16.1二次根式(3课时)

合集下载

16.1.1 二次根式的概念-初中数学人教版八年级下册教与练课件

16.1.1 二次根式的概念-初中数学人教版八年级下册教与练课件
x 3≥0,
解:由题意得
3 x≥0,
∴x=3,y=8,
∴3x+2y=25.
∵25的算术平方根为5,
∴3x+2y的算术平方根为5.
【点睛】若 y a a b ,则根据被开方数大于等于0,可得a=0.
已知a,b为等腰三角形的两条边长,且a,b满足 b 3 a 2a 6 4,求
∴x>1.
(2)∵被开方数需大于或等于零,
∴3+x≥0,
∴x≥-3.
【点睛】要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不
∵分母不能等于零,∴x-1≠0,∴x≠1.
等式求解即可.若二次根式为分母或二次根式为分式的分母时,应同时考虑
分母不为零.
∴x≥-3 且x≠1.
1.单个二次根式如 A 有意义的条件: A≥0
此三角形的周长.
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
1.下列式子:①
1
;②
3
3
1 − 2;③ 2 + 1;④ 27;⑤
−4 2 ,是二次根
式的有( A )
A.①③⑤
,其中实数x、y满足 =
2
6 − 2 + 1.
1
2
−2
解:(
− 2 )÷
+
+
2
1
2
2
=


+ +
−2
−2
2

16.1二次根式(1) (3)

16.1二次根式(1) (3)

x 2
2
数.
1、 当 x 1 y 3 0时 ,
-1 ) , x ( y ( 3 )
2、 已 知x 5 6 3 y z 2 0
2
求xyz的 值 。
(-5)×2×(-2)=20
3.要使下列式子有意义,x需要满足什么 条件?
学习目标:
• (1)二次根式的概念 • (2)根号内字母的取值范围
一、回顾与思考
0 2 ;0的平方根是______. 1.4的平方根是_____ 5 2.5的平方根是_______ 5 ;5的算术平方根是____. 3. 什么叫平方根? 什么叫算术平方根?
复习
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根。
复习 1、如果 x 4,那么 x ±2 ;
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a ( a 0) ,
2
那么 x a 。
思考
用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为3的正方形的边长为( 形的边长为( )
),面积为S的正方
(2)一个长方形的围栏,长是宽的2倍,面积为130平方米,则 它的宽为( )米。
(1) 3 x
1 (3) 2x 5
( 2) x 3 8 x ( 4) x 2 2 x
( 5) x 2 2 x 1
1 1、已知 有意义,那A(a, a
a )在 二 象限.
∵由题意知a<0 ∴点A(-,+)
2 3 2、2+ 3 - x的最小值为__,此时 x的值为__。
a的平方根是 a

(完整word)16.1《二次根式》(第1-3课时)教案 新人教版

(完整word)16.1《二次根式》(第1-3课时)教案 新人教版

16。

1 二次根式教案第一课时二次根式的概念教学目标知识与技能 1 理解二次根式的概念2,并利用a(a≥0)的意义求被开方数中字母的取值范围.过程与方法从具体实例中建立二次根式模型,探索二次根式被开方数中字母的取植范围情感态度与价值观经历观察比较总结和应用等数学活动,体验发现的快乐教学重难点关键1.重点:形如a(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用a(a≥0)的意义求被开方数中字母的取值范围教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB 边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以333.问题2:由勾股定理得10问题3:由方差的概念得S=46二、探索新知很明显3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.—1有算术平方根吗?2.0的算术平方根是多少?3.当a〈0,a有意义吗?老师点评:(略)a有意义的条件例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1 x 、x(x〉0)、0、42、—2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“";第二,被开方数是正数或0.解:二次根式有:2、x(x〉0)、0、—2、x y+(x≥0,y≥0);不是二次根式的有:33、1x、42、1x y+.例2.当x是多少时,2-x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x—2≥0,2-x•才能有意义.解:由x-2≥0,得:x≥2当x≥2时,2-x在实数范围内有意义.三、巩固练习教材练习1、2、3.四、应用拓展例3.当x是多少时,23x++11x+在实数范围内有意义?分析:要使23x++11x+在实数范围内有意义,必须同时满足23x+中的≥0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥—32由②得:x≠—1当x≥—32且x≠—1时,23x++11x+在实数范围内有意义.例4(1)已知y=2x-+2x-+5,求xy的值.(答案:2)(2)若1a++1b-=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)1.形如a(a≥0)的式子叫做二次根式,“"称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业七板书设计第一课时作业设计一、选择题 1.下列式子中,是二次根式的是( )A.-7 B.37 C.x D.x2.下列式子中,不是二次根式的是()A.4 B.16 C.8 D.1x3.已知一个正方形的面积是5,那么它的边长是()A.5 B.5 C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0。

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

一、二次根式的定义形如(≥0)的式子叫做二次根式,叫做二次根号,叫做被开方数.二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:≥0.三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:2=(≥0),即一个非负数的算术平方根的平方等于它本身;性质2:2==(≥0)−(<0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.七、二次根式的乘除法则①二次根式的乘法法则:∙=∙o≥0,≥0);②积的算术平方根:∙=∙o≥0,≥0);≥0,>0);=≥0,>0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.====3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab=-3,求2+2.我们可以把a+b和ab看成是一个整体,令x=a+b,y=ab,则2+2=(+p2−2B=2−2=4+6=10.这样,我们不用求出a,b,就可以得到最后的结果.(1(2)m是正整数,a b22+1823B+22=2019.求m.(3)已知15+2−26−2=1,求15+2+26−2的值.(1)由题目所给出的规律进行计算即可;(2)先求出+=2(2+1),B=1再由22+1823B+22=2019进行变形再求值即可;(3)先得到15+2⋅26−2=20,然后可得(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,最后由15+2≥0,26−2≥0,求出结果.解:(1)原式=2+++⋯+2=3−1+5−3+7−5+⋯+2019−20172=(2)∵a b∴+==2(2+1),B=1,∵22+1823B+22=2019,∴2(2+2)+1823=2019,∴2+2=98,∴4(2+1)2=100,∴2=±5−1,∵m是正整数,∴m=2.(3)由15+2−26−2=1得出(15+2−26−2)2=1,∴15+2⋅26−2=20,∵(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,又∵15+2≥0,26−2≥0,∴15+2+26−2=9.1.(2023下·浙江·八年级阶段练习)已知=2−3,=2+3,则代数式2+2B+2+−−4的值为()A B.34C.3−1D【思路点拨】根据已知,得到+=2−3+2+3=22,−=2−3−2−3=−23,整体思想带入求值即可.【解题过程】解:∵=2−3,=2+3,∴+=2−3+2+3=22,−=2−3−2−3=−23,∴2+2B+2+−−4=+2+−−4=222−23−4=8−23−4=4−23=32−23+1=3−12=3−1.故选C.2.(2022下·广西钦州·八年级统考阶段练习)已知+1=7(0<<1),则−)【思路点拨】,故<,将−由0<<1,得0<<1【解题过程】解:∵0<<1,∴0<<1,∴<2=−2+1,+1=7(0<<1),∵(−∴(−∴=-5或−=5,∵<0,∴∴故选B.3.(2023·浙江宁波·校考一模)若2+2=1,则2−4+4+B−3+−3的值为()A.0B.1C.2D.3【思路点拨】先根据2+2=1得出−1≤≤1,−1≤≤1,根据2−4+4+B−3+−3要有意义,得出+ 1−3≥0,根据−3<0得出+1≤0,从而得出J−1,将J−1代入即可求出式子的值.【解题过程】解:∵2+2=1,∴−1≤≤1,−1≤≤1,∵2−4+4+B−3+−3要有意义,∴B−3+−3≥0,整理得:+1−3≥0,∵−3<0,∴+1≤0,∴J−1,∴2−4+4+B−3+−3=−22++1−3=−1−22+−1+1−3=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知xx6﹣22019x5﹣x4+x3﹣22020x2+2x﹣2020的值为()A.0B.1C.2019D.2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵=2020−=2020+2019,∴6−220195−4+3−220202+2−2020,=5−22019−4+2−22020+2−2020,=52020+2019−22019−4+22020+2019−22020+2−2020,=52020−2019−4+22019−2020+2−2020,=42020−2019−1+22019−2020+2−2020,=2020+20192019−2020+2−2020=−+2−2020,=−2020,=2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为3+5−3−5的小数部分,b为6+33−6−33的小数部分,则2b−1的值为()A.6+2−1B.6−2+1C.6−2−1 D.6+2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:3+5−3−5-=5+15-1=2∴a的小数部分为2-1,6+336−33−=3+33-3=6∴b的小数部分为6-2,∴2b−1=6+2-2-1=6-2+1,故选:B.6.(2022上·湖南益阳·八年级统考期末)设1=1+112+122,2=1+122+132,3=1+132+142,……,=1+ 12+1(r1)2.其中n为正整数,则1+2+3+⋅⋅⋅+2021的值是()A.202020192020B.202020202021C.202120202021D.202120212022【思路点拨】根据题意,先求出=1+1or1),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n为正整数,∴=2+r1or1)=1+1or1);∴1+2+3+⋯+2021=(1+11×2)+(1+12×3)+(1+13×4)+…+(1+12021×2022)=2021+1﹣12+12−13+13−14+⋯+12021−12022=2021+1﹣12022=202120212022.故选:D.7.(2023上·上海金山·八年级校考期中)如果=5−2,则1=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得1,从而可得1−>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵=5−2,∴1=5−2=5−2=5+2,∴1−55−2∴1=1+=1+−=5+2+4=5+6.故答案为:5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知==42−3B+42=.【思路点拨】先把和的值分母有理化得到==−=−12,B=1,再利用完全平方公式变形原式得到4(−p2+5B,然后利用整体代入的方法计算.【解题过程】解:∵==∴====∴−=−12,B=1,∴原式=4(−p2+5B=4×(−12)2+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知=2的值等于.【思路点拨】通过完全平方公式求出+1=2,把待求式的被开方数都用+1的代数式表示,然后再进行计算.【解题过程】=2,解:∵+∴=4,∴+1+2=4∴+12===10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,+−7−7+ 7B=7,求+=.【思路点拨】将等式进行因式分解,得到++7B−7=0,求得B=7,即可求解.【解题过程】解:∵+−7−7+7B=7,∴+−7−7+7B−7=0,∴B+−7++7B−7=0,∴+B−7+7B−7=0,∴++7B−7=0,∵++7>0,∴B−7=0,∴B=7,又x,y为正整数,则s=1,7或7,1,从而+=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设=3−2,则6+35+113+2+1=.【思路点拨】利用+22=2+4+4和=3−2,推得2+4+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵=3−2,∴+22=3−2+22=3,又∵+22=2+4+4,即2+4+4=3,整理得2+4+1=0,6+35+113+2+1=42+4+1+35+113+2+1−45−4=−5−4+113+2+1=−32+4+1−4+113+2+1+44+3=34+123+2+1=322+4+1+2+1−32=−32+2+1=−32+4+1+2+1+12+3=14+4,将=3−2代入原式可得14×3−2+4=143−24.故答案为:143−24.12.(2022下·湖北武汉·九年级统考自主招生)已知=则代数式23−32−7+2022的值为.【思路点拨】将已知条件=2−3=−1,再将所求代数式变形为23−62+32−7+2022,由此即可求解.【解题过程】解:已知=∴2=3+5,即2−3=5,等式两边同时平方得,2−32=52,整理得,42−12+9=5,即42−12=−4,∴2−3=−1,∵23−32−7+2022=2o2−3p+32−7+20022把2−3=−1代入得,=2×−1+32−7+2022=32−2−7+2022=32−9+2022=3(2−3p+2022把2−3=−1代入得,=3×−1+2022=2019,故答案为:2019.13.(2022上·上海闵行·=3,=13.【思路点拨】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=K=+++=2+2当=3,=13时,原式=23+=23+=14.(2023·北京·九年级专题练习)已知==,求2+2的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵==5−26,===5+26,∴原式=(5+2(5−26)=2620626206=26)(49206)6)(49206)6)(492026)(49206)=245−1006−986+240+245+1006+986+240=970.15.(2023下·山东威海·九年级校考期中)已知+=−8,B=12,求+【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.【解题过程】解:∵+=−8,B=12,∴a和b均为负数,2+2−2B=40=B+B=2B2B=2+2B=−−==2=−4012=−401212=−40×2312=−203316.(2023上·上海杨浦·七年级校考阶段练习)已知−2B−15=0【思路点拨】讨论:当>0,>0,利用因式分解的方法得到−5+3=0,解得=25,当I0,<0,则−−+5−−−3−=0,解得=9,然后把=25,=9化简求解.【解题过程】解:∵−2B−15=0要有意义,即B≥0,∴>0且>0或I0且<0,当>0且>0时,∵−2B−15=−5+3=0,∴−5=0或+3=0(舍去),解得:=25,把=25=25r5r225K10r=2;当I0且<0时,∵−2B−15=−−+5−−−3−=0,∴−r5−=0(舍去)或−−3−=0,解得:=9,把=9==9K3r29r6r=12.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知==(2【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵=10−3=10+3,=10−3,=∴+=210,−=6,∴2+2B+2=(+p2=(210)2=40.(2)∵=10+3,=10−3,∴1∴o−2)=−2o−2)−+1o+1)=1−1=1010=10−3−10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知=2−3,=2+3.(1)求+和B的值;(2)求2+2−3B的值;(3)若的小数部分是,的整数部分是,求B−B的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入=2−3,=2+3即可求出+和B的值;(2)将原式变形为+2−5B,代入数值进行计算即可;(3)先估算出1<3<2,从而得出=2−3,=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵=2−3,=2+3,∴+=2−3+2+3=4,B=2−32+3=4−3=1;(2)解:由(1)得:+=4,B=1,∴2+2−3B=+2−5B=42−5×1=11(3)解:∵1<3<4,∴1<3<4,即1<3<2,∴−2<−3<−1,∴0<2−3<1,∵的小数部分是,∴=2−3,∵3<2+3<4,的整数部分是,∴=3,∴B−B=2−32−3−32+3=4−43+3−6−33=1−73.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将±2化简,如果你能找到两个数m、n,使2+2=且B =,±2将变成2+2±2B ,即变成(±p 2,从而使±2得以化简.(1)例如,∵5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2,∴5+26=(3+2)2=______,请完成填空.(2)仿照上面的例子,请化简4−23;(3)利用上面的方法,设=6+42,=3−5,求A +B 的值.【思路点拨】(1)根据二次根式的性质:2==o >0)0(=0)−o <0),即可得出相应结果.(2)根据(1)中“5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值.【解题过程】(1)∵5+26=2+3+26=22+32+2×2×3=2+32∴5+26=(3+2)2=3+2故答案为:3+2(2)∵4−23=3+1−23=32+1−23=3−12∴4−23=(3−1)2=3−1.(3)∵=6+42=4+2+42=42+22+2×4×2=(2+2)2∴=6+42=2+2∵=3−5=∴=3−5====∴把A 式和B 式的值代入A +B 中,得:+=2+2=2+2220.(2023下·广西钦州·八年级校考阶段练习)我们将+、−称为一对“对偶式”,因为+−=(p2−(p2=−,所以构造“和−====3+22.像这中的“”样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:“>”、“<”或“=”填空);(1(2)已知==,求K2rB2的值;+…+(3【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得−s B的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(17−2=7−2===∵7>6,2>3−137−6+2−3>0,>故答案为:>.(2)∵==5+45+4=9+45,==5+2=5−45+4=9−45,∴+=9+45+9−45=18,−=9+45+−9+45=85,B=9+45945−80=1,∴K 2rB2+⋯+(3=3)2(53−35)35)(5−3979799⋯+2(99979799)(99979799)(9997−97=1−33+33−55+55−77+⋯+9797−9999=1−9999=1−。

人教版数学八年级下 16.1 二次根式

人教版数学八年级下 16.1 二次根式
16.1 二次根式
课时1
初中数学
八年级下册 RJ
知识回顾
(1)什么叫一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则这个数就叫做a的平
方根或二次方根. a叫做被开方数,a的平方根是 ± .
(2)什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就叫做a的算术平
方根,记作 , 0的算术平方根是0.
−2
∴ =3
1
1
= 2= .
3
9
1
9 .
16.1 二次根式
课时2
初中数学
八年级下册 RJ
知识回顾
(1)什么叫二次根式?如何表示?
一般地,我们把形如 (a≥0)的式子叫做二次根式.
其中“ 1”称为二次根号.
(2)二次根式有意义的条件是什么?
被开方数(式子)为非负数, (≥0).
+3
当 x 为何值时,
(4)带分数与字母相乘时,要将带分数化成假分
数.
2
11
如3 ×a通常写作 a.
3
3
(5)除法运算通常用分数线.如3÷
3
通常写作 .

(6)在实际问题中,若有单位且代数式是几个式
子的和或差时,要将代数式用括号括起来. 如温度
由2℃上升t℃后是(2+t)℃.
列代数式的常用方法:
(1)直接法:根据问题的语言叙述直接写出代数式.
例2 化简:
(1) 16 .
(2)
−5 2.
解:(1)原式= 42 = 4.
(2)原式=5.
利用二次根式的性质3:
2
= =
-a(a<0)

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

16.1.3二次根式的概念及性质(培优)

16.1.3二次根式的概念及性质(培优)

16.1二次根式的概念及性质(培优)一 知识要点1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ; 3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=积的算术平方根等于积中各因式的算术平方根的积;4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba b a >≥=, 商的算术平方根等于被除式的算术平方根除以除式的算术平方根.二 知识的拓广延伸1、 挖掘二次根式中的隐含条件一般地,我们把形如 a a ()≥0的式子叫做二次根式,其中0a ≥≥。

根据二次根式的定义,我们知道:被开方数a 的取值范围是 0a ≥ ,由此我们判断下列式子有意义的条件:1(1;2(4)++-+ 2、(0)a a =≥,在此我们可将其拓展为:a a a a a a 200==≥-<⎧⎨⎩||()() (1)、根据二次根式的这个性质进行化简:①数轴上表示数a的点在原点的左边,化简2a =②化简求值:1a a=15③已知,132m -<<,化简2m______=;⑤若为a,b,c ________=;___________=. (2)、根据二次根式的定义和性质求字母的值或取值范围。

①若1m =,求m 的取值范围。

4x =-,则x 的取值范围是___________.③若a =的值;④3,2xy 已知求的值。

三.二次根式a 的双重非负性质:①被开方数a 是非负数,即0≥a ②二次根式a 是非负数,即0≥a例1. 要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤3 例2(1)化简x x -+-11 =_______.(2)x +y )2,则x -y 的值为( )(A)-1. (B)1. (C)2. (D)3.例3(1)若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不是(2)已知y x ,是实数,且2)1(-+y x 与42+-y x 互为相反数,求实数x y 的倒数。

人教版数学八年级下册16.1.3二次根式(教案)

人教版数学八年级下册16.1.3二次根式(教案)
-在解决实际问题时,指导学生如何从问题描述中抽象出二次根式,例如在计算圆形面积时,如何从直径得出半径,并使用二次根式表示半径的长度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”(如计算矩形桌面面积时,边长为非整数)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版数学八年级下册16.1.3二次根式(教案)
一、教学内容
人教版数学八年级下册16.1.3节,本节课主要围绕二次根式展开,包括以下内容:
1.二次根式的定义与性质;
2.二次根式的乘法与除法;
3.二次根式的加法与减法;
4.二次根式的化简与运算;
5.二次根式在实际问题中的应用。
二、核心素养目标
1.理解二次根式的概念,培养学生的数学抽象素养,使学生能够把握数学对象的本质属性;
此外,我在教学中可能过于关注运算的技巧,而忽视了学生对二次根式概念深层次的理解。在未来的课程中,我应该花更多的时间去引导学生思考二次根式的本质,以及它们与平方根、立方根等其他数学概念的联系。
最后,我注意到有些学生在课堂上保持沉默,可能是因为他们害怕犯错。我需要创造一个更加包容和鼓励犯错的学习环境,让学生们明白错误是学习过程的一部分,而不是避免的事情。我会鼓励学生们提出问题,并赞扬那些勇于尝试和犯错的学生的勇气。

二次根式(第3课时)精品课件

二次根式(第3课时)精品课件

当堂检测
1.下列计算中正确的是( B)
A. 3( 3 1 ) 3 3
B.( 12- 27) 3 1
C. 32 1 2 2 2
D. 3( 2 3) 6 2 3
2.计算:( 2+ 3)2 24 5 .
3.设 a 1 ,b 10 3 , 则a = b(填“>”“ < ”或“= ”).
2
4
2.上述化简后的二次根式有什么特点?你会怎么对它们进行分类?
几个二次根式化简后被开方数相同
8 ,18 ,0.5 ,1 8
为一组;
80 ,20 为一组.
探索新知
总结归纳
同类二次根式
几个二次根式化成最简二次根式以后,如果被开方 数相同,这几个二次根式就叫做同类二次根式.
判断同类二次根式的关键: (1)化成最简二次根式, (2)被开方数相同,根指数相同(都等于2)
二 二次根式的混合运算
如果梯形的上、下底长分别为 2 2 cm, 4 3 cm,高
为 6 cm,那么它的面积是多少?
梯形面积 = 12(2 2 +4 3)× 6 =( 2 +2 3)× 6 = 2× 6 +2 3× 6 = 2×6 +2 3×6 = 2×2×3 +2 3×3×2 = 2 3 +2×3 2 = 2 3 +6 2(cm2).
10 3
当堂检测
4.三角形的三边长分别为 20 ,40 ,45 ,则这个三角形的 周长为__5_5_+_2__1_0__.
5.计算:(1)5 2 18 =_8__2__
(2) 4 18 -9 2 =_3__2__ (3)10 2 (3 8 - 7 2)=__9_2__ (4)5 12 (- 3 8 2 27)=__4_3_-_6__2__

人教版八下数学16.1 课时1二次根式的概念教案+学案

人教版八下数学16.1 课时1二次根式的概念教案+学案

人教版八年级下册数学第16章二次根式16.1 二次根式课时1 二次根式的概念教案【教学目标】1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题【教学重点】能理解二次根式的概念及有意义的条件.【教学难点】会利用二次根式的有意义的条件及其非负性解题.。

【教学过程设计】一、情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为________,面积为S的正方形的边长为________.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为________m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=______.问题2:上面得到的式子3,S,65,h5分别表示什么意义?它们有什么共同特征?二、合作探究探究点一:二次根式的定义例 1 下列各式中,哪些是二次根式,哪些不是二次根式?(1)11;(2)-5;(3)(-7)2;(4)313;(5)15-16;(6)3-x(x≤3);(7)-x(x≥0);(8)(a-1)2;(9)-x2-5;(10)(a -b )2(ab ≥0).解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.解:因为11,(-7)2,15-16=130,3-x (x ≤3),(a -1)2,(a -b )2(ab ≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,-5,-x (x ≥0),-x 2-5的被开方数小于0,所以不是二次根式.方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“ ”;(2)被开方数是非负数.探究点二:二次根式有意义的条件【类型一】 根据二次根式有意义求字母的取值范围 例 2 求使下列式子有意义的x 的取值范围. (1)14-3x;(2)3-x x -2;(3)x +5x .解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.解:(1)由题意得4-3x >0,解得x <43.当x <43时,14-3x有意义; (2)由题意得⎩⎨⎧3-x ≥0,x -2≠0,解得x ≤3且x ≠2.当x ≤3且x ≠2时,3-xx -2有意义;(3)由题意得⎩⎨⎧x +5≥0,x ≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x 有意义.方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.【类型二】 利用二次根式的非负性求解例 3 (1)已知a 、b 满足2a +8+|b -3|=0,解关于x 的方程(a +2)x +b 2=a -1;(2)已知x 、y 都是实数,且y =x -3+3-x +4,求y x 的平方根. 解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x 的平方根.解:(1)根据题意得⎩⎨⎧2a +8=0,b -3=0,解得⎩⎨⎧a =-4,b = 3.则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4;(2)根据题意得⎩⎨⎧x -3≥0,3-x ≥0,解得x =3.则y =4,故y x =43=64,±64=±8,∴y x的平方根为±8.方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.探究点三:和二次根式有关的规律探究性问题 例 4 先观察下列等式,再回答下列问题. ①1+112+122=1+11-11+1=112;②1+122+132=1+12-12+1=116;③1+132+142=1+13-13+1=1112.(1)请你根据上面三个等式提供的信息,写出1+142+152的结果;(2)请你按照上面各等式反映的规律,试写出用 含n 的式子表示的等式(n 为正整数).解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.解:(1)1+142+152=1+14-14+1=1120;(2)1+1n2+1(n+1)2=1+1n-1n+1=11n(n+1)(n为正整数).方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.【板书设计】16.1 二次根式课时1 二次根式的概念1.二次根式的定义一般地,我们把形如a(a≥0)的式子叫做二次根式.2.二次根式有意义的条件被开方数(式)为非负数;a有意义⇔a≥0.【教学反思】通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.人教版八年级下册数学第16章二次根式16.1 二次根式课时1 二次根式的概念学案【学习目标】1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题【学习重点】能理解二次根式的概念及有意义的条件.【学习难点】会利用二次根式的有意义的条件及其非负性解题.。

(完整版)八年级数学下册电子版教案

(完整版)八年级数学下册电子版教案

老师结合学生的回答 , 强调二次根式的非负性.
当 a> 0 时, a表示 a 的算术平方根 ,因此 a> 0;
当 a= 0 时, a表示 0 的算术平方根 , 因此 a= 0.
也就是说 ,当 a≥ 0 时 , a≥ 0.
三、例题讲解
【例】 当 x 是怎样的实数时 , x- 2在实数范围内有意义? 解:由 x-2≥ 0, 得 x≥ 2.
8= 2a
2 a
a;
(4)
xx23y=
xy y.
教师点评:上面这些式子的结果具有如下两个特点:
1. 被开方数不含分母.
2. 被开方数中不含能开得尽方的因数或因式.
师:我们把满足上述两个条件的二次根式 , 叫做最简二次根式. (教师板书 )
教师强调:在二次根式的运算中 , 一般要把最后结果化为最简二次根式.
重点 最简二次根式的运用. 难点 会判断这个二次根式是否是最简二次根式.
一、复习导入
( 学习活动 )请同学们完成下列各题. ( 请四位同学上台板书 )
计算: (1)
2; (2)2 6;(3)
3
18
8 ; (4) 2a
x3
x2
. y
教师点评:
(1)
2= 3
36;
2 (2)
6= 18
2
3 3; (3)
二、新课教授
所以当 x≥2 时 , x- 2在实数范围内有意义.
四、巩固练习
1. 已知 a- 2+
b+
1= 2
0,
求-
a2b
的值.
【答案】 a- 2≥ 0, b+21≥0, 又∵它们的和为 1
2, b=- 2. ∴- a2b=- 22× (-12)=2.

16.1二次根式-二次根式的定义基础训练+课件+2023—2024学年人教版数学八年级下册

16.1二次根式-二次根式的定义基础训练+课件+2023—2024学年人教版数学八年级下册

故a=2.
8.已知y= − +

A.


B.-


Hale Waihona Puke − +3,则 的值为(C.


C )
D.-


【点拨】
由二次根式的非负性可得,x-4≥0,4-x≥0,∴x

-4=0,即x=4.∴y=3.∴ = .

9.若实数m,n满足等式|m-2|+ − =0,且m,n恰好
是等腰三角形ABC的两条边的长,则△ABC的周长是( B )
1≥0且x≠0,即x≥-1且x≠0.
5.当x是怎样的实数时,下列各式在实数范围内有意义?
(1) − ;
(2)[2023·常德]



【解】(1)由x-3≥0,得x≥3.当x≥3时, − 在实数范
围内有意义.
(2)由x-4≥0且 − ≠0,得x>4.当x>4时,
实数范围内有意义.
人教版八年级下
第十六章 二次根式
16.1二次根式
二次根式的定义基础训练
1. 二次根式的识别方法:一个式子是二次根式必须具备两个
特征,一是含有二次根号,二是被开方数必须是非负数.
2. 二次根式 的双重非负性:(1) ≥0;(2)a≥0.
3. 非负数的三种形式:(1)|a|≥0;(2)a2≥0;(3) ≥0.
D.x≥0且x≠2
D )
【点拨】
根据分式的分母不能为0和二次根式的被开方数大于
或等于0,得x≥0且x-2≠0,解得x≥0且x≠2,故选D.
4.[2023·绥化]若式子 + +x-2在实数范围内有意义,则x
的取值范围是( C )

【评课记录】16.1二次根式3_数学_初中

【评课记录】16.1二次根式3_数学_初中

《二次根式》观课报告
新的课程标准,倡导把课堂变为学生自主、合作、探究的场所,呼唤学生主体性的发展。

教学活动中学生在问题的基础之上逐步地得出这节课的重点内容。

这样让学生感觉坡度不大,掌握起来比较容易.本课教学始终贯穿“发展、创新”两个主要思想,并以训练思维为主线,重视知识的形成、发展过程,解题思路的探索过程,重视知识的概括和总结,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成自主、合作获取、发展新知,运用新知解决问题,以及用数学语言交流的能力。

孔老师在教学方法与手段的选择方面:主要采用了启发式和引导探究式的教学方法,为配合问题的提出与解决,借助了多媒体辅助教学。

在教学过程的设计方面:本节课的教学分为以下几个环节:一、复习回顾导入新课二、自主探究共享新知在这个环节,一系列的学习过程都是在教师引导,学生思考、探究的过程中完成的,学生学得轻松,在例题后面设计的小试牛刀、拾级而上、勇攀高峰分层练习,学生在浅移默化中总结升华。

三、课堂小结老师引导学生总结全课,畅谈感受,由此,整节课的教学内容将得到升华。

四、达标测试设计出许多不同的带有字母的二次根式。

这一教学环节正是本课的亮点所在,让学生在自己设计的二次根式中巩固、应用、拓展,再次让学生加深的二次根式性质的理解。

这样,教学重点的突出,教学难点的突破也就水到渠成。

我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高昂学习情绪当中,
同时,整节课努力做到先有孕伏,中有深化,后有突破。

学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事。

沪科版数学八年级下册16.1二次根式教学设计

沪科版数学八年级下册16.1二次根式教学设计
难点:如何引导学生从具体实例中抽象出二次根式的概念,以及如何激发学生的创新意识。
(二)教学设想
1.创设情境,激发兴趣:通过生活中的实例,如勾股定理的应用、面积计算等,引入二次根式的概念,使学生感受到数学的实用性和趣味性。
2.分层次教学,因材施教:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
此外,学生在解决实际问题时,可能会对二次根式的应用感到陌生,难以将理论知识与实际问题相结合。因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的学习积极性,通过生动的实例和丰富的教学活动,帮助学生克服恐惧心理,提高解决问题的能力。
同时,八年级学生的思维逐渐由具体形象思维向抽象逻辑思维转变,教师应抓住这一特点,引导学生运用二次根式解决实际问题,培养学生的抽象思维能力和创新意识。在这个过程中,教师要关注学生的情感态度,鼓励学生积极参与,使他们在探索中获得成就感,从而提高学习兴趣和自信心。
4.利用数形结合的方法,帮助学生理解二次根式的性质和运算法则,培养学生的直观想象能力。
5.引导学生运用二次根式解决实际问题,培养学生的应用意识和实践能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情,使学生在二次根式的学习中感受到数学的魅力。
2.培养学生勇于探索、善于思考的精神,鼓励学生在面对困难时保持积极的态度,增强克服困难的信心。
2.应用题:结合实际情境,设计一些需要运用二次根式解决问题的题目。这些题目旨在培养学生将数学知识应用于解决实际问题的能力,增强学生对数学实用性的认识。
例题:小华家的花园是一个矩形,长比宽多2米,如果花园的面积为48平方米,求花园的长和宽。
3.提高题:设置一些具有一定难度的题目,要求学生运用所学的二次根式性质和运算法则,进行混合运算。这类题目能够锻炼学生的逻辑思维能力和解题技巧。

八年级数学下册 16.1 二次根式(第3课时)课件

八年级数学下册 16.1 二次根式(第3课时)课件

12/13/2021
第八页,共十二页。
3、化简
1
2
1 2
2 1
2 x12 x 1 (x>0 )
3 x22xyy2 x y2 (x﹤y) yx
12/13/2021
第九页,共十二页。
4. 若 a 2 a,则 a 可以(kěyǐ)是什么数?
解:当 a≥0 时, a 2 a,与 a 2
所以此时(cǐ shí) a 不存在,。
例1 化简:
(1) 16 (2) (5)2
解: (1) 16 42 4
(2) (5)2 52 5
12/13/2021
第三页,共十二页。
思考(sīkǎo)
( a)2与 a2有区别吗 ?
12/13/2021
第四页,共十二页。
1.从读法来看:
a 2 根号a的平方
2:从运算(yù n suàn)顺序来
16.1二次根式(gē
[ ] 探究 填空,并说说这样(zhèyàng)做的依据
22 2 02 0
0.12 0.1
2 2
2
3 3
一般地,根据(gēnjù)算术平方根的意义,
12/13/2021
a2 a (a≥0)
第二页,共十二页。
看:
a
先开方 ,后平方 2 (kāi fāng)
a 2 根号下a平方
3.从取值范围来看:
2
a
a≥0
a 先平方 ,后开 2
(píngfāng)

4.从运算结果来看:
a 2=a
a 2 a取任何实数
12/13/2021
a (a 0)
a2
=∣a∣
0
(a 0)

二次根式(第3课时)课件北师大版数学八年级上册

二次根式(第3课时)课件北师大版数学八年级上册
北. 二次根式
(第3课时)
教学内容
第二章 实 数
2.7.3 二次根式加减乘除的综合运算
教学目标——重点难点
第二章 实 数
1.会进行二次根式加减乘除的综合运算.(重点) 2.利用二次根式乘加减乘除的综合运算解决问题.(难点)
教学目标——温故知新
知识储备
1.二次根式乘除法的法则是什么?
教学过程——新典知例探解究 析
例3 计算:
第二章 实 数
教学过程——新典知例探解究 析
第二章 实 数
教学过程——新典知例探解究 析
第二章 实 数
教学过程——课堂小结 今天你学到了什么?
第二章 实 数

1.二次根式的运算顺序与实数的运算顺序一样,先算乘 方,再算乘除,最后算加减,有括号的先算括号里面的.
第二章 实 数
2.什么是同类二次根式?
几个二次根式化为最简二次根式后,如果被开方数相同, 这样的二次根式,称为同类二次根式.
教学过程——新课引入 议一议
第二章 实 数
前面我们分别学习了二次根式的乘除法和加减法运算, 与实数的运算一样,二次根式也有加减乘除以及乘方的 综合运算,那么我们如何进行二次根式的综合运算呢?
教学过程——新典知例探解究 析
例1 计算:
第二章 实 数
教学过程——典例解析
第二章 实 数
教学过程——典例解析
第二章 实 数
你能其他方法做这个题吗?
教学过程——典例解析
第二章 实 数
教学过程——典例解析
例2 计算:
第二章 实 数
教学过程——典例解析
第二章 实 数
教学过程——典例解析
第二章 实 数
2.多项式乘法法则和乘法公式对二次根式的运算同样适用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东亭中学自主发展型课堂导学案
学科____数学__ 主备人__夏宏斌_ 参备人_______唐骏______ 编号_ _1 _ 授课班级_八年级__ 审核人________ 验收人_________ 上课时间_____年___月___日
第16章 二次根式
16.1 二次根式(1)
一、学习目标
1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

二、学习重点、难点:二次根式有意义的条件. 三、学习过程 (一)复习引入:
(1)已知x 2
= a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。

(2)4的算术平方根为2
,用式子表示为 =__________; 正数a 的算术平方根为_______,0的算术平方根为_______; 式子)0(0≥≥a a 的意义是 。

(二)提出问题
1、式子a 表示什么意义?
2、什么叫做二次根式?
3、如何确定一个二次根式有无意义? (三)自主学习
自学课本第2页“观察”前的内容,完成下面的问题:
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16-,34)0(3≥a a

12
+x
2、当a 为正数时
指a 的 ,而0的算术平方根是 ,负数 ,
只有非负数a 才有算术平方根。

所以,在二次根式
中,字母a 必须满足 ,

4
有意义。

(四)合作探究
1、学生自学课本第2页“例1”后,模仿例1的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义?
①43-x

2、(1
a 的值
(2)若 在实数范围内有意义,则x 为( )。

A.正数
B.负数
C.非负数
D.非正数
(五)展示反馈
1.非负数a 的算术平方根a (a ≥0)叫做二次根式.
二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。

2.式子)0(≥a a 的取值是非负数。

(六)当堂检测: 1、在式子x
x
+-121中,求x 的取值范围。

2、已知42
-x +y x +2=0,求x-y 的值。

3、已知y =x -3+23--x ,则x y 的值。

x --21
东亭中学自主发展型课堂导学案
学科____数学__ 主备人__夏宏斌_ 参备人_______唐骏______ 编号_ _2 _ 授课班级_八年级__ 审核人________ 验收人_________ 上课时间_____年___月___日
16.1 二次根式(2)
2=a (a ≥0),并利用它们进行计算和化简.
二、学习重点、难点: 2=a (a ≥0)并会运用. 三、学习过程:
(一)、复习引入
1.什么叫二次根式?
2.当a ≥0a<0 (二)、探究新知
做一做:根据算术平方根的意义填空:
2=_______;2=_______;2=______;2=_______;
2=______;2
=_______;2=_______.
同理可得:2=2,2=9,2=3,2=13,2=7
2,2=0,
例1 计算
1.2 2.(2 3.2 4.)
2
分析2=a (a ≥0)的结论解题.
解:
( 三)、巩固练习 计算下列各式的值:
2 2 2 )2 ( 2
22
-
(四)、应用拓展
例2 计算
1.2(x≥0)2.23.2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;所以上面的
32=a(a≥0)的重要结论解题.
解:
例3在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
(五)、归纳小结
2=a(a≥0);反之:a=2(a≥0).
(六)、当堂检测
习题16.1 第3题及第6题
东亭中学自主发展型课堂导学案
学科____数学__ 主备人__夏宏斌_ 参备人_______唐骏______ 编号_ _3 _ 授课班级_八年级__ 审核人________ 验收人_________ 上课时间_____年___月___日
16.1 二次根式(3)
(a≥0)并利用它进行计算和化简.通过具体数据的解答,探
究 =a(a≥0),并利用这个结论解决具体问题.
二、学习重点、难点: (a≥0)
三、学习过程
(一)、复习引入
1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;
3.2=a(a≥0).
那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.
(二)、探究新知
填空:
=_______=______;
=________.
例1 化简
(1(2(3(4
分析:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32
(a≥0)•去化简.
解:(1(2=____
(3(4
(三)、巩固练习
教材P 4练习2. (四)、合作学习
例2 填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.
(1,则a 可以是什么数?
(2,则a 可以是什么数?
(3,则a 可以是什么数?
分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变
形,使“( )2”中的数是正数,因为,当a ≤0-a ≥0.
(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可
│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0. 解:(1) (2)
(3)
例3学习课本第3页例题3,尝试化简244-1x x +,其中x>2
(五)、归纳小结
(a ≥0)及其运用,同时理解当a<0a 的应用. (六)、当堂检测
教材P 4习题16.1 3、4、5、7.。

相关文档
最新文档