱锥外接球的球心O,设外接球的半径为R,作于F,则四边形为矩形,,,则,在中,即;在中:,即;由可得,,即外接球的球心为,所以外接球的表面积,故答案为:.由长方形中,,可得BD,BC,及A到BD的距离AE,由面平面BCD 可得面BCD,求出底面外接圆的圆心及外接圆的半径,再由椭圆求出外接球的半径,进而求出外接球的表面积.本题考查三棱锥的棱长与外接球的半径之间的关系,及球的表面积公式,属于中档题.15.答案:2解析:解:函数,,,令得:,,是方程的两个根,,,,故答案为:2,.先求出导函数,由题意可得,是方程的两个根,利用韦达定理可得,,代入即可求出.本题主要考查了利用导数研究函数的极值,以及韦达定理的应用,是中档题.16.答案:880解析:解:,当时,,解得或舍去,当时,,,得:,整理得:,数列的各项均为正数,,即,数列是首项为2,公差为2的等差数列,,,,故答案为:880.利用公式可得数列是首项为2,公差为2的等差数列,所以,所以,进而,再利用并项求和法即可算出结果.本题主要考查了数列的递推式,以及并项求和法求数列的前n项和,是中档题.17.答案:解:Ⅰ按正牌、副牌、废品进行分层抽样,从这一刀张约中抽出一个容量为5的样本,设抽出的2张正牌为A,B,2张副牌为a,b,1张废品为t,从中任取两张,基本事件有:AB,Aa,Ab,At,Ba,Bb,Bt,ab,at,bt,共10种,其中无废品包含的基本事件有:AB,Aa,Ab,Ba,Bb,ab,共6种,其中无废品的概率.Ⅱ由频率分布直方图得:一刀张宣纸有正牌宣纸张,有副牌宣纸张,有废品张,该公司一刀宣纸的利润为元,估计该公司生产宣纸的年利润为:400万元.解析:Ⅰ按正牌、副牌、废品进行分层抽样,从这一刀张约中抽出一个容量为5的样本,设抽出的2张正牌为A,B,2张副牌为a,b,1张废品为t,从中任取两张,基利用列举法能求出其中无废品的概率.Ⅱ由频率分布直方图得一刀张宣纸有正牌宣纸40张,有副牌宣纸40张,有废品20张,由此能估计该公司生产宣纸的年利润.本题考查概率、利润的求法,考查考查频率分布直方图、古典概型、列举法等基础知识,考查运算求解能力,是中档题.18.答案:解:,利用正弦定理可得:,又,化为:,.,,可得,..,可得:.又,可得.,解得.解析:由,利用正弦定理可得:,又,化简即可得出.由,,可得,,由正弦定理:,可得:又,可得即可得出a.本题考查了正弦定理、和差公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.19.答案:证明:Ⅰ过A作于F,,,,四边形ABCF为正方形,则,,得,又底面ABCD,平面ABCD,,又PA,平面PAD,,平面PAD,又平面PAD,;Ⅱ设E到平面ABCD的距离为h,则,得.又,则PB:::1.,,,连接DB交AC于O,连接OE,∽,::1,得DB::1,::OB,则.又平面AEC,平面AEC,平面AEC.解析:Ⅰ过A作于F,推导出,,从而平面PAD,由此能求出;Ⅱ设E到平面ABCD的距离为h,由已知体积列式求得h,可得PB:::1,连接DB交AC于O,连接OE,再由三角形相似证得DB::1,可得PB::OB,得到,再由直线与平面平行的判定可得平面AEC.本题考查直线与平面平行、垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.20.答案:解:Ⅰ由题意可得直线l的斜率存在,设直线l的方程为:,设,,联立直线l与抛物线的方程,整理可得:,所以,所以,因为是以O为直角顶点的直角三角形,所以,即,所以,解得,所以抛物线的方程为:;Ⅱ证明:由Ⅰ得,准线方程为:,设,则NF的中点M的纵坐标,即以NF为直径的圆的圆心M到x轴的距离为,而由抛物线的性质可得,即以NF为直径的圆的半径为,所以可得圆心M到x轴的距离恰好等于圆的半径,所以可证得以FN为直径的圆与x轴相切.解析:Ⅰ由题意设直线l的方程,与抛物线联立求出两根之积,由是以O为直角顶点的直角三角形,所以,可得p的值,进而求出抛物线的方程;Ⅱ由Ⅰ可得F的坐标和准线方程,设N的坐标,可得NF的中点M,即圆心的坐标,求出M 的纵坐标到x轴的距离,再求NF的半径,可得M的纵坐标恰好等于半径,可证得结论.本题考查直角三角形与向量的关系,及直线与抛物线的综合,属于中档题.21.答案:解:Ⅰ,,由已知可得,即,解得,,,切线的斜率,切线l的方程为,即,Ⅱ由Ⅰ可得,,设,即,对任意恒成立,从而,,当时,,在上单调递减,又,显然不恒成立,当时,,解得,,当时,即时,,单调递增,又,显然不恒成立,当时,即时,,单调递增,,即恒成立,当时,即时,当时,,单调递减,当时,,单调递增,,解得,,综上所述得.解析:Ⅰ根据导数的几何意义即可求出切线方程;Ⅱ构造函数,利用导数求出函数的最小值,使得最小值大于等于0,需要分类讨论.此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.综合性较强,运算量较大.22.答案:解:Ⅰ曲线C的极坐标方程为,转换为直角坐标方程为,转换为参数方程为为参数,.直线1的参数方程为为参数转换为直角坐标方程为.Ⅱ设,,所以点P到直线l的距离,由于,所以,所以,故等边三角形的边长的取值范围:.解析:Ⅰ直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.Ⅱ利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.答案:解:由题意得:在上恒成立,恒成立,即又,即令,若,则解集为,不合题意;若,则有,即又解集为,,解得当且仅当,即时,等号成立,此时,时的最小值为7解析:利用绝对值三角不等式性质利用绝对值不等式解法求出m,带入得到a,b等式,转化为只含有a的式子后利用基本不等式可以求解.本题考查绝对值三角不等式,以及基本不等式的应用,考查转化思想以及计算能力,是中档题。
吉林省长春市普通高中2020届高三质量监测(三)理综(PDF版)
⑤1.1´10-3 F~1.5 ´10-3 F(3 分)
24.(14
分)【答案】(1)(8
分) a1
=
25 m 6
s2
»
4.17 m
s2
,
a2
=
25 m 2
s2
= 12.5m
s2
,
x = 4m
(2)(6 分)F1=270N , F2=730N
【解析】(1)设加速运动与减速运动的时间分别是 t1、 t2 ,位移分别是 x1、 x2 ,加速度大小分别为 a1、 a2 ,
分
x2
=
vm 2
t2
----------------------------------------------1
分
x = x1 + x2 ----------------------------------------1 分
解得: x = 4m ----------------------------------------------1 分
U ab
= - Blv 3
(2)(6 分)
Q
=
1 6
mv02
(3)(7 分) =
+
【解析】(1)当金属棒 gh 以速度大小为 v 运动时产生的电动势:
E = Blv --------------------------------------------------------1 分
内电阻为 R,外电路电阻为 --------------------1 分
33 题~第 38 题为选考题,考生根据要求做答。 d
22.(5 分)(1)t (2 分) (2)C(2 分) (3)天平(1 分) 23.(10 分)(1)100(2 分);
吉林省长春市普通高中2020届高三质量监测(三)(三模)英语试题含答案
长春市普通高中2020届高三质量监测(三)英语本试卷共12页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第一部分听力(1—20小题)在笔试结束后进行。
第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C和D四个选项中,选出最佳选项。
AWatching kids' cartoons can be an effective way to learn a language. The basic plot lines of kids' cartoons are fairly simple, the characters speak more slowly and the dialogue is typically standard and casual. Here are four worldwide popular kids5 cartoons which may help you with your English learning.Peppa PigPeppa Pig,the pink piggy, has gained worldwide popularity. There are even videos showing an American child speaking in a British accent to her mom after watching the popular cartoon.The SimpsonsThe Simpsons in the 90's was smart, culturally savvy (有见识的),and unbelievably entertaining TV about an average American family. At its height, no show — animated or otherwise ——could reach The Simpsons' greatness. From the cleverness of "Marge vs. the Monorail" to everything Lisa Simpson ever said, The Simpsons was fearless and game-changing television.Once Upon a TimeOnce Upon a Time is a French educational animation, created by Procidis. There are seven series, each focusing on different aspects of knowledge. These are mostly historical, focusing on the overall history of mankind or specified historical fields, such as the lives and achievements of the explorers or inventors. Sazae-sanSazae-san is more than a kids’ show. It's a cultural institution, a national treasure and the longest-running animated series in the world, ever! It's about a typical Japanese big family living together in Tokyo. The central character is an outspoken but somewhat clumsy woman in her early 20s, living with her husband, son, father, mother, brother and sister all under one roof.All of the characters are colorful and funny, and all are named after fish!21. Why does the American girl speak in a British accent?A. She was born and brought up in Britain.B. Peppa Pig has strongly influenced her.C. The British accent is popular in. America.D. She wants to make fun of her mother.22. Which will you choose as a fan of history?A. Peppa Pig.B. The Simpsons.C. Once Upon a Time.D. Sazae-san.23. What can you learn about Sazae-san from the text?A. It is about an ordinary American family.B. It is the longest-running of the four.C. It is a well-received French cartoon.D. It includes seven different series.BOne year, a newspaper of the United States published an announcement ——the Horticultural Institute offered a reward at a high price for the pure white marigold (金盏花). The high reward attracted so many people, but in nature besides golden, the marigold is brown; it is not easy to create the white one. So after they were excited for a time, many people forgot that announcement.One normal day after 20 years, the Horticultural Institute accidentally received a letter and 100 seeds of pure white marigold. On that day the news spread like wildfire. It proved to be an old woman of over 70 years old. The institute had always been hesitating over the fact that the letter stated with certainty that the seeds could bloom pure white marigold.Those seeds finally took root in the earth. The wonder appeared after one year: large fields of pure white marigold swung in the light wind. As a result, the old woman became a new focus.Originally, the old woman was just a flower-lover. When she happened to read the announcement 20 years ago, her heart kept beating wildly. But her eight children all opposed her decision. After all, a woman who never knew the seed genetics (遗传学)couldn't complete what the experts could never accomplish! Still, the old woman didn't change her mind and went on working. Year after year, through many cycles of spring sowing and autumn harvest, the old woman's husband died; her children flew far and high; a lot of things happened in her life but only the desire to grow the pure white marigold took root in her heart. Finally, after 20 years on the day we all know, in the garden, she saw a marigold, which was not nearly white but as white as silver or snow.Such a difficult problem as even experts couldn't deal with was readily solved by an old woman who didn't understand genetics. Was it a wonder? Take root in the heart and even the most common seed can grow into a wonder!24. Why was a great reward offered by the Horticultural Institute?A. White flowers could be sold at a higher price.B. Pure white marigold was more beautiful in nature.C. It was very difficult to develop pure white marigold.D. Scientists wanted to know how marigold grew in nature.25. What can we know about the old woman from the passage?A. She got professional support from scientists.B. She kept trying for years before she succeeded.C. She was 70 when she first read the announcement.D. She sent pure white marigold flowers to the institute.26. The underlined word "readily" in the last paragraph probably means _________________________ .A. easilyB. quicklyC. willinglyD. luckily27. What is the best title for the text?A. Seeds Take Root in the HeartB. White Marigold is Hard to GrowC. Marigolds Grow from BraveryD. White Flowers Bring SuccessCThe U.S. is still out in front of global competitors when it comes to innovation (革新),but American universities ——where new ideas often spread — have reason to look over their shoulders.That's especially true for technologies like 5G phone networks and artificial intelligence. In President Donald Trump's opinion, they're exactly the fields where the U.S. has to lead — and also the ones where Asia, especially China, is catching up. Universities from China get more patents than their U.S. peers in wireless communications, according to a research firm named GreyB Services. In Al, 17 of the top 20 universities and public research organizations are in China, with the Chinese Academy of Sciences topping the list, says the World Intellectual Property Organization in Geneva.There's a special place for universities in the development of science. Universities educate future scientists and can be incubators (孵化器)for pie-in-the-sky ideas — some of which turn out to be game-changers. The list ranges from Google's search engine to DNA technology that's behind a whole industry of gene-manipulating (基因编辑)treatments.However, government aids to universities haven't been growing for more than a decade, meaningthey've declined in real terms and as a share of the economy, leading to the cost increase for universities and meanwhile somehow discouraging the teaching staff from putting all their hearts into their scientific research."If you look at the federal dollars, they've not really changed considerably," says Stephen Susalka, head of AUTM, a technology transfer association whose members include 800 universities. "Other countries are catching up. We can't be satisfied with what we have achieved?"2 8. What does the underlined phrase "look over their shoulders" in Paragraph 1 mean?A. Watch out.B. Take off.C. Stand up.D. Hide away.29. The author mentions 5G phone networks to show ______________________ .A. Chinese universities have obtained the most patentsB. Chinese universities get aids from the governmentC. wireless communications have changed dramaticallyD. U.S. may lose their lead in some high-tech fields30. What is the main idea of Paragraph 3?A. Pie-in-the-sky ideas can be revolutionary.B. Universities can produce game programmers.C. Gene-manipulation helps to develop DNA technology.D. Universities play an important role in science development.31. What's Stephen's attitude to the future development of U.S. universities?A. Worried.B. Disapproving.C. Positive.D. Unconcerned.DAlmost everyone has heard of the expression "the calm before the storm." It is usually used to describe a peaceful period just before a very stressful situation or a tense argument.British sailors coined the phrase in the late 1600s; they noted that before certain storms the seas would seem to become still and the winds would drop.Science has given us the reason. According to U.S. website How Stuff Works, a calm period occurs because many storms, tornadoes and hurricanes draw in all the warm and humid (湿热的)air from the surrounding area. As this air rises into the storm clouds, it cools and acts as "fuel for the storm, like petrol ina car". Once the storm has taken all the energy it can from the air, it is pushed out from the top of the storm clouds and falls back down to ground level. As the air goes down, it becomes warm and dry. Warm and dry air is stable, so once it covers an area, it causes a calm period before the storm. This same process also causes the "eye of the storm" in hurricanes and tornadoes. In these conditions, the calm occurs in the center of the storm because of the strong rotating (旋转的)winds.The Weather Network has a tip for working out how far away a storm is. First count how many seconds there are between a flash of lightning and a clap of thunder, roughly three seconds equal one kilometer. So, for example, if you count nine seconds, the storm is about three kilometers away. A good method is that if your count is below 30 seconds, you should seek shelter straight away.However, due to the complexity of storm system, not all storms take place after calm. Given the right conditions, some storms announce themselves with heavy rain and fierce winds.So, your best bet is to keep yourself updated with weather reports for any predictions regarding a coming storm in your area. That's the most reliable way to predict the next display of nature's temper (脾气).32. What is the function of Paragraph 3?A. To describe how the eye of the storm comes into being.B. To stress why tornadoes and hurricanes are destructive.C. To explain why a peaceful period occurs before some storms.D. To remind how dangerous a storm can be in certain situations.33. How far away may the storm be if you count 15 seconds between a lightning flash and a thunder clap?A. One kilometer.B. Three kilometers.C. Four kilometers.D. Five kilometers.34. What can we learn from the text?A. Storms don't usually last long.B. It is not always quiet before a storm.C. Storms have a big influence on our life.D. Weather reports often fail to predict a storm.35. Where is this text most likely from?A. A travel journal.B. A science fiction.C. A literature review.D. A geography magazine.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
吉林省实验中学2020届高三年级第三次模拟考试文科数学试题及答案
吉林省实验中学2020届高三第三次模拟考试数学学科(文科)试卷第Ⅰ卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设集合A ={}2560x x x -+>,B ={}10x x -<,则A ∩B = ( )A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞) 2.己知i 为虚数单位,12zi i=-,则复数z 的模为 ( )ABC .3D .5 3.为了得到函数的图像,只需把函数的图像 ( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位4.①“p ∧q ”为真是“p ∨q ”为真的充分不必要条件; ②“p ∧q ”为假是“p ∨q ”为假的充分不必要条件; ③“p ∨q ”为真是“¬p ”为假的必要不充分条件;④“¬p ”为真是“p ∧q ”为假的必要不充分条件.以上结论中,正确的是 ( ) A .①② B .①③ C .②③ D .②④5.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 ( ) A .16 B .14 C .13 D .126.已知向量, 若 ,则的最小值为( )A .12B .C .15D .sin(2)3y x π=-sin(2)6y x π=+4π4π2π2π7.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则 ( )A . 233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8.函数2()ln 8x f x x =- 图象大致为 ( )A. B.C. D.9.已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线3y x =上, 则sin(2)3πθ+=( )A .B .C . D10.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为 ( ) A .45B .35C .25D .1511.已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,则|F M|:|MN |= ( ) A .B .1:2C .1:D .1:312.已知曲线 ln x y ae x x =+在点 处的切线方程为 ,则 ( ) A . B .C .D .第Ⅱ卷二、填空题:(本大题共4小题,每小题5分.) 13.函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.14.在中,内角的对边分别是,若1sin sin sin 2b B a A a C -=,且的面积为,则___________.15.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为___________.16.将正整数排成如表,则在表中第45行第83个数是___________.12345678910111213141516⋯ABC ∆C B A ,,c b a ,,ABC ∆B a sin 2=B cos三、解答题:(本大题共6小题,其中17~21小题为必考题,每小题12分;第22~23为选考题,考生根据要求做答,每题10分) 17.已知函数()21cos sin cos 64f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x ∈R . (1)求()f x 的最小正周期; (2)判断函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的单调性.18.商场为提高服务质量,随机调查了100名男顾客和100名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.19.如图,在三棱柱111ABC A B C -中,侧面11B BCC 是正方形,,M N 分别是11A B ,AC 的中点,AB ⊥平面BCM .(1)求证:平面11B BCC ⊥平面11A ABB ; (2)求证:1A N P 平面BCM ;(3)若三棱柱111ABC A B C -的体积为10,求三棱锥11C BB M -的体积.20.已知椭圆2222:1(0)x y C a b a b +=>>,短轴长为4.(1)求椭圆C 的标准方程;(2)设直线l 过点(2,0)且与椭圆C 相交于不同的两点A 、B ,直线6x =与x 轴交于点D ,E 是直线6x =上异于D 的任意一点,当0AE DE ⋅=时,直线BE 是否恒过x 轴上的定点?若过,求出定点坐标,若不过,请说明理由.21.已知函数()ln 2,f x x ax a R =-∈. (1)求函数()f x 的单调区间;(2)若不等式2()f x x ax <-在1x >时恒成立,求a 的取值范围.选做题:共10分,请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(1)写出直线l 的直角坐标方程和⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.23.已知函数|2|||)(-++=x a x x f . (1)当3a =-时,求不等式()3f x …的解集;(2)若()|4|f x x -…的解集包含]2,1[,求a 的取值范围.吉林省实验中学2020届高三第三次模拟考试数学(文科)参考答案一.选择题: A B B B D D C CA C C D 二. 填空题: 13. -4 14 . 3415. 36π 16. 2019 三.解答题: 17. 解:(1)由题意,函数()211cos cos cos 24f x x x x x ⎫=⋅+-+⎪⎪⎝⎭211cos cos 24x x x =⋅-+()1121cos 244x x =-++112cos sin 24426x x x π⎛⎫=-=- ⎪⎝⎭, ∴()f x 的最小正周期22T ππ==. (2)由(1)得()1sin 226f x x π⎛⎫=- ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦时,则2,22x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,633x πππ⎡⎤-∈-⎢⎥⎣⎦, 当22,632x πππ⎡⎤-∈--⎢⎥⎣⎦时,即,46x ππ⎡⎤∈--⎢⎥⎣⎦时,()f x 单调递减, 当2,623x πππ⎡⎤-∈-⎢⎥⎣⎦时,即,64x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 单调递增. 18. 解: (1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)()22200804060202009.524 3.8411406010010021K ⨯-⨯==≈>⨯⨯⨯.故有95%的把握认为男、女顾客对该商场服务的评价有差异. 19. 解:(1)∵AB ⊥平面BCM ,BC ⊂平面BCM ,∴AB BC ⊥,在正方形11B BCC 中,1BB BC ⊥, ∵1AB BB B ?,∴BC ⊥平面11A ABB .∵BC ⊂平面11B BCC , ∴平面11B BCC ⊥平面11A ABB .(2)设BC 中点为Q ,连接,NQ MQ , ∵,N Q 分别是,AC BC 的中点, ∴NQ AB P ,且12NQ AB =. 又点M 是11A B 的中点,∴11112A M AB =. ∵11//AB A B ,且11AB A B =, ∴1//NQ A M ,且1NQ A M =, ∴四边形1A MQN 是平行四边形, ∴1//A N MQ .∵MQ Ì平面BCM ,1A N ⊄平面BCM , ∴1//A N 平面BCM .(3)连接1A B ,则11111111033B A BC ABC A B C V V --==, ∵M 为11A B 的中点,∴三棱锥11C BB M -的体积11111111523C BB M B B C M B A B C V V V ---===. 20. 解:(1)由题意得2222c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a b ==,所以椭圆C 的标准方程为221124x y +=(2)直线BE 恒过x 轴上的定点(4,0) 证明如下:因为0AE DE ⋅=.所以AE DE ⊥,因为直线l 过点(2,0) ①当直线l 的斜率不存在时,则直线l 的方程为2x =,不妨设2,,2,,33A B ⎛⎛- ⎝⎭⎝⎭则6,3E ⎛⎫ ⎪ ⎪⎝⎭此时,直线BE的方程为4)3y x =-,所以直线BE 过定点(4,0); ②直线l 的斜率存在且不为零时,设直线l 的方程为2(0)x my m =+≠,()()1122,,,A x y B x y ,所以()16,E y .直线2112:(6)6y y BE y y x x --=--,令0y =,得()122166y x x y y --=--即1212166y x y x y y -+=+-,又222x my =+所以()12121266y my y x y y -++=+-,即证()121212664y my y y y -+++=- 即证()()121220*y y my y +-=联立2211242x y x my ⎧+=⎪⎨⎪=+⎩,消x 得()223480m y my ++-=, 因为点(2,0)在C 内,所以直线l 与C 恒有两个交点,由韦达定理得,12122248,33my y y y m m +=-=-++代入(*)中得()121222882033m my y my y m m -+-=--=++ 所以直线BE 过定点(4,0),综上所述,直线BE 恒过x 轴上的定点(4,0). 21. 解: (1)()1122,(0)ax f x a x x x-'=-=>, ①若0a ≤,()0f x '>,()f x 在()0,+∞上单调递增; ②若0a >,当102x a <<时,()0f x '>,当12x a>时,()0f x '<, 所以10,2a ⎛⎫ ⎪⎝⎭是函数()f x 的单调递增区间,1,2a ⎛⎫+∞ ⎪⎝⎭是函数()f x 的单调减区间,综上所述,当0a ≤时,()f x 的单调递增区间为()0,+?;当0a >时,()f x 的单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭(2)由题意可知,不等式可转化为()2ln 210x ax a x +-+<在1x >时恒成立,令()()2ln 211g x x ax a x x =+-+>,, ()()()()()222112111221ax a x ax x g x ax a x x x-++-'-=+-+==, ①若0a ≤,则()0g x '<,()g x 在()1,+?上单调递减,所以()()11g x g a <=--,不等式恒成立等价于10a --≤,即10a -≤≤; ②若102a <<,则112a >,当112x a <<时,()0g x '<,当12x a>时,()0g x '>, 所以()g x 在112a ⎛⎫ ⎪⎝⎭,上单调递减,()g x 在1+2a ⎛⎫∞ ⎪⎝⎭,上单调递增, 所以()1,2g x g a ⎡⎫⎛⎫∈+∞⎪⎪⎢⎝⎭⎣⎭,不符合题意; ③若12a ≥,当1x >时,()0g x '>,()g x 在()1,+?上单调递增,所以()()()1g x g ∈+∞,,不符合题意; 综上所述,10a -≤≤22. 解:(1)由, 从而有.(2)设,2,sin ρθρθ==得(2222+,+3x y x y =-=所以1(32P +又则故当t =0时,|PC |取最小值,此时P 点的直角坐标为(3,0).23.解:(1)当3a =-时,()3323f x x x ⇔-+-厖2323x x x ⎧⇔⎨-+-⎩……或23323x x x <<⎧⇔⎨-+-⎩…或3323x x x ⎧⇔⎨-+-⎩…… 1x ⇔…或4x ….(2)原命题()4f x x ⇔-…在[1,2]上恒成立24x a x x ⇔++--…在[1,2]上恒成立22x ax ⇔---剟在[1,2]上恒成立 30a⇔-剟.|PC |==。
吉林省长春市普通高中2020届5月份高三监测(三模)理科数学试题(含答案)
吉林省长春市普通高中2020届高三质量监测(三)(三模)理科数学试题一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2{|4}A x x =∈≤Z ,B={x|-4<x<2},则A∩B= A.{x|-2≤x<2}B.{x|-4<x≤2}.{2,1,0,1,2}C -- .{2,1,0,1}D --2.已知复数z=(a+i)(1-2i)(a ∈R )的实部为3,其中i 为虚数单位,则复数z 的虚部为 A.-1B.-iC.1D.i3.已知向量a r =(1,-2),b r =(3,-3),c r =(1,t),若向量a r与向量b c +r r 共线,则实数t=A.5B.-5C.1D.-14.已知函数()cos3sin 22x xf x =-的图象为C,为了得到关于原点对称的图象,只要把C 上所有的点 A.向左平移3π个单位B.向左平移23π个单位 C.向右平移3π个单位D.向右平移23π个单位 5.函数3()x xx f x e e -=-的图象大致为6.在521()x x +的展开式中,一定含有 A.常数项B.x 项1.C x - 项3.D x 项7.已知直线m,n 和平面,,,αβγ有如下四个命题: ①若m ⊥α,m//β,则α⊥β; ②若m ⊥α,m//n,n ⊂β,则α⊥β;③若n ⊥α,n ⊥β,m ⊥α,则m ⊥β; ④若m ⊥α,m ⊥n,则n//α. 其中真命题的个数是 A.1B.2C.3D.48.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.右下图是风雨桥中塔的俯视图。该塔共5层,若01122334000.5,8.B B B B B B B B m A B m =====这五层正六边形的周长总和为A.35mB.45mC.210mD.270m9.已知圆E 的圆心在y 轴上,且与圆C:2220x y x +-=的公共弦所在直线的方程为30,x y -=则圆E 的方程为22.(3)2A x y +-= 22.(3)2B x y ++= 22.(3)3C x y +-=22.(3)3D x y ++=10.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下右图是将统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是A.除了“综合与实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段增加较多,约是第二学段的3.5倍。B.所有主题中,三个学段的总和“图形与几何”条目数最多,占50%,综合与实践最少,约占4%C.第一、二学段“数与代数”条目数最多,第三学段“图形与几何”条目数最多.D.“数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形与几何”条目数,百分比都随学段的增长而增长.11.已知数列{}n a 的各项均为正数,其前n 项和n S 满足2*42,()n nn S a a n =+∈N ,设1(1),n n n n b a a +=-⋅T n 为数列{}n b 的前n 项和,则20T =A.110B.220C.440D.88012.设椭圆的左右焦点为12,,F F 焦距为2c,过点1F 的直线与椭圆C 交于点P,Q,若2||2,PF c =且114||||3PF QF =,则椭圆C 的离心率为1.2A 3.4B 5.7C 2.3D 二、填空题:本题共4小题,每小题5分,共20分。13.一名信息员维护甲、乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为___.14.等差数列{}n a 中,11,a =公差d ∈[1,2],且391515,a a a λ++=则实数λ的最大值为___.15.若12,x x 是函数2()74f x x x lnx =-+的两个极值点,则12x x =__;12()()f x f x +=___.(本题第一空2分,第二空3分)16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,AB=2,侧面△PAD 为等边三角形,线段BC 的中点为E,若PE=1.则所需球体原材料的最小体积为____.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22~23题为选考题,考生根据要求作答。(一)必考题:共60分。 17.(12分)笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值x给宣纸确定质量等级,如下表所示:x (48,52] (44,48]∪(52,56] (0,44]∪(56,100]质量等级正牌副牌废品利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公司生产宣纸的年利润(单位:万元);(II)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值x的频率,如下表所示:其中x为改进工艺前质量标准值x的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a=4ccosB.(1)求证:sinBcosC=3sinCcosB;(II)求B-C的最大值.19.(12分)四棱锥P-ABCD中,ABCD为直角梯形,BC//AD,AD⊥DC,BC=CD=1,AD=2,PA=PD,E为PC中点,平面PAD⊥平面ABCD,F为AD上一点,PA//平面BEF.(1)求证:平面BEF⊥平面PAD;(II)若PC与底面ABCD所成的角为60°.求二面角E-BF-A的余弦值.20.(12分)已知点A(0,1),点B在y轴负半轴上,以AB为边做菱形ABCD,且菱形ABCD对角线的交点在x轴上,设点D 的轨迹为曲线E.(1)求曲线E的方程;(II)过点M(m,0),其中1<m<4,作曲线E的切线,设切点为N,求△AMN面积的取值范围.21.(12分)已知函数1()ln ,()(0)x f x m x g x x x-==>. (1)讨论函数F(x)=f(x)-g(x)在(0,+∞)上的单调性;(II)是否存在正实数m,使y=f(x)与y=g(x)的图象有唯一一条公切线,若存在,求出m 的值,若不存在,请说明理由.(二)选考题:共10分,请考生在22-23题中任选一题作答,如果多做则按所做的第一题计分. 22.[选修4-4坐标系与参数方程](10分)以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2212([0,])23sin πρθθ=∈+,直线1的参数方程为23x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数). (1)求曲线C 的参数方程与直线l 的普通方程;(II)设点P 为曲线C 上的动点,点M 和点N 为直线l 上的点,且满足△PMN 为等边三角形,求△PMN 边长的取值范围.23.[选修4-5不等式选讲](10分)已知函数()()2, , 3f x m x m g x x =--∈=+R . (1)当x ∈R 时,有f(x)≤g(x),求实数m 的取值范围;(II)若不等式f(x)≥0的解集为[1,3],正数a,b 满足ab-2a-b=3m-1,求a+b 的最小值.。
2019-2020年高三等值诊断联合考试(长春三模)数学文试题 含答案
2019-2020年高三等值诊断联合考试(长春三模)数学文试题 含答案 长春市教育局教研室 于海洋本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回.注意事项:1. 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上). 1. 不等式表示的区域在直线的A. 右上方B. 右下方C. 左上方D. 左下方2. 已知复数,且为实数,则A. B. C. D.3. 已知,则的值为A. B. C. D.4. 已知是平面向量,下列命题中真命题的个数是 ① ②③ ④ A. 1 B. 2C. 3D. 45. 执行如图所示的程序框图,若输出的,则输入的整数的最大值为A. 7B. 15C. 31D. 63 6. 已知函数的图像关于直线对称,则最小正实数的值为 A. B. C.D.7. 已知数列满足,,则A. 121B. 136C. 144D. 1698. 一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为A. B. C. D.9. 在中产生区间上均匀随机数的函数为“ ( )”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为A.B. 112(0.5),2(0.5)a a b b =-=-C.D.10. 已知抛物线的焦点为,直线与此抛物线相交于两点,则A. B.正视图侧视图C. D.11.如图所示是一个几何体的三视图,则该几何体的体积为A. B.C. D.12.若函数对任意的都有,且,则A. B. C. D.第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 函数的定义域为____________.14. 若等比数列的首项是,公比为,是其前项和,则=_____________.15. 双曲线的左、右焦点分别为和,左、右顶点分别为和,过焦点与轴垂直的直线和双曲线的一个交点为,若是和的等差中项,则该双曲线的离心率为 .16. 已知集合224{(,)|(3)(4)}5A x y x y =-+-=,{(,)|2|3||4|}B x y x y λ=-+-=,若,则实数的取值范围是__________.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17. (本小题满分12分)在三角形中,sin 2cos cos2sin C C C C C ⋅=⋅⑴ 求角的大小;⑵ 若,且,求的面积.18. (本小题满分12分) xx 年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示. ⑴ 求该小区居民用电量的中位数与平均数; ⑵ 本月份该小区没有第三类的用电户出现,为鼓励居民节约用电,供电部门决定:对第一类每户奖励20元钱,第二类每户奖励5元钱,求每户居民获得奖励的平均值;⑶ 利用分层抽样的方法从该小区内选出5户居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.19. (本小题满分12分)如图,是矩形中边上的点,为边的中点,,现将沿边折至位置,且平面平面.⑴ 求证:平面平面;⑵ 求四棱锥的体积. P B C D FE (1)(2)(本小题满分12分) 如图,曲线与曲线222:(4)2(0)N x y m m -+=>相交于、、、四个点.⑴ 求的取值范围; ⑵ 求四边形的面积的最大值及此时对角线与的交点坐标. 20. (本小题满分12分)已知函数.⑴ 求函数的单调区间;⑵ 如果对于任意的,总成立,求实数的取值范围;⑶ 是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.21. (本小题满分10分)选修4-1:几何证明选讲. 如图,是的直径,弦与垂直,并与相交于点,点为弦上异于点的任意一点,连结、并延长交于点、. ⑴ 求证:、、、四点共圆;⑵ 求证:. 22. (本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系中,曲线的参数方程为2cos ()1sin x t t y t απαα<=+⎧⎨=+⎩≤是参数,0,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.⑴ 求曲线的普通方程和曲线的直角坐标方程;⑵ 当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.23. (本小题满分10分)选修4-5:不等式选讲.设函数,.⑴ 求不等式的解集;⑵ 如果关于的不等式在上恒成立,求实数的取值范围.xx 东北三省四市教研协作体等值诊断联合考试xx 长春市高中毕业班第三次调研测试数学(文科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.B2.C3.A4.A5.B6.A7.C8.B9.D 10.A 11.B 12.B简答与提示:1. 【命题意图】本小题主要考查二元一次不等式所表示的区域位置问题,是线性规划的一种简单应用,对学生的数形结合思想提出一定要求.【试题解析】B 右下方为不等式所表示区域,故选B.2. 【命题意图】本小题主要考查复数的基本运算,特别是共轭复数的乘法运算以及对共轭复数的基本性质的考查,对考生的运算求解能力有一定要求.【试题解析】C 由为实数,且,所以可知,,则,故选C.3. 【命题意图】本小题主要考查同角三角函数的基本关系式以及倍角的余弦公式的应用,对学生的化归与转化思想以及运算求解能力提出一定要求.【试题解析】A 由,得22229cos 2sin 2cos 11cos cos 25ααααα+=-+-==,故选A.4. 【命题意图】本小题主要考查平面向量的定义与基本性质,特别是对平面向量运算律的全面考查,另外本题也对考生的分析判断能力进行考查.【试题解析】A 由平面向量的基础知识可知①②④均不正确,只有③正确,故选A.5. 【命题意图】本小题主要通过程序框图的理解考查学生的逻辑推理能力,同时考查学生对算法思想的理解与剖析.【试题解析】B 有程序框图可知:①,;②,;③,;④,;⑤,. 第⑤步后输出,此时,则的最大值为15,故选B.6. 【命题意图】本题着重考查三角函数基础知识的应用,对于三角函数的对称性也作出较高要求. 本小题同时也考查考生的运算求解能力与考生的数形结合思想.【试题解析】A函数()sin 2sin()3f x x x x π==+的对称轴为,则,即,因此的最小正数值为. 故选A.7. 【命题意图】本小题主要考查数列的递推问题,以及等差数列的通项公式,也同时考查学生利用构造思想解决问题的能力以及学生的推理论证能力.【试题解析】C 由,可知,即,故是公差为1的等差数列,,则. 故选C.8. 【命题意图】本小题主要考查立体几何中球与球的内接几何体中基本量的关系,以及球表面积公式的应用,本考点是近年来高考中的热点问题,同时此类问题对学生的运算求解能力与空间想象能力也提出较高要求.【试题解析】B 由题可知该三棱锥为一个棱长的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为,则球半径为,则22244)3S r a πππ===. 故选B. 9. 【命题意图】本小题主要考查均匀随机数的定义与简单应用,对于不同尺度下点与点的对应方式也做出一定要求. 本题着重考查考生数据处理的能力,与归一化的数学思想.【试题解析】D. 由于, ,而,,所以坐标变换公式为,. 故选D.10. 【命题意图】本小题是定值问题,考查抛物线的定义与基本性质及过焦点的弦的性质.本题不但对考生的运算求解能力、推理论证能力有较高要求,而且对考生的化归与转化的数学思想也有较高要求.【试题解析】A 设,,由题意可知,,,则1212121241111||||222()4x x FP FQ x x x x x x +++=+=+++++,联立直线与抛物线方程消去得,2222(48)40k x k x k -++=,可知,故121212121244111||||2()42()82x x x x FP FQ x x x x x x +++++===+++++. 故选A. 11. 【命题意图】本小题主要考查立体几何中的三视图问题,并且对考生的空间想象能力及利用三视图还原几何体的能力进行考查,同时考查简单几何体的体积公式.【试题解析】B 由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此21241282V ππ=⨯⨯+⨯⨯=+. 故选B.12. 【命题意图】本小题着重考查函数的周期性问题,以及复合函数的求值问题,对于不同的表达式,函数周期性的意义也不同,此类问题时高考中常见的重要考点之一,请广大考生务必理解函数的周期与对称问题.本题主要对考生的推理论证能力与运算求解能力进行考查.【试题解析】B 由可知函数周期,当时可知,,,因此[(2013)2]1(2015)1(3)12012f f f f ++=+=+=-. 故选B.二、填空题(本大题包括4小题,每小题5分,共20分)13. 14. 11(1)111n n a q q S qna q ⎧- ≠⎪= -⎨⎪ =⎩15. 2 16.简答与提示:13. 【命题意图】本小题主要考查对数函数的性质与其定义域的求取问题,以及一元二次不等式的解法.本小题着重考查考生的数学结合思想的应用.【试题解析】由题意可知,解得或,所以函数的定义域为.14. 【命题意图】本小题主要考查等比数列的前项和公式的推导与应用,同时考查了学生的分类讨论思想. 【试题解析】根据等比数列前项和公式:11(1)111n n a q q S qna q ⎧- ≠⎪= -⎨⎪ =⎩. 15. 【命题意图】本小题主要考查双曲线中各基本量间的关系,特别是考查通径长度的应用以及相关的计算,同时也对等差中项问题作出了一定要求. 同时对考生的推理论证能力与运算求解能力都有较高要求.【试题解析】由题可知2221212||||2||PA PA A A =+,则4422222()()8b b c a c a a a a++=+-+,化简得,故. 16. 【命题意图】本小题主要考查曲线与方程的实际应用问题,对学生数形结合与分类讨论思想的应用作出较高要求. 【试题解析】 由题可知,集合表示圆上点的集合,集合表示曲线上点的集合,此二集合所表示的曲线的中心都在处,集合表示圆,集合则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得的取值范围是.三、解答题(本大题必做题5小题,三选一选1小题,共70分) 17. (本小题满分12分)【命题意图】本题针对三角变换公式以及解三角形进行考查,主要涉及三角恒等变换,正、余弦定理等内容,对学生的逻辑思维能力提出较高要求.【试题解析】(1)由sin 2cos cos2sin C C C C C -=,化简得,即,即, (3分)则,故或(舍),则. (6分)(2) 因为sin cos 2sin cos B A A A =,所以或. (7分)当时,,则,112223ABC S b c ∆=⋅⋅==; (8分) 当时,由正弦定理得.所以由22222441cos 2222a b c a a C ab a a +-+-===⋅⋅,可知. (10分)所以211sin 222223ABC S b a C a a a ∆=⋅⋅⋅=⋅⋅⋅==. (11分)综上可知 (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,其中包括中位数与平均数的求法、对于随机事件出现情况的分析与统计等知识的初步应用. 本题主要考查学生的数据处理能力.【试题解析】解:(1) 因为在频率分布直方图上,中位数的两边面积相等,可得中位数为155. (2分) 平均数为 1200.005201400.075201600.020201800.00520⨯⨯+⨯⨯+⨯⨯+⨯⨯ 2000.003202200.00220156.8+⨯⨯+⨯⨯=. (4分) (2) 10000.82010000.258002020051710001000⨯⨯+⨯⨯⨯+⨯==(元). (7分)(3) 由题可知,利用分层抽样取出的5户居民中属于第一类的有4户,编为,第二类的有1户,编为. 现从5户中选出2户,所有的选法有,,,,,,,,,共计10种,其中属不同类型的有,,,共计4种. (10分) 因此,两户居民用电资费属不同类型的概率. (12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面、面面的垂直关系、空间几何体体积的求取. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 证明:由题可知,4545ED DF DEF DEF ED DF EF BE AE AB ABE AEB AE AB =⎫⎫∆ ⇒∠=︒⎬⎪⊥⎭⎪⇒⊥⎬=⎫⎪∆ ⇒∠=︒ ⎬⎪⊥⎭⎭中中 (3分) ABE BCDEABE BCDE BE EF PBE PBE PEF EF BE EF PEF ⎫⊥⎫⎪⎪=⇒⊥⎬⎪⇒⊥⎬⎪⊥⎭⎪⎪ ⊂⎭平面平面平面平面平面平面平面平面 (6分) (2) 116444221422BEFC ABCD ABE DEF S S S S =--=⨯-⨯⨯-⨯⨯=,则111433BEFC V S h =⋅⋅=⨯⨯. (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到直线与圆锥曲线的相关知识以及圆锥曲线中极值的求取. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 联立曲线消去可得,,根据条件可得212212364(16)060160m x x x x m ⎧∆=-->⎪+=>⎨⎪=->⎩,解得.(4分)(2) 设,,,,则122121()())ABCD S y y x x x x =+-=-==.(6分)令,则,ABCD S ==(7分)设,则令22()3693(23)3(1)(3)0f t t t t t t t '=--+=-+-=--+=,可得当时,的最大值为,从而的最大值为16.此时,即,则. (9分)联立曲线的方程消去并整理得,解得,,所以点坐标为,点坐标为,12AC k ==-,则直线的方程为11)[(32y x -=---, (11分)当时,,由对称性可知与的交点在轴上,即对角线与交点坐标为. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述函数的单调性、极值以及函数零点的情况. 本小题主要考查考生分类讨论思想的应用,对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 由于,所以'()sin cos (sin cos )sin()4x x x x f x e x e x e x x x π=+=+=+. (2分) 当,即时,; 当(2,22)4x k k πππππ+∈++,即37(2,2)44x k k ππππ∈++时,. 所以的单调递增区间为, 单调递减区间为.(4分) (2) 令()()sin xg x f x kx e x kx =-=-,要使总成立,只需时. 对求导得()(sin cos )x g x e x x k '=+-,令,则,()所以在上为增函数,所以. (6分)对分类讨论:① 当时,恒成立,所以在上为增函数,所以,即恒成立;② 当时,在上有实根,因为在上为增函数,所以当时,,所以,不符合题意; ③ 当时,恒成立,所以在上为减函数,则,不符合题意.综合①②③可得,所求的实数的取值范围是. (9分)(3) 存在正实数使得当时,不等式恒成立.理由如下:令,要使在上恒成立,只需. (10分)因为()(sin cos )2x g x e x x x '=+--,且,,所以存在正实数,使得,当时,,在上单调递减,即当时,,所以只需均满足:当时,恒成立.(12分)注:因为,,所以22.(本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到四点共圆的证明、圆中三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解 (1)连结,则,又,则,即,则、、、四点共圆. (5分)(2)由直角三角形的射影原理可知,由与相似可知:,()BF BM BA BE BA BA EA⋅=⋅=⋅-,2BF BM AB AB AE⋅=-⋅,则,即. (10分)23.(本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、平面内直线与曲线的位置关系等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1)对于曲线消去参数得:当时,;当时,. (3分)对于曲线:,,则. (5分)(2) 当时,曲线的方程为,联立的方程消去得,即,||3 MN====,圆心为,即,从而所求圆方程为.(10分) 24.(本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1)24()624xf xx-+⎧⎪=⎨⎪-⎩1155xxx<--≤≤>(2分)当时,,,则;当时,,,则;当时,,,则.综上可得,不等式的解集为. (5分)(2) 设,由函数的图像与的图像可知:在时取最小值为6,在时取最大值为,若恒成立,则. (10分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。