2017-2018学年河南省郑州市七年级上学期期末数学试卷(解析版)
2017-2018学年七年级上期末数学试题含答案
2017-2018学年度第一学期七年级数学期末试题满分150分 时间120分钟一、选择题(本大题共10题,每小题4分,共40分)1.〡-2〡等于A 、2B 、-2C 、21 D、21-2、若322y x -与32n y x m -是同类项,则n m -等于A 、 -5B 、1C 、 5 D、 -13、2015年,安庆市财政收入完成258.8亿,比2014年增加12.1%,增幅全省第一,是“十一五”末财政收入的2.14倍,其中258.8亿用科学记数法表示为 A 、2.588×1011B 、2.588×1010C 、25.88×1011D 、0.2588×10104、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是A 、ab >0B 、a+b <0C 、ba<1 D 、a ﹣b <0 5、一个角的余角是40º,则这个角的补角是A 、 40ºB 、50ºC 、140ºD 、130º 6、在下列数据的收集中,不适合抽样调查的是A 、七年级新生在定制校服时,服装厂家要确定每一位七年级新生的身高;B 、老师上课开始对上一节课所学内容进行提问;C 、了解安庆市中学生每天参加课外活动的时间;D 、卫生监督局对某一厂家生产的一批罐头进行合格检查。
7、某公司去年10月份的利润为a 万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为A 、()()000095+-a a 万元B 、()000095+-a 万元C 、()0000951+-a 万元D 、()()00009151+-a 万元8、小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题。
你求得的结果是A 、7年B 、 8年C 、9年D 、不可能9、已知实数x ,y ,z 满足⎩⎨⎧=-+=++2245z y x z y x ,则代数式3x ﹣3z+1的值是A 、﹣2B 、2C 、﹣6D 、810、如图所示,每个小立方体的棱长为1,图1中共有1个立方体,如图所示按视线方向其中1个看得见,0个看不见;图2中共有8个小立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;……;则第10个图形中,其中看得见的小立方体个数是A 、270B 、271C 、272D 、273二、填空题(本大题共4小题,每小题5分,共20分) 11、一个数的倒数等于它本身,则这个数是 ; 12、已知42+x 与23-x 互为相反数,则=x ;13、修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是 ;14、定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的四个结论:①2⊗(-2)=6 ②a ⊗b =b ⊗a ③若2 ⊗a =0,则a =1 ④a ⊗1=0其中正确结论的序号是 (填上你认为所有正确结论的序号) 三、(本大题共2小题,每小题8分,共16分) 15、计算:])3(2[61124--⨯-- 16、化简求值:5x ²―[x ²―(2x ―5x ²)―2(x ²―3x)],其中x=―2.四、(本大题共2小题,每小题8分,共16分) 17、解方程↗视线方向(1) 2)43(3)1(2=--+x x (2)3157146x x ---=18、作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来。
2017-2018郑州7上期末真题卷
郑州市 2017~2018学年上学期期末考试试题卷七年级数学注意:考试时间 90分钟,满分 100分.转眼间,乐乐成为初中生已经一个学期了,他发现初中的数学学习既充实又有趣.下面是乐乐同学的一些活动和发现,我们来了解一下吧!一、选择题(每题 3分,共 30分)1.如图,有一个正方体,乐乐用一个平面去截这个正方体,截面形状不可能是()2.乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000 000 kg的煤所产生的能量.将 130 000 000用科学记数法可表示为()A.0.13×108B.1.3×107C.1.3×108D.1.3×1093.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对下图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段4.乐乐对统计产生了浓厚的兴趣,他想用“普查”方式调查一些事件,那么下面适合用“普查”方式进行调查的事件是()A.调查某品牌手机的市场占有率B.了解全国中学生的节水意识C.调查某型号炮弹的射程D.了解自己班同学早餐是否有喝牛奶的习惯5.乐乐在学习绝对值时,发现“||”像是一个神奇的箱子:当负数钻进这个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有发生变化.乐乐把-(-3)2-4放进了这个神奇的箱子,发现|-(-3)2-4|的结果是()A.13B.5C.-13D.106.乐乐在报纸上看到甲、乙两公司 2013年~2017年的销售收入情况如图所示:第 1页共 6页关于两家公司 2013年~2017年的销售收入的增长速度,下列说法正确的是()A.甲快B.乙快C.一样快D.无法比较7.乐乐班级的同学在操场上排队列,从男生队伍里调出 5名加入到女生队伍,则两个队伍的人数正好相等.设男生有x人,则女生人数为()人A.x+5B.x-10C.x+10D.x-58.学习了常用的度量单位后,乐乐发现度、分、秒之间可以相互换算.乐乐计算出某一时刻闹钟的时针和分针的夹角是 108 000″,此时这个夹角等于()A.5°B.15°C.30°D.60°9.乐乐玩橡皮泥时,将一个底面直径为 4cm、高为 4cm的圆柱,捏成底面直径为 3.2cm的圆柱,则圆柱的高变成了()A.7.5cm B.6.25cm C.5cm D.4.75cm10.如图,乐乐将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数字之和相等.现在a,b,c分别表示其中的一个数,则a-b+c的值为()A.-1B.0C.1D.33分,共 15分)11.冬季供暖后,乐乐发现室内的温度为20℃,此时冰箱冷冻室的温度为-5℃,则室内的温度比冷冻室的温度高℃.12.如图,乐乐用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下的树叶的周长比原周长小,能正确解释这一现象的数学依据是.13.乐乐家附近的商场购进一批服装,每件进价1 000元,计划在春节期间开展促销活动,按照标价的 7折销售,若想打折后销售每件服装的利润率为 5%,则该服装每件的标价应为元.14.如图,乐乐班级举行“新春美食会”,同学们如图摆放桌椅.图(1)表示 1张餐桌和 6第 2页共 6页把椅子(三角形表示餐桌,每个小圆表示一把椅子);图(2)表示 2张餐桌和 8把椅子;图(3)表示 3张餐桌和 10把椅子;…;按照这种方式摆放 12张餐桌,需要把椅子.15.乐乐按如图所示的程序进行计算,如果输入 x 的值是正整数,输出的结构是 214,那么所.有.满足条件的 x 的值为 .三、解答题(共 55分)16.(6分)乐乐和同学们研究“从三个方向看物体的形状”.(1)图 1中几何体是由几个相同的小立方块搭成的,请画出从正面看到的该几何体的形状图;(2)图 2是由几个相同的小立方块组成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体从左面看到的形状图.图 1 从正面看 图 2 从左面看17.(7分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值: 4 x -2),其中 x =1 1 1 (4x 2+2x -8)-(2 2 .第 3页共 6页18.(7分)乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?19.(8分)为了解我市的空气质量情况,乐乐和环保兴趣小组的同学们从环境监测网随机抽取了若干天的空气质量情况作为样本,绘制了如图所示的统计图(部分信息未给出).我市若干天空气质量情况条形统计图我市若干天空气质量情况扇形统计图请你根据图中提供的信息,解答下列问题:(1)被抽取的天数是天,扇形统计图中表示空气质量为“优”的扇形的圆心角是度;(2)请补全条形统计图;(3)请根据上面的数据,估计我市这一年(365天)空气质量达到“优”和“良”的总天数.第 4页共 6页20.(8分)乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究 请仔细观察上面的图形和表格,并用含 n 的代数式将上面的表格填写完整,其中① ;② ;(2)实际应用 数学社团共分为 6个小组,每组有 3名同学,同学们约定,大年初一时不同组的....每位同学之间要打一个电话拜年...............请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳 乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.21.(9分)乐乐对几何中角平分线的兴趣浓厚,请你和乐乐一起探究下面问题吧.已知∠AOB =100°,射线 OE ,OF 分别是∠AOC 和∠COB 的平分线.第 5页共 6页林老师倾情推荐(1)如图 1,若射线 OC在∠AOB的内部,且∠AOC=30°,求∠EOF的度数;(2)如图 2,若射线 OC在∠AOB的内部绕点 O旋转,则∠EOF的度数为;(3)若射线 OC在∠AOB的外部绕点 O旋转(旋转中∠AOC,∠BOC均指小于 180°的角),其余条件不变,请借助图 3探究∠EOF的大小,请直接写出∠EOF的度数(不写探究过程).22.(10分)乐乐家距离学校 2 800米,一天早晨,他以 80米/分的速度上学,5分钟后乐乐的妈妈发现他忘了带数学书,妈妈立即以 180米/分的速度去追乐乐,并且在途中追上了他.(1)妈妈追上乐乐用了多长时间?(2)放学后乐乐仍以 80米/分的速度回家,出发 10分钟时,同学英树以 280米/分的速度从学校出发骑自行车回家,乐乐家和英树家是邻居(两家距离忽略不计,两人路上互不等待,两人到家后不再外出).请问英树出发多长时间,两人相距 300米?林老师倾情推荐第 6页共 6页。
郑州市七年级(上)期末数学试卷含答案
七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.相反数是A. B. 2 C. D.2.如图是一个表面分别标有“郑”、“州”、“中”、“心”、“城”、“市”字样的正方体展开图,则在原正方体中,与“州”相对的字是A. 中B. 心C. 城D. 市3.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”中国古代曾以腊月、十月等的月首为元旦,1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打8折后,再减少20元”若某商品的原价为x元,则购买该商品实际付款的金额是元.A. B. C. D.4.郑万铁路万州往郑州方向的首座隧道“天城隧道”于2018年11月30日贯通,早上品尝重庆小面,晚上享用北京烤鸭,以后这都不是梦,建造隧道的目的用下面哪个数学知识来解释最恰当A. 经过两点有且只有一条直线B. 过一点可以画多条直线C. 两点之间线段最短D. 连接两点之间线段的长度是两点之间的距离5.以下问题,不适合普查的是A. 了解一批灯泡的使用寿命B. 学校招聘教师,对应聘人员的面试C. 了解全班学生每周体育锻炼时间D. 进入地铁站对旅客携带的包进行的安检6.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是A. B.C. D.7.2018年10月19日,国家统计局网站发布消息称,初步核算,2018年前三季度国内生产总值650899亿元,同比增长数据650899亿元用科学记数法表示为A. 元B. 元C. 元D. 元8.如果过一个多边形的一个顶点的对角线有7条,则该多边形是A. 十边形B. 九边形C. 八边形D. 七边形9.下列解方程变形错误的是A. 由得B. 由得C. 由得D. 由去分母得10.如图,第个多边形由正三角形“扩展而来边数记为,第个多边形由正方形“扩展”而来,边数记为,第个多边形由五边形“扩展”而来,边数记为依此类推,由正n边形“扩展而来的多边形的边数记为,则结果是A. B. C. D.二、填空题(本大题共5小题,共15.0分)11.的绝对值是______.12.直线AB,BC,CA的位置关系如图所示,则下列语句:点B在直线BC上;直线AB经过点C;直线AB,BC,CA两两相交;点B是直线AB,BC的交点,以上语句正确的有______只填写序号13.已知,则______.14.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为______.15.有两根木条,一根AB长为100cm,另一根CD长为150cm,在它们的中点处各有一个小圆孔M、圆孔直径忽略不计,M、N抽象成两个点,将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN是______cm.三、计算题(本大题共1小题,共6.0分)16.计算:一个整式A与多项式的和是多项式.请你求出整式A;当时求整式A的值.四、解答题(本大题共6小题,共49.0分)17.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角一般指锐角请你在图中表示下列方向角可以用量角器射线OA表示西南方向;射线OC表示北偏西方向;射线OD表示南偏东方向.18.伴随着世界经济的飞速发展,信息化技术和互联网技术越来越多的影响着社会的各个方面“天元数学”是学生自主学习的网络平台,郑州某中学共有1800名学生,每人每周学习“天元数学”微课的数量都在~个这里的~表示大于或等于5同时小于,为进一步了解该校学生每周学习“天元数学”微课的情况,学校将收集来的全校学生学习“天元数学”微课的数量情况的数据整理后绘制成如下不完整的统计图,请你根据以上信息,解答下面问题在图1中补全条形统计图;计算:每周学习~个微课的学生人数对应的扇形圆心角的度数;请根据条形统计图,在图2中制作相应的扇形统计图,并在图中分别标出各部分所占的百分比精确到19.已知一个六棱柱,它的底面边长都是5厘米,侧棱长都是8厘米,请回答下列问题这个六棱柱一共有多少个面?一共有多少条棱?这些棱的长度之和是多少?沿一条侧棱将这个六棱柱侧面全部展开成一个平面图形,这个图形的面积是多少?20.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为______;如果设原来这张正方形纸片的边长为acm,所折成的无盖长方体盒子的高为hcm,那么,这个无盖长方体盒子的容积可以表示为______;如果设原来这张正方形纸片的边长为20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,请计算折成的无盖长方体盒子的容积下表中的m和n的值分别为______和______;观察表格可知,当小正方形的边长取______时,所得到的无盖长方体纸盒的容积最大.21.如图,已知,,OC平分,若,则______,______;若,则______,______;若,,请直接写出与之间的数量关系.22.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足求A,B两点之间的距离;若在数轴上存在一点C,且,求C点表示的数;若在原点O处放一个挡板,一个小球甲从点A处以1个单位秒的速度向左运动;同时另一小球乙从点B处以2个单位秒的速度也向左运动,在碰到挡板后忽略球的大小,可看作一点以原来的速度向相反的方向运动:设运动的时间为秒分别表示甲、乙两小球到原点的距离用t表示;求甲、乙两小球到原点的距离相等时经历的时间.答案和解析1.【答案】A【解析】解:的相反数是,故选:A.一个数的相反数就是在这个数前面添上“”号.的相反数是.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】C【解析】解:图中与“州”字所在的面不存在公共点的面是标有“城”字的面.故选:C.根据正方体的表面展开图,相对的面之间一定不存在公共点进行回答即可.本题主要考查的是正方体相对两个面上的文字,明确相对的面之间一定不存在公共点是解题的关键.3.【答案】A【解析】解:由题意可得,若某商品的原价为x元,则购买该商品实际付款的金额是:元,故选:A.根据题意可知,购买该商品实际付款的金额某商品的原价元,依此列式即可求解.本题考查列代数式,解答本题的关键明确题意,列出相应的代数式.4.【答案】C【解析】解:用哪个数学知识来解释最恰当的是两点之间线段最短,故选:C.根据线段的性质解答即可.本题考查了线段的性质两点之间线段最短,熟记线段的性质解题的关键.5.【答案】A【解析】解:A、了解一批灯泡的使用寿命,数目较多,具有破坏性,故适合抽查,不适合普查,故此选项正确;B、学校招聘教师,对应聘人员的面试,涉及到招聘,必须全面调查,故此选项错误;C、了解全班学生每周体育锻炼时间,人数不多,容易调查,因而适合普查,故此选项错误;D、进入地铁站对旅客携带的包进行的安检,涉及到安全,必须全面调查,故此选项错误.故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【答案】A【解析】解:设人数为x,则可列方程为:故选:A.根据“总钱数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.7.【答案】C【解析】解:数据650899亿元用科学记数法表示为元.故选:C.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】A【解析】解:设这个多边形边数为n,由题意得:,解得:.故选:A.根据n边形从一个顶点出发可引出条对角线进行解答即可.此题主要考查了多边形的对角线,关键是掌握n边形从一个顶点出发可引出条对角线.9.【答案】D【解析】解:A、由,得到,不符合题意;B、由,得到,不符合题意;C、由得,不符合题意;D、由去分母得,符合题意.故选:D.A、系数化为1即可求解;B、根据去括号法则计算即可求解;C、根据移项法则计算即可求解;D、根据去分母、去括号法则计算即可求解.本题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.10.【答案】D【解析】解:根据图形可知:,,,,,,故选:D.结合图形观察数字,发现:,,进一步得到;再代入求出即可.本题考查了等边三角形的性质和图形的变化类,能根据已知图形求出、、、的值是解此题的关键.11.【答案】5【解析】解:根据负数的绝对值是它的相反数,得.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解题的关键是掌握绝对值的性质.12.【答案】【解析】解:由图可得,点B在直线BC上,正确;直线AB不经过点C,错误;直线AB,BC,CA两两相交,正确;点B是直线AB,BC的交点,正确;故答案为:.依据点与直线的位置关系进行判断,即可得到正确结论.本题主要考查了点与直线的位置关系:点经过直线,说明点在直线上;点不经过直线,说明点在直线外.13.【答案】5【解析】解:当时,原式,故答案为:5.将整体代入原式计算可得.本题考查了代数式求值,利用整体思想求解是解题的关键.14.【答案】【解析】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,图中阴影部分的面积之和为故答案为:.设小长方形的长为xcm,宽为ycm,根据图形中给定的长度,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积和大长方形的面积个小长方形的面积,即可求出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.【答案】25或125【解析】解:当A与C重合或B与D重合时,设两根木条的小圆孔之间的距离MN是acm,,解得,,当A与D重合或B与C重合时,设两根木条的小圆孔之间的距离MN是bcm,,解得,,由上可得,两根木条的小圆孔之间的距离MN是25cm或125cm,故答案为:25或125.根据题意,可以列出相应的方程,从而可以求得两根木条的小圆孔之间的距离MN.本题考查一元一次方程的应用,解答本题的关键是明确题意,利用方程和分类讨论的方法解答.16.【答案】解:,;把代入上式,得:.【解析】根据题意列出关系式,去括号合并即可得到结果;把代入计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【答案】解:射线OA如图所示;射线OC如图所示;射线OD如图所示;【解析】根据方向角的定义作出射线OA,OC,OD即可;本题考查方向角,作图应用与设计等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【答案】解:每周学习~个微课的学生有:人,补全的条形统计图如右图所示;每周学习~个微课的学生人数对应的扇形圆心角的度数是:;~在扇形统计图中所占的百分比为:,~在扇形统计图中所占的百分比为:,~在扇形统计图中所占的百分比为:,~在扇形统计图中所占的百分比为:,制作的扇形统计图如右图所示.【解析】根据题目中的数据和统计图中的数据可以计算出~的人数,从而可以将条形统计图补充完整;根据条形统计图中的数据可以计算出每周学习~个微课的学生人数对应的扇形圆心角的度数;根据条形统计图中的数据可以计算出各段所占的百分比,从而可以制作出相应的扇形统计图.本题考查条形统计图、扇形统计图、近似数和有效数字,解答本题的关键是明确题意,利用数形结合的思想解答.19.【答案】解:这个六棱柱一共有个面;一共有条棱;这些棱的长度之和是厘米;侧面全部展开成一个平面图形,其面积为厘米.【解析】依据六棱柱的几何特征,即可得到面数、棱数以及棱长之和;依据侧面展开图是一个长方形,即可得其面积.本题主要考查了几何体的展开图,解决本题的关键是应理解六棱柱的构造特点.20.【答案】相等512 588 3cm【解析】解:由折叠可知,剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为相等;这个无盖长方体盒子的容积;故答案为:相等,;当剪去的小正方形的边长取2时,,当剪去的小正方形的边长取3时,,当剪去的小正方形的边长的值逐渐增大时,所得到的无盖长方体纸盒的容积的值先增大后减小,当剪去的小正方形的边长为3cm时,所得到的无盖长方体纸盒的容积最大.故答案为:512,588,3cm.根据长方体体积公式即可解答;将,3分别代入体积公式,即可求出m,n的值;再根据材料一定时长方体体积最大与底面积和高都有关,进而得出答案.此题主要考查了几何体的体积求法以及展开图问题,根据题意表示出长方体体积是解题关键.21.【答案】55 40 70 20【解析】解:;平分,,.故答案为:55,40;,平分,;.故答案为70,20;,,,平分,,,,即.根据余角的定义即可求出,根据角平分线的定义求出,即可求出;根据角的和差求出,再根据角平分线的定义即可求出,然后根据余角的定义即可求出;根据余角的定义表示出,再根据角平分线的定义表示出,然后根据角的和差即可得出与之间的数量关系.本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出注意利用数形结合的思想,熟练掌握角的和与差的关系.22.【答案】解:因为,所以,,所以,;所以AB的距离;设数轴上点C表示的数为c.因为,所以,即.因为,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.当C点在线段AB上时,则有,得,解得;当C点在线段AB的延长线上时,则有,得,解得.故当时,或;因为甲球运动的路程为:,,所以甲球与原点的距离为:;乙球到原点的距离分两种情况:Ⅰ当时,乙球从点B处开始向左运动,一直到原点O,因为,乙球运动的路程为:,所以乙球到原点的距离为:;Ⅱ当时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:;当时,得,解得;当时,得,解得.故当秒或秒时,甲乙两小球到原点的距离相等.【解析】先根据非负数的性质求出a、b的值,再根据两点间的距离公式求得A、B 两点之间的距离;分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;甲球到原点的距离甲球运动的路程的长,乙球到原点的距离分两种情况:Ⅰ当时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度乙球运动的路程即为乙球到原点的距离;Ⅱ当时,乙球从原点O处开始向右运动,此时乙球运动的路程的长度即为乙球到原点的距离;分两种情况:Ⅰ,Ⅱ,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.本题考查了一元一次方程的应用,非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.。
2017-2018学年七年级上期末数学试卷2及答案解析
2017-2018学年七年级上期末数学试卷一、选择题(共10题;共30分)1.下列几种说法正确的是()A. -a一定是负数B. 一个有理数的绝对值一定是正数C. 倒数是本身的数为1D. 0的相反数是02.已知x2﹣2x﹣5=0,则2x2﹣4x的值为()A. -10B. 10C. ﹣2或10D. 2或﹣103.为创建园林城市,盐城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A. 6(x+22)=7(x-1)B. 6(x+22-1)=7(x-1)C. 6(x+22-1)=7xD. 6(x+22)=7x4.某中学九(1)班学生为希望工程捐款,该班50名学生的捐款情况统计如图,则他们捐款金额的众数和中位数分别是()A. 16,15B. 15,16C. 20,10D. 10,205.已知a﹣2b+3=0,则代数式5+2b﹣a的值是()A. 2B. 4C. 6 D . 86.下列结论中正确的是()A. 在等式3a﹣b=3b+5的两边都除以3,可得等式a﹣2=b+5B. 如果2=﹣x,那么x=﹣2C. 在等式5=0.1x的两边都除以0.1,可得等式x=0.5D. 在等式7x=5x+3的两边都减去x﹣3,可得等式6x﹣3=4x+67.如图,点A、B、C在一直线上,则图中共有射线()A. 1条B. 2条C. 4条D. 6条8.若a+3=0,则a的值是()A. B. C.D.9.下列各图中,可以是一个正方体的平面展开图的是()A. B. C. D.10.已知两数相乘大于0,两数相加小于0,则这两数的符号为()A. 同正B. 同负C. 一正一负D. 无法确定二、填空题(共8题;共24分)11.已知关于x的方程5x m+2+3=0是一元一次方程,则m=________.12.如图所示的图形绕虚线旋转一周得到的几何体的名称是________ .13.方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=________.14.如图的折线统计图分别表示我国A市与B市在2015年4月份的日平均气温的情况,记该月A市和B市日平均气温是20℃的天数分别为m天和n天,则n m=________15.用6根火柴最多组成 ________个一样大的三角形,所得几何体的名称是 ________.16.已知关于x的方程3x﹣2a=7的解是5,则a的值为________.17.点A在数轴上所表示的数为﹣1,若AB=,则点B在数轴上所表示的数为 ________18.如果3a x﹣2b14和﹣7a y b2y是同类项,则x=________ ,y=________ .三、解答题(共6题;共36分)19.一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?20.某数为x,根据下列条件列方程.(1)某数与8的差等于某数的与4的和.(2)某数的与某数的的和等于3.21.画出数轴,把下列各数0,2,(﹣1)2,﹣|﹣3|,﹣2.5在数轴上分别用点A,B,C,D,E表示出来;按从小到大的顺序用“<”号将各数连接起来.22.昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.23.画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:1,﹣2,3,﹣4,1.6,3,﹣2,0.24.(﹣3)2﹣(1)3×﹣6÷|﹣|3.四、综合题(共10分)25.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长.参考答案与试题解析一、选择题1.【答案】D【考点】正数和负数【解析】【解答】A项,当a为0或负数时,-a是一个非负数,故错误;B项,正数和负数的绝对值都是正数,但0的绝对值还是0,故错误;C项,倒数是本身的数为1或-1,故错误;D项正确,故选D.【分析】此题考点较多,不要弄混.记住有理数中0既不是正数也不是负数,根据此A项和B项可判断.要注意绝对值、倒数、相反数这三者的区别,概念要弄清.2.【答案】B【考点】代数式求值【解析】【解答】解:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴2x2﹣4x=2(x2﹣2x)=2×5=10即2x2﹣4x的值为10.故答案为:10.【分析】首先根据x2﹣2x﹣5=0,求出x2﹣2x的值是多少;然后把x2﹣2x的值代入2x2﹣4x,求出2x2﹣4x的值为多少即可.3.【答案】B【考点】一元一次方程的应用【解析】【解答】设原有树苗x棵,由题意得6(x+22-1)=7(x-1).故选:B.【分析】设原有树苗x棵,根据首、尾两端均栽上树,每间隔6米栽一棵,则缺少22棵,可知这一段公路长为6(x+22-1);若每隔7米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为7(x-1),根据公路的长度不变列出方程即可.4.【答案】D【考点】条形统计图【解析】【解答】解:∵10出现了16次,出现的次数最多,∴他们捐款金额的众数是10;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是(20+20)÷2=20;故选D.【分析】根据众数和中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数,众数是一组数据中出现次数最多的数.5.【答案】D【考点】代数式求值【解析】【解答】解:∵a﹣2b+3=0,∴a﹣2b=﹣3,∴原式=5﹣(a﹣2b)=5+3=8.故选D.【分析】根据题意得出a﹣2b=﹣3,再代入代数式进行计算即可.6.【答案】B【考点】等式的性质【解析】【解答】解:A、根据等式性质2,在等式3a﹣b=3b+5的两边都除以3,可得等式a=b+;B、根据等式的对称性可得x=﹣2;C、根据等式的性质2,在等式5=0.1x的两边都除以0.1,可得等式x=50;D、根据等式性质1,在等式7x=5x+3的两边都减去x﹣3,可得等式6x+3=4x+6;综上所述,故选B.【分析】利用等式的性质对每个式子进行变形即可找出答案.7.【答案】D【考点】直线、射线、线段【解析】【解答】分别以A、B、C为端点,向左右各有三条射线,共6条,故答案选D. 【分析】射线有一个端点,从一个点出发,向左右有两条射线,图中有三个点,所以有6条射线.8.【答案】A【考点】解一元一次方程【解析】【分析】根据等式的性质1移项,即可得出答案.【解答】a+3=0,∴a=-3,故选A.【点评】本题考查了等式的性质,解一元一次方程的应用,注意:移项要变号,即从方程的一边移到方程的另一边要改变符号.9.【答案】C【考点】几何体的展开图【解析】【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.10.【答案】B【考点】有理数的乘法【解析】【解答】解:∵两数相乘大于0,则两数同号,又∵两数相加小于0,则这两数为同负.故选B.【分析】两数相乘大于0,则两数同号,两数相加小于0,则这两数为同负二、填空题11.【答案】﹣1【解析】【解答】解:由题意得:m+2=1,解得:m=﹣1,故答案为:﹣1.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行解答即可.12.【答案】圆锥【考点】点、线、面、体【解析】【解答】解:绕一个直角三角形的一条直角边所在的直线旋转一周所成的几何体是圆锥.故答案为:圆锥.【分析】根据旋转体的定义,直角三角形绕其直角边为轴旋转一周,形成圆锥,可得答案.13.【答案】-2【考点】一元一次方程的定义【解析】【解答】解:由一元一次方程的特点得:|a|﹣1=1,a﹣2≠0,解得:a=﹣2.故答案为:﹣2.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).14.【答案】100【考点】折线统计图【解析】【解答】解:由纵坐标看出A市日平均气温是20℃的天数为2天,B市日平均气温是20℃的天数为10天,即m=2,n=10.n m=100,故答案为:100.【分析】根据观察纵坐标,可得m、n的值,根据乘方运算,可得答案.15.【答案】4;三棱锥或四面体【考点】认识立体图形【解析】【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.16.【答案】4【解析】【解答】解:∵关于x的方程3x﹣2a=7的解是5,∴3×5﹣2a=7,∴a=4.故答案为:4.【分析】把x=5代入方程3x﹣2a=7,求出a的值为多少即可.17.【答案】﹣1+,或﹣1﹣【考点】实数与数轴【解析】【解答】解:B点在A点的右边时,B点的坐标为﹣1+;B点在A点的左边时,B点的坐标为﹣1﹣;故答案为:﹣1+,或﹣1﹣.【分析】根据数轴上到一点距离相等的点有两个,位于该点的左右,根据有理数的加法,可得答案.18.【答案】9;7【考点】同类项、合并同类项【解析】【解答】解:∵3a x﹣2b14和﹣7a y b2y是同类项,∴,解得.故答案为:9,7.【分析】根据3a x﹣2b14和﹣7a y b2y是同类项,可以得到x、y的值,本题得以解决.三、解答题19.【答案】解:(1)y=﹣0.6x+48;(2)当x=35时,y=48﹣0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48﹣0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0时,则0=﹣0.6x+48,解得x=80(千米).故这车辆在中途不加油的情况下最远能行驶80千米.【考点】函数关系式【解析】【分析】(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值;(3)把y=0代入(1)中的函数式即可得到相应的x的值.20.【答案】解:(1)根据题意得出:x﹣8=x+4;(2)根据题意得出:x+x=3.【考点】一元一次方程的应用【解析】【分析】(1)根据题意某数为x,则x﹣8等于x+4,即可得出答案;(2)表示出某数的和某数的进而等于3得出答案即可.21.【答案】解:如图所示,故D<E<A<C<B.【考点】有理数大小比较【解析】【分析】先在数轴上表示出各数,在从左到右用“<”连接起来即可.22.【答案】解:设乙车速度为x千米/时,甲车速度为(x+20)千米/时,根据题意得40分钟=小时,(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【考点】一元一次方程的应用【解析】【分析】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x的值即可.23.【答案】解:根据题意画图如下:用“>”连接起来:3>3>1.6>1>0>﹣2>﹣2>﹣4.【考点】数轴,有理数大小比较【解析】【分析】先在数轴上表示出来,再根据右边的数总比左边的数大,即可得出答案.24.【答案】解:原式=9﹣×﹣6÷=9﹣﹣=9﹣21=﹣12.【考点】有理数的混合运算【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.四、综合题25.【答案】(1)解:第二条边长为:a+2b﹣(b﹣2)=(a+b+2)厘米,第三条边长为:a+b+2﹣3=(a+b﹣1)厘米,则周长为:a+2b+a+b+2+a+b﹣1=3a+4b+1(2)解:当a=2,b=3时,周长为:3×2+4×3+1=19【考点】代数式求值,整式的加减【解析】【分析】(1)根据题意列出代数式,第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,得到第二条边长是a+2b﹣(b﹣2);第三条边比第二条边短3厘米,得到第三条边长是a+2b﹣(b﹣2)-3;根据合并同类项求出三角形的周长即可;(2)把a,b的值直接代入,求出三角形的周长.第11 页共11 页。
2017-2018学年度第一学期七年级期末数学试卷(有答案)【精品】
第一学期七年级期末评价数 学 试 卷一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】 A .5个 B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】A .∠DOE 的度数不能确定B .∠AOD =12∠EOC C .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】 ①a -b >0; ②ab <0; ③11a b>; ④a 2>b 2. A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为元,根据题意,下面所列的方程正确的是……………………………【 】 A .·30%×80%=312 B .·30%=312×80% C .312×30%×80%=D .(1+30%)×80%=3127..下列等式变形正确的是…………………………………………………………………【 】A .如果s= 2ab,那么b=2s a B .如果12=6,那么=3 C .如果-3 =y-3,那么-y =0 D .如果m= my ,那么=y8.下列方程中,以=-1为解的方程是………………………………………………………【 】 A .13222xx +=-B .7(-1)=0C .4-7=5+7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒 ………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。
七年级上册郑州数学期末试卷试卷(word版含答案)
七年级上册郑州数学期末试卷试卷(word 版含答案)一、选择题1.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4 B .4m 2n+2mn 2=6m 2n C .2x ﹣12x =32x D .2a 2﹣a 2=22.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mnB .23m nC .3m nD .32m n3.2018年10月26日,南通市城市轨道交通2号线一期工程开工仪式在园林路站举行.南通市城市轨道交通2号线一期工程线路总长约为21000m ,将21000用科学记数法表示为( ) A .2.1×104B .2.1×105C .0.21×104D .0.21×1054.-5的相反数是( ) A .15B .±5C .5D .-155.12-的倒数是( ) A .B .C .12-D .126.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元B .145元C .150元D .160元 7.化简:35xy xy -的结果是( ) A .2B .2-C .2xyD .2xy -8.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a9.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=210.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2B .-1C .1D .211.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°12.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A13.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( ) A .-1 B .-2C .1D .215.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.一个角的的余角为30°15′,则这个角的补角的度数为________.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.18.计算: x(x-2y) =______________19.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__. 20.多项式32ab b +的次数是______.21.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.22.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.23.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).24.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________三、解答题26.已知平面上点,,,A B C D .按下列要求画出图形: (1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________; (3)画出从点A 到CD 的垂线段AH ,垂足为H .27.如图所示的几何体是由若干个相同的小正方体组成的.(1)填空:这个几何体由 个小正方体组成;(2)画出它的三个视图.(作图必须用黑色水笔描黑) 28.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 29.解下列方程:(1)()5123x x -=- (2)143123y y ---= 30. a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值 (2)若1※x=3,求x 的值 (3)若(-2)※x=-2+x ,求x 的值.31.如图1,∠MON =90°,点A ,B 分别在射线OM 、ON 上.将射线OA 绕点O 沿顺时针方向以每秒9°的速度旋转,同时射线OB 绕点O 沿顺时针方向以每秒3°的速度旋转(如图2).设旋转时间为t (0≤t ≤40,单位秒). (1)当t =8时,∠AOB = °;(2)在旋转过程中,当∠AOB =36°时,求t 的值.(3)在旋转过程中,当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t 的值.32.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由. 33.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.四、压轴题34.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.35.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.38.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.39.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 40.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.41.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?42.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 43.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】 【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论, 【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B 、4m 2n 与2mn 2不是同类项,不能合并,故选项B 不符合题意;C.、2x -12x =32x ,故选项C 符合题意; D 、2a 2-a 2=a 2,故选项D 不符合题意; 故选C . 【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.2.C解析:C 【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.3.A解析:A 【解析】 【分析】根据科学记数法的定义判断即可. 【详解】根据科学记数法表示方法:21000=2.1×104. 故选A. 【点睛】本题考查科学记数法的表示方法,熟记科学记数法的定义是解题关键.4.C解析:C 【解析】解:﹣5的相反数是5.故选C .5.A解析:A 【解析】 【分析】根据倒数的概念求解即可. 【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A6.B解析:B【解析】【分析】根据售价-进价=利润这一等量关系,列方程求解即可.【详解】解:设标价为x元,依题意得:0.8x-100=16,解得x=145.即标价为145元.故答案选B.【点睛】本题考查了一元一次方程解应用题,解决本题的关键是找到题目中蕴含的等量关系. 7.D解析:D【解析】【分析】根据整式的加减运算法则即可求解.【详解】35xy xy-=2xy-故选D.【点睛】此题主要考查整式的运算,解题的关键是熟知整式的加减运算法则.8.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D 、∵从数轴可知:-3<a <-2,∴3<1 –a<4,故本选项不符合题意;故选:C .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a <-2是解此题的关键.9.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.【详解】解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.10.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.11.B解析:B【解析】【分析】由折叠的性质及平角等于180°可求出∠BEH 的度数,由AB ∥CD ,利用“两直线平行,内错角相等”可求出∠DHE 的度数,再利用对顶角相等可求出∠CHG 的度数.【详解】由折叠的性质,可知:∠AEF =∠FEH .∵∠BEH =4∠AEF ,∠AEF +∠FEH +∠BEH =180°,∴∠AEF =16×180°=30°,∠BEH =4∠AEF =120°. ∵AB ∥CD ,∴∠DHE =∠BEH =120°,∴∠CHG =∠DHE =120°.故选:B .【点睛】 本题考查了四边形的折叠问题,掌握折叠的性质以及平行的性质是解题的关键.12.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.13.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D 中∠1和∠2之和为90°,互为余角.故选D .【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.14.C解析:C【解析】【分析】根据同类项的定义即可求出m 和n 的值,然后代入即可.【详解】解:∵关于x y 、的单项式33n x y -与22m x y 的和是单项式∴33n x y -与22m x y 是同类项,∴m=3,n=2将m=3,n=2代入()nm n -中,得原式=()2312=-故选C .【点睛】此题考查的是同类项的定义,根据同类项的定义求各字母指数中的参数是解决此题的关键. 15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x −1)−2(2x +3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题16.120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为1解析:1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则.解析:x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:2(2)2x x y x xy -=-;故答案为:22x xy -.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 19.﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案.【详解】∵2amb4与-3ab2n 是同类项,∴m=1,2n=4,解得:m=1,n=2,则m ﹣n=1﹣2=﹣1.解析:﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案.【详解】∵2a m b 4与-3ab 2n 是同类项,∴m =1,2n =4,解得:m =1,n =2,则m ﹣n =1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查了同类项,正确把握同类项的定义是解题的关键.20.3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式的次数是3;故答案为:3.本题考查了多项式,正确把握多项式的次数定义是解题关键.解析:3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式32ab b 的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.21.两点之间,线段最短【解析】【分析】根据线段的性质,可得答案.【详解】连接AB ,则线段AB 与l 的交点P 即为抽水站的位置.其理由是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛解析:两点之间,线段最短【解析】【分析】根据线段的性质,可得答案.【详解】连接AB ,则线段AB 与l 的交点P 即为抽水站的位置.其理由是:两点之间,线段最短. 故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质,利用线段的性质是解题关键.22.25×108【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:25×108【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.23.<.【解析】【分析】先化简各值然后再比较大小.【详解】,,∵-0.4<0.4,∴<.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4, ∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.24.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 25.爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上解析:爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上的字.理解正方体的平面展开图的特点,是解决此题的关键.三、解答题26.(1)详见解析;(2)=,对顶角相等;(3)详见解析.【解析】【分析】(1)根据直线、射线的定义画出图形即可;(2)根据对顶角相等即可解决问题;(3)根据垂线段作法可作出垂线;【详解】(1)画直线AC ,射线BD ,交于点O ,图形如下图所示;(2)AOD ∠=BOC ∠,理由是对顶角相等,故答案为:=,对顶角相等;(3)画出从点A 到CD 的,垂足为H ,即垂线段AH 即为所求.【点睛】本题考查直线、射线、对顶角、垂线段等知识,解题关键是熟练掌握基本知识,属于中考常考题型.27.(1)7个,(2)图形见详解【解析】【分析】(1)前排有2个,后排有5个,据此解题,(2)主视图要将几何体从前往后压缩,使看到的面全部落在一个竖立的平面内;左视图要从正面的左面看,要正对着几何体,视线要与放置几何体的平面平行,并合理想象;俯视图要从正上方往下看,每一竖列的图形最顶的一个面,它们无高低之分使看到的面都落在同一个平面内.【详解】解:(1)前排有2个,后排有5个,∴这个几何体由7个小正方体组成,(2)如图【点睛】本题考查了图形的三视图,属于简单题,熟悉三视图的画法是解题关键.28.(1)①答案见解析;②答案见解析;③答案见解析;④答案见解析;(2)①垂直;②<,垂线段最短.【解析】【分析】(1)①画射线AC即可;②画线段BC即可;③过点B作AC的平行线BD即可;④过B作BE⊥AC于E即可;(2)①根据平行线的性质得到BD⊥BE;②根据垂线段最短即可得出结论.【详解】(1)①如图所示,射线AC就是所求图形;②如图所示,线段BC就是所求图形;③如图所示,直线BD就是所求图形;④如图所示,线段BE就是所求图形.(2)①∵BD∥AC,∠BEC=90°,∴∠DBE=180°-∠BEC=180°-90°=90°,∴BD⊥BE.故答案为:垂直.②∵BE⊥AC,∴BE<BC.理由如下:垂线段最短.故答案为:<,垂线段最短.【点睛】本题考查了作图﹣复杂作图、垂线、点到直线的距离、垂线段最短,解答本题的关键是充分利用网格.29.(1)1x =;(2)35y =-【解析】【分析】(1)先去括号,再移项合并同类项,系数化为1即可;(2)方程两边同时乘以6,先去分母再依次计算即可.【详解】解:(1)5162x x -=- 77x =1x =(2)33866y y --+=53y -=35y =- 【点睛】本题考查了解一元一次方程,熟练掌握一元一次方程的解法是解题的关键.30.(1)-8;(2)1;(3)65. 【解析】【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x ,(-2)2+2×(-2)x=-2+x ,4-4x=-2+x ,-4x-x=-2-4,-5x=-6, x=65. 【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.31.(1)42;(2)9t =或21t =;(3)t =7.5或12或30.【解析】【分析】(1)当t =8时,OA 转过的角度为8×9°=72°,OB 转过的角度为8×3°=24°, 再计算∠AOB 的值即可;(2)根据题意列出方程(903)936t t +-=,在解方程即可的解;(3)当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,有3种情况:ON 平分∠AOB 、OA 平分∠BON 、OB 平分∠AON ,分别根据每种情况列方程求解即可.【详解】(1) 当t =8时,OA 转过的角度为8×9°=72°,OB 转过的角度为8×3°=24°, ∴∠AOB=∠AON+∠NOB=90°-72°+24°=42°;(2)根据题意可得,(903)936t t +-=,解得9t =或21t =;(3) 当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,有以下3种情形:①当ON 平分∠AOB 时,3t =90-9t ,∴t =7.5;②当OA 平分∠BON 时,3t =2(9t -90),∴t =12;③当OB 平分∠AON 时,9t -90=2×3t ,∴t =30 ;综上,t 的值为7.5、12或30.【点睛】本题考查一元一次方程的应用,解题的关键是根据ON 平分不同的角时进行分类讨论. 32.(1) 51°48′,(2). OG 是EOB ∠的平分线,理由详见解析.【解析】【分析】(1)根据平角,直角的性质,解出∠BOG 的度数即可.(2)根据角平分线的性质算出答案即可.【详解】(1)由题意得:∠AOC=38°12′,∠COG=90°,∴∠BOG=∠AOB-∠AOC-∠COG=180°-38°12′-90°=51°48′.(2) OG 是∠EOB 的平分线,理由如下:由题意得:∠BOG=90°-∠AOC,∠EOG=90°-∠COE,∵OC 是∠AOE 的平分线,∴∠AOC=∠COE∴∠BOG=90°-∠AOC=90°-∠COE=∠EOG∴OG 是∠EOB 的平分线.【点睛】本题考查角度的计算,关键在于对角度认识及角度基础运算.33.(1)x=4;(2)x=2.【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项得:-5x+3x=-5-3合并得:﹣2x=﹣8,解得:x=4;(2)去括号得:4x﹣3+3x=11,移项得:4x+3x=11+3移项合并得:7x=14,解得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.四、压轴题34.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A、B两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a﹣6|+(b+12)2=0,∴a﹣6=0,b+12=0,∴a=6,b=﹣12,∴AB=6﹣(﹣12)=18;(2)设点A、B同时出发,运动时间为t秒,点A、B能够重合时,可分两种情况:①若相向而行,则2t+t=18,解得t=6;②若同时向右而行,则2t﹣t=18,解得t=18.综上所述,经过6或18秒后,点A、B重合;(3)在(2)的条件下,即点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动,设点A、B同时出发,运动时间为t秒,点A、B两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t )-(-12-2t )=20,解得:t=2;②若两点均向右,则(-12+2t )-(6+t )=20,解得:t=38;综上,经过2或38秒时,A 、B 相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用. 35.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,∴点A 表示的数为20,∴数轴上表示如下:AB 之间的距离为:20-(-10)=30;(2)∵线段OB 上有点C 且6BC =,∴点C 表示的数为-4,∵2PB PC =,设点P 表示的数为x ,则1024x x +=+,解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P 第一次移动后表示的数为:-1,点P 第二次移动后表示的数为:-1+3=2,点P 第三次移动后表示的数为:-1+3-5=-3,…,∴点P 第n 次移动后表示的数为(-1)n •n ,∵点A 表示20,点B 表示-10,当n=20时,(-1)n •n=20;当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.36.(1)2;(2)1cm ;(3)910秒或116秒 【解析】【分析】(1)将x =﹣3代入原方程即可求解;(2)根据题意作出示意图,点C 为线段AB 上靠近A 点的三等分点,根据线段的和与差关系即可求解;(3)求出D 和B 表示的数,然后设经过x 秒后有PD =2QD ,用x 表示P 和Q 表示的数,然后分两种情况①当点D 在PQ 之间时,②当点Q 在PD 之间时讨论即可求解.【详解】(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k ,解得:k =2;故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm ,∴AC =2cm ,BC =4cm ,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910②当点Q 在PD 之间时,∵PD =2QD ,。
人教版2017~2018学年七年级上期末考试数学试题及答案
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
河南省郑州市七年级(上)期末数学试卷
2017-2018学年河南省郑州市七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,有一个正方体,乐乐用了一个平面去截这个正方体,截面形状不可能是()A.B.C.D.2.(3分)乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.0.13×108B.1.3×107C.1.3×108D.1.3×109 3.(3分)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段4.(3分)乐乐对统计产生了浓厚的兴趣,他想用“普查”方式调查一些事件,那么下面适合用“普查”方式进行调查的事件是()A.调查某品牌手机的市场占有率B.了解全国中学生的节水意识C.调查某型号炮弹的射程D.了解自己班同学早餐是否有喝牛奶的习惯5.(3分)乐乐在学习绝对值时,发现“||”像是一个神奇的箱子;当负数钻进这个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有发生变化,乐乐把﹣(﹣3)2﹣4放进了这个神奇的箱子,发现|﹣(﹣3)2﹣4|的结果是()A.13B.5C.﹣13D.106.(3分)乐乐把报纸上看到甲、乙两公司2013年﹣2017年的销售收入情况如图所示:关于两家公司2013﹣2017年的销售收入的增长速度,下列说法正确的是()A.甲快B.乙快C.一样快D.无法比较7.(3分)乐乐的班级在操场上排队列,从男生队伍中调出5名加入到女生队伍,则两个队伍的人数正好相等,设男生有x人,则女生人数为()A.x+5B.x﹣10C.x+10D.x﹣58.(3分)学习了角的常用度量单位后,乐乐发现度、分、秒之间可以相互换算,乐乐计算出某一时刻闹钟的时针和分针的夹角是108000″,此时这个夹角等于()A.5°B.15°C.30°D.60°9.(3分)乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm的圆柱,则圆柱的高变成了()A.7.5cm B.6.25cm C.5cm D.4.75cm 10.(3分)如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1B.0C.1D.3二、填空题(每小题3分,共15分)三、简答题(共55分)16.(6分)乐乐和同学们研究“从三个方向看物体的形状”.(1)图1中几何体是由几个相同的小立方块搭成的,请画出从正面看到的该几何体的形状图;(2)图2是由几个相同的小立方块组成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体从左面看到的形状图.17.(7分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:22.(10分)乐乐家距离学校2800米,一天早晨,他以80米/分的速度上学,5分钟后乐乐的妈妈发现他忘了带数学书,妈妈立即以180米/分的速度去追乐乐,并且在途中追上了他.(1)妈妈追上乐乐用了多长时间?(2)放学后乐乐仍以80米/分的速度回家,出发10分钟时,同学英树以280米/分的速度从学校出发骑自行车回家,乐乐家和英树家是邻居(两家距离忽略不计,两人路上互不等待,两人到家后不再外出),请问英树出发多长时间,两人相距300米?2017-2018学年河南省郑州市七年级(上)期末数学试卷参考答案一、选择题(每小题3分,共30分)1.D;2.C;3.B;4.D;5.A;6.A;7.B;8.C;9.B;10.C;二、填空题(每小题3分,共15分)11.25;12.两点之间线段最短;13.1500;14.28;15.54或14或4;三、简答题(共55分)16.;17.;18.;19.60;72;20.n﹣3;n (n﹣3);21.50°;22.;。
郑州市七年级(上)期末数学试卷含答案
七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.用科学记数法表示30300,正确的是()A. 3.03×104B. 30.3×103C. 303×102D. 3.0342.下列调查中,适宜采用普查方式的是()A. 了解一批圆珠笔芯的使用寿命B. 了解郑州市在校初中生每周的运动时间C. 了解郑州市居民每月平均用水量D. 了解中牟五初中七(1)班学生的视力情况3.下列各式:①2x=1;②x=y;③-3-3=-6;④x+3x;⑤x-1=2x-3中,一元一次方程有()A. 1个B. 2个C. 3个D. 4个4.如图所示,半圆的直径为d,则图中阴影部分的面积为()A. B.C. D.5.如图是某几何体的表面展开图,则这个几何体的顶点有()A. 4个B. 6个C. 8个D. 10个6.某次足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.某支足球队共打了14场比赛,负5场,共得19分,那么在这次比赛中这支足球队胜了()A. 6场B. 5场C. 4场D. 3场7.下列说法中正确的是()A. 2是单项式B. 3πr2的系数是3C. 的次数是1D. 多项式5a2-6ab+12是四次三项式8.下列各数按从小到大的顺序排列正确的是()A. -0.54<(-0.2)3<(-0.3)4B. -0.54<(-0.3)4<(-0.2)3C. (-0.3)4<-0.54<(-0.2)3D. (-0.2)3<-0.54<(-0.3)49.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A. 20°或50°B. 20°或60°C. 30°或50°D. 30°或60°10.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:第1行1第2行-2 3第3行-4 5-6第4行7-8 9-10第5行11-12 13-14 15…按照上述规律排下去,那么第10行从左边数第5个数等于()A. 50B. -50C. 60D. -60二、填空题(本大题共5小题,共15.0分)11.按照“神舟”号飞船环境控制与生命保障分系统的设计指标,“神舟”六号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为______ ℃.12.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有______个面,______条棱,______个顶点.13.某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以统一标准划分成“不及格”“及格”和“优秀”三个等级.为了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次成绩的等级,并绘制成如图所示的统计图,请结合图中信息估计该校整个八年级学生中,培训后考试成绩的等级为“及格”和“优秀”的学生共有______名.14.早睡早起习惯好,小明养成了晚上21:00左右睡觉的好习惯.某天晚上小明睡觉前看了一下时间21:10,此时时钟上的分针与时针所成的角是______度.15.按照如图所示的操作步骤,若输入的值为5,则输出的值为______.三、计算题(本大题共1小题,共11.0分)16.(1)计算:;(2)计算:1-(-8)÷(-2)2+32×(-1)2018.四、解答题(本大题共7小题,共64.0分)17.解方程:x-=.18.已知:|x|=2y,y=,且xy<0,求代数式4(2x2y-xy2)-2(2xy2+3x2y)的值.19.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.20.在一个底面直径为5cm,高为16cm圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6cm,高为10cm的圆柱形玻璃杯中,能否完全装下?若装不下,求瓶内水面还有多高?若未能装满,求玻璃杯内水面离杯口的距离?21.某市一中学开通了空中教育互联网在线学习平台,为了了解学生使用情况,学校学生会干部把该平台使用情况分为A(经常使用)、B(偶尔使用)、C(不使用)三种类型,并设计了调查问卷,先后对该校七(1)班和七(2)班全体同学进行了问卷调查,并根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题.(1)此次调查该校七(1)班A类型有______人,七(2)班A类型有______人;(2)求此次该校被调查的总人数.(3)求扇形统计图中代表C类型的扇形的圆心角度数,并补全折线统计图.(4)若该校七年级有650人,请你估计七年级B类型的人数.22.探索规律:观察下面由组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请计算1+3+5+7+9+11=______;(2)请计算1+3+5+7+9+…+19=______;(3)请计算1+3+5+7+9+…+(2n-1)=______;(4)请用上述规律计算:21+23+25+ (99)23.如图,已知数轴上A,B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A,B两点重合),M为PA的中点,N 为PB的中点,当点P在射线BA上运动时,MN的长度是否发生改变?若不变,请你画出图形,并求出线段的长度;若改变,请说明理由.答案和解析1.【答案】A【解析】解:30300用科学记数法表示为3.03×104,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:A、了解一批圆珠笔芯的使用寿命,调查具有破坏性,适合抽样调查,故A错误;B、了解郑州市在校初中生每周的运动时间,调查范围广适合抽样调查,故B错误;C、了解郑州市居民每月平均用水量,调查范围广适合抽样调查,故C错误;D、了解中牟五初中七(1)班学生的视力情况,适合普查,故D正确;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】B【解析】解:①2x=1、⑤x-1=2x-3符合一元一次方程的定义,故正确;②x=y中含有两个未知数,属于二元一次方程,故错误;③-3-3=-6不是方程,故错误;④x+3x是代数式,不是等式,不是方程,故错误;故选:B.根据一元一次方程的定义判断即可.本题考查了一元一次方程的定义的应用,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.【答案】C【解析】解:阴影部分面积=•π()2=πd2.故选:C.观察发现:图中阴影部分的面积即为半圆面积的一半,即圆面积的四分之一.本题考查了扇形的面积,正确的识别图形是解题的关键.5.【答案】B【解析】解:由图可知,这是一个三棱柱的表面展开图,它的顶点数是6个.故选:B.由图可知,这是一个三棱柱的表面展开图,据此可知它的顶点数.此题考查几何体的展开图,注意培养空间想象能力.6.【答案】B【解析】解:设这个足球队共胜了x场,则平了(14-5-x)场,由题意得出:3x+(14-5-x)=19解得:x=5,答:这个足球队胜了5场.故选:B.先设出未知数,然后根据题中的等量关系列方程求解.本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,从而设共胜了x场,列方程解答即可.此题主要考查了一元一次方程的应用,此题从实际出发,有利于锻炼学生分析能力,提高学习兴趣.特别是要掌握总场数=胜的场数+平的场数+负的场数.7.【答案】A【解析】【分析】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式.根据单项式和多项式的概念逐一求解可得.【解答】解:A.2是单项式,此选项正确;B.3πr2的系数是3π,此选项错误;C.的次数是3,此选项错误;D.多项式5a2-6ab+12是二次三项式,此选项错误;故选A.8.【答案】A【解析】解:A、-0.54<(-0.2)3<(-0.3)4,正确,B、-0.54<(-0.2)3<(-0.3)4,错误,C、-0.54<(-0.2)3<(-0.3)4,错误,D、-0.54<(-0.2)3<(-0.3)4,错误,故选:A.根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.本题考查了有理数的大小比较法则的应用,注意:有理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.9.【答案】C【解析】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;故选:C.分为两种情况,当∠AOB在∠AOC内部时,当∠AOB在∠AOC外部时,分别求出∠AOM 和∠AOD度数,即可求出答案.本题考查了角平分线定义的应用,用了分类讨论思想.10.【答案】B【解析】解:第n行有n个数,此行第一个数的绝对值为+1,且奇数为正,偶数为负.所以从左边数第5个数等于-50.故选:B.分析可得:第n行有n个数,此行第一个数的绝对值为+1;且奇数为正,偶数为负;故第10行从左边数第1个数绝对值为46,故这个数为-46,那么从左边数第5个数等于-50.本题考查学生分析数据,总结、归纳数据规律的能力,要求学生要有一定的解题技巧.解题的关键是分析得到第n行有n个数,此行第一个数的绝对值为+1,且奇数为正,偶数为负.11.【答案】25【解析】解:返回舱的最高温度为:21+4=25℃.故答案为:25.根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃.±4℃指的是比21℃高4℃或低4℃.12.【答案】7;12;7【解析】解:长方体截去一角边长一个如图的新几何体,这个新几何体有7个面,有12条棱,7个顶点.故答案为7,12,7.新几何体与原长方体比较,增加一个面,棱的条数没有变化,顶点减少一个.本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.13.【答案】240【解析】解:抽到的考生培训后的及格与优秀率为(16+8)÷32=75%,由此,可以估计八年级320名学生培训后的及格与优秀率为75%.所以,八年级320名学生培训后的及格与优秀人数为75%×320=240名.故答案为:240先算出样本中“及格”与“优秀”的学生占32的百分比,然后乘以总数320即可.本题考查用样本估计总体及条形统计图的知识,解题的关键是能够仔细读图并从中整理出进一步解题的信息.学会用样本估计整体.14.【答案】145【解析】解:21点时分针与时针所成的角是90°,6°×10=60°,0.5°×10=5°,所以,21:10分针与时针所成的角为:90°+60°-5°=145°.故答案是:145.根据时针每分钟转0.5度,分针每分钟转6度计算即可.本题考查了钟面角的问题,掌握时针每分钟转0.5度,分针每分钟转6度是解题的关键.15.【答案】64【解析】解:把x=5代入(x2-9)×4=4×(25-9)=64,故答案为:64由程序框图将x=5代入(x2-9)×4计算可得.此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:(1)=-4-6+4-3=-9;(2)1-(-8)÷(-2)2+32×(-1)2018=1+8÷4+9×1=1+2+9=12.【解析】(1)根据乘法分配律和有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.【答案】解:去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项得,6x+2x-x=5+2,合并同类项,得7x=7,系数化为1,得x=1.【解析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.18.【答案】解:∵|x|=2y,y=,且xy<0,∴x=-1,4(2x2y-xy2)-2(2xy2+3x2y)=8x2y-4xy2-4xy2-6x2y=2x2y-8xy2=2×1×-8×(-1)×()2=1+2=3.【解析】根据题意求出x,根据整式的加减混合运算法则把原式化简,代入计算即可.本题考查的是整式的化简求值,掌握绝对值的性质、整式的加减混合运算法则是解题的关键.19.【答案】解:(1)如图所示:(2)如图所示:【解析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.【答案】解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2×16,解得x=,∵>10,∴不能完全装下.-10=(cm),16×=1.6(cm),答:装不下,那么瓶内水面还有1.6cm.【解析】设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据水的体积不变和圆柱的条件公式得到π•()2•x=π•()2×16,解得x=,然后把与10进行大小比较即可判断能否完全装下.本题考查了圆柱:圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长;圆柱的侧面积=底面圆的周长×高;圆柱的表面积=上下底面面积+侧面积;圆柱的体积=底面积×高.21.【答案】14 18【解析】解:(1)此次调查该校七(1)班A类型有14人;七(2)班A类型有18人;故答案为:14,18;(2)由扇形统计图知B类型人数所占比例为58%,从折线图知B类型总人数=26+32=58人,所以此次被调查的学生总人数=58÷58%=100人;(3)由折线图知A人数=18+14=32人,故A的比例为32÷100=32%,所以C类比例=1-58%-32%=10%,所以类型C的扇形的圆心角=360°×10%=36°,C类人数=10%×100-2=8人,折线图如下:(4)根据题意得:650×58%=377(人),答:估计七年级B类型的人数有377人.(1)根据折线统计图给出的数据直接解答即可;(2)先由折线统计图得到偶尔使用的学生有58人,再由扇形统计图得到了解很少的学生所占的百分比,然后用58除以这个百分比即可得到接受问卷调查的学生人数;(3)根据折线统计图给出的数据先求出A类型所占的比例,从而求出C类型所占的比例,再乘以360°即可得到C部分所对应扇形的圆心角的大小以及C类的人数,从而补全折线统计图;(4)用该校七年级的总人数乘以七年级B类型所占的百分比即可得出答案.本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图和用样本估计总体.22.【答案】(1)36(2)100(3)n2(4)21+23+25+…+99=(1+3+5+...+97+99)-(1+3+5+ (19)=502-102=2500-100=2400.【解析】解:(1)1+3+5+7+9+11=62=36;(2)1+3+5+7+9+…+19=102=100;(3)1+3+5+7+9+…+(2n-1)=n2;(4)21+23+25+…+99=(1+3+5+...+97+99)-(1+3+5+ (19)=502-102=2500-100=2400.(1)(2)(3)根据已知得出连续奇数的和等于数字个数的平方,得出答案即可;(4)利用以上已知条件得出21+23+25+…+99=(1+3+5+…+97+99)-(1+3+5+…+19),利用得出规律求出即可.此题主要考查了数字变化规律,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目的难点.23.【答案】解:(1)∵A,B两点所表示的数分别为-2和8,∴OA=2,OB=8∴AB=OA+OB=10;(2)线段MN的长度不发生变化,其值为5.分下面两种情况:①当点P在A、B两点之间运动时(如图甲).MN=MP+NP=PA+PB=(PA+PB)=5②当点P在点A的左侧运动时(如图乙).MN=NP-MP=BP-AP=AB=5.综上所述,线段MN的长度不发生变化,其值为5.【解析】(1)根据数轴与绝对值知,AB=|OB|+|OA|;(2)分两种情况进行讨论:①当点P在A、B两点之间运动时;②当点P在点A的左侧运动时.本题主要考查了数轴,两点间的距离,解答此题时,既采用了形象、直观的“数形结合”的数学思想,又利用了不至于漏解的分类讨论的数学思想.。
2017-2018学年七年级上学期数学期末考试试卷及答案
参考答案:一、选择题(共10个小题,每小题3分,共30分) 1. A 2. C3. B4. A5. D6. A7. D8. C9. A10. A二、填空题(共10个小题,每小题2分,共20分。
其中第11,12题,填对1个答案1分)11. -2,-1 12. 2±13. 2 14. 4,-115. 111+m16. 29°20′,150°40′17. 3-a18. 10519. 120. 41三、解答题(共50分)21. 计算题(1,2小题各3分,3,4小题各4分,共14分) 解:(1)原式=-4+1-3(2分) =-6(3分)(2)原式=-3-(-2-1)(1分) =-3+3(2分) =0(3分)(3)()()3425215122142+-⨯-⎪⎭⎫⎝⎛⨯-÷-解:()()316151241432+-⨯-⨯-÷-=(1分)()3161512414132+-⨯-⨯⎪⎭⎫ ⎝⎛-⨯-=(2分)=2-12(3分) =-10(4分)(4)⎪⎭⎫⎝⎛÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+--3659261125187解:⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛++--=3659261125187(1分)⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛++--=5369261125187(2分) 5369253661536125536187⨯+⨯+⨯-⨯-=(3分)58563514++--=35856514-⎪⎭⎫ ⎝⎛++-= 3-=(4分)22. 化简(每小题3分,共6分)(1)解:原式b a b a 121518422--+=(2分)b a 6112+-=(3分)(2)解:原式2433632323+---+=x x x x (2分) 122-=x (3分)23. 先化简,再求值(本题4分)解:()[]xy y x xy y x y x ----2222323[]xy y x xy y x y x -+--=2223623(1分)()xy y x y x 75322--=(2分) xy y x y x 75322+-= xy y x 722+-=(3分)当1-=x ,2-=y 时,原式18722=+-=xy y x (4分)24. 解方程(每小题4分,共8分) (1)()1352-=+x x 解:去括号,得3352-=+x x (1分)移项,得5332--=-x x (2分)合并同类项,得8-=-x (3分)系数化为1,得8=x (4分)(2)3122413--=+y y 解:去分母,得 ()()12424133--=+y y (1分)去括号,得482439+-=+y y (2分)移项,得342489-+=+y y (3分)合并同类项,得 2517=y 系数化为1,得1725=y (4分) 25. (本题5分) (1)图略(1分) (2)图略(3分) (3)图略(4分)PA 与BK 的和大于线段AB 。
(完整word版)郑州2017七年级上期末试卷答案
3.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对下图展开了激烈的讨论,下列说法不正确的是()
A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段
郑州市2017—2018学年上期期末考试
七年级数学
一.选择题(共
1.如图,有一个正方体,乐乐用一个平面去截这个正方体,截面形状不可能是()
A.B.C.D.
2.乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130
000000kg的煤所产生的能量,将130000000科学记数法表示为()
A.
B.
6.2.75cm
10.如图,乐乐将3,2,1,0,1,2,3,4,5
分别填入九个空格内,使每行、每列、每条
对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则abc的值为()
A.
B.0C.1D.3
二.填空题(共
11.冬季供暖后,乐乐发现室内的温度为20C,此时冰箱冷冻室的温度为5C,则室内的温度比冷冻室温度高C.
的妈妈发现他忘了带数学书,妈妈立即以180米/分的速度去追乐乐,并且在途中追上了他.
(1)妈妈追上乐乐用了多长时间?
(2)放学后乐乐仍以80米/分的速度回家,出发10分钟时,同学英树以280米/分的速度从学校出发骑自行车回家,乐乐家和英树家是邻居(两家距离忽略不计,两人路上互不等待,两人到家后不再外出).请问英树出发多长时间,两人相距300米?
4.乐乐对统计产生了浓厚的兴趣,他想用“普查”方式调查一些事件,那么下面适合用“普查”
河南省郑州市七年级(上)期末数学考试
河南省郑州市七年级(上)期末数学考试————————————————————————————————作者:————————————————————————————————日期:2017-2018学年河南省郑州市七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,有一个正方体,乐乐用了一个平面去截这个正方体,截面形状不可能是()A.B.C.D.2.(3分)乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.0.13×108B.1.3×107C.1.3×108D.1.3×109 3.(3分)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段4.(3分)乐乐对统计产生了浓厚的兴趣,他想用“普查”方式调查一些事件,那么下面适合用“普查”方式进行调查的事件是()A.调查某品牌手机的市场占有率B.了解全国中学生的节水意识C.调查某型号炮弹的射程D.了解自己班同学早餐是否有喝牛奶的习惯5.(3分)乐乐在学习绝对值时,发现“||”像是一个神奇的箱子;当负数钻进这个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有发生变化,乐乐把﹣(﹣3)2﹣4放进了这个神奇的箱子,发现|﹣(﹣3)2﹣4|的结果是()A.13B.5C.﹣13D.106.(3分)乐乐把报纸上看到甲、乙两公司2013年﹣2017年的销售收入情况如图所示:关于两家公司2013﹣2017年的销售收入的增长速度,下列说法正确的是()A.甲快B.乙快C.一样快D.无法比较7.(3分)乐乐的班级在操场上排队列,从男生队伍中调出5名加入到女生队伍,则两个队伍的人数正好相等,设男生有x人,则女生人数为()A.x+5B.x﹣10C.x+10D.x﹣58.(3分)学习了角的常用度量单位后,乐乐发现度、分、秒之间可以相互换算,乐乐计算出某一时刻闹钟的时针和分针的夹角是108000″,此时这个夹角等于()A.5°B.15°C.30°D.60°9.(3分)乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm的圆柱,则圆柱的高变成了()A.7.5cm B.6.25cm C.5cm D.4.75cm 10.(3分)如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1B.0C.1D.3二、填空题(每小题3分,共15分)三、简答题(共55分)16.(6分)乐乐和同学们研究“从三个方向看物体的形状”.(1)图1中几何体是由几个相同的小立方块搭成的,请画出从正面看到的该几何体的形状图;(2)图2是由几个相同的小立方块组成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体从左面看到的形状图.17.(7分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:22.(10分)乐乐家距离学校2800米,一天早晨,他以80米/分的速度上学,5分钟后乐乐的妈妈发现他忘了带数学书,妈妈立即以180米/分的速度去追乐乐,并且在途中追上了他.(1)妈妈追上乐乐用了多长时间?(2)放学后乐乐仍以80米/分的速度回家,出发10分钟时,同学英树以280米/分的速度从学校出发骑自行车回家,乐乐家和英树家是邻居(两家距离忽略不计,两人路上互不等待,两人到家后不再外出),请问英树出发多长时间,两人相距300米?2017-2018学年河南省郑州市七年级(上)期末数学试卷参考答案一、选择题(每小题3分,共30分)1.D;2.C;3.B;4.D;5.A;6.A;7.B;8.C;9.B;10.C;二、填空题(每小题3分,共15分)11.25;12.两点之间线段最短;13.1500;14.28;15.54或14或4;三、简答题(共55分)16.;17.;18.;19.60;72;20.n﹣3;n (n﹣3);21.50°;22.;。
2017-2018学年七年级上学期期末考试数学试题(20201014101326)
)
C. —2-(- 2)=0
D. - 1+(- 1)=0
A. a-( b+ c) =a- b+ c
B. x 2 y 1 x 2 y 1 C.5x 3x 2
D. 2m2n- 3nm 2=-m 2n
5. 如果 4x2 m 2 yn 1 与 3x3 m 1 y3n 5 是同类项,则 m- n 的值为(
)
A. 2 B. 1 C. 0 D. - 1
认为
说的对 .
14. 若 m 1 (n 2)2
xm 0 ,则关于 x 的方程
xn
的解为
.
2
3
15. 一个角的余角比它的补角的
1
还少
200,则这个角是
.
3
16. 下列说法: 若 a 与 b 互为相反数,则 a+b=0; 若 ab=1,则 a 与 b 互为倒数; 两点之间,直
0
线最短;④若∠ α+∠ β=90 ,且 β与 γ 互余,则∠ α与∠ γ 互余;⑤若∠ α为锐角,且∠ α与∠ β互
( 6 分)
(2)原式 = 4 1 1 6 9 2 32
=
4237
= 6 10
=4
20、解( 1)去括号得: 2x 6x 3 16 x 1
移项得: 2x 6x x 16 1 3
合拼同类项得: 9 x 18
系数化为 1 得: x 2
(3)去分母得: x 7 2 5x 8 4
去括号得: x 7 10x 16 4 移项得: x 10x 4 7 16 合并同类项得: 9x 27
x 千米, 那么列出的方
程应是(
)
xx
A.
10
54
二、填空题(每小题
2017-2018学年河南省郑州市七年级(上)期末数学试卷
2017-2018学年河南省郑州市七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,有一个正方体,乐乐用了一个平面去截这个正方体,截面形状不可能是()A.B.C.D.2.(3分)乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.0.13×108B.1.3×107C.1.3×108D.1.3×1093.(3分)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段4.(3分)乐乐对统计产生了浓厚的兴趣,他想用“普查”方式调查一些事件,那么下面适合用“普查”方式进行调查的事件是()A.调查某品牌手机的市场占有率B.了解全国中学生的节水意识C.调查某型号炮弹的射程D.了解自己班同学早餐是否有喝牛奶的习惯5.(3分)乐乐在学习绝对值时,发现“||”像是一个神奇的箱子;当负数钻进这个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有发生变化,乐乐把﹣(﹣3)2﹣4放进了这个神奇的箱子,发现|﹣(﹣3)2﹣4|的结果是()A.13B.5C.﹣13D.106.(3分)乐乐把报纸上看到甲、乙两公司2013年﹣2017年的销售收入情况如图所示:关于两家公司2013﹣2017年的销售收入的增长速度,下列说法正确的是()A.甲快B.乙快C.一样快D.无法比较7.(3分)乐乐的班级在操场上排队列,从男生队伍中调出5名加入到女生队伍,则两个队伍的人数正好相等,设男生有x人,则女生人数为()A.x+5B.x﹣10C.x+10D.x﹣58.(3分)学习了角的常用度量单位后,乐乐发现度、分、秒之间可以相互换算,乐乐计算出某一时刻闹钟的时针和分针的夹角是108000″,此时这个夹角等于()A.5°B.15°C.30°D.60°9.(3分)乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm的圆柱,则圆柱的高变成了()A.7.5cm B.6.25cm C.5cm D.4.75cm10.(3分)如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c 的值为()A.﹣1B.0C.1D.3二、填空题(每小题3分,共15分)11.(3分)冬季供暖后,乐乐发现室内的温度为20°,此时冰箱冷冻室的温度为﹣5℃,则室内的温度比冷冻室的温度高℃12.(3分)如图,乐乐用剪刀沿直线将一片平整的树叶减掉一部分,发现剩下树叶的周长比原周长小,能正确解释这一现象的数学依据是.13.(3分)乐乐家附近的商场购进一批服装,每件进价1000元,计划在春节期间开展促销活动,按照标价的7折销售,若想打折后销售每件服装的利润为5%,则该服装每件的标价应为元.14.(3分)如图.乐乐班级举行“新春美食会”,同学们如图摆放桌椅,图(1)表示1张餐桌和6把椅子(三角形表示餐桌,每个小圆表示一把椅子),图(2)表示2张餐桌和8把椅子,图(3)表示3张餐桌和10把椅子,……;按照这种方式摆放12张餐桌,需要把椅子.15.(3分)乐乐按如图所示的程序进行计算,如果输入x的值是正整数,输出结果是214,那么所有满足条件的x的值为.三、简答题(共55分)16.(6分)乐乐和同学们研究“从三个方向看物体的形状”.(1)图1中几何体是由几个相同的小立方块搭成的,请画出从正面看到的该几何体的形状图;(2)图2是由几个相同的小立方块组成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体从左面看到的形状图.17.(7分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:14(﹣4x 2+2x ﹣8)﹣(12x ﹣2),其中x =12 18.(7分)乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称 每股净赚(元)股数天河﹣22 500 北斗+1.5 1000 白马﹣4 1000 海湖 ﹣(﹣2) 500 19.(8分)为了解我市的空气质量情况,乐乐和环保兴趣小组的同学们从环境监测网随机抽取了若干天气质量情况作为样本,绘制了如图所示的统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)被抽取的天数是 天,扇形统计图中表示空气质量为“优”的扇形的圆心角是 度;(2)请补全条形统计图;(3)请根据上面的数据,估计我市这一年(365天)空气质量达到“优”和“良”的总天数20.(8分)乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:多边形的顶点数4 5 6 7 8 …… n从一个顶点出发的对角线的条数1 2 3 4 5 …… ① 多边形对角线的总条数 2 5 9 14 20 …… ② (1)观察探究 请自己观察上面的图形和表格,并用含n 的代数式将上面的表格填写完整,其中① ;② ;(2)实际应用 数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳 乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.21.(9分)乐乐对几何中角平分线等兴趣浓厚,请你和乐乐一起探究下面问题吧,已知∠AOB =100°,射线OE ,OF 分别是∠AOC 和∠COB 的角平分线.(1)如图1,若射线OC 在∠AOB 的内部,且∠AOC =30°,求∠EOF 得度数;(2)如图2,若射线OC 在∠AOB 的内部绕点O 旋转,则∠EOF 的度数为 ;(3)若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC,∠BOC均指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,请直接写出∠EOF的度数(不写探究过程)22.(10分)乐乐家距离学校2800米,一天早晨,他以80米/分的速度上学,5分钟后乐乐的妈妈发现他忘了带数学书,妈妈立即以180米/分的速度去追乐乐,并且在途中追上了他.(1)妈妈追上乐乐用了多长时间?(2)放学后乐乐仍以80米/分的速度回家,出发10分钟时,同学英树以280米/分的速度从学校出发骑自行车回家,乐乐家和英树家是邻居(两家距离忽略不计,两人路上互不等待,两人到家后不再外出),请问英树出发多长时间,两人相距300米?2017-2018学年河南省郑州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【考点】截一个几何体.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为圆.故选:D.2.【考点】科学记数法—表示较大的数.【解答】解:把130000000kg用科学记数法可表示为1.3×108.故选:C.3.【考点】直线、射线、线段.【解答】解:A、直线AB与直线BA是同一条直线,正确,故本选项不符合题意;B、射线OA与射线AB不是同一条射线,错误,故本选项符合题意;C、射线OA与射线OB是同一条射线,正确,故本选项不符合题意;D、线段AB与线段BA是同一条线段,正确,故本选项不符合题意;故选:B.4.【考点】全面调查与抽样调查.【解答】解:A、调查某品牌手机的市场占有率,工作量较大,且没有必要,适合抽样调查,故本选项不符合题意;B、了解全国中学生的节水意识,工作量较大,且没有必要,适合抽样调查,故本选项不符合题意;C、调查某型号炮弹的射程,具有破坏性,适合抽样调查,故本选项不符合题意;D、了解自己班同学早餐是否有喝牛奶的习惯,精确度要求高的调查且比较容易做到,适于全面调查,故本选项符合题意.故选:D.5.【考点】有理数的混合运算.【解答】解:|﹣(﹣3)2﹣4|=|﹣9﹣4|=|﹣13|=13,故选:A.6.【考点】折线统计图.【解答】解:由折线统计图可得,两家公司2013﹣2017年的销售收入情况是,甲公司从50万增长到90万,乙公司从50万增长到70万,故甲公司增长速度快,故选:A.7.【考点】列代数式.【解答】解:设男生有x人,则后来男生人数为(x﹣5),依题意得:女生人数为x﹣5﹣5=x﹣10.故选:B.8.【考点】钟面角;度分秒的换算.【解答】解:108000″=(108000÷60÷60)°=30°,故选:C.9.【考点】认识立体图形.【解答】解:设高变成了xcm,根据题意得π×(4÷2)2×4=π×(3.2÷2)2×x,解得x=6.25,答:高变成了6.25cm.故选:B.10.【考点】有理数的加法.【解答】解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.二、填空题(每小题3分,共15分)11.【考点】有理数的减法.【解答】解:20﹣(﹣5)=20+5=25(℃),故答案为:25.12.【考点】线段的性质:两点之间线段最短.【解答】解:∵两点之间线段最短,∴剩下树叶的周长比原树叶的周长小.故答案为:两点之间线段最短.13.【考点】一元一次方程的应用.【解答】解:设该服装每件的标价为x元,根据题意得:0.7x﹣1000=1000×5%,解得:x=1500.答:该服装每件的标价为1500元.故答案为:1500.14.【考点】规律型:图形的变化类.【解答】解:∵观察发现每增加一张餐桌可以增加2人,∴n张餐桌可以坐6+2(n﹣1)=2n+4,∴12张餐桌可以坐2×12+4=28人,故答案是:28.15.【考点】代数式求值.【解答】解:当4x﹣2=214解得x=54,当4x﹣2=54时,x=14;当4x﹣2=14时,x=4.故答案为:54或14或4.三、简答题(共55分)16.【考点】由三视图判断几何体;作图﹣三视图.【解答】解:(1)从正面看到的该几何体的形状图如图所示:(2)这个几何体从左面看到的形状图如图所示:17.【考点】整式的加减—化简求值.【解答】解:原式=﹣x2+12x﹣2−12x+2=﹣x2,当x=12时,原式=﹣(12)2=−14.18.【考点】正数和负数;有理数的乘方.【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.19.【考点】用样本估计总体;扇形统计图;条形统计图.【解答】解:(1)被抽取的天数是12÷20%=60天,扇形统计图中表示空气质量为“优”的扇形的圆心角是360°×20%=72°,故答案为:60、72;(2)“轻微污染”的天数是60﹣(36+12+3+2+2)=5天,补全条形图如下:(3)365×12+3660=292(天), 答:估计我市这一年(365天)空气质量达到“优”和“良”的总天数为292天.20.【考点】多边形的对角线.【解答】解:(1)由题可得,当多边形的顶点数为n 时,从一个顶点出发的对角线的条数为n ﹣3,多边形对角线的总条数为12n (n ﹣3); 故答案为:n ﹣3,12n (n ﹣3);(2)∵3×6=18,∴数学社团的同学们一共将拨打电话为12×18×(18﹣3)=135(个);(3)每个同学相当于多边形的一个顶点,则共有n 个顶点;每人要给不同组的同学打一个电话,则每人要打(n ﹣3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为12n (n ﹣3); 数学社团有18名同学,当n =18时,12×18×(18﹣3)=135. 21.【考点】角平分线的定义;角的计算.【解答】解:(1)∵∠AOB =100°,∠AOC =30°,∴∠BOC =∠AOB ﹣∠AOC =70°,∵OE ,OF 分别是∠AOC 和∠COB 的角平分线,∴∠EOC =12∠AOC =15°,∠FOC =12∠BOC =35°,∴∠EOF =∠EOC +∠FOC =15°+35°=50°;(2)∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC,∠FOC=12∠BOC,∴∠EOF=∠EOC+∠FOC=12∠AOB=12×100°=50°;故答案为:50°.(3)①射线OE,OF只有1个在∠AOB外面,如图3①,∠EOF=∠FOC﹣∠COE=12∠BOC−12∠AOC=12(∠BOC﹣∠AOC)=12∠AOB=12×100°=50°.②射线OE,OF2个都在∠AOB外面,如图3②,∠EOF=∠EOC+∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×260°=130°.故∠EOF的度数是50°或130°.22.【考点】一元一次方程的应用.【解答】解:(1)设妈妈追上乐乐用了x分长时间,依题意有180x=80x+80×5,解得x=4.故妈妈追上乐乐用了4分长时间;(2)设英树出发y分长时间,两人相距300米,依题意有①英树在乐乐后面相距300米,280y=80y+80×10﹣300,解得y=2.5;②英树在乐乐前面相距300米280y=80y+80×10+300,解得y=5.5;或80(y+10)=2800﹣300,解得y=21.25.故英树出发2.5分或5.5分或21.25分长时间,两人相距300米.。
2017-2018学年度七年级数学上册期末试题及答案
2017-2018学年度七年级上学期期末数学试卷(考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.) 1.2-等于( ) A .-2B .12- C .2 D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚 3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( ) A .a 3与a 2 B .12a 2与2a 2 C .2xy 与2x D .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( ) A .a +b>0 B .ab >0 C .110ab-< D .110ab+> 7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°ABCDAB第8题图第9题图10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( ) A.(1+50%)x×80%=x-28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x-28 D.(1+50%x)×80%=x+28 11.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B 港相距x千米.根据题意,可列出的方程是()A.32428-=xxB.32428+=xxC.3262262+-=+xxD.3262262-+=-xx12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12-xy2的系数是_________.15.若x=2是方程8-2x=ax的解,则a=_________.16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.18.已知,a-b=2,那么2a-2b+5=_________.19.已知y1=x+3,y2=2-x,当x=_________时,y1比y2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.6222420 4884446……三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为A E DB F C元.数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B .二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分) 21.解:原式= -1-14×(2-9)…3分 =-1+ 47…5分 =43…6分 22.解:设这个角的度数为x . ………1分由题意得: 30)90(21=--x x…3分 解得:x =80……5分答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分24.解:6)12()15(2=--+x x . …2分 612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分 (2)第二次移动后这个点在数轴上表示的数是4; …………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………5分 (5)54. ………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°,…2分∵∠BOD =∠COD -∠BOC =90°-45°=45°, ……4分∠BOD =3∠DOE ∴∠DOE =15, ……7分∴∠COE =∠COD -∠DOE =90°-15°=75° ………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x cm,CF=12CD=2x cm.……3分∴EF=AC-AE-CF=2.5x cm.……4分∵EF=10cm,∴2.5x=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.…7分解之得:y=44.5 (不符合题意) ....8分所以王老师肯定搞错了. (9)分(3)2或6. …………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
2017-2018学年七年级(上)期末数学试卷及答案
2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数.8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是人.9.若2x|m|﹣1=5是一元一次方程,则m的值为.10.某几何体的三视图如图所示,则这个几何体的名称是.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;,请问手工小组有几人?(设手工小组有x人)13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是,即∠BFE=∠BDA,所以EF∥,理由是,所以∠2=,理由是.因为∠1=∠2,所以∠1=∠3,所以AB∥,理由是,所以∠B+ =180°,理由是.又因为∠B=30°,所以∠GDB=.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付元;若在乙店购买,则总共需要付元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=.(n是正整数)(用含α和β的代数式表示).2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b【考点】等式的性质.【分析】根据等式的性质对每一项分别进行分析,即可得出正确答案.【解答】解:A、根据等式性质1,两边都加c,得到a+c=b+c,故A不正确;B、因为根据等式性质2,a≠0,所以不正确;C、因为c必需不为0,所以不正确;D、根据等式性质2,两边都乘以c,得到a=b,所以D成立;故选D.3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.【考点】认识立体图形.【分析】根据长方体与正方体的关系,可得答案.【解答】解:长方体是特殊的直四棱柱,正方体是特殊的长方体,故选:B.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短【考点】平行公理及推论;同类项;对顶角、邻补角;垂线段最短.【分析】A、根据同类项的定义进行判断;B、根据对顶角的性质进行判断;C、根据平行公理进行判断;D、根据垂线段的性质进行判断.【解答】解:A、﹣2a2b与ba2是同类项,故本选项错误;B、对顶角相等,故本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、从直线外一点到这条直线所作的垂线段最短,故本选项错误;故选:C.5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个【考点】平行线的判定.【分析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可.【解答】解:①∠1=∠2可根据同位角相等,两直线平行得到a∥b;②∠3=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠7=180°可得∠6+∠7=180°,可根据同旁内角互补,两直线平行得到a∥b;④∠5+∠8=180°可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b;故选:D.6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选C.二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数﹣(答案不唯一).【考点】无理数.【分析】根据无理数是无限不循环小数进行解答即可.【解答】解:由无理数的定义可知,﹣、﹣…是负无理数.故答案为:﹣(答案不唯一).8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是 1.1×105人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:11万=11 0000=1.1×105,故答案为:1.1×105.9.若2x|m|﹣1=5是一元一次方程,则m的值为±2.【考点】一元一次方程的定义.【分析】利用一元一次方程的定义判断即可.【解答】解:∵2x|m|﹣1=5是一元一次方程,∴|m|﹣1=1,即|m|=2,解得:m=±2,故答案为:±210.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是5a2﹣6a+6.【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:(2a2﹣4a+1)﹣(﹣3a2+2a﹣5)=2a2﹣4a+1+3a2﹣2a+5=5a2﹣6a+6.故答案为5a2﹣6a+6.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;如果每人做6个,那么就比计划多8个,请问手工小组有几人?(设手工小组有x人)【考点】一元一次方程的应用.【分析】根据等号左边的式子可以看出,表示实际需要礼物个数,仿照所给题意的前半部分写出所缺部分.【解答】解:等号左边5x+2,表示实际需要礼物个数,那么等号右边也应表示实际需要礼物个数,则6x﹣8表示:如果每人做6个,那么就比计划多8个.13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是梦.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面.故答案为:梦.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为80°.【考点】方向角.【分析】根据方向角,可得∠1,∠2,∠3的度数,根据平行线的性质,可得∠5,的度数,根据角的和差,可得∠2,4的度数,根据三角形的内角和定理,可得答案.、【解答】解:如图:,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,∴∠1=45°∠2=85°,∠3=15°,由平行线的性质得∠5=∠1=45°.由角的和差得∠6=∠2﹣∠5=85°﹣45°=40°,∠4=∠1+∠3=45°+15°=60°,由三角形的内角和定理得∠ACB=180°﹣∠6﹣∠4=180°﹣40°﹣60°=80°,故答案为:80°.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是20cm.【考点】平移的性质.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为:20cm.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为5,2,0.5.【考点】代数式求值.【分析】解答本题的关键就是弄清楚题图给出的计算程序.由于代入x计算出y 的值是11>10,符合要求,所以x=5即也可以理解成y=5,把y=5代入继续计算,得x=2,依此类推就可求出5,2,0.5.【解答】解:依题可列,y=2x+1,把y=11代入可得:x=5,即也可以理解成y=5,把y=5代入继续计算可得:x=2,把y=2代入继续计算可得:x=0.5,把y=0.5代入继续计算可得:x<0,不符合题意,舍去.∴满足条件的x的不同值分别为5,2,0.5.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).【考点】有理数的混合运算.【分析】(1)原式先计算括号中的运算,再计算除法运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6÷(﹣×4)=6÷(﹣6)=﹣1;(2)原式=﹣4﹣3+(﹣8)÷(﹣)=﹣4﹣3+16=9.18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,求出解,检验即可;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:3x+2x=14﹣6,合并得:5x=8,解得:x=1.6,当x=1.6时,左边=6+3.2=9.2,右边=14﹣4.8=9.2,∵左边=右边,∴x=1.6是方程的解;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,解得:x=0.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.【考点】两点间的距离.【分析】根据线段中点的定义可得BC=CD;再根据AB=AD﹣BC﹣CD,代入数据进行计算即可得解.【解答】解:∵C是线段BD的中点,∴BC=CD,∵BC=3,∴CD=3;由图形可知,AB=AD﹣BC﹣CD,∵AD=10,BC=3,∴AB=10﹣3﹣3=4.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【考点】余角和补角.【分析】设这个角为x°,则得出方程180﹣x+10=3(90﹣x),求出即可.【解答】解:设这个角为x°,则180﹣x+10=3(90﹣x),解得:x=40.即这个角的余角是50°,补角是140°.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】先化简,然后将a与b的值代入即可求出答案.【解答】解:原式=3ab2﹣a2b﹣4ab2+2a2b=﹣ab2+a2b,当a=1,b=﹣2时,原式=﹣1×1×4+1×(﹣2)=﹣6;22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.【考点】整式的加减.【分析】先将多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}进行化简,化简时去括号,然后合并同类项,以此来判断是否与a的取值无关.【解答】证明:16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}=16+a﹣{8a﹣[a﹣9﹣3+6a]}=16+a﹣{8a﹣a+9+3+6a}=16+a﹣8a+a﹣9﹣3+6a=4.故多项式的值与a的值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,所以∠2=∠3,理由是两直线平行,同位角相等.因为∠1=∠2,所以∠1=∠3,所以AB∥DG,理由是内错角相等,两直线平行,所以∠B+ ∠GDB=180°,理由是两直线平行,同旁内角互补.又因为∠B=30°,所以∠GDB=150°.【考点】平行线的判定与性质.【分析】先根据垂直的定义得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行线的性质得出∠2=∠3,利用等量代换得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出结论.【解答】解:∵EF⊥BC,AD⊥BC,∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA,∴EF∥AD(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行)∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B=30°,∴∠GDB=150°.故答案为:垂直的定义,AD,同位角相等,两直线平行,∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠GDB,两直线平行,同旁内角互补,150°.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【考点】点到直线的距离;垂线段最短.【分析】(1)过点P画OA的垂线,即过点P画∠PHO=90°即可,(2)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是PH<PC<OC.【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC.25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付5x+125元;若在乙店购买,则总共需要付 4.5x+135元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】列代数式.【分析】(1)由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x﹣5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;(2)计算后判断即可.【解答】解:(1)设购买茶杯x只,在甲店买一把茶壶赠送茶杯一只,且茶壶每把定价30元、茶杯每只定价5元,故在甲店购买需付:5×30+5×(x﹣5)=5x+125;在乙店购买全场9折优惠,故在乙店购买需付:30×0.9×5+5×0.9×x=4.5x+135;(2)选择甲店购买,理由:到甲店购买需要200元,到乙店购买需要202.5元.∵200<202.5,∴选择甲店购买,故答案为:(1)(5x+125),(4.5x+135)26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【考点】一元一次方程的应用.【分析】(1)根据题意设出房间数,进而表示出总人数得出等式方程求出即可;(2)根据已知条件分别列出两种住房方法所用的钱数,进而比较即可.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【考点】直线、射线、线段.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=β﹣α.(n是正整数)(用含α和β的代数式表示).【考点】角的计算.【分析】(1)根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,等量代换即可表示出∠BOC的大小;②当∠AOM=3∠BOM,∠DON=3∠CON时,等量代换即可表示出∠BOC 的大小;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,等量代换即可表示出∠BOC的大小;【解答】(1)∵∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,则∠BOC=2β﹣α.(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;②当∠AOM=3∠BOM,∠DON=3∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;故答案为:β﹣α.。
郑州2017七年级上期末试卷答案
郑州市2017—2018 学年上期期末考试七年级数学一.选择题(共10 小题)1.如图,有一个正方体,乐乐用一个平面去截这个正方体,截面形状不可能是()A. B. C. D.2. 乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量,将130 000 000 科学记数法表示为()A.0.13×108 B.1.3×107 C.1.3×108 D.1.3×1093.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对下图展开了激烈的讨论,下列说法不正确的是()A.直线AB 与直线BA 是同一条直线B.射线OA 与射线AB 是同一条射线C.射线OA 与射线OB 是同一条射线D.线段AB 与线段BA 是同一条线段4.乐乐对统计产生了浓厚的兴趣,他想用“普查”方式调查一些事件,那么下面适合用“普查”方式进行调查的事件是()A.调查某品牌手机的市场占用率B.了解全国中学生的节水意识C.调查某型号炮弹的射程D.了解自己班学生早餐是否有喝牛奶的习惯5. 乐乐在学习绝对值时,发现“||”像是一个神奇的箱子:当负数钻进这个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有发生变化,乐乐把-( -3)2 -4 放进了这个神奇的箱子,发现- (-3)2 - 4 的结果是()A.13B. 5C. -13D. 106. 乐乐在报纸上看到甲、乙两公司2013 年-2017 年的销售收入情况如图所示:关于两家公司2013—2017 年的销售收入的增长速度,下列说法正确的是()A. 甲快B. 乙快C. 一样快D. 无法比较7. 乐乐的班级在操场上排队列,从男生队伍中调出5 名加入女生队伍,则两个队伍的人数正好相等,设男生有x 人,则女生人数为()A.x + 5B.x -10C.x +10D.x - 58. 学习了角的常用度量单位后,乐乐发现度、分、秒之间可以相互换算,乐乐计算出某一时刻闹钟的时针和分针的夹角是108000' ,此时这个夹角等于()A.5︒B.15︒C. 30︒D. 60︒9. 乐乐玩橡皮泥时,将一个底面直径是4cm.高为4cm 的圆柱,捏成底面直径为3.2cm 的圆柱,则圆柱的高变成了()A.7.5cmB. 6.25cmC.5cmD. 4.75cm10. 如图,乐乐将- 3,- 2,-1, 0 , 1,2,3, 4 , 5 分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a, b , c分别表示其中的一个数,则a - b + c 的值为()A.-1B. 0C. 1D. 3二.填空题(共 5 小题)11. 冬季供暖后,乐乐发现室内的温度为 20︒C ,此时冰箱冷冻室的温度为 - 5︒C ,则室内 的温度比冷冻室温度高 ︒C .12. 如图,乐乐用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶 的周长小,能正确解释这一现象的数学依据是 .13. 乐乐家附近的商场购进一批服装,每件进价为 1000 元,计划在春节期间开展促销活动, 按照标价的 7 折销售.若想打折后销售每件服装的利润率为 5%,则该服装每件的标价应为 元.14. 如图,乐乐班级举行“新春美食会”,同学们如图摆放桌椅。
2017-2018学年七上期末数学参考答案
2017-2018学年度(上)初一期末调研测试卷数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.11.2 12.-0.5 13.②④14.20 15.016.106.2517.±1,±618.3269三、解答题(本大题共10小题,共96分) 19.(本小题满分10分)(1)解:原式=4-4-0.5 ············································································ 3分=-0.5. ··············································································· 5分(2)解:原式=18+32÷(-8)-16×5 ························································ 9分=18-4-80 =-66. ·············································································· 10分20.(本小题满分10分)(1)解:原式=2a -b -2b +3a -2a +4b ··························································· 3分=3a +b . ··············································································· 5分(2)解:原式=223472x x x x +-+- ···························································· 8分=3332--x x .··································································· 10分21.(本小题满分10分) (1)解:2x +6=5x ··················································································· 3分3x =6 ······················································································ 4分 x =2. ··················································································· 5分(2)解:2y +2-4=8+2-y ········································································ 8分3y =12 ················································································ 9分 y=4. ············································································ 10分22.(本小题满分8分)解:(1)··································································································· 6分(2)3. ··································································································· 8分主视图 俯视图23.(本小题满分8分)解:(1)如图所示.··································································································· 2分 (2)当点F 在射线OM 上时, ∵OE ⊥AB ,∴∠AOE =90°.即∠EOF +∠AOM =90°. ∵OM ⊥CD ,∴∠MOC =90°.即∠AOC +∠AOM =90°. ∴∠EOF =∠AOC =35°. ····································································· 5分 当点在F 射线ON 上时,∠EO F=180°-35°=145°.综上,∠EOF 的度数为35°或145°. ··················································· 8分24.(本小题满分8分)解:当x =2,y =-4时,得()2018842123=+-⨯+⨯b a . ···························································· 2分 8a -2b +8=2018.8a -2b =2010 . 4a -b =1005. ················································································· 4分 当x =-4,y =21-时, 原式=()62124433+⎪⎭⎫⎝⎛---⨯b a ······························································ 6分 =-12a +3b +6 =-3(4a -b ) +6 =-3×1005+6 =-3009. ···················································································· 8分25.(本小题满分8分)解:(1)①∵∠COD 是直角,∴∠COD =90°. ················································································ 2分 ∵∠DOE =25°, ∴∠COE =90°-25°=65°. ∵OE 平分∠BOC ,∴∠BOC =2∠COE =130°. ∴∠AOC =180°-∠BOC =180°-130=50°. ··········································· 3分②∠COD =2α. ·················································································· 5分(第23题)A B C D EO M N(2)∵∠COD 是直角,∴∠COD =90°. ∴∠COE =90°-∠DOE . ········································································ 6分 ∵OE 平分∠BOC , ∴∠BOC =2∠COE . ·············································································· 7分 ∴∠AOC =180°-∠BOC=180°-(180°-2∠DOE ) =2∠DOE . ·············································································· 8分26.(本小题满分10分)解:(1)300÷0.9=270.因为234<270,所以小李第一次所购商品的总价超过100元,不超过300元.··········································································· 2分234÷0.9=260.所以小李第一次购物所购商品的总价是260元. ··································· 4分 (2)小李第二次购物付款94.5元,可以分为两种情况:①如果没有享受优惠,那么两次购物总价为260+94.5=354.5. 实际付款300×0.9+54.5×0.8=313.6. ··········································· 6分 (234+94.5)-313.6=14.9 ··························································· 7分 ②如果已经享受了优惠, 94.5÷0.9=105.那么两次购物总价为260+105=365. 实际付款300×0.9+65×0.8=322. ···················································· 9分 (234+94.5)-322=6.5.综上,小张可以比小李节约14.9元或6.5元. ····································· 10分27.(本小题满分10分)解:∠FDE =∠DEB . ·················································································· 1分 理由:∵∠AED =∠ACB ,∴DE ∥BC . ················································································· 3分 ∴∠ADE =∠ABC . ········································································· 4分 ∵DF ,BE 分别平分∠ADE ,∠ABC ,∴ADE ADF ∠=∠21,ABC ABE ∠=∠21. ····································· 6分 ∴∠ADF =∠ABE . ········································································· 7分∴DF ∥BE . ················································································· 8分 ∴∠FDE =∠DEB . ······································································· 10分28.(本小题满分14分) (1)①12. ································································································ 2分②-10. ····························································································· 4分 ③设运动时间为x 秒,当相遇前相距4个单位, (6-2)x =12-4x =2. ························································································· 6分 当相遇后相距4个单位, (6-2)x =12+4x =4.综上,点P 出发2秒或者4秒后,与点Q 之间相距4个单位长度. ········ 8分 (2)设经过y 秒后有MP =MQ , 当相遇前有MP =MQ , y +(4-2y )=8-(y +6y )32=y . ···················································································· 10分 当相遇时有MP =MQ , (2y +6y )=1223=y . ···················································································· 12分 当相遇后有MP =MQ , 2y -(4+y ) =6y -(8-y )32=y (不合题意,舍去) . 综上,经过32或23秒后,有MP =MQ . ············································· 14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、简答题(共 55 分) 16. (6 分)乐乐和同学们研究“从三个方向看物体的形状”. (1)图 1 中几何体是由几个相同的小立方块搭成的,请画出从正面看到的该几 何体的形状图; (2)图 2 是由几个相同的小立方块组成的几何体从上面看到的形状图,小正方
第 3 页(共 19 页)
形中的数字表示该位置上小立方块的个数, 请画出这个几何体从左面看到的形状 图.
17. (7 分)乐乐对化简求值题掌握良好,请你也来试试吧! 先化简,再求值: (﹣4x2+2x﹣8)﹣( x﹣2) ,其中 x= 18. (7 分)乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格 所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元? 股票名称 每股净赚 (元) 天河 北斗 白马 海湖 ﹣22 +1.5 ﹣4 ﹣(﹣2) 500 1000 1000 500 股数
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**
2017-2018 学年河南省郑州市七年级上学期数学期末试卷
一、选择题(每小题 3 分,共 30 分) 1. (3 分)如图,有一个正方体,乐乐用了一个平面去截这个正方体,截面形状 不可能是( )
A.
B.
C.
D.
2. (3 分)乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能 量,相当于燃烧 130000000kg 的煤所产生的能量.把 130000000kg 用科学记数法 可表示为( A.0.13×108 ) B.1.3×107 C.1.3×108 D.1.3×109
第 1 页(共 19 页)
)
个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有 发生变化,乐乐把﹣(﹣3)2﹣4 放进了这个神奇的箱子,发现|﹣(﹣3)2﹣4| 的结果是( A.13 B.5 ) C.﹣13 D.10
6. (3 分)乐乐把报纸上看到甲、乙两公司 2013 年﹣2017 年的销售收入情况如 图所示:
关于两家公司 2013﹣2017 年的销售收入的增长速度, 下列说法正确的是 ( A.甲快 B.乙快 C.一样快 D.无法比较
)
7. (3 分) 乐乐的班级在操场上排队列, 从男生队伍中调出 5 名加入到女生队伍, 则两个队伍的人数正好相等,设男生有 x 人,则女生人数为( A.x+5 B.x﹣10 C.x+10D.x﹣5 )
12. (3 分)如图,乐乐用剪刀沿直线将一片平整的树叶减掉一部分,发现剩下 树叶的周长比原周长小,能正确解释这一现象的数学依据是 .
13. (3 分)乐乐家附近的商场购进一批服装,每件进价 1000 元,计划在春节期 间开展促销活动,按照标价的 7 折销售,若想打折后销售每件服装的利润为 5%, 则该服装每件的标价应为 元.
14. (3 分)如图.乐乐班级举行“新春美食会”,同学们如图摆放桌椅,图(1) 表示 1 张餐桌和 6 把椅子(三角形表示餐桌,每个小圆表示一把椅子) ,图(2) 表示 2 张餐桌和 8 把椅子,图(3)表示 3 张餐桌和 10 把椅子ห้องสมุดไป่ตู้……;按照这种 方式摆放 12 张餐桌,需要 把椅子.
15. (3 分)乐乐按如图所示的程序进行计算,如果输入 x 的值是正整数,输出 结果是 214,那么所有满足条件的 x 的值为 .
19. (8 分)为了解我市的空气质量情况,乐乐和环保兴趣小组的同学们从环境 监测网随机抽取了若干天气质量情况作为样本,绘制了如图所示的统计图(部分 信息未给出) .
请你根据图中提供的信息,解答下列问题: (1)被抽取的天数是 天,扇形统计图中表示空气质量为“优”的扇形的圆
第 4 页(共 19 页)
10. (3 分)如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5 分别填入九个空格 内,使每行、每列、每条对角线上的三个数之和相等,现在 a、b、c 分别标上其 中的一个数,则 a﹣b+c 的值为( )
A.﹣1 B.0
C.1
D.3
第 2 页(共 19 页)
二、填空题(每小题 3 分,共 15 分) 11. (3 分)冬季供暖后,乐乐发现室内的温度为 20°,此时冰箱冷冻室的温度为 ﹣5℃,则室内的温度比冷冻室的温度高 ℃
3. (3 分)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图 展开了激烈的讨论,下列说法不正确的是( )
A.直线 AB 与直线 BA 是同一条直线 B.射线 OA 与射线 AB 是同一条射线 C.射线 OA 与射线 OB 是同一条射线 D.线段 AB 与线段 BA 是同一条线段 4. (3 分)乐乐对统计产生了浓厚的兴趣,他想用“普查”方式调查一些事件,那 么下面适合用“普查”方式进行调查的事件是( A.调查某品牌手机的市场占有率 B.了解全国中学生的节水意识 C.调查某型号炮弹的射程 D.了解自己班同学早餐是否有喝牛奶的习惯 5. (3 分)乐乐在学习绝对值时,发现“||”像是一个神奇的箱子;当负数钻进这
心角是
度;
(2)请补全条形统计图; (3)请根据上面的数据,估计我市这一年(365 天)空气质量达到“优”和“良” 的总天数 20. (8 分)乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也 加入其中!请仔细观察下面的图形和表格,并回答下列问题:
多边形的 顶点数 从一个顶 点出发的 对角线的 条数 多边形对 角线的总 条数
4
5
6
7
8
……
n
1
2
3
4
5
……
①
2
5
9
14
20
……
②
(1) 观察探究 请自己观察上面的图形和表格, 并用含 n 的代数式将上面的表格 填写完整,其中① ;② ;
8. (3 分)学习了角的常用度量单位后,乐乐发现度、分、秒之间可以相互换算, 乐乐计算出某一时刻闹钟的时针和分针的夹角是 108000″,此时这个夹角等于 ( )
A.5° B.15° C.30° D.60° 9. (3 分)乐乐玩橡皮泥时,将一个底面直径为 4cm,高为 4cm 的圆柱,捏成底 面直径为 3.2cm 的圆柱,则圆柱的高变成了( A.7.5cm B.6.25cm C.5cm D.4.75cm )