线性代数10-11A卷答案

合集下载

线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题(1)4245322635-=-?-?=-(2)12130111110101(1)(1)21011110++=-+-= (3)13120010020020030(1)3002(1)243000040040004++=-=?-=-(4)111213100002300234645(1)4562(1)3(1)4045681089891078910+++=-=?-+?-=2. 利用行列式的性质计算下列各题(1)2 1412141312150620123212325625062-==(2)2851285110513102531906196512511310805120512121117609712--------==---=----=----------(3)111111111ab ac ae b c e bdcd de adf b c e adfbce bfcfefbce----=-=----111024020adfbce adfbce -== (4)3300011()()010a b b ba b b b a b a b a b a a b a a b a a b a a b b a a b b b b ab a b a-==--=--------(5)x a a aa x a aa a x a a a ax =(1)(1)(1)(1)x n a a a ax n a xa a x n a a x a x n a a a x+-+-+-+- =[(1)]x n a +-1111a aa x a a a x a a ax=[(1)]xn a+-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)2222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)012111110001012111 11200213111112201231230 123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a bb c c a a b c c a b b c c a ++++++++++=++++++++++++111111*********22222222222223333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)0()()()()00x y z x z y x y z y z x z x y x y z y z x zy x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111xx x xxy y y y yy+---=++++---21000111111111001111110111001111110111000x x x x y xy x y y yy y y y-?-?- ?=++=++++ ?---??22222210011001100y xy x y x xy xy x y x y y y + ?=+-=-+= ?- ?-?(4)设012110001000100n n n a a x D a x a x----=-,则按最后一行展开,可得011132 10001101(1)00110n n n n n a a x x D a xa x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++.332123223321123210n n n n n n n n n n na xa a x a x x D a xa a x a x a x a x -----------= =+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=??+-+=??++-=? 有非零解时,必须满足什么条件?解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-.又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -+=-=---2. 解:由A X B +=,得020133.221X B A -??=-=-- ? ?--?? 3. 解:213220583221720,0564292290T AB A A B -???? ? ?-=--=- ? ? ? ?- 4. 解:(1)()31,2,32132231101?? ?=?+?+?= ? (2)()22411,212336-???? ? ?-=- ? ? ? ?-????,(3)12110162134021311491231042217--?????? ??? ?= -(4) 1312140012678113413120510402??--???? ?= ? ? ?---????5. 解:(1)错误,令1101,,0111A B == ? ?则有AB BA ≠;(2)错误,令1101,,0111A B == ? ?则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B == ? ?则可得22()().A B A B A B +-≠- (4) 错误,设00,10A ??=则有20A =,但0.A ≠(5)错误,设10,00A ??=则有2A A =,但.A I ≠6.解:2221010(),0101AB A B -== ? ?-7.证明:因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明:因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解:由32,A X B -=得43/211(3)15/2127/211/25/2X B A -?? ?=--=- ? ???. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-??=cos sin sin cos n n n A n n θθθθ-??=对n 作数学归纳法. 当2n =时,22222cos 2s in 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-??--??==-??, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-??=. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--=cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---??=+-??cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+??=++??因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-??=. 11. (1)解:由初等行变换可得,111031113111031107221240012200122001043314500244000390001311118002150000000000A -------???????? ?----=→→→ ? ? ? ?------ ?-(2)解:由初等行变换可得,111111107125016016234000000 ? ? ?-→-→- ? ? ? ? ? ?-12. 解法见第38页例2.14.13. (1) 解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ→→--- ? ? ? ? ? ?---?2221101100(1)(2)(1)(1)λλλλλλλλλλ?? ?→--- ? ?-+-+?,当2λ=-时,方程组无解,当1λ=时,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当1λ≠,且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---??--→-- ? ? ? ?---?112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--???? ? ?→-+--→--- ? ? ? ?-------当1λ=时,方程组无解,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解:通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015?- ? ? ? ? ? ? ? ? ?-?15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-→→ ? ? ?--,故 112522521--= ? ?-相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解:原线性方程组可写成123123122103430x x x= ??? ? ??? ???????,因此,11231123132210234301x x x -??==- ? ? ? ? ? ? ? ?17.(1)由原矩阵方程可得121122111321182431511133X --??-??-?? ? ?== ? ? ?-- ??? ?-,(2)由原矩阵方程可得1111143120112011104X --???????? ?== ? ??? ?---??????(3)由原矩阵方程可得11010143100210100201001134001120010102X ----???????? ? ??? ?=-=- ? ??? ? ? ??? ?--????????18证明:因为21()()k k I A I A A A I A I +-++++=-=,所以12()()k I A I A A A --=++++19.解:由220A A I --=,得()2A I AI -=,3(2)4A IA I I -+=-,因此,1(),2A I A --=13(2)4A IA I --+=-20. 证明:由220A AB B ++=,且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=- 21. 令11123,01121001B C ??== ? ??? ?,则111311044,0111100122B C --??-??- ? ?==--,因此1111130004411000002200001100001100001B B A A A ----??- ? ?-=== ?- ? ?- ?. 22. 证明:若,B C 可逆,则有11000B C I CB --= ? ?,所以A 可逆,且1110.0C A B---??= 反之,若A 可逆, 设其逆为X Y Z V ??,则, 000B X Y I o CZ V I= ??? ???????,因此,,BZ I CY I ==,因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =,得211A A AA --=,即A E =,这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ? ? ? ? ?-- ? ? ? ? ?=+++ ? ? ? ? ?-- ? ? ? ? ?-- 解得, 12345111 ,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x++= ? ? ? ? ? ???????,上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ? ? ?=-→-→- ? ? ? ? ? ?-, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立. 7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()?设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=??+=??+=? 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()? 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关,所以123123123(000k k k k k k k k k +-=??-++=??-+=? 解得上面方程组只有零解,因此,123,,ααα线性无关. 证明: 9.(?)设1mi i i k αα==∑,和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(?)设11m m i i i i i i k l ααα====∑∑,则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关,则存在不全为零的数12,,,m k k k 使得,10.mi ii k α==∑若有某个0i k =,不妨设10k =,则有20,mi ii k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====,这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零,命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ? ? ?=-→--→-- ? ? ? ? ? ?--+-+所以,当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关,且312111.77ααα=+ 13. 解:(1)因为2344112311231123112323440501005010326132610501000001021102101020000A --------=→→→ ? ? ? ?------因此,向量组1234,,,αααα的秩为2,12,αα是一个极大线性无关组,且314122,2.ααααα==-+用类似的方法可求(2),(3),答案见教材.14. (1) 因为120131(,)1224αα?? ?-= ? ???,有一个二阶子式01331=--,所以秩(12,αα)=2,即12,αα线性无关.(2)容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++? 因此,2V 不是线性空间. 17. 证明:因为01101111101101211110011==-=--,所以123,,ααα线性无关,即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++,即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=??-++=??+=?,解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明:因为A 是正交阵,所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==,故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000?????? ? ?--- ? ? ?→→-- ? ?-, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=??-=?选取3x 作为自由未知量,解得基础解系为1971-?? ? ? ???,因此,方程组的解为1971k -?? ? ? ???(2)313411311131159815980467113131340000--------→--→-- ? ? ? ? ? ?----,选取选取34,x x 作为自由未知量,解得基础解系为3/23/43/27/4,1001-故方程组的同解为123/23/43/27/41001k k -+ ? ? ? ?????(3)见教材答案(4)见教材答案2. (1)对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --???? ? ?=--→ ? ? ? ?----解得特解为5/6101/6??-??,对应的齐次线性方程组的基础解系为3510-?? ?- ? ? ???,因此方程组的同解为5/6101/6?? ? ? ? ?-??+3510k -?? ?- ? ? ???(2)答案见教材 3. (略)4. 证明:令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。

最新10月全国自考线性代数试题及答案解析

最新10月全国自考线性代数试题及答案解析

1全国2018年10月自学考试线性代数试题课程代码:02198说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩 阵,|A |表示方阵A 的行列式,r (A )表示矩阵A 的秩. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设矩阵A =⎪⎪⎭⎫⎝⎛-11,B =(1,1)则AB =( )A .0B .(1,-1)C .⎪⎪⎭⎫ ⎝⎛-11D .⎪⎪⎭⎫ ⎝⎛--11112.设A 为3阶矩阵,|A |=1,则|-2A T |=( ) A .-8 B .-2 C .2D .8 3.设行列式D 1=22221111a cb a ac b a a c b a+++,D 2=222111c b a c b a cba ,则D 1=( ) A .0 B .D 2 C .2D 2D .3D 24.设矩阵A 的伴随矩阵A *⎪⎪⎭⎫⎝⎛4321,则A -1=( ) A .⎪⎪⎭⎫⎝⎛---123421 B .⎪⎪⎭⎫⎝⎛-432121 C .⎪⎪⎭⎫⎝⎛-432121 D .⎪⎪⎭⎫ ⎝⎛-132421 5.设A ,B 均为n 阶可逆矩阵,则必有( )2A .A +B 可逆 B .AB 可逆C .A-B 可逆D .AB+ BA 可逆6.设A 为3阶矩阵且r(A )=2,B =⎪⎪⎪⎭⎫ ⎝⎛100010301,则r(AB )=( )A .0B .1C .2D .37.设向量组α1=(1,2),α2=(0,2),β=(4,2),则( ) A .α1,α2,β线性无关 B .β不能由α1,α2线性表示C .β可由α1,α2线性表示,但表示法不惟一D .β可由α1,α2线性表示,且表示法惟一8.设齐次线性方程组⎪⎩⎪⎨⎧=++=--=+-0002321321321x x x x x x x x x λ有非零解,则λ为( )A .-1B .0C .1D .29.设A 为3阶实对称矩阵,A 的全部特征值为0,1,1,则齐次线性方程组(E -A )x=0的基础解系所含解向量的个数为( ) A .0 B .1 C .2D .310.二次型f (x 1,x 2,x 3)=x 12+x 22+4x 32-2tx 2x 3正定,则t 满足( ) A .-4<t<-2 B .-2< t <2 C .2<t <4D .t <-4或t >4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解(总92页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae acab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001 解(1)7110025*******21434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=yx z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 .证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11 =,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 010000000000001000=按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) n nnnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-= 112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 51165100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--= 51100650000601000051001653=D 展开按第三列5100650006100051650061000510065+6100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫ ⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 AB BA 因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B)2A 22AB B 2吗 解 (A B)2A 22AB B 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B)2A 22AB B 2 (3)(A B)(A B)A 2B 2吗 解 (A B)(A B)A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B)(A B)A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0 解 取⎪⎭⎫ ⎝⎛=0010A 则A 20 但A 0(2)若A 2A 则A 0或A E 解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A 0且A E(3)若AX AY 且A 0 则X Y 解 取⎪⎭⎫ ⎝⎛=0001A⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AX AY 且A 0 但X Y7 设⎪⎭⎫ ⎝⎛=101λA 求A 2A 3Ak解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵证明 因为A T A 所以(B T AB)T B T (B T A)T B T A T B B T AB 从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明 充分性 因为A T A B T B 且AB BA 所以(AB)T (BA)T A T B T AB 即AB 是对称矩阵必要性 因为A T A B T B 且(AB)T AB 所以 AB (AB)T B T A T BA 11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解⎪⎭⎫ ⎝⎛=5221A |A|1 故A 1存在 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225 (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A|10 故A 1存在 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A|20 故A 1存在因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 12 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14 设A k O (k 为正整数) 证明(E A)1E A A 2 A k1证明 因为A k O 所以E A k E 又因为E A k (E A)(E A A 2A k 1)所以 (E A)(E A A 2 A k 1)E 由定理2推论知(E A)可逆 且(E A)1E A A 2A k1证明 一方面 有E (E A)1(E A) 另一方面 由A k O 有 E (E A)(A A 2)A 2A k1(A k1A k )(E A A 2 A k 1)(E A)故 (E A)1(E A)(E A A 2 A k 1)(E A) 两端同时右乘(E A)1就有(E A)1(E A)E A A 2A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E)1证明 由A 2A 2E O 得A 2A 2E 即A(A E)2E 或E E A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A 2A 2E O 得 A 2A 6E 4E 即(A 2E)(A 3E)4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A|2 即 |A||A E|2 故 |A|0所以A 可逆 而A 2E A 2 |A 2E||A 2||A|20 故A 2E 也可逆 由 A 2A 2E O A(A E)2E A 1A(A E)2A 1E)(211E A A -=-又由 A 2A 2E O (A 2E)A 3(A 2E)4E(A 2E)(A 3E)4 E所以 (A 2E)1(A 2E)(A 3E)4(A 2 E)1)3(41)2(1A E E A -=+- 16 设A 为3阶矩阵 21||=A 求|(2A)15A*|解 因为*||11A A A =- 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A|1821617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*)1(A 1)*证明 由*||11A A A =- 得A*|A|A 1所以当A 可逆时 有|A*||A|n |A 1||A|n 1从而A*也可逆 因为A*|A|A 1所以(A*)1|A|1A又*)(||)*(||1111---==A A A A A 所以(A*)1|A|1A |A|1|A|(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A|0 则|A*|0 (2)|A*||A|n 1证明(1)用反证法证明 假设|A*|0 则有A*(A*)1E 由此得A A A*(A*)1|A|E(A*)1O所以A*O 这与|A*|0矛盾,故当|A|0时 有|A*|0 (2)由于*||11A A A =- 则AA*|A|E 取行列式得到|A||A*||A|n 若|A|0 则|A*||A|n 1若|A|0 由(1)知|A*|0 此时命题也成立因此|A*||A|n119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B解 由AB A 2E 可得(A 2E)B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得 (A E)B A 2E 即 (A E)B (A E)(A E)因为01001010100||≠-==-E A 所以(A E)可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B解 由A*BA 2BA 8E 得(A*2E)BA 8EB 8(A*2E)1A 1 8[A(A*2E)]1 8(AA*2A)1 8(|A|E 2A)18(2E 2A)14(E A)14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(1 2 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A*||A|38 得|A|2 由ABA1BA13E 得AB B 3AB 3(A E)1A 3[A(E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001求A 11解 由P 1AP得A P P 1所以A 11 A=P 11P 1.|P|3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A)A 8(5E 6A A 2) 解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100) (A)P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B)B 1B1A1A1B1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A1B 1可逆(A1B 1)1[A 1(A B)B 1]1B(A B)1A26 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27 取⎪⎭⎫ ⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠解41001200210100101002000021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1-⎪⎭⎫⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211D D D D B C O A 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

《线性代数》期末考试试卷(A卷答案)

《线性代数》期末考试试卷(A卷答案)

《线性代数》期末考试试卷(A 卷答案)注:各主观题答案中每步得分是标准得分,实际得分应按下式换算:第步实际得分本题实际得分解答第步标准得分解答总标准得分N =N ⨯一、本 题 8分原 式⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛--=112313517 ⎪⎪⎭⎫⎝⎛---=047210二、本 题 8分⎪⎪⎪⎭⎫ ⎝⎛-=100012010411001210)(E A)(211231001240101120011-=⎪⎪⎪⎪⎭⎫ ⎝⎛----→A E8⎪⎪⎪⎪⎭⎫ ⎝⎛----=-211231241121A10( 用 其 它 方 法 解 对, 给 一 半 分). 三、本 题11分D =--1000364022311149=-640231149=11010四、本 题10分因 A B ~ , 存 在 可 逆 矩 阵 P 使P AP B -=12则 '='='''--B P AP P A P ()()114记 ()P Q -'=1, 则 Q P P ---='='111[()]­ , 故 '='-B Q A Q 18即 ''B A ~10五、本 题7分'=αα120, 即α1 与α2 已 正 交设 有 向 量 为()X x x x x T =4321, 则080140841=⎪⎪⎭⎫⎝⎛-X3解 得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1480,410843αα 为 所 求 线 性 无 关 解8且αα34,已 正 交, 故αα12,αα34£, 为 正 交 向 量 组10六、本 题 8分因 21152110120=-≠, 故43, 1,ααα 线 性 无 关。

4而αα212=, 故431,,ααα 是 该 向 量 组 的 一 个 最 大 线 性 无 关 组。

8线 性 表 出 为:.,,2, 44331211αααααααα====10七、本 题 10分 00002270020-2-0 ~ ⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛---011112122320111114331211121 所 以3=)(A R10八、本 题10分方 程 组 有 非 零 解 ⇔=A 03而 A =-55λ 故 当 仅 当 λ=1 时 方 程 组 有 非 零 解。

线性代数课后习题答案

线性代数课后习题答案

线性代数课后习题答案线性代数是数学领域中重要的一门基础课程,其中必不可少的内容之一就是习题。

以下是线性代数中的一些习题及其答案。

1. 矩阵加法设$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$,$B=\begin{bmatrix}5&6\\7&8\end{bmatrix}$,求$A+B$。

解:$$A+B=\begin{bmatrix}1+5&2+6\\3+7&4+8\end{bmatrix}=\begin{bmatri x}6&8\\10&12\end{bmatrix}$$2. 矩阵乘法设$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$,$B=\begin{bmatrix}5&6\\7&8\end{bmatrix}$,求$AB$。

解:$$AB=\begin{bmatrix}1*5+2*7&1*6+2*8\\3*5+4*7&3*6+4*8\end{bmatri x}=\begin{bmatrix}19&22\\43&50\end{bmatrix}$$3. 矩阵转置设$A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}$,求$A^T$。

解:$$A^T=\begin{bmatrix}1&4\\2&5\\3&6\end{bmatrix}$$4. 矩阵求逆设$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$,求$A^{-1}$。

解:$$\begin{bmatrix}1&2&|&1&0\\3&4&|&0&1\end{bmatrix}\xrightarrow[r_2-3r_1]{r_2\div 3}\begin{bmatrix}1&2&|&1&0\\0&-2&|&-3&1\end{bmatrix}$$$$\xrightarrow{r_2\div (-2)}\begin{bmatrix}1&2&|&1&0\\0&1&|&\frac{3}{2}&-\frac{1}{2}\end{bmatrix}\xrightarrow[r_1-2r_2]{r_1-2r_2}\begin{bmatrix}1&0&|&-2&1\\0&1&|&\frac{3}{2}&-\frac{1}{2}\end{bmatrix}$$所以$A^{-1}=\begin{bmatrix}-2&1\\ \frac{3}{2}&-\frac{1}{2}\end{bmatrix}$。

(本科)线性代数期末考试题及答案AB卷

(本科)线性代数期末考试题及答案AB卷

线性代数试题测试卷及答案2套一、填空题1.四阶行列式中含有因子112432a a a 的项为_________.2.行列式222111ab c a b c 的值为_________. 3.设矩阵1000010000210022⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则1-=A _________.4.设四元齐次线性方程组的系数矩阵的秩为1,则其解空间的维数为_________.5.设矩阵1234(,,,)=A αααα,其中234,,ααα线性无关,12342=-+αααα,向量41i i ==∑βα,则方程=AX β的通解为_________.6.已知三阶矩阵A 的特征值为1,2,3,则32--=A A E _________.二、选择题1.若两个三阶行列式1D 与2D 有两列元素对应相同,且123,2D D ==-,则12D D +的值为( ).A.1B.6-C.5D.02.对任意的n 阶方阵,A B 总有 ( ). A.=AB BA B.=AB BA C.()111---=AB B A D.()222=AB A B3.若矩阵X 满足方程=AXB C ,则矩阵X 为( ).A.11--A B C B.11--A CB C.11--CA B D.条件不足,无法求解4.设矩阵A 为四阶方阵,且()3R =A ,则*()R =A ( ). A.4 B.3 C.2 D.15.下列说法与非齐次线性方程组=AX β有解不等价的命题是( ).A.向量β可由A 的列向量组线性表示B.矩阵A 的列向量组与(,)A β的列向量组等价C.矩阵A 的行向量组与(,)A β的行向量组等价D.(,)A β的列向量组可由A 的列向量组线性表示6.设n 阶矩阵A 和B 相似,则下列说法错误的是( ). A.=A B B.()()R R =A BC.A 与B 等价D.A 与B 具有相同的特征向量7.设222123121323()224f x x x x ax x x x x x =+++-+为正定二次型,则a 满足( ).A.11a a ><-或B.12a <<C.11a -<<D.21a -<<- 三、计算题1.已知12111111111n na a D a ++=+,其中120n a a a ≠,求12n n nn A A A +++.2.设矩阵022110123⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,且2=+AX A X ,求X .3.求矩阵123451122102151(,,,,)2031311041⎛⎫ ⎪-⎪== ⎪- ⎪-⎝⎭A ααααα的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示.4.求非齐次线性方程组12341234123431,3344,5980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩的通解.5.求一个正交变换=X PY ,将二次型123121323(,,)222f x x x x x x x x x =--化成标准形.四、证明题已知n 阶方阵A 和B 满足124-=-A B B E ,证明2不是A 的特征值。

线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)

线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题 (1)4245322635-=-⨯-⨯=-(2)12130111110101(1)(1)21011110++=-+-= (3)13120010020020030(1)3002(1)243000040040004++=-=⨯-=-(4)111213100002300234645(1)4562(1)3(1)4045681089891078910+++=-=⨯-+⨯-=2. 利用行列式的性质计算下列各题(1)21412141312150620123212325625062-==(2)2851285110513102531906196512511310805120512121117609712--------==---=----=----------(3)111111111ab ac ae b c e bdcd de adf b c e adfbce bfcfefbce----=-=----111024020adfbce adfbce -== (4)3300011()()010a b b ba b b b a b a b a b a a b a a b a a b a a b b a a b b b b ab a b a-==--=--------(5)x a a aa x a aa a x a a a ax =(1)(1)(1)(1)x n a a aax n a xa a x n a a x a x n a a ax+-+-+-+- =[(1)]x n a +-1111a aa x a a a x a a ax=[(1)]xn a+-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)22222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)012111111000101211111200213111112201231230123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a ++++++++++=++++++++++++111111*********222222222222233333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)0()()()()00x y z x z y x y z y z x z x y x y z y z x zy x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111xx x xxy y y y yy+---=++++---21000111111111001111110111001111110111000x x x x y xy x y y yy y y y-⎛-⎫- ⎪=++=++++ ⎪⎪---⎝⎭- 222222210011001100y xy x y x xy xy x y x y y y⎛⎫+ ⎪=+-=-+= ⎪- ⎪-⎝⎭(4)设012110001000100n n n a a x D a x a x----=-, 则按最后一行展开,可得01113210001101(1)00110n n n n n a a x x D a xa x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++.332123223321123210n n n n n n n n n n na xa a x a x x D a xa a x a x a x a x -----------==+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩ 有非零解时,必须满足什么条件? 解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-.又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -⎛⎫⎛⎫+=-=⎪ ⎪---⎝⎭⎝⎭2. 解:由A X B +=, 得020133.221X B A -⎛⎫⎪=-=-- ⎪ ⎪--⎝⎭ 3. 解:213220583221720,0564292290T AB A A B -⎛⎫⎛⎫ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 4. 解:(1)()31,2,32132231101⎛⎫ ⎪=⨯+⨯+⨯= ⎪ ⎪⎝⎭ (2)()22411,212336-⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (3)12110162134021311491231042217--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(4) 1312140012678113413120510402⎛⎫⎪--⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭5. 解: (1) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有AB BA ≠;(2)错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则可得22()().A B A B A B +-≠- (4) 错误, 设00,10A ⎛⎫= ⎪⎝⎭则有20A =,但0.A ≠(5)错误, 设10,00A ⎛⎫= ⎪⎝⎭则有2A A =,但.A I ≠6. 解:2221010(),0101AB A B -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭7. 证明: 因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明: 因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解: 由32,A X B -=得43/211(3)15/2127/211/25/2X B A -⎛⎫ ⎪=--=- ⎪ ⎪⎝⎭. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭cos sin sin cos n n n A n n θθθθ-⎛⎫= ⎪⎝⎭对n 作数学归纳法. 当2n =时,22222cos 2sin 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-⎛⎫--⎛⎫==⎪ ⎪-⎝⎭⎝⎭, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-⎛⎫=⎪⎝⎭. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---⎛⎫=⎪+-⎝⎭cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+⎛⎫=⎪++⎝⎭因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭. 11. (1)解: 由初等行变换可得,111031113111031107221240012200122001043314500244000390001311118002150000000000A -------⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪----⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪------ ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭(2)解: 由初等行变换可得,111111107125016016234000000⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭12. 解法见第38页 例2.14.13. (1) 解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪→→--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2221101100(1)(2)(1)(1)λλλλλλλλλλ⎛⎫ ⎪→--- ⎪ ⎪-+-+⎝⎭, 当2λ=-时, 方程组无解, 当1λ=时,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数, 当1λ≠, 且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---⎛⎫⎛⎫⎪⎪--→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--⎛⎫⎛⎫ ⎪ ⎪→-+--→--- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭当1λ=时,方程组无解,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解: 通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭, 故 112522521--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解: 原线性方程组可写成123123122103430x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,11231123132210234301x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭17.(1) 由原矩阵方程可得121122111321182431511133X --⎛⎫-⎛⎫-⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪-⎝⎭⎝⎭, (2) 由原矩阵方程可得1111143120112011104X --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭(3)由原矩阵方程可得11010143100210100201001134001120010102X ----⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=-=- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭18证明: 因为21()()k k I A I A A A I A I +-++++=-=, 所以12()()k I A I A A A --=++++19. 解: 由220A A I --=, 得()2A I AI -=,3(2)4A IA I I -+=-, 因此,1(),2A I A --=13(2)4A IA I --+=-20. 证明: 由220A AB B ++=, 且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=-21. 令11123,01121001B C ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭,则111311044,0111100122B C --⎛⎫-⎛⎫- ⎪ ⎪==-⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭, 因此1111130004411000002200001100001100001B B A A A ----⎛⎫- ⎪ ⎪⎪-⎛⎫⎛⎫⎪=== ⎪⎪ ⎪⎝⎭⎝⎭- ⎪ ⎪- ⎪⎝⎭. 22. 证明: 若,B C 可逆,则有11000B C I CB --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 所以A 可逆,且1110.0C A B---⎛⎫= ⎪⎝⎭ 反之,若A 可逆, 设其逆为X Y Z V ⎛⎫⎪⎝⎭, 则, 000B X Y I o CZ V I ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此,,BZ I CY I ==, 因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =, 得211A A AA --=, 即A E =, 这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 解得, 12345111,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立. 7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()⇒设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩ 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()⇐ 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关, 所以123123123(000k k k k k k k k k +-=⎧⎪-++=⎨⎪-+=⎩ 解得上面方程组只有零解, 因此,123,,ααα线性无关. 证明: 9.(⇒)设1mi i i k αα==∑, 和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(⇐)设11m m i i i i i i k l ααα====∑∑, 则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关, 则存在不全为零的数12,,,m k k k 使得,10.mi ii k α==∑若有某个0i k =, 不妨设10k =,则有20,mi ii k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====, 这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零, 命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+-+⎝⎭⎝⎭⎝⎭所以, 当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关, 且312111.77ααα=+ 13. 解: (1)因为2344112311231123112323440501005010326132610501000001021102101020000A ------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪--⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪⎪------⎝⎭⎝⎭⎝⎭⎝⎭因此,向量组1234,,,αααα的秩为2, 12,αα是一个极大线性无关组, 且314122,2.ααααα==-+用类似的方法可求(2), (3), 答案见教材.14. (1) 因为120131(,)1224αα⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭, 有一个二阶子式01331=--,所以秩(12,αα)=2, 即12,αα线性无关.(2) 容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++∉ 因此,2V 不是线性空间. 17. 证明: 因为01101111101101211110011==-=--, 所以123,,ααα线性无关, 即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++, 即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=⎧⎪-++=⎨⎪+=⎩, 解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明: 因为A 是正交阵, 所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==, 故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪--- ⎪ ⎪ ⎪→→⎪ ⎪ ⎪-- ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=⎧⎨-=⎩选取3x 作为自由未知量, 解得基础解系为1971-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 因此, 方程组的解为1971k -⎛⎫ ⎪ ⎪ ⎪⎝⎭(2)313411311131159815980467113131340000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 选取选取34,x x 作为自由未知量, 解得基础解系为3/23/43/27/4,1001-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解为123/23/43/27/41001k k -⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)见教材答案 (4)见教材答案2. (1) 对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --⎛⎫⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解得特解为5/6101/6⎛⎫⎪ ⎪ ⎪ ⎪-⎝⎭, 对应的齐次线性方程组的基础解系为3510-⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭, 因此方程组的同解为5/6101/6⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭+3510k -⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭(2) 答案见教材 3. (略)4. 证明: 令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。

《线性代数》课后习题答案

《线性代数》课后习题答案

第一章 行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ⊆,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ⊄。

(反证法)如果)()(q Q p Q ⊆,则q b a p Q b a +=⇒∈∃,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

如果0=a ,则2qb p =,这与q p ,是互异素数矛盾。

线性代数习题参考答案

线性代数习题参考答案

线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i = ,j = 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3.证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。

4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)[模版仅供参考,切勿通篇使用]感恩作文线性代数课后习题答案(一):高等数学线性代数,概率统计第二版课后答案姚孟臣版最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数课后习题答案(二): 谁知道《线性代数与解析几何教程》(上册)的课后习题答案在哪下?但一定要真实,这本书是大一要学的,樊恽,刘宏伟编科学出版社出版.急不知道线性代数课后习题答案(三):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, R(A) = R(aaT) 线性代数课后习题答案(四):求线性代数(第三版),高等教育出版社的习题参考答案华中科技大学数学系的线性代数课后习题答案书店都有卖的,尤其是华科附近的小书店,盗版一大堆~ 线性代数课后习题答案(五):线性代数:假如一道题目要求某矩阵,如果我求出的矩阵与答案所给的矩阵是等价的,能算是正确答案么?如果只是某两行或某两列位置调换了一下,也不能算是正确答案吗?线性代数课后习题答案应该不正确吧.以我理解矩阵的等价是说 QAP=B A等价到B 是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边乘上个初等矩阵线性代数课后习题答案(六):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;求出来对角阵只有一个非零特征值,为什么0就是A的N-1重特征值了?再问一下当0是特征值时对应的特征向量有什么特点么?所求得的对角阵与A 相似,所以A 与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N –1)重.所以A 也是这样应该懂了吧线性代数课后习题答案(七):线性代数问题.设A=E-a^Ta,a=[a1,a2,……,an],aa^T=1,则A不能满足的结论是().^T=A ^T=A^-1 ^T=E ^2=A只会证A对,不要用排除法.A²=E由A,知A^T=AAA^T=A²=(E-a^Ta)(E-a^Ta)=E-a^Ta-a^Ta+a^Taa^Ta=E-2a^Ta+a^T(aa^T)a=E-2a^Ta+a^Ta==E-a^Ta=A所以C错. 线性代数课后习题答案(八):线性代数,对称矩阵的证明题如果n阶实对称矩阵A满足A^3=En,证明:A一定是单位矩阵答案是这样的,有点不懂的地方:因为A^3=En所以A的特征值一定是x^3=1的实根(1.是不是因为对应的多项式为f(x)=x^3-1,所以,f(λ)=λ^3-1=0?)所以λ1=λ2=λ3=1A相似于单位矩阵必有A=En(2.我觉得因为A是对称矩阵所以必有正交阵P,使得P^-1*A*P=P"*A*P=∧,∧的对角元为1,1,1,所以相似于E,可是方阵是n阶,λ只是一个特征值,那么就能相似于En吗?相似的对角阵不是应该也是n阶吗,应该有n个特征值啊!)第一问:因为A是实对称矩阵,所以存在正交矩阵PP"AP=∧∧是A的特征值构成的对角阵A=P∧P"A^3=P∧^3P"=E所以∧^3=E所以λ1^3.λn^3都等于1所以λ1=λ2=..=λn=1第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)所以A相似于这n个特征值构成的对角阵P"*A*P=E所以 A=PEP"=PP"=E刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解线性代数课后习题答案(九):线性代数线性方程组问题公共解和同解方程组大题,遇到过不少次了答案的作法让人晕作法1:分别求出基础解析方程组1的 k1()+k2()方程组2的:k3()+k4()然后对比,综合得出一个k()方法2:先求出方程组1的解,然后代入方程组2..方法3:做一个联合的系数矩阵,很大的,然后说求出来的解就是它们的. 我的问题在于:上面的方法我自己能想到1 2,但是不清楚所谓的公共解和同解的区别在哪里?另外,为什么很错题,这几个方法不论求公共解还是同解都能通用?什么时候用哪个方法啊?两个方程组的公共解,可用方法3.若是两个方程组同解,方法3就不灵了公共解是两个方程组解的交集,包含在两个方程组的解集中同解方程组,两个方程组的解集一样,即基础解系等价(可互相线性表示)这类题目一般综合性强,需根据具体情况来分析使用哪个方法比如:一个方程组可得出明显的基础解系,那么代入另一方程组就方便一些.你可以看看此类的题目,先自己做做看,用什么方法,再与解答比较,最后总结一下,大有好处若有看不透的题目,就拿来问一下,我帮你分析线性代数课后习题答案(十):一道线性代数的题目题目是判断正误若α1,α2,……αs线性相关,则其中每一个向量都是其余向量的线性组合.我知道答案是错误但是请问反例怎么举拿0和一个非零的放到一起,线性相关,0可以写成非零的那个的线性组合,非零的那个不能写成0的线性组合。

同济大学线性代数第六版课后答案(全).

同济大学线性代数第六版课后答案(全).

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得nnn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 0000 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有nn n n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==D D x , 222==D D x , 333==D D x , 144-==DDx .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 70351100650000601000051001653==D , 395510601000051000651010654-==D , 2121105100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C OC A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--000410*******20201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组: (1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010********1k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为 ⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x xx x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。

(完整版)线性代数试题及答案

(完整版)线性代数试题及答案

线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。

A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。

A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。

A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。

A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。

A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。

A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。

A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。

A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。

A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。

A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。

线性代数测试试卷及答案

线性代数测试试卷及答案

线性代数测试试卷及答案线性代数(A 卷)⼀﹑选择题(每⼩题3分,共15分)1. 设A ﹑B 是任意n 阶⽅阵,那么下列等式必成⽴的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+2. 如果n 元齐次线性⽅程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶⽅阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( )(A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4. 设实⼆次型11212222(,)(,)41x f x x x x x ??= ? ?-的矩阵为A ,那么( )(A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ?-?? (D) 1001A ??=5. 若⽅阵A 的⾏列式0A =,则( ) (A) A 的⾏向量组和列向量组均线性相关 (B)A 的⾏向量组线性相关,列向量组线性⽆关 (C) A 的⾏向量组和列向量组均线性⽆关 (D)A 的列向量组线性相关,⾏向量组线性⽆关⼆﹑填空题(每⼩题3分,共30分)1 如果⾏列式D 有两列的元对应成⽐例,那么该⾏列式等于;2. 设100210341A -?? ?=- ? ?-??,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是⾮齐次线性⽅程组AX b =的解,若λαµβ+也是它的解, 那么λµ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则⾏列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为;9. 若⼆次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围为;10. 设A 为n 阶⽅阵,且满⾜2240A A I +-=,这⾥I 为n 阶单位矩阵,那么1A -= . 三﹑计算题(每⼩题9分,共27分)1. 已知210121012A ?? ?= ? ,100100B ?? ?= ? ???34124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的⼀个最⼤⽆关组和秩.四﹑(10分)设有齐次线性⽅程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=??-++=??++-=? 问当λ取何值时, 上述⽅程组(1)有唯⼀的零解﹔(2)有⽆穷多个解,并求出这些解. 五﹑(12分)求⼀个正交变换X PY =,把下列⼆次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑(6分)已知平⾯上三条不同直线的⽅程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于⼀点的充分必要条件为0a b c ++=.线性代数(A 卷)答案⼀﹑1. D 2. C 3. B 4. A 5. A⼆﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解由AX X B =+得1()X A I B -=-. (2分)下⾯求1()A I --. 由于110111011A I ?? ?-= ? ???(4分)⽽1()A I --=011111110-?? ?- ? ?-??. (7分)所以10111001()11101111100011X A I B --?????? ??? ?1234234134124123=10234103411041210123123413411014121123= (4分) 123401131000440004-=-- (8分) 160= (9分) .3. 解由于3112341234011301131301053307330733r r ------ - ------324212345011300212700424r r r r -??---+ ?--?? 43123401132002120000r r -??--+(6分) 故向量组的秩是 3 ,123,,ααα是它的⼀个最⼤⽆关组。

线性代数A答案

线性代数A答案
枣庄学院2021—2021学年第1学期
线性代数课程考试试题参考答案及评分标准
开课单位:机电工程学院课程类别:□公共课□专业课□基础课□学科教育必修课
课程编号
学分/学时
3/பைடு நூலகம்8
试 卷
A卷□B卷
出题教师
孙振川
考试方式
闭卷□开卷□其他
专业/年级
2011级机电一体化技术
修读方式
必修□选修
一、
(全对得满分,步骤不唯一,可以用各种方法,结果不对根据步骤酌情给分)
八、
九、 , ,因为 可逆,所以 , ,所以 可逆,
,所以
注:1.出题教师负责制订课程考试试题参考答案及评分标准,不够可另附页。
2.试题参考答案及评分标准与试题一并交主管教学负责人,负责人审核签字,公共课交教务处,专业课留各学院(教学部)。
3.试卷评阅完后,此表随试卷装订在一起,专业课由各学院、公共课由教务处分别保管、存档。
二、
三、
四、由题意,因为 ,所以A可逆,
求A的逆矩阵 可以用多种方法,判断出A不可逆得3分,正确求出 得满分,结果错误酌情扣分,最多得5分。
五、
结果错误根据步骤酌情得分,最多得5分。
六、证: ,所以 是对称阵
七、 ,本题有多种方法,最好的方法是用初等行变换,能正确求出 得4分,求出最后结果得满分,其他不对的情况酌情扣分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-------------------------(4分)
知当 时 即 为所求--------------(3分)
得分
阅卷人
八、(10分)判定二次型 的正定性.
解二次型的矩阵为 --------------(3分)
因为
所以 为负定--------------(7分)
得分
阅卷人
九、(10分)设 是一组线性无关的 维向量,证明:任一 维向量都可为 是 个 维向量所以 是线性相关的。--------------(5分)
又因为 线性无关,
所以 能由 线性表示且表示式是唯一的
--------------(5分)
山东交通学院期末考试线性代数课程试卷答案和评分标准(A)卷2010 - 2011学年第一学期第3页共3页
(C) 有解(D) 仅有零解
4.设 为 的两个不相同的特征值, 和 为 的分别属于 与 的特征向量,则 和 (A)
(A)线性无关(B)线性相关(C)对应分量成比例(D)可能有零向量
5.已知 阶矩阵 的特征值为 则 等于(C)
(A) (B) (C) (D)
得分
阅卷人
三、(10分)计算行列式( 为 阶行列式, 为整数) ,其中主对角线上元素都是 未写出的元素都是0.
山东交通学院期末考试线性代数课程试卷答案和评分标准(A)卷2010 - 2011学年第一学期第1页共3页
得分
阅卷人
一、填空题(每小题3分,共15分)
1.四阶行列式中带正号且含有因子 的项为 .
2.设 为 阶矩阵, 为 的伴随矩阵, 则 = .
3.设 则
4.设 为 的伴随矩阵,则 .
5.二次型 的矩阵是
取 ,得
取 ,得
方程组 的基础解系为
, .
因此所求矩阵为 --------------(5分)
得分
阅卷人
七、(10分)设矩阵 可相似对角化求 .
解由
得 的特征值为 --------------(3分)
因为 可相似对角化,对应于 齐次线性方程组 有一个线性无关的解,所以对应于 ,齐次线性方程组 有两个线性无关的解因此 .由
得分
阅卷人
五、(10分)设 问 为何值可使

--------------(7分)
当 时,
当 时,
当 且 时, --------------(3分)
得分
阅卷人
六、(10分)设 ,求一个 矩阵 ,使 ,且
解显然 的两个列向量应是方程组 的两个线性无关的解因为
----------(5分)
所以与方程组 同解方程组为
得分
阅卷人
二、单项选择题(每小题3分,共15分)
1.在函数 中, 的系数等于(B)
(A) 1(B) -1(C) 2(D) -2
2.设 均为 阶非零矩阵,且 ,则 和 的秩( D )
(A)必有一个等于零(B)都等于
(C)一个小于 ,一个等于 (D)都小于
3. 阶矩阵 可逆的充分必要条件是( D )
(A)任一行向量都是非零向量(B)任一列向量都是非零向量
解: (按第n行展开)
----------(5分)
.---------(5分)
山东交通学院期末考试线性代数课程试卷答案和评分标准(A)卷2010 - 2011学年第一学期第2页共3页
得分
阅卷人
四、(10分)设 ,求 .
解:由 可得 ,又因为
---------(4分)

--------------(6分)
相关文档
最新文档