吉林省长春市普通高中2019届高三质量监测(二)理科综合试题卷(图片版无答案)
吉林省长春市普通高中2019届高三质量监测(二)理综化学试题及答案
加入
(填化学式),后续操作略。
(5)为标定 CrCl3 溶液,进行了如下操作:取 25.00mLCrCl3 溶液于碘量瓶(一种带塞的锥 形瓶)中,加热至沸后加入适量 Na2O2,充分加热煮沸,稀释,加入过量的稀 H2SO4 至溶液 呈强酸性,此时铬以 Cr2O72-存在;再加入足量 KI,密塞,摇匀,于暗处静置 5 分钟后,用 0.25mol·L-1 硫代硫酸钠溶液滴定至溶液呈淡黄色,加入 1mL 指示剂,滴定至终点,平行
3
27.(15 分)醋酸亚铬水合物[Cr(CH3COO)2·2H2O]是一种深红色晶体,不溶于冷水,是常 用的氧气吸收剂。已知二价铬不稳定,极易被氧气氧化,不与锌反应。 实验室中以锌粒、三氯化铬溶液、醋酸钠溶液和盐酸为主要原料制备醋酸亚络水合物,其 装置如图所示,且仪器 2 中预先加入足量锌粒。
其中,仪器 2 中发生的相关离子反应为:
36.(15 分)
8
已知: ①部分金属氢氧化物开始沉淀和完全沉淀时的 pH:
②Li2CO3 在不同温度下的溶解度如下表:
回答下列问题: (1)增加反应Ⅰ溶解速率的方法为____。 (2)反应Ⅱ加入碳酸钙的作用是____。 (3)反应Ⅲ中生成的沉淀 A 的成分主要有____(填化学式)。 (4)洗涤所得 Li2CO3 沉淀要使用____(填“热水”或“冷水”),理由是____。 (5)流程中,反应Ⅲ使用的 Na2CO3 溶液浓度较小,其原因是____;反应Ⅳ中的饱和 Na2CO3 溶液____(填“能”或“不能”)和 Na2SO4 溶液代替。
A. 左边吸附层中发生了氧化反应 B. 正极的电极反应是 2H++2e-=H2↑ C. 电池的总反应是 2H2+O2=2H2O D. 电解质溶液中 ClO4-向左移动
吉林省长春市普通高中2019届高三质量监测(二)数学(理科)试题题(含解析)
长春市普通高中2019届高三质量监测(二)数学试题卷(理科)考生须知:1.本试卷分试题卷和答题卡,满分150分,考试时间120分钟.2.答题前,在答题卡指定位置上填写学校、班级、姓名和准考证号.3.所有答案必须写在答题卡上,写在试卷上无效.4.考试结束,只需上交答题卡.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】因为复数=,所以对应的点位于第二象限.2.集合,,则()A. B. C. D.【答案】A【解析】【分析】由题,先求出集合A=,再根据交集的定义求出答案即可.【详解】,.故选A.【点睛】本题主要考查了交集的定义,属于基础题.3.命题“,”的否定是()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】利用全称命题的否定是特征命题,写出结果即可【详解】因为全称命题的否定是特征命题,所以命题“,”的否定是,故选D【点睛】本题主要考查了全称命题的否定是特征命题,属于基础题.4.下列函数中,在内单调递减的是()A. B. C. D.【答案】A【解析】【分析】直接根据指数型函数的单调性判断出在R上递减,求得结果.【详解】由题,在R上递减,所以在内单调递减,故选A【点睛】本题主要考查了函数的单调性,利用函数的性质是解题的关键,属于基础题.5.一个几何体的三视图如图所示,则这个几何体的体积为()A. 32B.C.D. 8【答案】B【解析】【分析】根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,利用体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,所以该四棱锥的体积为,故选B.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6.等差数列中,是它的前项和,,,则该数列的公差为()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】先根据求和,利用中项公式,求得,再利用公差的公式求得结果.【详解】由题即,,.故选C.【点睛】本题主要考查了等差数列的性质,能否熟练运用中项公式是解题的技巧,属于较为基础题.7.下边的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的股价波动较大;④两只般票在全年都处于上升趋势.其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】通过标准差的比较,得出两只股票的稳定性,通过极差的比较,得出风险和回报,再根据折线图得出股票的上升和下跌趋势,可分析出答案.【详解】由题可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的股价波动较大,故③正确;通过折线图可得乙再6月到8月明显是下降趋势,故④错误故选C【点睛】本题主要考查了统计图像的折线图,通过对标准差和极差的了解得出结论,属于较为基础题.8.直线绕原点顺时针旋转得到直线,若的倾斜角为,则的值为()A. B. C. D.【答案】D【解析】【分析】根据题意,可得,解得,进而根据余弦的倍角公式,即可求解.【详解】由题意,直线的斜率为2,将绕原点顺时针旋转,则,解得,则,故选D.【点睛】本题主要考查了直线的倾斜角的应用,以及两角和的正切函数和余弦的倍角公式的应用,其中解答中正确理解题意,合理利用公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.9.正方形边长为2,点为边的中点,为边上一点,若,则()A. 3B. 5C.D.【答案】D【解析】【分析】由题意,根据向量的运算,可得,即,再由E是BC的中点,进而可求解,得到答案. 【详解】由题意,可知,即,即,所以,即,又由E是BC的中点,则,,所以,故选D.【点睛】本题主要考查了向量的数量积的应用,以及勾股定理的应用,其中解答中根据向量的数量积的运算,得到,再利用勾股定理求解是解答的关键,着重考查了推理与运算能力.10.已知曲线在点处的切线为,则下列各点中不可能在直线上的是()A. B. C. D.【答案】C【解析】【分析】由题意,画岀切线扫过的区域,得当时,此时切线都在轴的上方,即可作出判断,得到答案. 【详解】由题意,画岀切线扫过的区域,如图所示,当时,此时切线都在轴的上方,所以不可能在直线上的点为.故选C.【点睛】本题主要考查了曲线在某点处的切线方程应用,其中解答中熟记曲线在某点处的切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于基础题.11.已知双曲线的左、右焦点分别为,,过且与渐近线垂直的直线分别与该渐近线和轴相交于,两点,为坐标原点,若,则双曲线的离心率为()A. B. C. 2 D.【答案】B【解析】【分析】由题意,根据,求得,,求得,在直角中,由射影定理得到,进而可求解离心率,得到答案.【详解】由题意,取双曲线的一条渐近线,即,则过右焦点与渐近线垂直的直线方程为,即,又由焦点到渐近线的距离为,又由,所以,即,又由原点到的距离为,在直角中,由射影定理得,即,又由,整理得,所以,故选B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为的关系式是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).12.定义在上的函数有零点,且值域,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】先由题求出,再根据有零点和值域,可得,求得的取值范围.【详解】由,有,又因为在上的函数有零点,即值域即所以,从而.故选C.【点睛】本题是考查三角函数的相关知识,对其函数图像和性质的掌握是解题的关键,属于中档题.二、填空题.13.已知实数,满足,则的最大值为_______.【答案】4【解析】【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,即可求解目标函数的最大值. 【详解】作出约束条件所表示的平面区域,如图所示,目标函数,可化为,当直线过点A时,直线在y轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.直线与抛物线围成的封闭图形的面积为______.【答案】【解析】【分析】由题意,联立方程组,解得或,利用微积分基本定理,即可求解封闭图形的面积.【详解】由题意,联立方程组,解得或,所以直线与抛物线围成的封闭图形的面积为:.【点睛】本题主要考查了微积分基本定理的应用,其中解答中根据微积分基本定理得出面积的定积分,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.在中,角、、的对边分别为,、,,,则的面积的最大值为____.【答案】【解析】【分析】根据三角恒等变换的公式,化简得,求得,又由余弦定理和基本不等式,求得的最大值为,进而利用面积公式,即可求解.【详解】在中,角、、的对边分别为,、满足由正弦定理可化简得,又由,即,即,又由,则,所以,即,解得,又由余弦定理得,又由,即,当且仅当时取等号,即的最大值为,所以的面积的最大值为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.正方体的棱长为2,,,,分别是,,,的中点,则过且与平行的平面截正方体所得截面的面积为____,和该截面所成角的正弦值为______.【答案】(1). (2).【解析】【分析】(1)取CD的总点Q,BC的中点P,根据题意易证MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,求得S即可;(2) 连接AC交PQ于点R,易证CR垂直平面EFQP,所以为直线和平面EFQP所成角然后直接求得的正弦值即可.【详解】(1)由题,取CD的总点Q,BC的中点P,连接ME、NQ,在正方体中易知,ME与NQ是平行且相等的,所以MN//EQ,即MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,PQ=所以面积(2)连接AC交PQ于点R,再连接CE,易知CR垂直平面EFQP,所以为直线和平面EFQP所成角,所以故答案为(1). (2).【点睛】本题主要考查了立体几何综合,解题的关键是能否找出截面以及线面角,属于较难题目.三、解答题,解答应写出文字说明、证明过程或演算步骤.17.各项均为整数的等差数列,其前项和为,,,,成等比数列.(1)求的通项公式;(2)求数列的前项和.【答案】(1) (2)【解析】【分析】(1)由题意,可知,解得,即可求解数列的通项公式;(2)由(1),可知,可得,即可求解.【详解】(1)由题意,可知数列中,,,,成等比数列.则,即,解得,所以数列的通项公式.(2)由(1),可知,所以.【点睛】本题主要考查了等差数列的通项公式的求解,以及“分组求和”的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确求得等差数列的公差是解答的关键,着重考查了运算与求解能力,属于基础题.18.某研究机构随机调查了,两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:企业:企业:(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.【答案】(1)0.68(2) (i)见解析(ii)见解析【解析】【分析】(1)由题意,根据饼状图知工资超过5000的有68人,即可求解其概率.(2)①企业中三个不同层次人数比为,得到随机变量的取值,求得相应的概率,即可得出分布列;②利用平均数的计算公式,即可求额及企业的员工平均收入和企业的员工平均收入进而得到结论.【详解】(1)由题意,根据饼状图知工资超过5000的有68人,故慨率为.(2)①企业中三个不同层次人数比为,即按照分层抽样7人所抽取的收入在的人数为2.的取值为0,1,2,因此,,,的分布列为:②企业的员工平均收入为:.企业的员工平均收入为:.参考答案1:选企业,由于企业员工的平均收入高.参考答案2:选企业,企业员工的平均收入只比企业低10元,但是企业有高收入的团体,说明发展空间较大,获得8000元以上的高收入是有可能的.参考答案3:选企业,由于企业员工平均收入不仅高,且低收入人数少.【点睛】本题主要考查了平均数的计算、古典概型及其概率的计算,以及随机变量的分布列的求解,其中解答中认真审题,准确得出随机变量的取值,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.四棱锥中,底面为直角梯形,,,,平面,,为中点.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的余弦值.【答案】(1)见证明;(2)【解析】【分析】(1)在中,由余弦定理,,又,,得到,,由线面垂直的判定定理,得平面,进而利用面面垂直的判定定理,证得平面平面. (2)以为原点,,,为,,轴,建立空间直角坐标系,求得平面的法向量为和平面平面的一个法向量为,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,,,在中,由余弦定理,,又,,有,是等腰三角形,所以,,由线面垂直的判定定理,得平面,又由面面垂直的判定定理,即可得到平面平面.(2)以为原点,,,为,,轴,建立空间直角坐标系,则,,,,,有,,,令平面的法向量为,由,可得一个,由(1)可知平面的一个法向量为,所以,所以二面角的余弦值为.【点睛】本题考查了立体几何中的线面平行判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.已知椭圆的左右焦点分别为,,为椭圆上一点,且满足轴,,离心率为.(1)求椭圆的标准方程;(2)若为轴正半轴上的定点,过的直线交椭圆于,两点,设为坐标原点,,求点的坐标.【答案】(1) (2)【解析】【分析】(1)由题意可得且,求得,,即可得到椭圆的方程;(2)设,:,由,得,联立方程组,利用根与系数的关系,以及向量的数量积的运算,求得的值,即可得到答案.【详解】(1)由题意知,为椭圆上一点,且满足轴,则又由,且,解得,,所以椭圆的方程为.(2)设,:,设,,由,即,即,即,联立直线和椭圆方程组,得,有,则,又由即,解得,所以点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.【答案】(1)见解析;(2)【解析】【分析】(1)由题意,求得函数的导数,分类讨论,即可求解函数的单调区间;(2)令,知单调递增且有大于0的零点,不妨设为,若有有两个零点,需满足,即,令,得出在上单调递减,求得的解集为,当时,,即,进而利用函数的单调性求解.【详解】(1)由题可得,当时,,在上单调递增;当时,,,在上单调递增;,,在上单调递减.(2)令,,易知单调递增且一定有大于0的零点,不妨设为,,即,,故若有有两个零点,需满足,即,令,,所以在上单调递减.,所以的解集为,由,所以.当时,,有,令,由于,所以,,故,所以,故,在上有唯一零点,另一方面,在上,当时,由增长速度大,所以有,综上,.【点睛】本题主要考查导数在函数中的综合应用,以及利用导数研究函数的零点问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于函数的零点问题立问题,通常要构造新函数,利用导数研究函数的单调性和极值(最值),进而得出相应的不等关系式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.选修4-4 坐标系与参数方程选讲在直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.(1)求直线的普通方程以及曲线的参数方程;(2)当时,为曲线上动点,求点到直线距离的最大值.【答案】(1) 直线的普通方程为,曲线的参数方程(为参数) (2)【解析】【分析】(1)由题意,对直线的参数方程以及曲线的极坐标方程进行化简得出直线的普通方程以及曲线的参数方程;(2)设点的坐标为,根据点到直线的距离公式求得距离d,然后求得最大值.【详解】(1)直线的普通方程为,曲线的极坐标方程可化为,化简可得.故曲线C的参数方程(为参数)(2)当时,直线的普通方程为.有点的直角坐标方程,可设点的坐标为,因此点到直线的距离可表示为.当时,取最大值为.【点睛】本题主要考查了极坐标参数方程的综合知识,化简极其重要,属于基础题.23.选修4-5 不等式选讲设函数.(1)求不等式的解集;(2)若不等式的解集为,求的取值范围.【答案】(1) (2)【解析】【分析】(1)通过对x进行讨论求出不等式的解集即可;(2)对x进行讨论,求出的最小值,然后根据解集为,得出k=0,求得k+m的范围即可.【详解】(1).由,则.(2).由的解集为可知:,即.【点睛】本题考查了不等式选讲,解绝对值不等式以及恒成立问题,属于基础题.。
吉林省长春市普通高中2019届高三质量监测(二)数学(理科)试题题(精品解析)
长春市普通高中2019届高三质量监测(二)数学试题卷(理科)考生须知:1.本试卷分试题卷和答题卡,满分150分,考试时间120分钟.2.答题前,在答题卡指定位置上填写学校、班级、姓名和准考证号.3.所有答案必须写在答题卡上,写在试卷上无效.4.考试结束,只需上交答题卡.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】因为复数=,所以对应的点位于第二象限.2.集合,,则()A. B. C. D.【答案】A【解析】【分析】由题,先求出集合A=,再根据交集的定义求出答案即可.【详解】,.故选A.【点睛】本题主要考查了交集的定义,属于基础题.3.命题“,”的否定是()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】利用全称命题的否定是特征命题,写出结果即可【详解】因为全称命题的否定是特征命题,所以命题“,”的否定是,故选D【点睛】本题主要考查了全称命题的否定是特征命题,属于基础题.4.下列函数中,在内单调递减的是()A. B. C. D.【答案】A【解析】【分析】直接根据指数型函数的单调性判断出在R上递减,求得结果.【详解】由题,在R上递减,所以在内单调递减,故选A【点睛】本题主要考查了函数的单调性,利用函数的性质是解题的关键,属于基础题.5.一个几何体的三视图如图所示,则这个几何体的体积为()A. 32B.C.D. 8【答案】B【解析】【分析】根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,利用体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,所以该四棱锥的体积为,故选B.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6.等差数列中,是它的前项和,,,则该数列的公差为()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】先根据求和,利用中项公式,求得,再利用公差的公式求得结果.【详解】由题即,,.故选C.【点睛】本题主要考查了等差数列的性质,能否熟练运用中项公式是解题的技巧,属于较为基础题.7.下边的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的股价波动较大;④两只般票在全年都处于上升趋势.其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】通过标准差的比较,得出两只股票的稳定性,通过极差的比较,得出风险和回报,再根据折线图得出股票的上升和下跌趋势,可分析出答案.【详解】由题可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的股价波动较大,故③正确;通过折线图可得乙再6月到8月明显是下降趋势,故④错误故选C【点睛】本题主要考查了统计图像的折线图,通过对标准差和极差的了解得出结论,属于较为基础题.8.直线绕原点顺时针旋转得到直线,若的倾斜角为,则的值为()A. B. C. D.【答案】D【解析】【分析】根据题意,可得,解得,进而根据余弦的倍角公式,即可求解.【详解】由题意,直线的斜率为2,将绕原点顺时针旋转,则,解得,则,故选D.【点睛】本题主要考查了直线的倾斜角的应用,以及两角和的正切函数和余弦的倍角公式的应用,其中解答中正确理解题意,合理利用公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.9.正方形边长为2,点为边的中点,为边上一点,若,则()A. 3B. 5C.D.【答案】D【解析】【分析】由题意,根据向量的运算,可得,即,再由E是BC的中点,进而可求解,得到答案.【详解】由题意,可知,即,即,所以,即,又由E是BC的中点,则,,所以,故选D.【点睛】本题主要考查了向量的数量积的应用,以及勾股定理的应用,其中解答中根据向量的数量积的运算,得到,再利用勾股定理求解是解答的关键,着重考查了推理与运算能力.10.已知曲线在点处的切线为,则下列各点中不可能在直线上的是()A. B. C. D.【答案】C【解析】【分析】由题意,画岀切线扫过的区域,得当时,此时切线都在轴的上方,即可作出判断,得到答案.【详解】由题意,画岀切线扫过的区域,如图所示,当时,此时切线都在轴的上方,所以不可能在直线上的点为.故选C.【点睛】本题主要考查了曲线在某点处的切线方程应用,其中解答中熟记曲线在某点处的切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于基础题.11.已知双曲线的左、右焦点分别为,,过且与渐近线垂直的直线分别与该渐近线和轴相交于,两点,为坐标原点,若,则双曲线的离心率为()A. B. C. 2 D.【答案】B【解析】【分析】由题意,根据,求得,,求得,在直角中,由射影定理得到,进而可求解离心率,得到答案.【详解】由题意,取双曲线的一条渐近线,即,则过右焦点与渐近线垂直的直线方程为,即,又由焦点到渐近线的距离为,又由,所以,即,又由原点到的距离为,在直角中,由射影定理得,即,又由,整理得,所以,故选B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为的关系式是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).12.定义在上的函数有零点,且值域,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】先由题求出,再根据有零点和值域,可得,求得的取值范围.【详解】由,有,又因为在上的函数有零点,即值域即所以,从而.故选C.【点睛】本题是考查三角函数的相关知识,对其函数图像和性质的掌握是解题的关键,属于中档题.二、填空题.13.已知实数,满足,则的最大值为_______.【答案】4【解析】【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,即可求解目标函数的最大值.【详解】作出约束条件所表示的平面区域,如图所示,目标函数,可化为,当直线过点A时,直线在y轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.直线与抛物线围成的封闭图形的面积为______.【答案】【解析】【分析】由题意,联立方程组,解得或,利用微积分基本定理,即可求解封闭图形的面积.【详解】由题意,联立方程组,解得或,所以直线与抛物线围成的封闭图形的面积为:.【点睛】本题主要考查了微积分基本定理的应用,其中解答中根据微积分基本定理得出面积的定积分,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.在中,角、、的对边分别为,、,,,则的面积的最大值为____.【答案】【解析】【分析】根据三角恒等变换的公式,化简得,求得,又由余弦定理和基本不等式,求得的最大值为,进而利用面积公式,即可求解.【详解】在中,角、、的对边分别为,、满足由正弦定理可化简得,又由,即,即,又由,则,所以,即,解得,又由余弦定理得,又由,即,当且仅当时取等号,即的最大值为,所以的面积的最大值为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.正方体的棱长为2,,,,分别是,,,的中点,则过且与平行的平面截正方体所得截面的面积为____,和该截面所成角的正弦值为______.【答案】(1). (2).【解析】【分析】(1)取CD的总点Q,BC的中点P,根据题意易证MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,求得S即可;(2) 连接AC交PQ于点R,易证CR垂直平面EFQP,所以为直线和平面EFQP所成角然后直接求得的正弦值即可.【详解】(1)由题,取CD的总点Q,BC的中点P,连接ME、NQ,在正方体中易知,ME与NQ是平行且相等的,所以MN//EQ,即MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,PQ=所以面积(2)连接AC交PQ于点R,再连接CE,易知CR垂直平面EFQP,所以为直线和平面EFQP所成角,所以故答案为(1). (2).【点睛】本题主要考查了立体几何综合,解题的关键是能否找出截面以及线面角,属于较难题目.三、解答题,解答应写出文字说明、证明过程或演算步骤.17.各项均为整数的等差数列,其前项和为,,,,成等比数列.(1)求的通项公式;(2)求数列的前项和.【答案】(1) (2)【解析】【分析】(1)由题意,可知,解得,即可求解数列的通项公式;(2)由(1),可知,可得,即可求解.【详解】(1)由题意,可知数列中,,,,成等比数列.则,即,解得,所以数列的通项公式.(2)由(1),可知,所以.【点睛】本题主要考查了等差数列的通项公式的求解,以及“分组求和”的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确求得等差数列的公差是解答的关键,着重考查了运算与求解能力,属于基础题.18.某研究机构随机调查了,两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:企业:工资人数510204218311企业:(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.【答案】(1)0.68(2)(i)见解析(ii)见解析【解析】【分析】(1)由题意,根据饼状图知工资超过5000的有68人,即可求解其概率.(2)①企业中三个不同层次人数比为,得到随机变量的取值,求得相应的概率,即可得出分布列;②利用平均数的计算公式,即可求额及企业的员工平均收入和企业的员工平均收入进而得到结论.【详解】(1)由题意,根据饼状图知工资超过5000的有68人,故慨率为.(2)①企业中三个不同层次人数比为,即按照分层抽样7人所抽取的收入在的人数为2.的取值为0,1,2,因此,,,的分布列为:012②企业的员工平均收入为:.企业的员工平均收入为:.参考答案1:选企业,由于企业员工的平均收入高.参考答案2:选企业,企业员工的平均收入只比企业低10元,但是企业有高收入的团体,说明发展空间较大,获得8000元以上的高收入是有可能的.参考答案3:选企业,由于企业员工平均收入不仅高,且低收入人数少.【点睛】本题主要考查了平均数的计算、古典概型及其概率的计算,以及随机变量的分布列的求解,其中解答中认真审题,准确得出随机变量的取值,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.四棱锥中,底面为直角梯形,,,,平面,,为中点.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的余弦值.【答案】(1)见证明;(2)【解析】【分析】(1)在中,由余弦定理,,又,,得到,,由线面垂直的判定定理,得平面,进而利用面面垂直的判定定理,证得平面平面.(2)以为原点,,,为,,轴,建立空间直角坐标系,求得平面的法向量为和平面平面的一个法向量为,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,,,在中,由余弦定理,,又,,有,是等腰三角形,所以,,由线面垂直的判定定理,得平面,又由面面垂直的判定定理,即可得到平面平面.(2)以为原点,,,为,,轴,建立空间直角坐标系,则,,,,,有,,,令平面的法向量为,由,可得一个,由(1)可知平面的一个法向量为,所以,所以二面角的余弦值为.【点睛】本题考查了立体几何中的线面平行判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.已知椭圆的左右焦点分别为,,为椭圆上一点,且满足轴,,离心率为.(1)求椭圆的标准方程;(2)若为轴正半轴上的定点,过的直线交椭圆于,两点,设为坐标原点,,求点的坐标.【答案】(1) (2)【解析】【分析】(1)由题意可得且,求得,,即可得到椭圆的方程;(2)设,:,由,得,联立方程组,利用根与系数的关系,以及向量的数量积的运算,求得的值,即可得到答案.【详解】(1)由题意知,为椭圆上一点,且满足轴,则又由,且,解得,,所以椭圆的方程为.(2)设,:,设,,由,即,即,即,联立直线和椭圆方程组,得,有,则,又由即,解得,所以点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.【答案】(1)见解析;(2)【解析】【分析】(1)由题意,求得函数的导数,分类讨论,即可求解函数的单调区间;(2)令,知单调递增且有大于0的零点,不妨设为,若有有两个零点,需满足,即,令,得出在上单调递减,求得的解集为,当时,,即,进而利用函数的单调性求解.【详解】(1)由题可得,当时,,在上单调递增;当时,,,在上单调递增;,,在上单调递减.(2)令,,易知单调递增且一定有大于0的零点,不妨设为,,即,,故若有有两个零点,需满足,即,令,,所以在上单调递减.,所以的解集为,由,所以.当时,,有,令,由于,所以,,故,所以,故,在上有唯一零点,另一方面,在上,当时,由增长速度大,所以有,综上,.【点睛】本题主要考查导数在函数中的综合应用,以及利用导数研究函数的零点问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于函数的零点问题立问题,通常要构造新函数,利用导数研究函数的单调性和极值(最值),进而得出相应的不等关系式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.选修4-4 坐标系与参数方程选讲在直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.(1)求直线的普通方程以及曲线的参数方程;(2)当时,为曲线上动点,求点到直线距离的最大值.【答案】(1)直线的普通方程为,曲线的参数方程(为参数) (2)【解析】【分析】(1)由题意,对直线的参数方程以及曲线的极坐标方程进行化简得出直线的普通方程以及曲线的参数方程;(2)设点的坐标为,根据点到直线的距离公式求得距离d,然后求得最大值.【详解】(1)直线的普通方程为,曲线的极坐标方程可化为,化简可得.故曲线C的参数方程(为参数)(2)当时,直线的普通方程为.有点的直角坐标方程,可设点的坐标为,因此点到直线的距离可表示为.当时,取最大值为.【点睛】本题主要考查了极坐标参数方程的综合知识,化简极其重要,属于基础题.23.选修4-5 不等式选讲设函数.(1)求不等式的解集;(2)若不等式的解集为,求的取值范围.【答案】(1) (2)【解析】【分析】(1)通过对x进行讨论求出不等式的解集即可;(2)对x进行讨论,求出的最小值,然后根据解集为,得出k=0,求得k+m的范围即可.【详解】(1).由,则.(2).由的解集为可知:,即.【点睛】本题考查了不等式选讲,解绝对值不等式以及恒成立问题,属于基础题.。
2019届吉林省长春市普通高中高三下学期质量监测(二)理科综合生物试题(解析版)
长春市普通高中2019届高三质量监测(二) 理科综合能力测试(生物部分)1.下列关于细胞生命历程的叙述,正确的是A. 细胞癌变是细胞连续进行分裂的结果B. 被病原体感染的细胞的清除属于细胞凋亡C. 衰老细胞膜通透性改变使物质运输功能增强D. 色素沉积出现“老年斑”是细胞分化的结果【答案】B【解析】【分析】细胞分化是指在个体发育中,由一个或一种细胞增殖产生的后代,在形态,结构和生理功能上发生稳定性差异的过程.细胞分化贯穿于整个生命历程。
衰老细胞的特征:(1)细胞内水分减少,细胞萎缩,体积变小,但细胞核体积增大,染色质固缩,染色加深;(2)细胞膜通透性功能改变,物质运输功能降低;(3)细胞色素随着细胞衰老逐渐累积;(4)有些酶的活性降低;(5)呼吸速度减慢,新陈代谢减慢。
细胞癌变的根本原因是原癌基因和抑癌基因发生基因突变。
细胞凋亡是由基因决定的细胞编程序死亡的过程。
【详解】细胞癌变是基因突变的结果,具有无限增值的特点,A错误;被病原体感染的细胞的清除属于细胞凋亡,B正确;衰老细胞膜通透性改变,使物质运输功能降低,C错误;色素沉积出现“老年斑”是细胞衰老的结果,D错误。
2.自分泌是细胞分泌化学信号进行通讯的一种方式,是指细胞对自身分泌的物质产生反应。
下列作用方式属于自分泌的是A. 下丘脑神经内分细胞分泌TRH,作用于靶细胞B. 肿瘤细胞分泌生长因子刺激自身,导致其增殖失控C. 高等植物细胞通过胞间连丝相互连接,进行信息交流D. 精子和卵细胞之间识别和结合,完成受精作用【答案】B【解析】【分析】根据题意分析,自分泌指的是内分泌细胞将激素或调节肽分泌到细胞外,通过组织间液,再作用于本细胞膜上的受体,使内分泌细胞的功能发生改变。
【详解】下丘脑神经内分细胞分泌TRH,作用的靶细胞是垂体细胞,而不是自身细胞,不属于自分泌,A错误;肿瘤细胞分泌生长因子刺激自身,导致其增殖失控,属于自分泌,B正确;高等植物细胞通过胞间连丝相互连接,在不同细胞间进行信息交流,不属于自分泌,C错误;精子和卵细胞之间识别和结合,完成受精作用,没有分泌物质,且发生在不同细胞间,不属于自分泌,D错误。
吉林省长春市普通高中2019届高三质量监测(二)数学(理科)试题题(详细答案)
长春市普通高中2019届高三质量监测(二)数学试题卷(理科)考生须知:1.本试卷分试题卷和答题卡,满分150分,考试时间120分钟.2.答题前,在答题卡指定位置上填写学校、班级、姓名和准考证号.3.所有答案必须写在答题卡上,写在试卷上无效.4.考试结束,只需上交答题卡.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】因为复数=,所以对应的点位于第二象限.2.集合,,则()A. B. C. D.【答案】A【解析】【分析】由题,先求出集合A=,再根据交集的定义求出答案即可.【详解】,.故选A.【点睛】本题主要考查了交集的定义,属于基础题.3.命题“,”的否定是()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】利用全称命题的否定是特征命题,写出结果即可【详解】因为全称命题的否定是特征命题,所以命题“,”的否定是,故选D【点睛】本题主要考查了全称命题的否定是特征命题,属于基础题. 4.下列函数中,在内单调递减的是( )A.B.C.D.【答案】A 【解析】 【分析】直接根据指数型函数的单调性判断出在R 上递减,求得结果.【详解】由题,在R 上递减,所以在内单调递减,故选A【点睛】本题主要考查了函数的单调性,利用函数的性质是解题的关键,属于基础题. 5.一个几何体的三视图如图所示,则这个几何体的体积为( )A. 32B.C.D. 8【答案】B 【解析】 【分析】根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,利用体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥, 所以该四棱锥的体积为,故选B.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6.等差数列中,是它的前项和,,,则该数列的公差为()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】先根据求和,利用中项公式,求得,再利用公差的公式求得结果.【详解】由题即,,.故选C.【点睛】本题主要考查了等差数列的性质,能否熟练运用中项公式是解题的技巧,属于较为基础题.7.下边的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的股价波动较大;④两只般票在全年都处于上升趋势.其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】通过标准差的比较,得出两只股票的稳定性,通过极差的比较,得出风险和回报,再根据折线图得出股票的上升和下跌趋势,可分析出答案.【详解】由题可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的股价波动较大,故③正确;通过折线图可得乙再6月到8月明显是下降趋势,故④错误故选C【点睛】本题主要考查了统计图像的折线图,通过对标准差和极差的了解得出结论,属于较为基础题.8.直线绕原点顺时针旋转得到直线,若的倾斜角为,则的值为()A. B. C. D.【答案】D【解析】【分析】根据题意,可得,解得,进而根据余弦的倍角公式,即可求解.【详解】由题意,直线的斜率为2,将绕原点顺时针旋转,则,解得,则,故选D.【点睛】本题主要考查了直线的倾斜角的应用,以及两角和的正切函数和余弦的倍角公式的应用,其中解答中正确理解题意,合理利用公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.9.正方形边长为2,点为边的中点,为边上一点,若,则()A. 3B. 5C.D.【答案】D【解析】【分析】由题意,根据向量的运算,可得,即,再由E是BC的中点,进而可求解,得到答案. 【详解】由题意,可知,即,即,所以,即,又由E是BC的中点,则,,所以,故选D.【点睛】本题主要考查了向量的数量积的应用,以及勾股定理的应用,其中解答中根据向量的数量积的运算,得到,再利用勾股定理求解是解答的关键,着重考查了推理与运算能力.10.已知曲线在点处的切线为,则下列各点中不可能在直线上的是()A. B. C. D.【答案】C【解析】【分析】由题意,画岀切线扫过的区域,得当时,此时切线都在轴的上方,即可作出判断,得到答案. 【详解】由题意,画岀切线扫过的区域,如图所示,当时,此时切线都在轴的上方,所以不可能在直线上的点为.故选C.【点睛】本题主要考查了曲线在某点处的切线方程应用,其中解答中熟记曲线在某点处的切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于基础题.11.已知双曲线的左、右焦点分别为,,过且与渐近线垂直的直线分别与该渐近线和轴相交于,两点,为坐标原点,若,则双曲线的离心率为()A. B. C. 2 D.【答案】B【解析】【分析】由题意,根据,求得,,求得,在直角中,由射影定理得到,进而可求解离心率,得到答案.【详解】由题意,取双曲线的一条渐近线,即,则过右焦点与渐近线垂直的直线方程为,即,又由焦点到渐近线的距离为,又由,所以,即,又由原点到的距离为,在直角中,由射影定理得,即,又由,整理得,所以,故选B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为的关系式是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).12.定义在上的函数有零点,且值域,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】先由题求出,再根据有零点和值域,可得,求得的取值范围.【详解】由,有,又因为在上的函数有零点,即值域即所以,从而.故选C.【点睛】本题是考查三角函数的相关知识,对其函数图像和性质的掌握是解题的关键,属于中档题.二、填空题.13.已知实数,满足,则的最大值为_______.【答案】4【解析】【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,即可求解目标函数的最大值.【详解】作出约束条件所表示的平面区域,如图所示,目标函数,可化为,当直线过点A时,直线在y轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.直线与抛物线围成的封闭图形的面积为______.【答案】【解析】【分析】由题意,联立方程组,解得或,利用微积分基本定理,即可求解封闭图形的面积.【详解】由题意,联立方程组,解得或,所以直线与抛物线围成的封闭图形的面积为:.【点睛】本题主要考查了微积分基本定理的应用,其中解答中根据微积分基本定理得出面积的定积分,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.在中,角、、的对边分别为,、,,,则的面积的最大值为____.【答案】【解析】【分析】根据三角恒等变换的公式,化简得,求得,又由余弦定理和基本不等式,求得的最大值为,进而利用面积公式,即可求解.【详解】在中,角、、的对边分别为,、满足由正弦定理可化简得,又由,即,即,又由,则,所以,即,解得,又由余弦定理得,又由,即,当且仅当时取等号,即的最大值为,所以的面积的最大值为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.正方体的棱长为2,,,,分别是,,,的中点,则过且与平行的平面截正方体所得截面的面积为____,和该截面所成角的正弦值为______.【答案】(1). (2).【解析】【分析】(1)取CD的总点Q,BC的中点P,根据题意易证MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,求得S即可;(2) 连接AC交PQ于点R,易证CR垂直平面EFQP,所以为直线和平面EFQP所成角然后直接求得的正弦值即可.【详解】(1)由题,取CD的总点Q,BC的中点P,连接ME、NQ,在正方体中易知,ME与NQ是平行且相等的,所以MN//EQ,即MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,PQ=所以面积(2)连接AC交PQ于点R,再连接CE,易知CR垂直平面EFQP,所以为直线和平面EFQP所成角,所以故答案为(1). (2).【点睛】本题主要考查了立体几何综合,解题的关键是能否找出截面以及线面角,属于较难题目.三、解答题,解答应写出文字说明、证明过程或演算步骤.17.各项均为整数的等差数列,其前项和为,,,,成等比数列.(1)求的通项公式;(2)求数列的前项和.【答案】(1) (2)【解析】【分析】(1)由题意,可知,解得,即可求解数列的通项公式;(2)由(1),可知,可得,即可求解.【详解】(1)由题意,可知数列中,,,,成等比数列.则,即,解得,所以数列的通项公式.(2)由(1),可知,所以.【点睛】本题主要考查了等差数列的通项公式的求解,以及“分组求和”的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确求得等差数列的公差是解答的关键,着重考查了运算与求解能力,属于基础题.18.某研究机构随机调查了,两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:企业:企业:(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.【答案】(1)0.68(2) (i)见解析(ii)见解析【解析】【分析】(1)由题意,根据饼状图知工资超过5000的有68人,即可求解其概率.(2)①企业中三个不同层次人数比为,得到随机变量的取值,求得相应的概率,即可得出分布列;②利用平均数的计算公式,即可求额及企业的员工平均收入和企业的员工平均收入进而得到结论. 【详解】(1)由题意,根据饼状图知工资超过5000的有68人,故慨率为.(2)①企业中三个不同层次人数比为,即按照分层抽样7人所抽取的收入在的人数为2.的取值为0,1,2,因此,,,的分布列为:②企业的员工平均收入为:.企业的员工平均收入为:.参考答案1:选企业,由于企业员工的平均收入高.参考答案2:选企业,企业员工的平均收入只比企业低10元,但是企业有高收入的团体,说明发展空间较大,获得8000元以上的高收入是有可能的.参考答案3:选企业,由于企业员工平均收入不仅高,且低收入人数少.【点睛】本题主要考查了平均数的计算、古典概型及其概率的计算,以及随机变量的分布列的求解,其中解答中认真审题,准确得出随机变量的取值,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.四棱锥中,底面为直角梯形,,,,平面,,为中点.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的余弦值.【答案】(1)见证明;(2)【解析】【分析】(1)在中,由余弦定理,,又,,得到,,由线面垂直的判定定理,得平面,进而利用面面垂直的判定定理,证得平面平面. (2)以为原点,,,为,,轴,建立空间直角坐标系,求得平面的法向量为和平面平面的一个法向量为,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,,,在中,由余弦定理,,又,,有,是等腰三角形,所以,,由线面垂直的判定定理,得平面,又由面面垂直的判定定理,即可得到平面平面.(2)以为原点,,,为,,轴,建立空间直角坐标系,则,,,,,有,,,令平面的法向量为,由,可得一个,由(1)可知平面的一个法向量为,所以,所以二面角的余弦值为.【点睛】本题考查了立体几何中的线面平行判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.已知椭圆的左右焦点分别为,,为椭圆上一点,且满足轴,,离心率为.(1)求椭圆的标准方程;(2)若为轴正半轴上的定点,过的直线交椭圆于,两点,设为坐标原点,,求点的坐标.【答案】(1) (2)【解析】【分析】(1)由题意可得且,求得,,即可得到椭圆的方程;(2)设,:,由,得,联立方程组,利用根与系数的关系,以及向量的数量积的运算,求得的值,即可得到答案.【详解】(1)由题意知,为椭圆上一点,且满足轴,则又由,且,解得,,所以椭圆的方程为.(2)设,:,设,,由,即,即,即,联立直线和椭圆方程组,得,有,则,又由即,解得,所以点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.【答案】(1)见解析;(2)【解析】【分析】(1)由题意,求得函数的导数,分类讨论,即可求解函数的单调区间;(2)令,知单调递增且有大于0的零点,不妨设为,若有有两个零点,需满足,即,令,得出在上单调递减,求得的解集为,当时,,即,进而利用函数的单调性求解.【详解】(1)由题可得,当时,,在上单调递增;当时,,,在上单调递增;,,在上单调递减.(2)令,,易知单调递增且一定有大于0的零点,不妨设为,,即,,故若有有两个零点,需满足,即,令,,所以在上单调递减.,所以的解集为,由,所以.当时,,有,令,由于,所以,,故,所以,故,在上有唯一零点,另一方面,在上,当时,由增长速度大,所以有,综上,.【点睛】本题主要考查导数在函数中的综合应用,以及利用导数研究函数的零点问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于函数的零点问题立问题,通常要构造新函数,利用导数研究函数的单调性和极值(最值),进而得出相应的不等关系式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.选修4-4 坐标系与参数方程选讲在直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.(1)求直线的普通方程以及曲线的参数方程;(2)当时,为曲线上动点,求点到直线距离的最大值.【答案】(1) 直线的普通方程为,曲线的参数方程(为参数) (2)【解析】【分析】(1)由题意,对直线的参数方程以及曲线的极坐标方程进行化简得出直线的普通方程以及曲线的参数方程;(2)设点的坐标为,根据点到直线的距离公式求得距离d,然后求得最大值.【详解】(1)直线的普通方程为,曲线的极坐标方程可化为,化简可得.故曲线C的参数方程(为参数)(2)当时,直线的普通方程为.有点的直角坐标方程,可设点的坐标为,因此点到直线的距离可表示为.当时,取最大值为.【点睛】本题主要考查了极坐标参数方程的综合知识,化简极其重要,属于基础题.23.选修4-5 不等式选讲设函数.(1)求不等式的解集;(2)若不等式的解集为,求的取值范围.【答案】(1) (2)【解析】【分析】(1)通过对x进行讨论求出不等式的解集即可;(2)对x进行讨论,求出的最小值,然后根据解集为,得出k=0,求得k+m的范围即可.【详解】(1).由,则.(2).由的解集为可知:,即.【点睛】本题考查了不等式选讲,解绝对值不等式以及恒成立问题,属于基础题.。
吉林省长春市普通高中2019届高三质量监测(二)数学(理科)试题题(解析版)
长春市普通高中2019届高三质量监测(二)数学试题卷(理科)考生须知:1.本试卷分试题卷和答题卡,满分150分,考试时间120分钟.2.答题前,在答题卡指定位置上填写学校、班级、姓名和准考证号.3.所有答案必须写在答题卡上,写在试卷上无效.4.考试结束,只需上交答题卡.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】因为复数=,所以对应的点位于第二象限.2.集合,,则()A. B. C. D.【答案】A【解析】【分析】由题,先求出集合A=,再根据交集的定义求出答案即可.【详解】,.故选A.【点睛】本题主要考查了交集的定义,属于基础题.3.命题“,”的否定是()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】利用全称命题的否定是特征命题,写出结果即可【详解】因为全称命题的否定是特征命题,所以命题“,”的否定是,故选D【点睛】本题主要考查了全称命题的否定是特征命题,属于基础题.4.下列函数中,在内单调递减的是()A. B. C. D.【答案】A【解析】【分析】直接根据指数型函数的单调性判断出在R上递减,求得结果.【详解】由题,在R上递减,所以在内单调递减,故选A【点睛】本题主要考查了函数的单调性,利用函数的性质是解题的关键,属于基础题.5.一个几何体的三视图如图所示,则这个几何体的体积为()A. 32B.C.D. 8【答案】B【解析】【分析】根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,利用体积公式,即可求解. 【详解】由题意,根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,所以该四棱锥的体积为,故选B.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6.等差数列中,是它的前项和,,,则该数列的公差为()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】先根据求和,利用中项公式,求得,再利用公差的公式求得结果.【详解】由题即,,.故选C.【点睛】本题主要考查了等差数列的性质,能否熟练运用中项公式是解题的技巧,属于较为基础题.7.下边的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的股价波动较大;④两只般票在全年都处于上升趋势.其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】通过标准差的比较,得出两只股票的稳定性,通过极差的比较,得出风险和回报,再根据折线图得出股票的上升和下跌趋势,可分析出答案.【详解】由题可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的股价波动较大,故③正确;通过折线图可得乙再6月到8月明显是下降趋势,故④错误故选C【点睛】本题主要考查了统计图像的折线图,通过对标准差和极差的了解得出结论,属于较为基础题.8.直线绕原点顺时针旋转得到直线,若的倾斜角为,则的值为()A. B. C. D.【答案】D【解析】【分析】根据题意,可得,解得,进而根据余弦的倍角公式,即可求解.【详解】由题意,直线的斜率为2,将绕原点顺时针旋转,则,解得,则,故选D.【点睛】本题主要考查了直线的倾斜角的应用,以及两角和的正切函数和余弦的倍角公式的应用,其中解答中正确理解题意,合理利用公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.9.正方形边长为2,点为边的中点,为边上一点,若,则()A. 3B. 5C.D.【答案】D【解析】【分析】由题意,根据向量的运算,可得,即,再由E是BC的中点,进而可求解,得到答案.【详解】由题意,可知,即,即,所以,即,又由E是BC的中点,则,,所以,故选D.【点睛】本题主要考查了向量的数量积的应用,以及勾股定理的应用,其中解答中根据向量的数量积的运算,得到,再利用勾股定理求解是解答的关键,着重考查了推理与运算能力.10.已知曲线在点处的切线为,则下列各点中不可能在直线上的是()A. B. C. D.【答案】C【解析】【分析】由题意,画岀切线扫过的区域,得当时,此时切线都在轴的上方,即可作出判断,得到答案.【详解】由题意,画岀切线扫过的区域,如图所示,当时,此时切线都在轴的上方,所以不可能在直线上的点为.故选C.【点睛】本题主要考查了曲线在某点处的切线方程应用,其中解答中熟记曲线在某点处的切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于基础题.11.已知双曲线的左、右焦点分别为,,过且与渐近线垂直的直线分别与该渐近线和轴相交于,两点,为坐标原点,若,则双曲线的离心率为()A. B. C. 2 D. 【答案】B【解析】【分析】由题意,根据,求得,,求得,在直角中,由射影定理得到,进而可求解离心率,得到答案.【详解】由题意,取双曲线的一条渐近线,即,则过右焦点与渐近线垂直的直线方程为,即,又由焦点到渐近线的距离为,又由,所以,即,又由原点到的距离为,在直角中,由射影定理得,即,又由,整理得,所以,故选B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为的关系式是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).12.定义在上的函数有零点,且值域,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】先由题求出,再根据有零点和值域,可得,求得的取值范围.【详解】由,有,又因为在上的函数有零点,即值域即所以,从而.故选C.【点睛】本题是考查三角函数的相关知识,对其函数图像和性质的掌握是解题的关键,属于中档题.二、填空题.13.已知实数,满足,则的最大值为_______.【答案】4【解析】【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,即可求解目标函数的最大值.【详解】作出约束条件所表示的平面区域,如图所示,目标函数,可化为,当直线过点A时,直线在y轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.直线与抛物线围成的封闭图形的面积为______.【答案】【解析】由题意,联立方程组,解得或,利用微积分基本定理,即可求解封闭图形的面积.【详解】由题意,联立方程组,解得或,所以直线与抛物线围成的封闭图形的面积为:.【点睛】本题主要考查了微积分基本定理的应用,其中解答中根据微积分基本定理得出面积的定积分,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.在中,角、、的对边分别为,、,,,则的面积的最大值为____.【答案】【解析】【分析】根据三角恒等变换的公式,化简得,求得,又由余弦定理和基本不等式,求得的最大值为,进而利用面积公式,即可求解.【详解】在中,角、、的对边分别为,、满足由正弦定理可化简得,又由,即,即,又由,则,所以,即,解得,又由余弦定理得,又由,即,当且仅当时取等号,即的最大值为,所以的面积的最大值为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.正方体的棱长为2,,,,分别是,,,的中点,则过且与平行的平面截正方体所得截面的面积为____,和该截面所成角的正弦值为______.【答案】(1). (2).【分析】(1)取CD的总点Q,BC的中点P,根据题意易证MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,求得S即可;(2) 连接AC交PQ于点R,易证CR垂直平面EFQP,所以为直线和平面EFQP所成角然后直接求得的正弦值即可.【详解】(1)由题,取CD的总点Q,BC的中点P,连接ME、NQ,在正方体中易知,ME与NQ是平行且相等的,所以MN//EQ,即MN//平面EFQP,故平面EFQP就是过且与平行的平面截正方体所得截面,PQ=所以面积(2)连接AC交PQ于点R,再连接CE,易知CR垂直平面EFQP,所以为直线和平面EFQP所成角,所以故答案为(1). (2).【点睛】本题主要考查了立体几何综合,解题的关键是能否找出截面以及线面角,属于较难题目.三、解答题,解答应写出文字说明、证明过程或演算步骤.17.各项均为整数的等差数列,其前项和为,,,,成等比数列.(1)求的通项公式;(2)求数列的前项和.【答案】(1) (2)【解析】【分析】(1)由题意,可知,解得,即可求解数列的通项公式;(2)由(1),可知,可得,即可求解.【详解】(1)由题意,可知数列中,,,,成等比数列.则,即,解得,所以数列的通项公式.(2)由(1),可知,所以.【点睛】本题主要考查了等差数列的通项公式的求解,以及“分组求和”的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确求得等差数列的公差是解答的关键,着重考查了运算与求解能力,属于基础题.18.某研究机构随机调查了,两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:企业:企业:(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.【答案】(1)0.68(2) (i)见解析(ii)见解析【解析】【分析】(1)由题意,根据饼状图知工资超过5000的有68人,即可求解其概率.(2)①企业中三个不同层次人数比为,得到随机变量的取值,求得相应的概率,即可得出分布列;②利用平均数的计算公式,即可求额及企业的员工平均收入和企业的员工平均收入进而得到结论.【详解】(1)由题意,根据饼状图知工资超过5000的有68人,故慨率为.(2)①企业中三个不同层次人数比为,即按照分层抽样7人所抽取的收入在的人数为2.的取值为0,1,2,因此,,,的分布列为:②企业的员工平均收入为:.企业的员工平均收入为:.参考答案1:选企业,由于企业员工的平均收入高.参考答案2:选企业,企业员工的平均收入只比企业低10元,但是企业有高收入的团体,说明发展空间较大,获得8000元以上的高收入是有可能的.参考答案3:选企业,由于企业员工平均收入不仅高,且低收入人数少.【点睛】本题主要考查了平均数的计算、古典概型及其概率的计算,以及随机变量的分布列的求解,其中解答中认真审题,准确得出随机变量的取值,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.四棱锥中,底面为直角梯形,,,,平面,,为中点.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的余弦值.【答案】(1)见证明;(2)【解析】【分析】(1)在中,由余弦定理,,又,,得到,,由线面垂直的判定定理,得平面,进而利用面面垂直的判定定理,证得平面平面.(2)以为原点,,,为,,轴,建立空间直角坐标系,求得平面的法向量为和平面平面的一个法向量为,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,,,在中,由余弦定理,,又,,有,是等腰三角形,所以,,由线面垂直的判定定理,得平面,又由面面垂直的判定定理,即可得到平面平面.(2)以为原点,,,为,,轴,建立空间直角坐标系,则,,,,,有,,,令平面的法向量为,由,可得一个,由(1)可知平面的一个法向量为,所以,所以二面角的余弦值为.【点睛】本题考查了立体几何中的线面平行判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.已知椭圆的左右焦点分别为,,为椭圆上一点,且满足轴,,离心率为. (1)求椭圆的标准方程;(2)若为轴正半轴上的定点,过的直线交椭圆于,两点,设为坐标原点,,求点的坐标.【答案】(1) (2)【解析】【分析】(1)由题意可得且,求得,,即可得到椭圆的方程;(2)设,:,由,得,联立方程组,利用根与系数的关系,以及向量的数量积的运算,求得的值,即可得到答案.【详解】(1)由题意知,为椭圆上一点,且满足轴,则又由,且,解得,,所以椭圆的方程为.(2)设,:,设,,由,即,即,即,联立直线和椭圆方程组,得,有,则,又由即,解得,所以点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.【答案】(1)见解析;(2)【解析】【分析】(1)由题意,求得函数的导数,分类讨论,即可求解函数的单调区间;(2)令,知单调递增且有大于0的零点,不妨设为,若有有两个零点,需满足,即,令,得出在上单调递减,求得的解集为,当时,,即,进而利用函数的单调性求解.【详解】(1)由题可得,当时,,在上单调递增;当时,,,在上单调递增;,,在上单调递减.(2)令,,易知单调递增且一定有大于0的零点,不妨设为,,即,,故若有有两个零点,需满足,即,令,,所以在上单调递减.,所以的解集为,由,所以.当时,,有,令,由于,所以,,故,所以,故,在上有唯一零点,另一方面,在上,当时,由增长速度大,所以有,综上,.【点睛】本题主要考查导数在函数中的综合应用,以及利用导数研究函数的零点问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于函数的零点问题立问题,通常要构造新函数,利用导数研究函数的单调性和极值(最值),进而得出相应的不等关系式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.选修4-4 坐标系与参数方程选讲在直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.(1)求直线的普通方程以及曲线的参数方程;(2)当时,为曲线上动点,求点到直线距离的最大值.【答案】(1) 直线的普通方程为,曲线的参数方程(为参数) (2)【解析】【分析】(1)由题意,对直线的参数方程以及曲线的极坐标方程进行化简得出直线的普通方程以及曲线的参数方程;(2)设点的坐标为,根据点到直线的距离公式求得距离d,然后求得最大值.【详解】(1)直线的普通方程为,曲线的极坐标方程可化为,化简可得.故曲线C的参数方程(为参数)(2)当时,直线的普通方程为.有点的直角坐标方程,可设点的坐标为,因此点到直线的距离可表示为.当时,取最大值为.【点睛】本题主要考查了极坐标参数方程的综合知识,化简极其重要,属于基础题.23.选修4-5 不等式选讲设函数.(1)求不等式的解集;(2)若不等式的解集为,求的取值范围.【答案】(1) (2)【解析】【分析】(1)通过对x进行讨论求出不等式的解集即可;(2)对x进行讨论,求出的最小值,然后根据解集为,得出k=0,求得k+m的范围即可.【详解】(1).由,则.(2).由的解集为可知:,即.【点睛】本题考查了不等式选讲,解绝对值不等式以及恒成立问题,属于基础题.。
【市级联考】吉林省长春市2019届高三质量监测(二)理综物理试题-e529ca74d2054536ae2e2e58335a0bda
D.交警通过发射超声波测量车速是利用了波的多普勒效应
E.狭义相对论认为在不同的惯性参考系中一切物理规律都是相同的
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
三、实验题
11.某实验小组利用图甲所示的实验装置验证机械能守恒定律。小钢球由静止释放自由下落过程中,计时装置测出小钢球通过光电门时间为t,用小钢球通过光电门的平均速度表示钢球球心通过光电门的瞬时速度。测出刚释放时钢球球心到光电门间的距离为h,当地的重力加速度为g,小钢球所受空气阻力可忽略不计。
A.攻击卫星在原轨道上运行的周期比侦察卫星的周期大
B.攻击卫星在原轨道上运行的线速度比侦察卫星的线速度小
C.攻击卫星在原轨道需要加速才能变轨接近侦查卫星
D.攻击卫星接近侦查卫星的过程中受到地球的万有引力一直在增大
5.如图所示,光滑地面上静置一质量为M的半圆形凹槽,凹槽半径为R,表面光滑。将一质量为m的小滑块(可视为质点),从凹槽边缘处由静止释放,当小滑块运动到凹槽的最低点时,对凹槽的压力为FN。FN的求解比较复杂,但是我们可以根据学过的物理知识和方法判断出可能正确的是(重力加速度为g)
A.当线圈按照图示的方向转动时,电刷a的电势比b的电势高
B.当线圈转到图示位置时,线圈中产生的电动势为零
C.该发电机产生电动势的最大值为NBSω
D.该发电机产生电动势的最大值是有效值的 倍
8.如图所示,固定于地面、倾角为 的光滑斜面上有一轻质弹簧,轻质弹簧一端与固定于斜面底端的挡板C连接,另一端与物块A连接,物块A上方放置有另一物块B,物块A、B质量均为m且不粘连,整个系统在沿斜面向下的外力F作用下处于静止状态。某一时刻将力F撤去,在弹簧将A、B弹出过程中,若A、B能够分离,重力加速度为g。则下列叙述正确的是
2019届吉林省长春市高三质量监测二理科数学试卷【含答案及解析】
2019届吉林省长春市高三质量监测二理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 复数,在复平面内对应的点关于直线对称,且,则()A . _________B .______________C . _________D .2. 若实数,且,则下列不等式恒成立的是()A . ________B .C .D .3. 设集合,,则()A.B.C.D .4. 设等差数列的前项和为,且,当取最大值时,的值为()A .B . ________C . ________D .5. 几何体三视图如图所示,则该几何体的体积为()A . ____________________B ._________C .______________ D .6. 已知变量服从正态分布,下列概率与相等的是() A.___________B.___________C. ________D .7. 函数与的图象关于直线对称,则可能是()A . ________B .______________C . ________D .8. 已知为圆的直径,点为直线上任意一点,则的最小值为()A . ___________B .C .D .9. 已知函数满足,当时,,当时,,若定义在上的函数有三个不同的零点,则实数的取值范围是()A. ___________________________________ B.C . ___________D .10. 小明试图将一箱中的24瓶啤酒全部取出,每次小明在取出啤酒时只能取出三瓶或四瓶啤酒,那么小明取出啤酒的方式共有()种.A . ______________B .____________________C .________D .11. 过双曲线的右支上一点,分别向圆和圆作切线,切点分别为,,则的最小值为()A . ___________B .________________________C . _________D .二、填空题12. 已知实数,满足,则的最小值为___________ .13. 已知向量,,则当时,的取值范围是 _________ .14. 已知,展开式的常数项为15,则___________ .15. 已知数列中,对任意的,若满足(为常数),则称该数列为阶等和数列,其中为阶公和;若满足(为常数),则称该数列为阶等积数列,其中为阶公积,已知数列为首项为的阶等和数列,且满足;数列为公积为的阶等积数列,且,设为数列的前项和,则 ___________ .三、解答题16. 已知函数.(1)求函数的最小正周期和单调减区间;(2)已知的三个内角,,的对边分别为,,,其中,若锐角满足,且,求的面积.17. 近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0 . 6,对服务的好评率为0 . 75,其中对商品和服务都做出好评的交易为80次.(1)是否可以在犯错误概率不超过0 . 1%的前提下,认为商品好评与服务好评有关?(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量:① 求对商品和服务全好评的次数的分布列(概率用组合数算式表示);② 求的数学期望和方差.(,其中)18. 在四棱锥中,底面是菱形,⊥平面,点为棱的中点,过作与平面平行的平面与棱,,相交于,,,.(1)证明:为的中点;(2)若,且二面角的大小为,,的交点为,连接,求三棱锥外接球的体积.19. 椭圆的左右焦点分别为,,且离心率为,点为椭圆上一动点,内切圆面积的最大值为.(1)求椭圆的方程;(2)设椭圆的左顶点为,过右焦点的直线与椭圆相交于,两点,连结,并延长交直线分别于,两点,以为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.20. 已知函数在点处的切线与直线平行.(1)求实数的值及的极值;(2)若对任意,,有,求实数的取值范围;21. 选修4—1:几何证明选讲.如图,过圆外一点的作圆的切线,为切点,过的中点的直线交圆于,两点,连接并延长交圆于点,连接交圆于点,若.(1)求证:∽ ;(2)求证:四边形是平行四边形.22. 选修4—4:坐标系与参数方程.在直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其表示何种曲线;(2)若曲线与曲线交于,两点,求的最大值和最小值.23. 选修4—5:不等式选讲.设函数.(1)若不等式恒成立,求实数的取值范围;(2)若不等式恒成立,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
2019年吉林省长春市高考数学二模试卷(理科)
2019年吉林省长春市高考数学二模试卷(理科)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={3a,3},B={a2+2a,4},A∩B={3},则A∪B等于()A.{3,5} B.{3,4} C.{﹣9,3} D.{﹣9,3,4}2.复数z满足zi=1﹣i(i为虚数单位),则z等于()A.﹣﹣i B.﹣i C.i D.﹣i3.已知向量,,且||=2,与的夹角为,⊥(3﹣),则||等于()A.6 B.6C.12 D.124.等差数列{an }的前n项和为Sn,且S5=﹣15,a2+a5=﹣2,则公差d等于()A.5 B.4 C.3 D.25.如图所示的程序框图,运行程序后,输出的结果为()A.5 B.4 C.3 D.26.某公司在2012﹣2016年的收入与支出情况如表所示:根据表中数据可得回归直线方程为=0.8x+,依次估计如果2017年该公司收入为7亿元时的支出为()A.4.5亿元B.4.4亿元C.4.3亿元D.4.2亿元7.已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b8.若x,y满足,且当z=y﹣x的最小值为﹣12,则k的值为()A.B.﹣C.D.﹣9.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.10.设函数f(x)=sin(2x+)(x∈[0,]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值为()A.πB.C.D.11.如图,在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1,CC1上的点,且BE=B1E,C1F=CC1,则异面直线A1E与AF所成角的余弦值为()A. B. C. D.12.设函数f(x)=﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,则实数a的最小值为()A.B.C. D.二、填空题:本大题共4个小题,每小题5分.13.设,则f(1)= .14.已知x,y满足则z=2x+y的最大值为.15.三棱锥S﹣ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB的长为.16.如图,四边形OABC,ODEF,OGHI是三个全等的菱形,∠COD=∠FOG=,设,已知点P在各菱形边上运动,且=x+y,x,y∈R,则x+y 的最大值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2﹣a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数,当f(B)取最大值时,判断△ABC的形状.18.吉林市某中学利用周末组织教职员工进行了一次冬季户外健身活动,有N 人参加,现将所有参加人员按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频率分布直方图如图所示.已知[35,40)之间的参加者有8人.(Ⅰ)求N和[30,35)之间的参加者人数N1;(Ⅱ)已知[30,35)和[35,40)两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学教师的概率;(Ⅲ)组织者从[45,55)之间的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为ξ,求ξ的分布列和数学期望Eξ.19.如图,在三棱柱ABC﹣A1B1C1中,四边形AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角C﹣A1B1﹣C1的大小;(Ⅲ)若点D是线段BC的中点,请问在线段AB1上是否存在点E,使得DE∥面AA1C1C?若存在,请说明点E的位置;若不存在,请说明理由.20.已知抛物线C的方程为y2=2px(p>0),点R(1,2)在抛物线C上.(Ⅰ)求抛物线C的方程;(Ⅱ)过点Q(l,1)作直线交抛物线C于不同于R的两点A,B,若直线AR,BR分别交直线l:y=2x+2于M,N两点,求|MN|最小时直线AB的方程.21.设,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.(1)求a的值;(2)若∀x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.(3)求证:.四.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号[选修4-4:坐标系与参数方程]的参数方程为(a>b>0,φ为参22.在平面直角坐标系中,曲线C1上的点M(2,)对应的参数φ=.且以O为极点,X轴的正数),且曲线C1半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线θ=与曲线C2交于点D(,).(1)求曲线C1的普通方程,C2的极坐标方程;(2)若A(ρ1,θ),B(ρ2,θ+)是曲线C1上的两点,求+的值.[选修4-5:不等式选讲]23.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.2019年吉林省长春市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={3a,3},B={a2+2a,4},A∩B={3},则A∪B等于()A.{3,5} B.{3,4} C.{﹣9,3} D.{﹣9,3,4}【考点】交集及其运算;并集及其运算.【分析】利用交集性质求出a=﹣3,从而求出集合A和B,由此能求出A∪B.【解答】解:∵集合A={3a,3},B={a2+2a,4},A∩B={3},∴,解得a=﹣3,∴A={﹣9,3},B={3,4},A∪B={﹣9,3,4}.故选:D.【点评】本题考查交集、并集的求法,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.复数z满足zi=1﹣i(i为虚数单位),则z等于()A.﹣﹣i B.﹣i C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】把已知等式变形,利用复数代数形式的乘除运算化简得答案.【解答】解:∵zi=1﹣i,∴.故选:A.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.3.已知向量,,且||=2,与的夹角为,⊥(3﹣),则||等于()A.6 B.6C.12 D.12【考点】数量积表示两个向量的夹角.【分析】利用两个向量垂直的性质,两个向量的数量积的定义,求得||.【解答】解:∵||=2,与的夹角为,⊥(3﹣),∴•(3﹣)=3﹣=3•12﹣2•||•cos=0,∴||=12,故选:C.【点评】本题主要考查两个向量垂直的性质,两个向量的数量积的定义,属于基础题.4.等差数列{an }的前n项和为Sn,且S5=﹣15,a2+a5=﹣2,则公差d等于()A.5 B.4 C.3 D.2【考点】等差数列的前n项和.【分析】利用等差数列前n项和公式、通项公式列出方程组,由此能求出公差.【解答】解:∵等差数列{an }的前n项和为Sn,且S5=﹣15,a2+a5=﹣2,∴,解得a3=﹣2,d=4.故选:B.【点评】本题考查公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.如图所示的程序框图,运行程序后,输出的结果为()A.5 B.4 C.3 D.2【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的s,a,n的值,当s=时,不满足条件,退出循环,输出n的值即可.【解答】解:s=0,a=2,n=1;s=2,a=,n=2;s=,a=,n=3;s=>3,a=;输出n=3;故选:C.【点评】本题主要考查了算法和程序框图,属于基本知识的考查.6.某公司在2012﹣2016年的收入与支出情况如表所示:根据表中数据可得回归直线方程为=0.8x+,依次估计如果2017年该公司收入为7亿元时的支出为()A.4.5亿元B.4.4亿元C.4.3亿元D.4.2亿元【考点】线性回归方程.【分析】根据表中数据,计算、以及回归系数,写出回归方程,利用回归方程计算x=7时的值即可.【解答】解:根据表中数据,计算=×(2.2+2.6+4.0+5.3+5.9)=4,=×(0.2+1.5+2.0+2.5+3.8)=2,∴=2﹣0.8×4=﹣1.2,∴回归直线方程为=0.8x﹣1.2,计算x=7时=0.8×7﹣1.2=4.4(亿元),即2017年该公司收入为7亿元时的支出为4.4亿元.故选:B.【点评】本题考查了线性回归方程的应用问题,是基础题.7.已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b 【考点】对数值大小的比较.【分析】a=2﹣1.2<1,b=log36=1+log32,c=log510=1+log52,而log32>log52>0,可得b>c.即可得出.【解答】解:a=2﹣1.2<1,b=log36=1+log32,c=log510=1+log52,而log32>log52>0,∴b>c.∴b>c>a.故选:D.【点评】本题考查了对数函数与指数函数的单调性,考查了推理能力与计算能力,属于基础题.8.若x,y满足,且当z=y﹣x的最小值为﹣12,则k的值为()A.B.﹣C.D.﹣【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.【解答】解:由z=y﹣x得y=x+z,要使z=y﹣x的最小值为﹣12,即y=x﹣12,则不等式对应的区域在y=x﹣12的上方,先作出对应的图象,由得,即C(12,0),同时C(12,0)也在直线kx﹣y+3=0上,则12k+3=0,得k=﹣,故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.9.已知一个几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .【考点】由三视图求面积、体积.【分析】根据几何体的三视图知该几何体是等底同高的三棱锥与三棱柱的组合体, 结合图中数据即可求出它的体积. 【解答】解:根据几何体的三视图知,该几何体是等底同高的三棱锥与三棱柱的组合体,画出直观图如图所示;则几何体的体积为 V 几何体=V 三棱柱+V 三棱锥 =××2+×××2=. 故选:C .【点评】本题考查了空间几何体三视图的应用问题,是基础题目.10.设函数f (x )=sin (2x+)(x ∈[0,]),若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则x 1+2x 2+x 3的值为( ) A .π B .C .D .【考点】正弦函数的图象.【分析】由x∈[0,]求出2x+的范围,由正弦函数的图象画出函数的大致图象,由函数的图象,以及正弦图象的对称轴求出x1+x2、x2+x3的值,即可求出x1+2x2+x3的值.【解答】解:由题意x∈[0,],则2x+∈[,],画出函数的大致图象:由图得,当时,方程f(x)=a恰好有三个根,由2x+=得x=,由2x+=得x=,由图知,点(x1,0)与点(x2,0)关于直线对称,点(x2,0)与点(x3,0)关于直线对称,∴x1+x2=,x2+x3=,即x1+2x2+x3=+=,故选C.【点评】本题考查正弦函数的图象,以及正弦函数图象对称性的应用,考查整体思想,数形结合思想.11.如图,在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1,CC1上的点,且BE=B1E,C1F=CC1,则异面直线A1E与AF所成角的余弦值为()A. B. C. D.【考点】异面直线及其所成的角.【分析】以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与AF所成角的余弦值.【解答】解以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系,∵在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,E,F分别是棱BB1,CC1上的点,且BE=B1E,C1F=CC1,∴A1(4,0,6),E(2,2,3),F(0,0,4),A(4,0,0),=(﹣2,2,﹣3),=(﹣4,0,4),设异面直线A1E与AF所成角所成角为θ,则cosθ===.∴异面直线A1E与AF所成角的余弦值为.故选:D.【点评】本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.12.设函数f(x)=﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,则实数a的最小值为()A.B.C. D.【考点】函数恒成立问题.(x≥﹣2),构造函数g 【分析】依题意,可得2a≥[]min(x)==﹣,利用导数法可求得g(x)的极小值g(1)=1+﹣6+2﹣=﹣﹣,也是最小值,从而可得答案.【解答】解:f(x)=﹣x≤0在[﹣2,+∞)上有解⇔2ae x≥﹣x在[﹣2,+∞)上有解⇔2a≥[]min(x≥﹣2).令g(x)==﹣,则g′(x)=3x2+3x﹣6﹣=(x﹣1)(3x+6+),∵x∈[﹣2,+∞),∴当x∈[﹣2,1)时,g′(x)<0,g(x)在区间[﹣2,1)上单调递减;当x∈(1,+∞)时g′(x)>0,g(x)在区间(1,+∞)上单调递增;∴当x=1时,g(x)取得极小值g(1)=1+﹣6+2﹣=﹣﹣,也是最小值,∴2a≥﹣﹣,∴a≥.故选:C.【点评】本题考查函数恒成立问题,考查等价转化思想,突出分离参数法、构造法与导数法的综合运用,属于难题.二、填空题:本大题共4个小题,每小题5分.13.设,则f(1)= 3 .【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵,∴f(1)=f[f(7)]=f(5)=3.故答案为:3.14.已知x,y满足则z=2x+y的最大值为7 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,1),代入目标函数z=2x+y得z=2×3+1=6+1=7.即目标函数z=2x+y的最大值为7.故答案为:715.三棱锥S﹣ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB的长为4.【考点】简单空间图形的三视图.【分析】由已知中的三视图可得SC⊥平面ABC,底面△ABC为等腰三角形,SC=4,△ABC中AC=4,AC边上的高为2,进而根据勾股定理得到答案.【解答】解:由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形,在△ABC中AC=4,AC边上的高为2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故答案为:416.如图,四边形OABC,ODEF,OGHI是三个全等的菱形,∠COD=∠FOG=,设,已知点P在各菱形边上运动,且=x+y,x,y∈R,则x+y 的最大值为 4 .【考点】向量加减混合运算及其几何意义.【分析】以O为坐标原点,GC所在的直线为x轴,建立平面直角坐标系,设菱形的边长为2,从而求出D,H点的坐标,这样便可得到向量、的坐标.再设P(X,Y),根据条件即可得出x+y的解析式,设x+y=z,X,Y的活动域是菱形的边上,根据线性规划的知识求出z的最大值,即求出x+y的最大值.【解答】解:如图所示,以GC所在直线为x轴,过O且垂直于GC的直线为y轴,建立如图所示坐标系,设菱形的边长为2,则:D(1,),H(﹣3,﹣);设P(X,Y),则(X,Y)=x(1,)+y(﹣3,﹣);∴;∴x+y=Y﹣X;设z=Y﹣X;∴Y=X+z, z表示在y轴上的截距;∴当截距最大时,z取到最大值;根据图形可看出,当直线经过点E(0,2)时,截距最大;∴2=0+z;解得z=4;∴x+y的最大值为4.故答案为:4.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2﹣a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数,当f(B)取最大值时,判断△ABC的形状.【考点】余弦定理;三角函数中的恒等变换应用.【分析】(Ⅰ)由已知和余弦定理可得cosA=,可得;(Ⅱ)由题意和三角函数公式可得,由三角函数的最值可得,可判△ABC是直角三角形.【解答】解:(Ⅰ)∵在△ABC中,b2+c2﹣a2=bc,∴由余弦定理可得,∵A∈(0,π),∴;(Ⅱ)∵,∴,∴,∴,∵B∈(0,π),∴当,即时,f(B)取最大值,∴此时易知道△ABC是直角三角形.18.吉林市某中学利用周末组织教职员工进行了一次冬季户外健身活动,有N 人参加,现将所有参加人员按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频率分布直方图如图所示.已知[35,40)之间的参加者有8人.(Ⅰ)求N和[30,35)之间的参加者人数N;1(Ⅱ)已知[30,35)和[35,40)两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学教师的概率;(Ⅲ)组织者从[45,55)之间的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为ξ,求ξ的分布列和数学期望Eξ.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)设频率分布直方图中7个组的频率分别为P1,P2,P3,P4,P5,P6,P 7,P4=0.04×5=0.2,从而,由此能求出[30,35)之间的志愿者人数.(Ⅱ)由(Ⅰ)知[30,35)之间有40×0.3=12人,设从[30,35)之间取2人担任接待工作,其中至少有1名数学教师的事件为事件B;从[35,40)之间取2人担任接待工作其中至少有1名数学教师的事件为事件C,由此推导出女教师的数量为ξ的取值可为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望Eξ.【解答】解:(Ⅰ)设频率分布直方图中7个组的频率分别为P1,P2,P3,P4,P5,P 6,P7,P4=0.04×5=0.2,所以…由题意P1+P2+P3+P4+P5+P6+P7=1,而P3=1﹣(P1+P2+P4+P5+P6+P7)=1﹣5(0.01+0.03+0.04+0.03+0.02+0.01)=0.3∴[30,35)之间的志愿者人数N1=40×P3=40×0.3=12人…(Ⅱ)由(Ⅰ)知[30,35)之间有40×0.3=12人设从[30,35)之间取2人担任接待工作,其中至少有1名数学教师的事件为事件B;从[35,40)之间取2人担任接待工作其中至少有1名数学教师的事件为事件C,因为两组的选择互不影响,为相互独立事件,所以…[45,55)之间共有5×(0.01+0.02)×40=6人,其中4名女教师,2名男教师,从中选取3人,则女教师的数量为ξ的取值可为1,2,3…所以;;…ξ 1 2 3PEξ=2,…19.如图,在三棱柱ABC﹣A1B1C1中,四边形AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角C﹣A1B1﹣C1的大小;(Ⅲ)若点D是线段BC的中点,请问在线段AB1上是否存在点E,使得DE∥面AA1C1C?若存在,请说明点E的位置;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面平行的性质;直线与平面垂直的判定.【分析】(Ⅰ)根据线面线面垂直的判定定理即可证明AA1⊥平面ABC;(Ⅱ)建立坐标系求出二面角的法向量,利用向量法即可求二面角C﹣A1B1﹣C1的大小;(Ⅲ)根据线面平行的性质定理建立方程关系即可得到结论.【解答】证明:(Ⅰ)因为四边形AA1C1C是边长为4的正方形,所以AA1⊥AC,…因为平面ABC⊥平面AA1C1C且平面ABC∩平面AA1C1C=AC,…所以AA1⊥平面ABC…(Ⅱ)解:以A为坐标原点,以AC,AB,AA1所在直线分别为x,y,z轴建立空间直角坐标系如图所示:(图略)则A,B,C,A1,B1,C1点坐标分别为:A(0,0,0);B(0,3,0);C(4,0,0);A1(0,0,4);B1(0,3,4);C1(4,0,4)…则设平面CA1B1的法向量所以,所以…令x′=1,所以,又易知平面A1B1C1的法向量为…所以所以二面角C﹣A1B1﹣C1的大小为45°…(Ⅲ)设E(x1,y1,z1);平面AA1C1C的法向量.因为点E在线段AB1上,所以假设AE=λAB1,所以(0<λ≤1)即E(0,3λ,4λ),所以.…又因为平面AA1C1C的法向量易知.而DE ∥面AA 1C 1C ,所以,所以…所以点E 是线段AB 1的中点.…若采用常规方法并且准确,也给分.20.已知抛物线C 的方程为y 2=2px (p >0),点R (1,2)在抛物线C 上. (Ⅰ)求抛物线C 的方程;(Ⅱ)过点Q (l ,1)作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线l :y=2x+2于M ,N 两点,求|MN|最小时直线AB 的方程.【考点】直线与圆锥曲线的综合问题. 【分析】(Ⅰ)由点R (1,2)在抛物线C :y 2=2px (p >0)上,求出p=2,由此能求出抛物线C 的方程. (Ⅱ)设A (x 1,y 1),B (x 2y 2),设直线AB 的方程为x=m (y ﹣1)+1,m ≠0,设直线AR 的方程为y=k 1(x ﹣1)+2,由已知条件推导出x M =﹣,x N =﹣,由此求出|MN|=2,再用换元法能求出|MN|的最小值及此时直线AB 的方程.【解答】解:(Ⅰ)∵点R (1,2)在抛物线C :y 2=2px (p >0)上,∴4=2p,解得p=2,∴抛物线C的方程为y2=4x.(Ⅱ)设A(x1,y1),B(x2y2),直线AB的方程为x=m(y﹣1)+1,m≠0,由,消去x,并整理,得:y2﹣4my+4(m﹣1)=0,∴y1+y2=4m,y1•y2=4(m﹣1),设直线AR的方程为y=k1(x﹣1)+2,由,解得点M的横坐标,又==,∴xM==﹣,同理点N的横坐标xN=﹣,|y2﹣y1|==4,∴|MN|=|xM ﹣xN|=|﹣|=2||,=8=2,令m﹣1=t,t≠0,则m=t=1,∴|MN|=2≥,即当t=﹣2,m=﹣1时,|MN|取最小值为,此时直线AB的方程为x+y﹣2=0.21.设,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.(1)求a的值;(2)若∀x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.(3)求证:.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为,设,即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,时,成立.不妨令,得出,再分别令k=1,2,…,n.得到n个不等式,最后累加可得.【解答】解:(1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题设,∴∴1+a=1,∴a=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2),∀x∈(1,+∞),f(x)≤m(x﹣1),即设,即∀x∈(1,+∞),g(x)≤0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①若m≤0,g'(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②若m>0方程﹣mx2+x﹣m=0的判别式△=1﹣4m2当△≤0,即时,g'(x)≤0.∴g(x)在(0,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当时,方程﹣mx2+x﹣m=0,其根,,当x∈(1,x2),g'(x)>0,g(x)单调递增,g(x)>g(1)=0,与题设矛盾.综上所述,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)由(2)知,当x>1时,时,成立.不妨令所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣累加可得即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣四.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C1的参数方程为(a>b>0,φ为参数),且曲线C1上的点M(2,)对应的参数φ=.且以O为极点,X轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线θ=与曲线C2交于点D(,).(1)求曲线C1的普通方程,C2的极坐标方程;(2)若A(ρ1,θ),B(ρ2,θ+)是曲线C1上的两点,求+的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)由曲线C1上的点M(2,)对应的参数φ=可得:,解得即可得到曲线C1的普通方程.设圆C2的半径为R,由于射线θ=与曲线C2交于点D(,),可得,解得即可得到圆C2的极坐标方程.(2)曲线C1的极坐标方程为:,化为,把A(ρ1,θ),B(ρ2,θ+)代入曲线C1即可得出.【解答】解:(1)由曲线C1上的点M(2,)对应的参数φ=可得:,解得,∴曲线C1的普通方程为.设圆C2的半径为R,由于射线θ=与曲线C2交于点D(,).可得,解得R=1.∴圆C2的极坐标方程为ρ=2cosθ.(2)曲线C1的极坐标方程为:,化为,∵A(ρ1,θ),B(ρ2,θ+)是曲线C1上的两点,∴+==+==.[选修4-5:不等式选讲]23.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用零点分段法去掉绝对值符号,转化为不等式组,解出x的范围;(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得要求证得式子.【解答】(1)解:①x≥2时,f(x)=2x﹣4+x+1=3x﹣3,由f(x)<6,∴3x ﹣3<6,∴x<3,即2≤x<3,②﹣1<x<2时,f(x)=4﹣2x+x+1=5﹣x,由f(x)<6,∴5﹣x<6,∴x>﹣1,即﹣1<x<2,③x≤﹣1时,f(x)=4﹣2x﹣1﹣x=3﹣3x,由f(x)<6,∴3﹣3x<6,∴x>﹣1,可知无解,综上,不等式f(x)<6的解集为(﹣1,3);(2)证明:∵f(x)=2|x﹣2|+|x+1|,∴f(2)=3,∴m+n+p=f(2)=3,且m,n,p为正实数∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,∴m2+n2+p2≥mn+mp+np,∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)又m,n,p为正实数,∴可以解得mn+np+pm≤3.故证毕.。
长春市普通高中2019届高三质量监测二理科试题及详细解析
长春市普通高中2019届高三质量监测(二)数学试题卷及答案详析(理科)考生须知:1.本试卷分试题卷与答题卡,满分150分,考试时间为120分钟。
2.答题前,在答题卡指定位置上填写学校、班级、姓名和准考证号.3.所有答案必须写在答题卡上,写在试卷上无效.4.考试结束,只需上交答题卡.一、选择题:本题12上小题,每小题5分,在每小题给出的四个选择中,只有一项是符合题目要求的1、已知复数z=,则在复平面内,z对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2、集合A=, B={-1,0,1,2,3},则A B=A. {-1,0,1,2}B. {-1,0,1,}C. {0,1,2}D.{1,2,3}3、命题A=的否定是A. B.C. D.4、下列是函数中,在(0,)内单调递减的是A. B. C. D.5、一个几何体的三视图如图所示,则这个几何体的体积为A.32 B、 C. D.86、等差数列{}中,是它的前n项和,,则该数列的公差为A.2B.3C.4D.6长春市普通高中2019届高三质量监测(二) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. B2. A3. D4. A5.B6. C7. C8. D9. D 10. C 11. B 12. C 简答与提示:1. 【命题意图】本题考查复数的运算. 【试题解析】B 1z i =-+.故选B.2. 【命题意图】本题考查集合运算.【试题解析】A {|2},{1,0,1A x x A B=≤=-.故选A. 3. 【命题意图】本题考查含有一个量词的否定.【试题解析】D 易知. 故选D.4. 【命题意图】本题主要考查函数的性质. 【试题解析】A 易知. 故选A.5. 【命题意图】本题考查三视图的相关知识.【试题解析】B 易知. 故选B.6. 【命题意图】本题主要考查等差数列的相关知识.【试题解析】C 1625252318,2()8,4a a a a d a a a a d +=+==+-+==.故选C 7. 【命题意图】本题考查统计识图能力.【试题解析】C 易知①②③正确.故选C.8. 【命题意图】本题主要考查倾斜角及三角恒等变换的相关知识.【试题解析】D由题意可知21tan(45)2,tan ,cos 22cos 13αααα+︒===- 2241tan 15α-=+.故选D. 9. 【命题意图】本题主要考查平面向量的相关知识.【试题解析】D 由数量积的几何意义可知EF AE ⊥,由E 是BC 中点,所以52AF =.故选D.10. 【命题意图】本题主要考查数形结合思想的运用.【试题解析】C 画出切线l 扫过的区域,如图所 示,则不可能在直线上的点为(1,2)-.故选C. 11. 【命题意图】本题考查双曲线的相关知识.【试题解析】B 由题意可知2||,||,||,2b F A b AB OA a ===所以222b a =,从而e =故选B.12. 【命题意图】本题是考查三角函数的相关知识.【试题解析】C 由0x π≤≤,有666x πππωωπ-≤-≤-,所以066ππωππ≤-≤+,从而1463ω≤≤. 故选C. 二、填空题(本大题共4小题,每小题5分,共20分)13. 414.64315.16. ; 三、解答题17. (本小题满分12分)【命题意图】本题考查数列的基本方法.【试题解析】解:(1)由题意可知2(12)(1)(36)d d d -+=-+-+, 可得2,23n d a n ==-.(6分)(2)由(1),212342122n n n T a a a a a a n -=-+-++-+=.(12分)18. (本小题满分12分)【命题意图】本题考查统计知识及概率相关知识. 【试题解析】解:(1)由饼状图知工资超过5000的有68人,故概率为0.68.(4分)(2)①A 企业[2000,5000)中三个不同层次人数比为1:2:4,即按照分层抽样7人所抽取的收入在[3000,4000)的人数为2. X 的取值为0,1,2,因此252710(0)21C P X C ===,11522710(1)21C C P X C ===, 22271(2)21C P X C ===,X的分布列为:(9分)② A 企业的员工平均收入为: 1(25005350010450020550042650018750038500195001)100⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯5260=B 企业的员工平均收入为: 1(250023500745002355005065001675002)5270100⨯+⨯+⨯+⨯+⨯+⨯=. 参考答案1:选企业B ,由于B 企业员工的平均收入高.参考答案2:选企业A ,A 企业员工的平均收入只比B 企业低10元,但是A 企业有高收入的团体,说明发展空间较大,获得8000元以上的高收入是有可能的. 参考答案3:选企业B ,由于B 企业员工平均收入不仅高,且低收入人数少. (如有其它情况,只要理由充分,也可给分) (12分) 19. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)在直角梯形中,cos cos BD BDC DBA =∠=∠, 在BCD ∆中,由余弦定理,BC =,又2PB PD ==,有,PCD PCB ∆∆是等腰三角形,所以,PC MD PC MB ⊥⊥,PC ⊥平面MDB ,所以平面PBC ⊥ 平面BDM .(6分)(2)以A 为原点,,,AB AD AP 为,,x y z轴,建立空间直角坐标系,P,(0,0,0),(1,0,0),A B C D,有(1,0,PB =(2,2,2),(0,2,PC PD =-=,令平面PBD 的法向量为n ,由00PD n PB n ⎧⋅=⎪⎨⋅=⎪⎩,可得一个(2,1,1)n =,由(1)可知平面BDM 的一个法向量为PC =,所以经计算M BD P --的余弦值为12. (12分)20. (本小题满分12分)【命题意图】本小题考查直线与椭圆的位置关系,考查椭圆的相关知识.【试题解析】解:(1)由题意知,213,,2,22c b a b a a ====所以22143x y +=. (4分) (2)设(0,),:M t l y kx t =+,设1122(,),(,)A x y B x y ,由条件可得,||||cos 3,3OA OB AOB OA OB ∠=-⋅=-,联立直线l 和椭圆C ,有22143y kx tx y=+⎧⎪⎨+=⎪⎩,有222(34)84120k x ktx t +++-=, 由1212()()3x x kx t kx t +++=-,由韦达定理可得7t =. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e b '=+,当0b ≥时,()0f x '>,()f x 在(,)-∞+∞上单调递增;当0b <时,()ln(),0x b f x '≥->,()f x 在(ln(),)b -+∞上单调递增;()ln(),0x b f x '<-<,()f x 在(,ln())b -∞-上单调递减.(4分)(2)令()()11ln ,x x g x e bx x g x e b x '=+--=+-,易知()g x '单调递增且一定有大于0的零点,不妨设为00,()0x g x '=,即0000110,x x e b b e x x +-==-,故若有()g x 有两个零点,需满足()00g x <, 即00000000000011ln ()1ln ln 0x x x x x e bx x e e x x e e x x x +--=+---=--< 令1()ln ,()0x x x h x e e x x h x e x x'=--=--<,所以()h x 在(0,)+∞上单调递减,由(1)0h =,所以0000ln 0x x e e x x --<的解集为(1,)+∞,由001x b e x =-,所以1b e <-当1b e <-时,1ln ln x e bx x x bx x +-->+-,有()ln (1)b b b b b g e e be e b e b >+-=+-, 令()(1)(1)(1)1x x g x x e x x e =+-=+-+,由于1x e <-,所以120,1x x e e +<-<<,故()(1)0x g x x e x =+->,所以()0b g e >,故0()()0bge gx <,()g x 在0(0,)x 上有唯一零点,另一方面,在0(,)x +∞上,当x →+∞时,由x e 增长速度大,所以有()0g x >, 综上,1b e <-. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】(1)直线l的普通方程为)y x a =-,曲线C 的极坐标方程可化为2222cos 3ρρθ+=,化简可得2213y x +=. (5分) (2)当1a =时,直线l0y -=.有点P 的直角坐标方程2213y x +=,可设点P的坐标为(cos )P θθ因此点P 到直线l 的距离可表示为cos sin 1|)1|4d πθθθ==--=+-当cos()14πθ+=-时,d取最大值为2.(10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式等内容. 本小题重点考查化归与转化思想. 【试题解析】(1)2(2)()()|2||2|4(22)2(2)x x f x f x x x x x x - <-⎧⎪+-=++-+= -⎨⎪ >⎩≤≤由()6f x ≥,则(,3][3,)x ∈-∞-+∞. (5分)(2)5(3)(4)(1)|2||3|21(32)5(2)x f x f x x x x x x <-⎧⎪--+=--+=-- -⎨⎪- >⎩≤≤由(4)(1)f x f x kx m --+>+的解集为(,)-∞+∞可知:0k =,即5k m +<-. (10分)。