高中数学立体几何知识点归纳总结

合集下载

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结1点在线面用属于,线在面内用包含。

四个公理是基础,推证演算巧周旋。

空间之中两条线,平行相交和异面。

线线平行同方向,等角定理进空间。

判定线和面平行,面中找条平行线。

已知线与面平行,过线作面找交线。

要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。

已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。

判定线和面垂直,线垂面中两交线。

两线垂直同一面,相互平行共伸展。

两面垂直同一线,一面平行另一面。

要让面与面垂直,面过另面一垂线。

面面垂直成直角,线面垂直记心间。

一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。

空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。

引进向量新工具,计算证明开新篇。

空间建系求坐标,向量运算更简便。

知识创新无止境,学问思辨勇攀登。

多面体和旋转体,上述内容的延续。

扮演载体新角色,位置关系全在里。

算面积来求体积,基本公式是依据。

规则形体用公式,非规形体靠化归。

展开分割好办法,化难为易新天地。

高中立体几何知识点总结2三角函数。

注意归一公式、诱导公式的正确性数列题。

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结立体几何是数学中的一个分支,研究与三维空间中的几何图形相关的性质和关系。

高中数学中的立体几何部分主要涉及到体积、表面积、平面截面和立体图形的性质等内容。

下面将对高中数学立体几何的知识点进行总结。

一、体积和表面积的计算方法在立体几何中,体积和表面积是重要的衡量参数。

体积用于表示一个立体图形所占据的空间大小,而表面积则表示该立体图形的外表面积。

1.1 直体的体积和表面积计算方法直体包括长方体、正方体和圆柱体等。

长方体的体积等于底面积乘以高,表面积等于长方体的六个面的面积之和。

正方体的体积等于边长的立方,表面积等于六个面的面积之和。

圆柱体的体积等于底面积乘以高,表面积等于上下底面积之和再加上侧面积。

1.2 斜体的体积和表面积计算方法斜体包括棱柱、棱锥、棱台和四面体等。

棱柱的体积等于底面积乘以高,表面积等于底面积加上侧面积。

棱锥的体积等于底面积乘以高除以3,表面积等于底面积加上底面与顶点相连的面积。

棱台的体积等于上底面积加下底面积再乘以高除以2,表面积等于上底面积加下底面积再加上四个侧面的面积。

四面体的体积等于底面积乘以高除以3,表面积等于四个面的面积之和。

1.3 球体的体积和表面积计算方法球体的体积等于4/3乘以π乘以半径的立方,表面积等于4乘以π乘以半径的平方。

二、平面截面的性质和计算方法在立体几何中,平面截面是指一个平面与一个立体图形相交后所形成的截面。

平面截面的性质和计算方法与不同的立体图形有关。

2.1 长方体的平面截面性质和计算方法长方体的平面截面可以是矩形、正方形或平行四边形。

截面的面积等于截面的宽度乘以长度。

2.2 圆柱体的平面截面性质和计算方法圆柱体的平面截面可以是圆形、椭圆形或矩形。

截面的面积等于截面的形状对应的公式计算得出。

2.3 球体的平面截面性质和计算方法球体的平面截面可以是圆形或椭圆形。

截面的面积等于截面的形状对应的公式计算得出。

三、立体图形的性质除了体积、表面积和平面截面之外,立体几何还研究了立体图形的性质和关系。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结立体几何知识点总结「篇一」(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的.圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

立体几何知识点总结「篇二」1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。

本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。

一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。

2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。

3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。

二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。

2. 四棱锥:底面为四边形,侧面为三角形的五面体。

3. 五棱锥:底面为五边形,侧面为三角形的六面体。

4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。

5. 正方体:六个面都是正方形的多面体。

6. 正四面体:四个面都是正三角形的多面体。

7. 正六面体:六个面都是正方形的多面体。

三、平面图形与立体图形1. 投影:图形在投影面上的图象。

2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。

3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。

4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。

5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。

四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。

2. 垂直关系:两条直线在同一个平面上,且相交成直角。

五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。

2. 平面角:两个相交的平面所夹的角,范围为0到180度。

3. 相对角:两个相交直线上相对的两个角。

六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。

2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。

七、相交与相切1. 相交:两个或多个图形交叠在一起。

2. 相切:两个或多个图形只有一个点是共同的。

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。

XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。

四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。

改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。

其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。

二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。

基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。

在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。

直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。

三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。

圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。

球的表面积和体积分别为4πR²和(4/3)πR³。

四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结1. 空间直角坐标系空间直角坐标系是三维空间中的坐标系,由三个互相垂直的坐标轴构成。

分别以这三个坐标轴为轴线的平面叫做该坐标轴的坐标平面,相应的,任意三元组(x,y,z)就代表空间中的唯一点。

x,y,z分别为点在三个坐标轴上的投影。

2. 空间中的点、直线、平面和空间图形在空间中,点的位置由其坐标来确定,点没有长度、宽度、高度。

直线是由两点确定的,是一条没有宽度的路径。

平面是由三点确定的,是一条没有厚度的表面。

图形是二维的,但在空间中,我们也需要研究三维的图形,这也是立体几何的研究对象。

3. 空间中的角空间中的角是由两条射线拼成,其中射线的起点称为角的顶点。

空间中的角与平面角类似,但是空间中还涉及到垂直的问题。

例如,在同一个平面内的两条路径的夹角是怎么样的?在不同平面内两条路径的夹角又是怎么样的?这都需要我们去研究。

4. 空间中的直线和角的位置关系空间中直线的位置关系主要有:同一平面内的直线、异面直线和交叉直线。

空间中角的位置关系主要有:邻角、对顶角、对应角、同位角的概念。

5. 空间中的平面和直线的位置关系在空间中,平面和直线的位置关系有:平行、垂直、重合、相交等概念,空间中也有直线相交、平面相交等问题。

6. 空间中的点和直线、点和平面的位置关系空间中的点与点、点与直线、点与平面的位置关系有:点在线上、点在直线外、点在平面内等。

7. 空间中的平面和平面的位置关系空间中的平面和平面的位置关系有:平行、垂直、相交、平面夹角等概念,还会有异面直线和异面直线的位置关系。

8. 空间中的平行四边形空间中的平行四边形和平面中的平行四边形是类似的,都有对角线平分、对边平行等性质。

9. 空间中的平面图形三维空间中的平面图形有:三棱锥、四棱锥、五棱锥等。

这些图形有各自的性质,也会涉及到不同角的夹角、面积等问题。

10. 空间中的体空间中的体有:圆柱、圆锥、台、棱柱、棱锥、棱台等。

这些体都有自己的性质和公式。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。

②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。

(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。

3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结.txt 高中数学立体几何知识点归纳总结一、基本概念和性质1. 空间几何:研究物体的形状、大小、位置等性质的数学学科。

2. 立体几何:研究立体图形的形状、位置、相交关系等性质的数学分支。

3. 点、线、面、体:空间中的基本几何概念,是进行立体几何研究的基础。

4. 欧氏空间:具有三个互相垂直的坐标轴的空间。

二、立体图形的表示与计算1. 投影:将三维立体图形在一个平面上的影像。

2. 空间直线与平面的交点:用点表示,相交称为交点。

3. 图形的距离:两点间的最短距离。

4. 立体图形的表面积:各个面积之和。

5. 立体图形的体积:图形所占的三维空间的容量。

三、立体图形的分类与特征1. 三角形棱锥:底面为三角形,侧面由底面顶点和底面边上的点连接而成。

2. 三视图:包括前视图、俯视图和左视图,用于直观地表示立体图形。

3. 正多面体:所有面都是相等的正多边形,且每个顶点都相等。

4. 四面体:底面为三角形,侧面为三角形的四面体。

5. 六面体:所有面都是正方形的六面体。

6. 球:每个点到球心的距离相等,表面没有边和面。

四、立体图形的性质与定理1. 垂直平分线定理:平面与直线垂直,则这个平面与直线间的距离相等,且垂直平分线是最短距离线。

2. 二面角:由两个平面相交而形成的角。

3. 球冠的表面积:底面圆周长乘以冠高并加上两个底面的面积。

4. 立体的拆分:以某种方式将立体图形分割成简单的部分进行计算。

五、计算题与解题方法1. 立体图形的表面积计算方法:根据图形类型使用相应的公式进行计算。

2. 立体图形的体积计算方法:根据图形类型使用相应的公式进行计算。

3. 利用平行截面计算体积:通过分割立体图形,计算截面积再进行求和得到体积。

4. 使用三视图解题:通过三视图的信息进行立体图形的重建和计算。

以上是高中数学立体几何的知识点归纳总结,请结合具体的题目和例题进行练习与解答,进一步加深对立体几何的理解。

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结立体几何是几何学的一个分支,研究物体的三维空间结构和性质,其重点是探讨物体的表面积、体积、形状、投影、相交等问题。

作为高中数学的重要组成部分,立体几何的知识点包含几何体、空间向量、空间位置关系和空间几何解析四大方面。

一、几何体1.球与球的关系:两球相离、相切、相交。

2.立体角:定义、立体角对立面的定义及对应角相等、立体角的典型问题及其解法。

3.圆锥面积与圆锥体积:圆锥旋转成体的概念与性质,及圆锥面积和圆锥体积的计算公式。

4.棱锥与棱柱:棱锥的特征和体积公式、棱柱的特征和体积公式、棱柱剖面的面积公式。

5.四面体、六面体:四面体特征和体积公式、六面体特征和体积公式。

二、空间向量1.向量的概念和性质:向量的定义、运算律、数量积、向量积。

2.向量的表示方法:坐标表示、参数表示和模、方向角、方向余弦。

3.线性运算:向量表示为线性组合形式,解决向量的线性方程组。

三、空间位置关系1.点与直线、点与平面、直线与平面的位置关系:点与直线的位置关系、点与平面的位置关系、直线和平面的位置关系。

2.平行、垂直的判定及相关问题:平行、垂直判定公式,两直线距离及交点的坐标求解。

3.点到直线、点到平面的距离:点到直线的距离公式和推导、点到面的距离公式和推导。

4.三角形的性质:三角形重心、垂心、辅助线问题,海伦公式与三角形面积公式。

5.四边形的性质:四边形同种类四边形的性质、对角线互相垂直的条件、美索不达米亚定理。

四、空间几何解析1.空间坐标系的建立:矩形坐标系、极坐标系、柱面坐标系与球长坐标系。

2.空间中的方位角、高度角等概念:距离角度、方位角、高度角的定义及计算。

3.两点之间的距离公式:平面坐标系中求直线距离、空间坐标系中求空间线段的距离。

4.空间直线和平面的方程及相关问题:直线和平面方程求解,直线和平面的交线、交点问题。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结立体几何是数学中的一个重要分支,研究对象是三维空间中的几何体,包括点、线、面以及体。

在高中数学中,学生需要学习和掌握一系列的立体几何知识点,本文将对这些知识点进行总结。

一、点、线、面的基本概念1. 点:在三维空间中没有长度、宽度和高度,只有位置,用坐标表示。

2. 线:由无数相邻的点组成,没有宽度和高度。

3. 面:由无数相邻的线组成,有长度和宽度,无高度。

二、几何体的分类及特征1. 定义:立体几何中的几何体是由点、线、面组成的,有一定形状和大小的实体。

2. 分类:a. 二面体:只有两个面,如圆柱体、圆锥体等。

b. 三面体:有三个面,如正方体、四面体等。

c. 多面体:有多个面,如五面体、六面体等。

3. 特征:a. 顶点:几何体的尖角,由多个线相交而成。

b. 棱:几何体的边界线段,由多个点相连而成。

c. 面:几何体的表面,由多个线组成。

三、常见几何体的特征与性质在学习几何体的过程中,我们需要掌握一些常见几何体的特征与性质,以下是其中几个重要的例子。

1. 立方体:a. 特征:六个面都是正方形,相邻面之间的角为直角。

b. 性质:对称性强,体积为边长的立方,表面积为6倍的边长的平方。

2. 正方体:a. 特征:六个面都是正方形。

b. 性质:对称性强,体积为边长的立方,表面积为6倍的边长的平方。

3. 圆柱体:a. 特征:两个底面是圆形,侧面是矩形。

b. 性质:体积等于底面积乘以高,表面积等于两个底面积加上侧面矩形的面积。

4. 圆锥体:a. 特征:一个底面是圆形,侧面是三角形。

b. 性质:体积等于底面积乘以高再除以3,表面积等于底面积加上底面到顶点的直线与侧面三角形的面积之和。

四、立体几何的计算方法学习立体几何还需要掌握一些计算方法,包括体积、表面积等的计算。

1. 体积计算:a. 立方体的体积等于边长的立方。

b. 柱体的体积等于底面积乘以高。

c. 圆锥体的体积等于底面积乘以高再除以3。

2. 表面积计算:a. 立方体的表面积等于6倍的边长的平方。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

立体几何一、平面的根本性质公理1 假如一条直线上的两点在一个平面内,那么这条直线上全部的点都在这个平面内.公理2 假如两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同始终线上的三个点,有且只有一个平面.依据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.二、空间线面的位置关系共面平行—没有公共点(1)直线及直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有多数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面及平面相交—有一条公共直线(多数个公共点)平行—没有公共点三、异面直线的断定证明两条直线是异面直线通常采纳反证法.有时也可用定理“平面内一点及平面外一点的连线,及平面内不经过该点的直线是异面直线〞.四、线面平行及垂直的断定(1)两直线平行的断定①定义:在同一个平面内,且没有公共点的两条直线平行.②假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即假设a∥αβ,α∩β,那么a∥b.③平行于同始终线的两直线平行,即假设a∥∥c,那么a∥c.④垂直于同一平面的两直线平行,即假设a⊥α,b⊥α,那么a∥b⑤两平行平面及同一个平面相交,那么两条交线平行,即假设α∥β,α∩γ,β∩γ,那么a∥b⑥假如一条直线和两个相交平面都平行,那么这条直线及这两个平面的交线平行,即假设α∩β∥α∥β,那么a∥b.(2)两直线垂直的断定1.定义:假设两直线成90°角,那么这两直线相互垂直.∥⊥b,那么a⊥c⊥α⊂α,a⊥b.∥α⊥α,那么a⊥b.5.三个两两垂直的平面的交线两两垂直,即假设α⊥β,β⊥γ,γ⊥α,且α∩β,β∩γ,γ∩α,那么a⊥⊥⊥a.(3)直线及平面平行的断定①定义:假设一条直线和平面没有公共点,那么这直线及这个平面平行.②⊄α⊂α,a∥b,那么a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即假设α∥β⊂α,那么l∥β.④α⊥β⊥β,l⊄α,那么l∥α.⑤在一个平面同侧的两个点,假如它们及这个平面的间隔相等,那么过这两个点的直线及这个平面平行,即假设A∉α,B∉α,A、B在α同侧,且A、B到α等距,那么∥α.⑥两个平行平面外的一条直线及其中一个平面平行,也及另一个平面平行,即假设α∥β⊄α,a⊄β,a∥α,那么α∥β.⑦假如一条直线及一个平面垂直,那么平面外及这条直线垂直的直线及该平面平行,即假设a⊥αα,b⊥a,那么b∥α.⑧假如两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即假设a∥∥α∥α(或b⊂α)(4)直线及平面垂直的断定①定义:假设一条直线和一个平面内的任何一条直线垂直,那么这条直线和这个平面垂直.②⊂α,n⊂α,m∩⊥⊥n,那么l⊥α.③∥⊥α,那么l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即假设α∥β⊥β,那么l⊥α.⑤假如两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即假设α⊥β∩β=α,l⊂β,l⊥a,那么l⊥α.⑥假如两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面,即假设α⊥γ,β⊥γ,且a∩β=α,那么a⊥γ.(5)两平面平行的断定①定义:假如两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即假设⊂α,a∩∥β∥β,那么α∥β.③α⊥a,β⊥a,那么α∥β.④α∥β,β∥γ,那么α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,那么这两个平面平行,即假设⊂α⊂β∩∥∥d,那么α∥β.(6)两平面垂直的断定①定义:两个平面相交,假如所成的二面角是直二面角,那么这两个平面相互垂直,即二面角α-a-β=90°⇔α⊥β.②假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直,即假设l⊥β⊂α,那么α⊥β.③α∥β,α⊥γ,那么β⊥γ.五、直线在平面内的断定(1)利用公理1:始终线上不重合的两点在平面内,那么这条直线在平面内.(2)假设两个平面相互垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即假设α⊥β∈α,⊥β,那么⊂α.(3)过一点和一条直线垂直的全部直线,都在过此点而垂直于直线的平面内,即假设A∈⊥b,A∈α⊥α,那么a⊂α.(4)过平面外一点和该平面平行的直线,都在过此点而及该平面平行的平面内,即假设P∉α,P∈β,β∥α,P∈∥α,那么a⊂β.(5)假如一条直线及一个平面平行,那么过这个平面内一点及这条直线平行的直线必在这个平面内,即假设a∥α∈α,A∈∥a,那么b⊂α.六、存在性和唯一性定理(1)过直线外一点及这条直线平行的直线有且只有一条;(2)过一点及平面垂直的直线有且只有一条;(3)过平面外一点及这个平面平行的平面有且只有一个;(4)及两条异面直线都垂直相交的直线有且只有一条;(5)过一点及直线垂直的平面有且只有一个;(6)过平面的一条斜线且及该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而及另一条平行的平面有且只有一个;(8)过两条相互垂直的异面直线中的一条而及另一条垂直的平面有且只有一个.七、射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不及射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上全部的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面及射影面垂直时,射影是一条线段;当图形所在平面不及射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;()相等的斜线段的射影相等,较长的斜线段的射影也较长;()垂线段比任何一条斜线段都短.八、空间中的各种角1、等角定理及其推论定理:假设一个角的两边和另一个角的两边分别平行,并且方向一样,那么这两个角相等.推论:假设两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.2、异面直线所成的角(1)定义:a、b是两条异面直线,经过空间随意一点O,分别引直线a′∥′∥b,那么a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①依据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.3、直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.()垂线及平面所成的角直线垂直于平面,那么它们所成的角是直角.()一条直线和平面平行,或在平面内,那么它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线及平面所成的角θ.②解含θ的三角形,求出其大小.4、二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线动身的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.5、假设两个平面相交,那么以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上随意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.②二面角的平面角具有以下性质:(i)二面角的棱垂直于它的平面角所在的平面,即⊥平面.()从二面角的平面角的一边上随意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.()二面角的平面角所在的平面及二面角的两个面都垂直,即平面⊥α,平面⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法()垂面法(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′·α其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的间隔公式求二面角的大小.空间的各种间隔点到平面的间隔(1)定义面外一点引一个平面的垂线,这个点和垂足间的间隔叫做这个点到这个平面的间隔 .(2)求点面间隔常用的方法:1)干脆利用定义求①找到(或作出)表示间隔的线段;②抓住线段(所求间隔 )所在三角形解之.2)利用两平面相互垂直的性质.即假如点在平面的垂面上,那么点到两平面交线的间隔就是所求的点面间隔 .3)体积法其步骤是:①在平面内选取适当三点,和点构成三棱锥;②求出1·h,求出h即为所此三棱锥的体积V和所取三点构成三角形的面积S;③由3求.这种方法的优点是不必作出垂线即可求点面间隔 .难点在于如何构造相宜的三棱锥以便于计算.4)转化法将点到平面的间隔转化为(平行)直线及平面的间隔来求.直线和平面的间隔(1)定义一条直线和一个平面平行,这条直线上随意一点到平面的间隔,叫做这条直线和平面的间隔 .(2)求线面间隔常用的方法①干脆利用定义求证(或连或作)某线段为间隔,然后通过解三角形计算之.②将线面间隔 转化为点面间隔 ,然后运用解三角形或体积法求解之. ③作协助垂直平面,把求线面间隔 转化为求点线间隔 .空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原那么: 长对齐、高对齐、宽相等3直观图:斜二测画法〔角度等于45或者135〕4斜二测画法的步骤:〔1〕.平行于坐标轴的线依旧平行于坐标轴;〔2〕.平行于y 轴的线长度变半,平行于x 轴的线长度不变;〔3〕.画法要写好。

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳
点:没有长度、宽度和高度的几何基本元素。

线:由一组点组成,具有长度但没有宽度和高度。

面:由一组线组成,具有长度和宽度但没有高度。

三棱柱:底面为三角形,侧面为三个矩形。

四棱柱:底面为四边形,侧面为四个矩形。

圆柱:底面为圆形,侧面为矩形。

锥:底面为任意多边形,侧面为三角形。

圆锥:底面为圆形,侧面为三角形。

球:所有点到球心的距离相等。

圆球:球的表面。

体积:立体几何体所占的空间大小。

表面积:立体几何体表面的总面积。

基本公式:
三棱柱体积公式:V = 底面积 * 高
四棱柱体积公式:V = 底面积 * 高
圆柱体积公式:V = 底面积 * 高
锥体积公式:V = 1/3 * 底面积 * 高
圆锥体积公式:V = 1/3 * 底面积 * 高
球体积公式:V = 4/3 * π * 半径³
圆球表面积公式:A = 4 * π * 半径²
正投影:由平行光线投射而成,可得到等比例的图形。

斜投影:由斜光线投射而成,图形会产生放大或缩小的效果。

直线与平面的关系:
相交:直线与平面交于一点。

平行:直线不与平面相交。

共面:直线在平面上。

线面垂直:直线与平面相交,且相交点在平面上。

同位角:以同一边为边的两个角。

对顶角:两个相对角。

互补角:两个角的和为90度。

相邻补角:两个角的和为180度。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S =2rh π;S=222rh r ππ+,V=Sh=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高中数学立体几何知识点归纳总结一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.棱柱棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为平行四边形侧棱垂直于底面底面为矩形底面为正方形棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.圆柱的性质:上、下底及平行于底面的截面侧面母线都是等圆;过轴的截面(轴截面)是全等的矩形.侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 面积、体积公式:S =2rh π;S=222rh r ππ+,V=Sh=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

高中数学《立体几何》知识点总结

高中数学《立体几何》知识点总结

1.柱锥台的表面积体积圆柱(底面半径为r ,母线长为l ) 圆锥(底面半径为r ,母线长为l ) 圆台(上、下底面半径分别为12,r r ,母线长为l )侧面展开图底面积 S 底=2r π S 底=2r π S 上底=21r π S 下底=22r π 侧面积S 侧=rl π2S 侧=rl πS 侧=l r r )(21+π表面积S 表=)(22S r l r S +=+π底侧 S 表=)(S r l r S +=+π底侧222121)(S S r r l r r S S πππ+++=++=下底上底侧表高l h =22r l h -=)上下222-(r r l h -=体积=圆柱V Sh =l r 2π=圆锥V Sh 31=l r 231π =圆台V )下上下上S S S S ++(31)上下222-(r r l -⋅=柱V Sh =锥V Sh 31=台V h S S S S )下上下上++(31轴截面rl S 2=h r S ⋅⋅=221h r r S ⋅+⋅=)(21下上2.外接球问题(1)长方体、正方体、墙角模型:2222c b a R ++=特别地,正方体:a a R 3322==(2)正四面体模型:63h a =,36=44R h a =外,16=412R h a =内 (3)侧棱相等(正棱锥、圆锥)模型公式:hl h h r R 22222=+= (4)侧棱垂直于底面(直棱柱、直棱锥、圆柱)模型:22()2h R r =+(5)对棱相等模型公式:)(812222z y x R++= (6)共斜边的两个直角三角形模型公式:2斜边=R (7)面面垂直模型222212)2(lr r R -+=特别地,多面体内切球半径公式:表面积内S VR 3=(等体积法)3.内切球问题 (1)正方体:2a r=; (2) 三棱锥、圆锥的内切球公式:表S V r 3=(3) 圆柱的内切球公式:2l r r ==圆柱球 4空间距 (1)点线距:22.()AP AB d AP AB=-(2) 点P 到平面ABC 的距离:斜向量在法向量方向上的投影:||PA n d n ⋅=5.空间角 (1)异面直线AB 与CD 所成的角θ:|||||,cos |cos CD AB CD AB =><=θ(2)直线PA 与平面ABC 所成的角θ:|||||,cos |sin n PA n PA n PA =><=θ(3)二面角l αβ--的平面角θ:||||,cos cos 212121n n n n n n >=<±=θ6.垂直平行的判定与性质b β⎬⎪=⎭符号////b P ααα⎫⎪⎬⎪=⎭a ab γγ⎪=⎬⎪=⎭符号ab l b p ⊥⎫⎪⊥⊥⎬⎪=⎭//a b αα⊥⎫⎬⊥⎭符号l a lβα⎪=⎪⎬⊂⎪⎪⊥⎭。

高中数学立体几何知识点总结4篇

高中数学立体几何知识点总结4篇

高中数学立体几何知识点总结4篇高中数学立体几何知识点总结4篇社会心理学是一种以社会群体和人际关系为研究对象的学科,涉及社会认知、群体动态和人际关系等基本领域。

统计学是一种以数据收集、分析和解释为基础,为决策和研究提供有力支持的学科。

下面就让小编给大家带来高中数学立体几何知识点总结,希望大家喜欢!高中数学立体几何知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x ,y+y )。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。

② 如果a≠0且λa=μa,那么λ=μ。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其 中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

E'D'F' C'侧面A'B'l1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的底面侧棱关系:斜棱柱EDFC ①底面是正多形棱柱正棱柱棱垂直于底面直棱柱其他棱柱AB ②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体1.3棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的 D1 C1平方和;【如图】2222 ACABADAA11A1DB1②(了解)长方体的一条对角线 AC 与过顶点A 的三条1C AB 棱所成的角分别是,,,那么第1页222 coscoscos1,222 sinsinsin2;③(了解)长方体的一条对角线A C与过顶点A的相邻三个面所成的角分别是,,,1则222coscoscos2,222sinsinsin1.2.侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱长为邻边的矩形.3.面积、体积公式:S ch直棱柱侧直棱柱全底,V棱柱底Sch2SSh(其中c为底面周长,h为棱柱的高)1.5圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.母线A'B'O' C'轴轴截面2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和AOC 侧面B母线长为邻边的矩形.底面2.4面积、体积公式:S圆柱侧=2rh;S圆柱全= 22rh2r,V 圆柱=S底h=2rh(其中r为底面半径,h为圆柱高)1.6棱锥3.1棱锥——有一个面是多边形,其余各S顶点侧面面是有一个公共顶点的三角形,由这些高面所围成的几何体叫做棱锥。

侧棱正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.2棱锥的性质:底面斜高DC①平行于底面的截面是与底面相似的正OABH多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;②正棱锥各侧棱相等,各侧面是全等的等腰三角形;③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。

)(如上图:SOB,SOH,SBH,OBH为直角三角形)3.3侧面展开图:正n棱锥的侧面展开图是有n个全等的等腰三角形组成的。

3.4面积、体积公式:S正棱锥侧= 12ch,S 正棱锥全=12chS底,V 棱锥=13S底h.(其中c为底面周长,h侧面斜高,h棱锥的高)第2页4.圆锥1.7圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

1.8圆锥的性质:①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面 的距离之比;②轴截面是等腰三角形;如右图:SABS顶点③如右图: 222 lhr.1.9圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

1.10面积、体积公式:S 圆锥侧=rl ,S 圆锥全=r(rl ),V圆锥=132rh (其中Alr r 为底面半径,h 为圆锥的高,l 为母线长)底面5.棱台S2.5棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.2.6正棱台的性质:①各侧棱相等,各侧面都是全等的等腰梯形;上底面 高A' D' O' B 'C' M侧棱 侧面 ②正棱台的两个底面以及平行于底面的截面是 正多边形;③如右图:四边形O`MNO,O`B`BO 都是直角梯下底面 顶点 D O ABNC斜高形④棱台经常补成棱锥研究.如右图:SO`M 与SON,S`O`B`与SOB 相似,注意考虑相似比. 12.7棱台的表面积、体积公式:S 全=S 上底+S 下底+S 侧,V 棱台=(+SSSh ,(其中S,S`是S``)3上,下底面面积,h为棱台的高)6.圆台S 3.5圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.3.6圆台的性质: A r O'上底面D①圆台的上下底面,与底面平行的截面都是圆;②圆台的轴截面是等腰梯形;③圆台经常补成圆锥来研究。

如右图:母线轴hl轴截面侧面SO`A与SOB相似,注意相似比的应用.BRC下底面O3.7圆台的侧面展开图是一个扇环;3.8圆台的表面积、体积公式:22()S全=rRRrl,第3页V圆台1122=(S+SS`S`)h=(rrRR)h,(其中r,R为上下底面半径,h为高)337.球1.11球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. 或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球;1.12球的性质:①球心与截面圆心的连线垂直于截面;②22rRd(其中,球心到截面的距离为d、球面轴球心球的半径为R、截面的半径为r)半径1.13球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切. OA'A'D'C'C'RB'AOOrdO1B DCABAc注:球的有关问题转化为圆的问题解决.1.14球面积、体积公式:243S球4R,V球R(其中R为球的半径)3例:(06年福建卷)已知正方体的八个顶点都在球面上,且球的体积为长为_________ 323,则正方体的棱(二)空间几何体的三视图与直观图2.8投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.9三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。

(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”.(2)正视图,侧视图,俯视图都是平面图形,而不是直观图。

2.10直观图:3.9直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3.10斜二测法:第4页step1:在已知图形中取互相垂直的轴Ox、Oy,(即取xoy90);step2:画直观图时,把它画成对应的轴o'x',o'y',取x'o'y'45(or135),它们确定的平面表示水平平面;step3:在坐标系x'o'y'中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的24 倍.解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”. (2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。

第二章点、直线、平面之间的位置关系(一)平面的基本性质8.平面——无限延展,无边界1.15三个定理与三个推论公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

用途:常用于证明直线在平面内.图形语言:符号语言:公理2:不.共.线.的三点确定一个平面.图形语言:推论1:直线与直线外的一点确定一个平面.图形语言:推论2:两条相交直线确定一个平面.图形语言:推论3:两条平行直线确定一个平面.图形语言:用途:用于确定平面。

公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线).用途:常用于证明线在面内,证明点在线上.图形语言:符号语言:形语言,文字语言,符号语言的转化:第5页(二)空间图形的位置关系9.空间直线的位置关系:共面:ab=A,a//b 异面:a与b异面1.16平行线的传递公理:平行于同一条直线的两条直线互相平行。

符号表述:a//b,b//ca//c1.17等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

1.18异面直线:(1)定义:不同在任何一个平面内的两条直线——异面直线;(2)判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线是异面直线。

第6页P图形语言:PaAA符号语言:PA与异a面aAa10.异面直线所成的角:(1)范围:0,90;(2)作异面直线所成的角:平移法.如右图,在空间任取一点O,过O作a'//a,b'//b,则a,'b'a'b' 所成的角为异面直线a,b所成的角。

特别地,找异面直线所aO 成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.bl1.19直线与平面的位置关系:l l A l//图形语言:平行://1.20平面与平面的位置关系:相交斜交:=a垂直:(三)平行关系(包括线面平行,面面平行)2.11线面平行:①定义:直线与平面无公共点.a//b②判定定理:aa//(线线平行线面平行)【如图】ba//aa//b③性质定理:(线面平行线线平行)【如图】b第7页④判定或证明线面平行的依据:(i)定义法(反证):ll//(用于判断);(ii)a//baa b // “线线平行面面平行”(用于证明);(iii)a//a//判定定理:ba“面面平行线面平行”(用于证明);(4)//ba (用于判断);a11.线面斜交:lA①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

相关文档
最新文档