高二数学期末练习(二)

合集下载

2020~2021学年度第二学期期末考试高二数学答案

2020~2021学年度第二学期期末考试高二数学答案

2021~2022学年度第一学期期末考试高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案BDADBBCCA二、填空题:本大题共6小题,每小题4分,共24分.试题中包含两个空的,每个空2分.10.111.1812.2214x y -=13.848(,,999-14.(],1-∞;0,,42πππ⎡⎤⎛⎫⎪⎢⎣⎦⎝⎭15.2214x y +=三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解:依题意,设圆的方程为x 2+y 2+Dx +Ey +F =0,则代入圆的一般方程,193016442014970D E F D E F D E F ++++=⎧⎪++++=⎨⎪++-+=⎩………………………3分∴D =2-………………………4分E =4,………………………5分F =20-,………………………6分∴x 2+y 22x -4y +20-=0,………………………8分令x =0,可得24200y y +-=,………………………9分∴y =2-±……………………10分∴PQ =.……………………12分17.(本小题满分12分)解:(Ⅰ)设等比数列}{n a 的公比为q ,则41(1)151a q q -=-………………………2分4211134a q a q a =+………………………3分因为各项均为正数,所以2q =………………………4分解得11a =………………………5分故}{n a 的通项公式为12n n a -=………………………6分(Ⅱ)由(Ⅰ)可知12n n a -=,………………………7分*22()n n n b n a n n =⋅=⋅∈N ………………………8分所以1212222nn S n =⨯+⨯++⨯ ③231212222n n S n +=⨯+⨯++⨯ ④………………………9分③-④得1212222n n n S n +-=+++-⨯ ……………………10分11222n n n ++=--⨯1(1)22n n +=-⨯-……………………11分所以1(1)22n n S n +=-⨯+……………………12分18.(本小题满分12分)解:(Ⅰ)证明:连接1CD ,因为O ,P 分别是AC ,1AD 的中点,………………………2分所以1∥OP CD .………………………3分又因为OP ⊄平面11CC D D ,………………………4分1CD ⊂平面11CC D D ,………………………5分所以OP ∥平面11CC D D .………………………6分(Ⅱ)依题意,以D 为原点,分别以DA ,DC ,1DD 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,可得)0,0,2(A ,)2,0,0(1D ,)1,0,1(P ,)0,2,2(B ,)0,2,0(C ,)2,2,0(1C .………7分依题意)2,0,2(1-=BC ………………………8分设),,(z y x n =为平面BPC 的法向量………………………9分则⎪⎩⎪⎨⎧=⋅=⋅0PC n PB n 得)2,1,0(=n ……………………10分因此510==BC n ……………………11分所以,直线1BC 与平面BPC 所成角的正弦值为510.………………12分解:(Ⅰ)由题意知:c ……………………1分根据椭圆的定义得:122a =+,即2a =.……………………2分2431b =-=.……………………3分所以椭圆C 的标准方程为2214x y +=.……………………4分(Ⅱ)由题:①当直线l 的斜率不存在时,l的方程是x =.……………………5分此时||1AB =,||OP =,所以24=||=1||OP AB λ--.…………6分②当直线l 的斜率存在时,设直线l的方程为=(y k x ,…………7分11(,)A x y ,22(,)B x y .由⎪⎩⎪⎨⎧-==+3(1422x k y y x可得2222(41)1240k x x k +-+-=.显然0∆>,则212241x x k +=+,212212441k x x k -=+,...............8分因为11=(y k x,22=(y k x ,所以||AB ==221441k k +=+.....................9分所以22223||1k OP k ==+,……………………10分此时2222341==111k k k k λ+--++.……………………11分综上所述,λ为定值1-.……………………12分解:(Ⅰ)设{}n a 的公比为(0)q q >,由题意得324113541114242a q a q a q a q a q⎧=⎨=+⎩,………1分解得11212q a ⎧=⎪⎪⎨⎪=⎪⎩,………………………2分所以12nn a ⎛⎫= ⎪⎝⎭,………………………3分当2n ≥时,11122n n n n n nb n b S S b --+=-=-,………………………4分即11n n b b n n -=-,………………………5分∴{}nb n是首项为1的常数列,………………………6分所以1nb n=∴n b n =………………………7分(Ⅱ)设()()()212121(3)241112222n n n n n n b a n c b b n n +++++==-++,n *∈N ,……………8分()111212n n n n +=-⋅+………………………9分所以2231111111122222322(1)2n n n A n n +=-+-++-⨯⨯⨯⨯⨯+⨯ …………10分1112(1)2n n A n +=-+⨯……………………11分因为*n N ∈,所以12n A <.……………………12分。

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)1.已知i i Z+=+-21,则复数Z=A 、i 31+-B 、i 31-C 、i +3D 、i -32.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是 A .0.8 B .0.75 C .0.6 D .0.483.若5250125(1)(1)(1)(1)x a a x a x a x +=+-+-+⋅⋅⋅+-,则0a =BA.1B.32C.-1D.-324.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.25.有A 、B 两个口袋,A 袋装有4个白球,2个黑球;B 袋装有3个白球,4个黑球,从A 袋、B 袋各取2个球交换之后,则A 袋中装有4个白球的概率为(A )352(B )10532(C )1052(D )2186.设函数,)21()(10x x f -=则导函数)(x f '的展开式中2x 项的系数为 A .1440 B.-1440 C.2880 D.-28807.已知函数f(x)=x 2-ax +3在(0,1)上为减函数,函数g(x)=x 2-aln x 在(1,2)上为增函数,则a 的值等于 A .1 B .2 C .0 D. 2则根据表中的数据,计算随机变量2K 的值,并参考有关公式,你认为性别与是否喜爱打篮球之间有关系的把握有 A .97.5% B.99% C . 99.5% D.99.9%9.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x -8,则曲线y =f(x)在点(1,f(1))处的切线方程是 A .y =2x -1 B .y =x C .y =3x -2 D .y =-2x +310.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。

江苏省镇江市扬中市第二高级中学2022-2023第二学期高二数学期末检测2(教师版)

江苏省镇江市扬中市第二高级中学2022-2023第二学期高二数学期末检测2(教师版)

江苏省镇江市扬中市第二高级中学2022-2023第二学期高二数学期末检测姓名一、单选题:本大题共8小题,每题5分,共40分.在每小题提供的四个选项中,只有一项是符合题目要求的.1.已知平面α内有一个点()2,1,2A −,平面α的一个法向量为()3,1,2n =,则下列点P 中,在平面α内的是 ( B ) A.()1,1,1− B.31,3,2C.31,3,2 −D.31,3,2−−C.能有97.5%的把握认为这两个变量有关系D.能有97.5%的把握认为这两个变量没有关系3.端午节这天人们会悬菖蒲、吃粽子、赛龙舟、喝雄黄酒.现有9个粽子,其中2个为蜜枣馅,3个为腊肉馅,4个为豆沙馅,小明随机取两个,设事件A 为“取到的两个为同一种馅”,事件B为“取到的两个均为豆沙馅”,则()PB A =( C )A.12B.34C.35 D.234.袁隆平院士是我国的杂交水稻之父,他一生致力于杂交水稻的研究,为解决中国人民的温饱和保障国家粮食安全作出了重大贡献.某杂交水稻研究小组先培育出第一代杂交水稻,再由第一代培育出第二代,带二代培育出第三代,以此类推,且亲代与子代的每穗总粒数之间的关系如下表示:(注:亲代是产生后一代生物的生物,对后代生物来说是亲代,所产生的后一代交子代)通过上面四组数据得到了x 与y 之间的5.在二项式n+的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为 ( C ) A.16B.14C.512D.136. 已知点1F ,2F 分别是双曲线C :()22210y x b b−=>的左,右焦点,O 为坐标原点,点P 在双曲线C的右支上,且满足122F F OP =,21tan 5PF F ∠≥,则双曲线C 的离心率的取值范围为 ( B )A .B .C .(D .(7.已知正项数列{}n a 的前n 项和为n S ,如果*n ∀∈N 都有112n n n S a a=+,数列{}n b 满足*9,2n n b S n +=∈N ,数列{}n c 满足12,n n n n c b b b n ∗++=∈N .设n T 为{}n c 的前n 项和,则当n T 取得最大值时,n 的值等于 ( D ) A .17 B .18 C .19 D .20118.已知函数31()3f x x =,21()e 2x g x x x =−−,1x ∃,2[1,2]x ∈使()()()()1212g x g x k f x f x −>−(k 为常数)成立,则常数k 的取值范围为 ( D )A .(,e 2]−∞−B .(,e 2)−∞−C .23,4e−−∞ D .23,4e −−∞二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.数据(),x y 的5组测量值为(),(1,2,3,4,5)i i x y i =,已知52190ii x==∑,51112i i i x y ==∑,5120i i x ==∑,5125ii y==∑.若y 对x 的线性回归方程记作y bx a =+ ,则 (BAC )附:线性回归方程y bx a =+ 中,()()()121niii nii x x y y b x x ==−−=−∑∑ ,a y bx =− ,其中x 、y 为样本平均值.A. 1.2b =B. 0.2a =C. y 与x 正相关D. 8x =时,y 的估计值为910.以下对各事件发生的概率判断正确的是 ( BCD )A .甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B .从1名男同学和2名女同学中任选2人参加社区服务,则选中一男一女同学的概率为23C .将一个质地均匀的正方体骰子(每个面上分别写有数字l ,2,3,4,5,6)先后抛掷2次,观察向上 的点数,则点数之和是6的概率是536D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是1211.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.如图,在阳马P ABCD −中,侧棱PD ABCD ⊥底面,1PD =,1AD =,2CD =,则下列结论正确的有 (BCD ) A .四面体P ACD −是鳖臑B .阳马P ABCD −的体积为23C .若23BQ BP = ,则112333DQ DA DC DP =++D .D 到平面PAC 的距离为2312.点P 是直线3y =上的一个动点,A ,B 是圆224x y +=上的两点,则 ( BCD )A.存在点P ,A ,B ,使得90APB ∠=B.若PA ,PB 均与圆O 相切,则弦长AB C.若PA ,PB 均与圆O 相切,则直线AB 经过一个定点D.若存在A ,B ,使得7cos 9APB ∠=,则P点的横坐标的取值范围是 − 三、填空题:本大题共4小题,每小题5分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.13.若等差数列{}{}253114,55n n n a n S a S a −==的前项和为,且,数列的前10项和为 265− . 14. 一个盒子里有2个红1个绿2个黄球,从盒子中随机取球,每次拿一个,不放回,拿出红球即停,设取球停止时拿出黄球的个数为随机变量ξ,则()0P ξ==___12_,()E ξ=____23____. 15.若函数()2x f x e x =−图象在点()()00,x f x 处的切线方程为y kx b =+,则k b −的最小值为2−−16.在四棱锥S ABCD −中,四边形ABCD 为正方形,2AB =,1DS =,平面ASD ⊥平面ABCD ,SD AD ⊥,点E 为DC 上的动点,平面BSE 与平面ASD 所成的二面角为(θθ为锐角), 则当θ取最小值时,DE =_____25##0.4_____. 四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.(1)已知m ,n 是正整数,()()()11mnf x x x =+++的展开式中x 的系数为7,对于使()f x 的2x 的系数为最小的m ,n ,求出此时3x 的系数;(2)已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,求b a. 17.解:(1)根据题意得11C C 7m n +=,即7m n +=,① ()f x 中的2x 的系数为()()222211C C 222m nm m n n m n m n−−+−−+=+=. 将①变形为7n m =−,代入上式得2x 的系数为2273572124m m m −+=−+,故当3m =或4m =时,2x 的系数的最小值为9.当3m =,4n =时,3x 的系数为3334C C 5+=; 当4m =,3n =时,3x 的系数为3343C C 5+=(2)由题意可得48C 70a ==,再根据11881188C 2C 2,C 2C 2,r r r r r r r r ++−− ⋅≥⋅ ⋅≥⋅ 即5,6,r r ≥ ≤ 又N *r ∈,∴5r =或6,此时,872b =×,∴1285b a =.18.已知数列{}n a 是一个公差大于零的等差数列,且3655a a =,2716a a +=,数列{}n b 的前n 项和为n S ,且22n n S b =−.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列n n a b的前n 项和n T ;(3)设43n n c b n =+−,是否存在正整数i ,j (2<i <j ),使2c ,i c ,j c 成等差数列,若存在,求出所有的正整数i ,j ,若不存在,请说明理由.18.解:(1)依题意,设等差数列{}111(2)(5)55(0),2716n a d a d a d d a d ++=>+=的公差为则有,19.如图,在三棱锥0,90P ABC PA ABC BAC D E N PA PC BC −⊥∠=中底面,,点,,分别为棱,,的 中点,,2, 1.M AD PA AC AB ===在线段的中点(1)求证://MN BDE 平面;(2)求点N ME 到直线的距离;(3)在线段PA H NH MNE 上是否存在一点,使得直线与平面,若存在,求出线段AH 的长,若不存在,说明理由. 19.证明:(1)因为0,90PA ABC BAC ⊥∠=底面,21.已知函数ln f x x x =,3g x x ax a R =−+−∈. (1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∈+∞,不等式()()12f xg x ≥恒成立,求a 的取值范围. 21.解:(1)()ln f x x x =定义域为()0,+∞,()ln 1f x x =+′ ()0f x ′>即ln 10x +>解得1ex >所以()f x 在1,e +∞单调递增 (2)对任意()0,x ∈+∞,不等式()()12f xg x ≥恒成立, 即()21ln 32x x x ax ≥−+−恒成立, 分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x=++∈+∞,则()()()231x x h x x +−=′. 当()0,1x ∈时,()0h x ′<,()h x 在()0,1上单调递减;当()1,x ∈+∞时,()0h x ′>,()h x 在()1,+∞上单调递增. 所以()()min 14h x h ==, 即4a ≤,故a 的取值范围是(],4−∞.22.已知椭圆2222:1(0)x y E a b a b +=>>,点()1,e和都在椭圆E 上,其中e 为椭圆E 的离心率. (1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A ,B ,过点()2,2Q −的直线l 与椭圆E 分别交于点M ,N ,直线OQ 与BM 交于点T ,试问:直线AT 与BN 是否一定平行?请说明理由.22.解:(1)依题意,点(1,)e 在椭圆E 上,故222211c a a b+=, 又222,c e a b c a ==+,解得21b =又因为点在椭圆E 上,故222112a b += 即21112a+=,解得24a = 所以椭圆E 的方程为2214x y +=(2)由(1)知(2,0),(2,0)A B −,由直线l 不与x 轴平行,设直线l 的方程为()()11222(2),,,,x t y M x y N x y +=−,联立方程组222(2)14x t y x y +=− +=,消去x 可得,()2244(1)4(2)0t y t t y t t +−+++= 所以Δ0>,且1212224(1)4(2),44t t t t y y y y t t +++==++ 直线BM 的方程为11(2)2y y x x −−,直线OQ 的方程为y x =− 联立方程组11(2)2y y x x y x =− −=− 解得1111112222y x x y y y x y = +−=− +− , 即11111122,()22y y x y x y T −+−+−, 记直线,AT BN 的斜率分别为12,k k ,则111121211121122,222222y x y y y k k y x y x x y −+−==−=+−−++−所以()()()12211212212121111222222222x y x y y y y y y y k k x x y x y x ++−+−=+=−+−+−−, 由于()1221121222x y x y y y y y ++−+[][]()()1221121212122(1)2(1)222(1)2(2)ty t y ty t y y y y y t y y t y y =−++−++−+=+−++224(2)4(1)2(1)2(2)044t t t t t t t t ++=+×−+×=++,所以12k k =所以//AT BN .。

福建省南安第一中学高二数学 空间向量与立体几何、推理与证明、复数期末考综合练习二

福建省南安第一中学高二数学 空间向量与立体几何、推理与证明、复数期末考综合练习二

3V S1 S2 S3 S4
14. 【解析】∵ 与 的夹角为 60°,∴ cos a,b
ab a b

k 2
1 .解得 k 3 . k 9 2
2
x2 y2 z 2 1 15. 【解析】设所求向量为 c ( x, y, z) ,则 c a 2 x 2 y z 0 , c b 4 x 5 y 3 z 0
3 1 ,b= ,则 a+b>1,故①不能;②中若 a=b=1,则 a+b=2,故②不能; 4 2
2 2
③能,④中若 a=b=-2,则 a +b >2,故④不能;⑤中若 a=b=-2,则 ab>1,故⑤不能.∴只有③能, 选 C. 9. 【解析】C 由1
3 1 1 5 1 1 1 7 ,1 2 2 ,1 2 2 2 , 2 3 4 2 2 3 2 3 4
62 7
B.
63 7
C.
64 7
D.
65 7

11. 已知向量 a (1,1,0) , b (1,0,2) ,且 k a b 与 2a b 互相垂直,则 k 的值是( A.1 B.
1 5
C.
3 5
D.
7 5
12.在空间直角坐标系 o xyz 中,平面 OAB 的法向量为 a 2, 2,1 , 已知 P - 1, 3, 2 ,则 P 到平 面 OAB 的距离等于 ( A. 4 ) B. 2 C. 3 D. 1
22. 四 棱 锥 S A B C D 中,底面 ABCD 为 平 行 四 边 形 , 侧 面 SBC 面 ABCD , 已 知
ABC 45 , AB 2, BC 2 2, SB SC 3

高二(下)期末数学试卷

高二(下)期末数学试卷

高二(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)复数z 在复平面内对应点的坐标为(3,6),则|2|(z i -= ) A .3B .4C .5D .62.(5分)5人排成一行,其中甲、乙两人相邻的不同排法共有( ) A .24种B .48种C .72种D .120种3.(5分)52()x x-的展开式中3x 的系数为( )66666666666666A .10B .10-C .5D .5-4.(5分)某铁球在0C ︒时,半径为1dm .当温度在很小的范围内变化时,由于热胀冷缩,铁球的半径会发生变化,且当温度为C t ︒时铁球的半径为(1)at dm +,其中a 为常数,则在0t =时,铁球体积对温度的瞬时变化率为( )(参考公式:34)3V R π=球A .0B .a πC .43a πD .4a π5.(5分)长时间玩手机可能影响视力.据调查,某校学生大约有40%的人近视,而该校大约有20%的学生每天玩手机超过1小时,这些人的近视率约为50%.现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率约为( ) A .0.125B .0.25C .0.375D .0.46.(5分)正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( ) A .33B .63C .22D .237.(5分)如图,一个质点在随机外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位.若质点移动6次,则回到原点O 的概率为( )A .0B .14C .516 D .588.(5分)已知函数()f x xlnx =,()24g x x =-,若12()()f x g x =,则21x x -的最小值为()A .22e -B .3e -C .2e -D .1二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.(5分)随机变量~(2,4)X N ,则( ) A .()2E X =B .()2D X =C .(4)(1)P X P X >><D .(1)(3)1P X P X >+>=10.(5分)已知函数()y f x =的导函数()y f x '=的图象如图所示,则(A .12()()f x f x <B .32()()f x f x <C .()f x 在(,)a b 内有2个极值点D .()f x 的图象在点0x =处的切线斜率小于011.(5分)把4个编号为1,2,3,4的球放入4个编号为1,2,3,4的盒子中,则()A .不同的放法有64种B .每个盒子放一个球的不同放法有24种C .每个盒子放一个球,且球的编号和盒子的编号都不相同的不同放法有9种D .恰有一个盒子不放球的不同放法有72种12.(5分)在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,BF BC μ=,其中[0λ=,1],[0μ∈,1],则( )A .当1μ=时,三棱锥11AB EF -的体积为定值 B .当12λ=时,点A ,B 到平面1B EF 的距离相等C .当12μ=时,存在λ使得1BD ⊥平面1B EF D .当λμ=时,11A F C E ⊥三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)若31iz i-=+,则z z += . 14.(5分)已知(1A ,0,0),(0B ,1,0),(0C ,0,1),若点(P x ,1,1)在平面ABC 内,则x = .15.(5分)由0,1,2,3,4,5组成没有重复数字的三位数,其中偶数有 个.(用数字作答)16.(5分)函数,(),x xe x a f x x x a⎧=⎨>⎩,当0a =时,()f x 零点的个数是 ;若存在实数0x ,使得对于任意x R ∈,都有0()()f x f x ,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.(10分)已知函数32()f x x ax b =++在2x =处有极值2-. (1)求()f x 的解析式;(2)求()f x 在[2-,3]上的最值.18.(12分)在国家政策扶持下,近几年我国新能源汽车产业迅速发展.某公司为了解职工购买新能源汽车的意愿,随机调查了30名职工,得到的部分数据如表所示:(1)请将上述22⨯列联表补充完整,并判断能否有99%的把握认为“该公司职工购买新能源汽车的意愿与性别有关”;(2)为进一步了解职工不愿意购买新能源汽车的原因,从不愿意购买新能源汽车的被调查职工中随机抽取3人进行问卷调查,求至少抽到2名女职工的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k0.100 0.050 0.010 0.001 0k2.7063.8416.63510.82819.(12分)如图,在三棱锥P ABC -中,PBC ∆是正三角形,AC BC ⊥,D 是AB 的中点. (1)证明:BC PD ⊥;(2)若2AC BC ==,22PA =,求二面角D PA C --的余弦值.20.(12分)为了解某地区未成年男性身高与体重的关系,对该地区12组不同身高i x (单位:)cm 的未成年男性体重的平均值i y (单位:)(1kg i =,2,,12)数据作了初步处理,得到下面的散点图和一些统计量的值.xyω1221()ii xx =-∑121()()ii i xx y y =--∑121()()ii i xx ωω=--∑11524.3582.95814300 6300 286表中(1i i lny i ω==,2,,12),112i i ωω==∑.(1)根据散点图判断y ax b =+和cx d y e +=哪一个适宜作为该地区未成年男性体重的平均值y 与身高x 的回归方程类型?(给出判断即可,不必说明理由). (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)如果体重高于相同身高的未成年男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区的一位未成年男性身高为175cm ,体重为78kg ,他的体重是否正常?附:对于一组数据1(u ,1)v ,2(u ,2)v ,⋯⋯,(n u ,)n v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()nii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-,20.693ln ≈. 21.(12分)一个袋子中有10个大小相同的球,其中有4个白球,6个黄球,从中随机地摸4个球作为样本,用X 表示样本中黄球的个数,Y 表示样本中黄球的比例. (1)若有放回摸球,求X 的分布列及数学期望;(2)(ⅰ)分别就有放回摸球和不放回摸球,求Y 与总体中黄球的比例之差的绝对值不超过0.2的概率.(ⅱ)比较(ⅰ)中所求概率的大小,说明其实际含义. 22.(12分)已知函数()(1)()f x ln x ax a a R =++-∈. (1)讨论()f x 的单调性;(2)若()x a f x xe ax -+,求a 的取值范围.高二(下)期末数学试卷一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)复数212iz i=-的实部与虚部之和为( ) A .25-B .25C .45D .652.(5分)已知函数32()2f x x x =+,()f x '是()f x 的导函数,则f '(2)(= ) A .24B .26C .32D .283.(5分)函数()23x f x x =-在[0,2]上的平均变化率为( ) A .32 B .32-C .1D .2-4.(5分)4(23)x -展开式中的第3项为( ) A .216-B .216x -C .216D .2216x5.(5分)某学校高三年级总共有800名学生,学校对高三年级的学生进行一次体能测试.这次体能测试满分为100分,已知测试结果ξ服从正态分布2(70,)N σ.若ξ在[60,70]内取值的概率为0.2,则估计该学校高三年级体能测试成绩在80分以上的人数为( ) A .160B .200C .240D .3206.(5分)从1,2,3,4,5,6,7,8中不放回地依次取2个数,事件A 为“第一次取到的数是偶数”,事件B 为“第二次取到的数是偶数”,则(|)(P B A = ) A .12B .25 C .37D .387.(5分)已知复数1cos sin ()z i R θθθ=+∈,2z i =,且12z z 在复平面内对应的点在第一,三象限的角平分线上,则tan (θ= )A .2-B .2-+CD .8.(5分)某学校安排甲、乙,丙、丁、戊五位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲不参加数学竞赛,则不同的安排方法有()A .86种B .100种C .112种D .134种二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(5分)已知复数(2)(1)z i i =+-,则( ) A .1z i =+B .||z =C .z 在复平面内对应的点在第四象限D .13zi i=- 10.(5分)已知~(4X B ,)(01)p p <<,则下列结论正确的有( )A .若13p =,则8()9E X =B .若13p =,则16(0)81P X ==C .()1maxD X =D .若(1)()3P x P X =>=,则102p <<11.(5分)下面四个结论中正确的有( )A .43)+展开式中各项的二项式系数之和为16B .用4个0和3个1可以组成35个不同的七位数C .0.290.251()x x+的展开式中不存在有理项D .方程10x y z ++=有36组正整数解12.(5分)已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值可以是( ) A .52B .3C .4D .92三.填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)若随机变量ξ的分布列为.ξ0 1 2 Pa0.2a +0.3则a = .14.(5分)写出一个恰有1个极值点,且其图象经过坐标原点的函数()f x = . 15.(5分)某电影院的一个放映室前3排的位置如图所示,甲和乙各自买了1张同一个场次的电影票,已知他们买的票的座位都在前3排,则他们观影时座位相邻(相邻包括左右相邻和前后相邻)的概率为 .16.(5分)若221a lna c b d--==,则22()()a c b d -+-的最小值是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)马拉松赛事是当下一项非常火爆的运动项目,受到越来越多人的喜爱.现随机在“马拉松跑友群”中选取100人,记录他们在某一天马拉松训练中的跑步公里数,并将数据整理如下: 跑步公里数 性别 [5,10) [10,15) [15,20) [20,25) [25,30) [30,35]男 4 6 10 25 10 5 女2581762(1)分别估计“马拉松跑友群”中的人在一天的马拉松训练中的跑步公里数为[5,15),[15,25),[25,35]的概率;(2)已知一天的跑步公里数不少于20公里的跑友被“跑友群”评定为“高级”,否则为“初级”,根据题意完成给出的22⨯列联表,并据此判断能否有95%的把握认为“评定级别”与“性别”有关.附:2K =,n a b c d =+++.2)k18.(12分)已知函数()f x 的导函数是()f x ',且21()(1)24f x f x f '=+(1)4x -. (1)求()f x 的解析式;(2)求经过点(0,6)-且与曲线()y f x =相切的直线方程. 19.(12分)已知6621201212(1)(1)x x a a x a x a x -+=+++⋯+.(1)求2221311a a a ++⋅⋅⋅+的值;(2)求2412a a a ++⋯+的值; (3)求46a a +的值.20.(12分)某小型企业在开春后前半年的利润情况如表所示:设第i 个月的利润为y 万元.(1)根据表中数据,求y 关于i 的回归方程ˆˆˆ(22)i yb i a =-+(系数精确到0.01); (2)由(1)中的回归方程预测该企业第7个月的利润是多少万元?(结果精确到整数部分,如98.1万元~98万元)(3)已知y 关于i 的线性相关系数为0.8834.从相关系数的角度看,y 与i 的拟合关系式更适合用ˆˆˆypi q =+还是ˆˆˆ(22)i y b i a =-+,说明你的理由. 参考数据:62221()1933.5,22523188,1418.5259ii yy =-=+=⨯=∑,1140.96109.44⨯=,取2005.4=.附:样本(i x ,)(1i y i =,2,⋯,)n的相关系数()()nii xx y y r --=∑线性回归方程ˆˆˆybx a =+中的系数1122211()()ˆ()nnii i ii i nniii i xx y y x ynxy b xx xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(12分)在一个不透明的盒中,装有大小、质地相同的两个小球,其中1个是黑色,1个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多3分或取满9次时游戏结束,并且只有当一人比另一人多3分时,得分高者才能获得游戏奖品.已知前3次取球后,甲得2分,乙得1分. (1)求甲获得游戏奖品的概率;(2)设X 表示游戏结束时所进行的取球次数,求X 的分布列及数学期望.22.(12分)已知函数234()sin 3f x x sin x m =-+.(1)求()f x 在[0,]π上的单调区间;(2)设函数4()2(2)(16)x g x x e ln x =--,若(0,)α∀∈+∞,[0β∀∈,]π,()()f g βα,求m 的取值范围.。

山东日照实验高中高二上学期期末数学复习(必修5+选修2-1)理科练习二

山东日照实验高中高二上学期期末数学复习(必修5+选修2-1)理科练习二

山东日照实验高中高二上学期期末数学复习理科练习二本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分.测试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至8页.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其它答案标号.不能答在试题卷上.一.选择题:本大题共12个小题. 每小题5分;共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.x>2是24x >的 A. 充分不必要条件 B.必要不充分条件 C. 既充分也必要条件 D.既不充分也不必要条件2.(理)在平行六面体ABCD -A 1B 1C 1D 1中,用向量1,,AB AD AA 来表示向量1AC A. 11AC AB AD AA =-+B. 11AC AB AD AA =++C. 11AC AB AD AA =+-D. 11AC AB AD AA =--(文)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程 A.450x y +-= B.430x y --= C.430x y -+= D.430x y ++= 3.已知“220a b +≠”,则下列命题正确的是 A .a 、b 都不为0 B .a 、b 至少有一个为0 C .a 、b 至少有一个不为0 D .a 不为0且b 为0,或b 不为0且a 为0A1第2题图4.若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 的值是A.-10B.-14C.10D.145.(理)四面体ABCD 中,设M 是CD 的中点,则1()2AB BD BC ++化简的结果是A .AMB .BMC .CMD .DM(文)若()x x f 1=,则()=2'f ( ) A.4 B.41 C.4- D.41- 6.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个正数之和为 A.227 B. 445 C. 225 D. 4477.若01a <<,01b <<,b a ≠,则a b +,2ab ,22a b +,2ab 中最大的一个是 A .a b + B .2ab C .22ab + D . 2ab8.在双曲线822=-y x 的右支上过右焦点F 2有一条弦PQ ,|PQ|=7,F 1是左焦点,那么 △F 1PQ 的周长为A . 28B .2814-C . 2814+D . 28 9.等比数列{}n a 的各项均为正数,且965=a a ,则1032313log log log a a a +++ 的值为A . 12B . 10C . 8D .5log 23+10.在同一坐标系中,方程12222=+y b x a 与02=+by ax )0(>>b a 的图象大致是11.在△ABC 中1,60==∠b A,其面积为3,则角A 的对边的长为A.57 B.37 C.21 D.1312.一艘船向正北方向航行,看见正西方有两个灯塔恰好与它在一条直线上,两塔相距10海里,继续航行半小时后,看见一塔在船的南偏西60°,另一塔在船的南偏西45°,则船速(海里/小时)是A .5B .53C .10D .103+10第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4个小题. 每小题4分;共16分.将答案填 在题中横线上.13. (理)已知向量()1,2,k OA =,()1,5,4=OB5=则k= . (文)曲线2)(3-+=x x x f 在点P 0处的切线平行于直线14-=x y ,则P 0点的坐标为 .14.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 求22y x +的最小值_____________.15.过抛物线px y 22=(p >0)的焦点F 作一直线l 与抛物线交于P 、Q 两点,作PP 1、QQ 1垂直于抛物线的准线,垂足分别是P 1、Q 1,已知线段PF 、QF 的长度分别是4,9,那么|P 1Q 1|= .16.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设,i j a (i 、j ∈*N )是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8.则4,11a为 .12 34 5 67 8 9 10……………………………………三.解答题:本大题共6个小题. 共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知102:≤≤-x p ;22:210(0)q x x m m -+-≤> ,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围。

期末高二数学选修2-2、2-3测试题(含答案)

期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .1 3.定义运算a cad bc b d=-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i +取最大值时的复数z 为 . 13.已知数列{}a n 为等差数列,则有,02321=+-a a a 0334321=-+-a a a aa a a a a 123454640-+-+=类似上三行,第四行的结论为__________________________。

安徽高二上学期期末数学试题(解析版) (2)

安徽高二上学期期末数学试题(解析版) (2)

一、单选题1.若直线与直线平行,则的值为( ) 1:480l ax y ++=()2:3180l x a y +++=a A .3 B .C .3或D .或44-4-3-【答案】B【分析】两条直线平行,则斜率相等,注意排除两直线重合的情况. 【详解】因为直线与直线平行, 1:481l ax y ++=()2:3180l x a y +++=所以,解得:或,()143a a +=⨯3a =4a =-当时,,两直线重合,不符合题意; 3a =12:3480,:3480l x y l x y ++=++=当时,,符合题意.故. 4a =-12:4480,:3380l x y l x y -++=-+=4a =-故选:B2.设,已知直线与圆,则“直线与圆相交”是“”的( ) R m ∈:1l y mx =+22:1C x y +=l C 0m >A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】根据必要不充分条件的定义和直线与圆的位置关系可得结果. 【详解】若直线与圆相交,:1l y mx =+22:1C x y +=由点到直线的距离公式可得:,解得:且,不一定有;1d =R m ∈0m ≠0m >若,则圆心到直线的距离,所以直线与圆0m >00(,)1y mx =+1d =<:1l y mx =+相交,22:1C x y +=所以“直线与圆相交”是“”的必要不充分条件. l C 0m >故选:B .3.设5名男同学报名参加同一时间安排的4种课外活动的方案有种;5名女同学在运动会上共同a 争夺跳高、跳远、铅球、跑步4项比赛的冠军的可能结果有种,则为( )b (),a b A .B .()544,5()455,4C .D .()4455A ,C ()4455C ,A 【答案】A【分析】根据分步乘法计数原理求出即可得解.,a b 【详解】每名同学报名有4种选择,5名同学报名就有种选择,所以; 5454a =每项冠军归属结果有5种可能,4项冠军则有种可能结果,所以, 4545b =所以. 54(,)(4,5)a b =故选:A .4.小明每天上学途中必须经过2个红绿灯,经过一段时间观察发现如下规律:在第一个红绿灯处遇到红灯的概率是,连续两次遇到红灯的概率是,则在第一个红绿灯处小明遇到红灯的条件1216下,第二个红绿灯处小明也遇到红灯的概率为( ) A . B .C .D .23341312【答案】C【分析】由条件概率公式求解即可【详解】设“小明在第一个红绿灯处遇到红灯”为事件A , “小明在第二个红绿灯处遇到红灯”为事件,B 则由题意可得,()()11,26P A P AB ==则在第一个红绿灯处小明遇到红灯的条件下, 第二个红绿灯处小明也遇到红灯的概率为. ()()()13P AB P BA P A ==∣故选:.C 5.甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是,现在三人同时342312射击目标,则目标被击中的概率为( ) A .B .C .D .3423782324【答案】D【分析】根据独立事件的乘法公式和对立事件的概率公式可求出结果.【详解】设甲射击命中目标为事件,乙射击命中目标为事件,丙射击命中目标为事件, A B C 则,,, 3()4P A =2()3P B =1()2P C =因为相互独立,所以也相互独立,,,A B C ,A B C 则三人都没击中目标的概率为()()()(P ABC P A P B P C =(1())(1())(1())P A P B P C =---,3211(1)(1)43224=---=所以目标被击中的概率是, 12312424-=故选:D .6.为学习贯彻党的二十大精神,某宣讲小分队将5名宣讲员分配到3个社区,每个宣讲员只分配到1个社区,每个社区至少分配1名宣讲员,则不同的分配方案共有( ) A .360种 B .240种 C .150种 D .90种【答案】C【分析】5名宣讲员分配到3个社区,每个社区至少1人,有两种分配方式:,或,先进1,1,31,2,2行分组,再进行分配,即可求解.【详解】5名宣讲员分配到3个社区,每个社区至少1人,则分配方式为,或两种情况.1,1,31,2,2先分组, 1131225435422222C C C C C C 25A A +=再将分好组人员分配到3个社区有,33A 6=所以不同的分配方案共有. 256150⨯=故选:C .7.已知点在确定的平面内,是平面外任意一点,实数满足D ABC O ABC ,x y ,则的最小值为( )OD xOA yOB OC =+- 22x y +A .BC .1D .245【答案】D【分析】根据共面向量的性质,结合配方法进行求解即可.【详解】因为,点在确定的平面内,OD xOA yOB OC =+-D ABC 所以,即,所以, 11x y +-=2x y =-222222(2)2442(1)22x y y y y y y +=-+=-+=-+≥所以当时,的有最小值2.1y =22x y +故选:D8.抛物线的焦点为,准线为,过点作倾斜角为的直线与抛物线在轴上方22(0)y px p =>F l F π3x 的部分相交于点,垂足为,若的值为( ) ,A AK l ⊥K AFK △p A .1 B .2C D .3【答案】A【分析】根据抛物线定义结合得到是等边三角形,并根据三角形面积公式π,3AFx AK l ∠=⊥AKF 得到,从而求出的值.2AF AK ==p 【详解】根据抛物线的定义可知,,又, AF AK =π,3AFx AK l ∠=⊥故是等边三角形,又,设,则AKF AFK △AF m =21sin 602m ︒=解得:,2m =故可得,2AF AK ==因为,所以, 60KFO ADF ∠=∠=︒112EF KF ==故. 21OF p ==故选:A .9.如图,、是双曲线:与椭圆的公共焦点,点A 是、在第一象限的公1F 2F 1C 2213y x -=2C 1C 2C 共点,设的方程为,则下列命题中错误的是( ).2C 22221x y a b+=A .224a b +=B .的内切圆与x 轴相切于点(1,0)12AF F △C .若,则的离心率为 121F F F A =2C 23D .若,则椭圆方程为 12AF AF ⊥22173x y +=【答案】A【分析】对于A :先利用双曲线的标准方程得到,再利用椭圆中的进行判2c ==222a c b -=定;对于B :利用切线长性质和双曲线的定义得到,再结合进行求122F M F M -=124F M F M +=解;对于C :先利用双曲线和椭圆的定义得到、的关系式,再利用和离心率1F A 2F A 121F F F A =公式进行求解;对于D :利用勾股定理得到,进而求出椭圆的方程.()()22211416a a c ++-==【详解】对于A :由可得,2213y x -=2c ==所以,即选项A 错误; 2224a b c -==对于B :设的内切圆的圆心为I , 12AF F △且圆与边、、相切于N 、M 、K , 1AF 12F F 2F A 可得,,, AN AK =11F M F N =22F M F K =又因为,122AF AF -=所以,12122F N F K F M F M -=-=又,解得,.124F M F M +=21F M =13F M =可得M 的横坐标为1,即I 的横坐标为1,即选项B 正确; 对于C :在椭圆中,,, 2C 122F A F A -=122F A F A a +=则.1222F A a =+由,得 ,解得a =3. 12124F F F A c ===2422a ⨯=+则的离心率,即选项C 正确; 2C 23c e a ==对于D :因为,, 122F A F A -=122F A F A a +=则,.11F A a =+21F A a =-若,则. 12AF AF ⊥()()22211416a a c ++-==又c =2,,解得.222b a c =-a =b =则椭圆的方程为,即选项D 正确.22173x y +=故选:A.二、多选题10.已知的展开式的二项式系数和为128,则下列说法正确的是( )nx ⎛⎝A .7n =B .展开式中各项系数的和为1-C .展开式中只有第4项的二项式系数最大 D .展开式中含项的系数为84 4x 【答案】ABD【分析】根据展开式的二项式系数和的性质求出,可判断A 正确;令,求出展开式中各项n 1x =系数的和,可判断B 正确;根据展开式中二项式系数的单调性,可判断C 错误;利用展开式的通项公式计算,可判断D 正确.【详解】对于A ,因为的展开式的二项式系数和为,所以,则,故nx ⎛ ⎝2n721282n ==7n =A 正确;对于B ,令,则,所以展开式中各项系数的和为,故B 正确;1x =771211x ⎛⎛⎫- ⎪ ⎝⎭⎝==-1-对于C ,因为第4项的二项式系数为,第5项的二项式系数,37C 47C 所以,又,3477C C =3210456777777777C C C C ,C C C C >>>>>>所以展开式中第4项和第5项的二项式系数最大,故C 错误;对于D ,因为的展开通项为,7x ⎛ ⎝3772177C (2)C kk k k k k k T x x --+⎛==- ⎝令,得,则,所以含项的系数为84,故D 正3742k -=2k =224443776(2)C 48421T x x x ⨯=-=⨯=⨯4x 确.故选:ABD .11.下列说法正确的是( )A .已知随机变量,若,则 (),XB n p ()()30,10E X D X ==13p =B .两位男生和两位女生随机排成一列,则两位女生不相邻的概率是12C .已知,则23A C n n =8n =D .从一批含有10件正品、4件次品的产品中任取3件,则取得2件次品的概率为 4591【答案】BC【分析】对于A ,利用二项分布的数学期望和方差的公式即可判断;对于B ,根据古典概型的概率公式及排列组合知识即可判断;对于C ,利用排列数和组合数的计算即可判断;对于D ,利用超几何分布的概率即可判断【详解】对于:根据二项分布的数学期望和方差的公式,可得A ,解得,故错误; ()()30,(1)30(1)10E X np D X np p p ===-=-=23p =A 对于:两位男生和两位女生随机排成一列共有(种)排法;两位女生不相邻的排法有B 44A 24=(种),故两位女生不相邻的概率是,故B 正确;2223A A 12=12对于:由,得,解得,故正确;C 23A C n n =()()()121321n n n n n ---=⨯⨯8n =C 对于:设随机变量表示取得次品的个数,则服从超几何分布,D X X 所以,故错误.()21410314C C 152C 91P X ===D 故选:.BC 12.如图,正方体的棱长为,为的中点,为的中点,则( )1111ABCD A B C D -2E 1BA F 1CCA .与不垂直 DE 1AB B .直线平面//EF ABCD C .直线与平面EF 11ABB AD .点到平面B 1ACD 【答案】BD【分析】以为原点,以所在直线分别为轴建立空间直角坐标系,即可得到所有A 1,,AB AD AA ,,x y z 点的坐标.通过计算即可判断A 选项;取平面的一个法向量,进而判断B 选项;取1DE A B ⋅ABCD 平面的一个法向量,即可求得直线与平面所成角的正弦值,进而判断C 选项;11ABB A EF 11ABB A 先求出平面的一个法向量,进而求得到平面的距离,即可判断D 选项. 1ACD B 1ACD 【详解】如图,以为原点,以所在直线分别为轴建立空间直角坐标系, A 1,,AB AD AA ,,x y z 则,()()()()()()()112,0,0,0,0,2,1,0,1,2,2,2,0,0,0,0,2,0,2,2,1B A E C A D F 对于A ,,所以,所以,故A 错误;()()11,2,1,2,0,2DE A B =-=- 10DE A B ⋅=1DE A B ⊥对于B ,取平面的一个法向量为, ABCD ()10,0,1AA =因为,所以,()1,2,0EF = 10EF AA ⋅=因为平面,所以直线平面,故B 正确;EF ⊄ABCD //EF ABCD 对于C ,取平面的一个法向量为,11ABB A ()0,1,0AD =u u u r设直线与平面所成的角为,则EF 11ABB A θsin θ因为,所以,所以. 0,2π⎡⎤θ∈⎢⎥⎣⎦cos θ==sin tan 2cos θθθ==所以直线与平面所成角的正切值为2,故C 错误;EF 11ABB A 对于D ,因为,所以,()2,2,0C ()()12,0,0,0,2,2DC A D ==-设平面的一个法向量为, 1ACD ()111,,m x y z =由可得,100m DC m A D ⎧⋅=⎪⎨⋅=⎪⎩20000220x y z ++=⎧⎨+-=⎩令,则有,即,因为,1y =01x z =⎧⎨=⎩()0,1,1m = ()12,0,2A B =- 所以由点到面的距离公式可得.所以D 正确.1A B md m ⋅==故选:BD.三、填空题13.有10件产品,其中4件是次品,从中任取3件,若表示取得次品的个数,则X ()21E X +=__________. 【答案】##3.4 175【分析】根据超几何分布的期望公式,和期望的性质可求出结果. 【详解】由题意可得:服从超几何分布,. X ()65nM E X N ==所以. ()()1721215E X E X +=+=故答案为:. 17514.某学校高二年级有1500名同学,一次数学考试的成绩服从正态分布.已知X ()2110,10N ,估计高二年级学生数学成绩在120分以上的有__________人.(100110)0.34P X <≤=【答案】240【分析】根据正态曲线的对称性求出,再乘以可得结果.(120)P X ≥1500【详解】因为考试的成绩服从正态分布,所以正态曲线关于对称,X ()2110,10N 110X =因为,所以(100110)0.34P X <≤=()()1120100(100110)2P X P X P X ≥=≤=-<≤10.340.162=-=,所以该班数学成绩在120分以上的人数为(人). 0.161500240⨯=故答案为:24015.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和2个黑球(球除颜色外,大小质地均相同).先从甲箱中随机取出一球放入乙箱,分别以和表示由甲箱中取出12,A A 3A 的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以表示由乙箱中取出的球是红球的B 事件,则__________. ()P B =【答案】##0.45 920【分析】分三种情况,利用独立事件的概率乘法公式和互斥事件的概率加法公式,即全概率公式求出答案.【详解】根据题意,事件发生且事件发生的概率为;1A B 111224⨯=事件发生且事件发生的概率为; 2A B 1225525⨯=事件发生且事件发生的概率为; 3A B 34121010100⨯=故. ()1212942510020P B =++=故答案为:. 92016.已知点在双曲线上,若两点关于原点对称,直线与圆相P 22:1169x y C -=,P Q O 1PF 222x y r +=切于点且,其中分别为双曲线的左、右焦点,则的面积为M 12OM OP OF =+12,F F C 1PFQ △__________. 【答案】9【分析】根据双曲线的定义,结合内切圆的性质、平面向量加法的几何意义进行求解即可. 【详解】如图,连接,因为两点关于原点对称,2PF ,P Q O所以的面积等于的面积.直线与圆相切于点,则. 1PFQ △12PF F △1PF 222x y r +=M 1OM PF ⊥因为,所以为的中点,又为的中点,所以,则12OM OP OF =+M 1PF O 12F F 2OM PF 21PF PF ⊥.由双曲线得:.22:11612x y C -=4,5a c ==,则.12,PF m PF n ==28m n a -==因为,所以,所以21PF PF ⊥222(2)100m n c +==,()2222()1006436mn m n m n =+--=-=所以,故的面积等于,即的面积为9. 18=mn 12PF F △192mn =1PFQ △故答案为:9.四、解答题17.已知圆,直线,且直线和均平分圆22:40C x y mx ny ++++=12:10,:20l x y l x y --=-=1l 2l C .(1)求圆的方程;C(2)与圆相交于两点,且,求a 的值. 0y a ++-=C ,M N 120MCN ∠=o 【答案】(1) 224240x y x y +--+=(2)或 0a =2a =-【分析】(1)根据直线和的交点就是圆心,可求出结果;1l 2l (2)利用,推出圆心到直线的距离为,再根据点到直线的距离公式可求出结果. 120MCN ∠=o 12【详解】(1)因为直线和均平分圆,所以直线和均过圆心,1l 2l C 1l 2l C因为,解得,所以直线和的交点坐标为,所以圆心的坐标为,1020x y x y --=⎧⎨-=⎩21x y =⎧⎨=⎩1l 2l ()2,1C ()2,1因为圆,所以圆心坐标为,所以,解得,22:40C x y mx ny ++++=,22m n ⎛⎫-- ⎪⎝⎭2212mn ⎧-=⎪⎪⎨⎪-=⎪⎩42m n =-⎧⎨=-⎩所以圆的方程为.C 224240x y x y +--+=(2)由(1)得圆的标准方程为,圆心,半径, C 22(2)(1)1x y -+-=()2,1C 1r =因为,且为等腰三角形,所以,120MCN ∠=o MCN △30CMN ∠= 因为,所以圆心的距离1CM CN r ===C 0y a ++-=1sin sin302d r CMN ∠===,根据点到直线的距离公式,即, 12d 11a +=解得或,0a =2a =-所以实数的值为或.a 0a =2a =-18.据统计,某市一家新能源企业2022年近5个月的产值如下表: 月份 6月 7月 8月 9月 10月 月份代码x 12 3 4 5 产值(亿元 y )16 20273037(1)根据上表数据,计算与间的线性相关系数,并说明与的线性相关性的强弱;(结果保y x r y x 留三位小数,若,则认为与线性相关性很强;若,则认为与线性相关性0.751r ≤≤y x 0.75r <y x 不强.)(2)求出关于的线性回归方程,并预测该企业什么时候的产值为亿元.y x 67.6参考公式:.1221ˆˆ,nni ii nii nxyx y nxyr b a y bx xnx ==-===--∑∑ 参考数据:.55522111442,55,3654,52.3i i ii i i i x y x y y =======≈∑∑∑【答案】(1)与线性相关性很强; 0.994,r y ≈x (2)年4月. ˆ 5.210.4,2023yx =+【分析】(1)根据相关系数公式得到,即可得到答案.0.994,r y ≈(2)根据最小二乘法得到回归直线方程为,再代入求解即可. ˆ 5.210.4yx =+ˆ67.6y =【详解】(1).123453,265x y ++++===所以,520.99452.3r ==≈≈因为,故与线性相关性很强[]0.75,1r ∈y x (2)由题意可得,, 4425326 5.255ˆ59b-⨯⨯==-⨯所以, ˆˆ26 5.2310.4ay bx =-=-⨯=所以关于的线性回归方程为, y x ˆ 5.210.4yx =+当时,,故2023年4月份该企业的产值约为亿元. ˆ67.6y=ˆ 5.210.467.611y x x =+=⇒=67.619.我市拟建立一个博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层师选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标问题中随机抽取3个问题,已知这6个招标问题中,甲公司能正确回答其中4道题目,而乙公司能正确回答每道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响23的.(1)求甲公司至少答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大? 【答案】(1); 45(2)甲公司竞标成功的可能性更大.【分析】(1)利用超几何分布求出甲公司回答对2道题和回答对3道题的概率,即可求出结果. (2)分别求甲、乙两家公司答对题数的分布列,再求两个随机变量的期望和方差,由此作出判断. 【详解】(1)由题意可知,甲公司至少答对2道题目可分为答对两题或者答对三题;所求概率 2134243366C C C 4.C C 5P =+=(2)设甲公司正确完成面试的题数为,则的取值分别为.X X 1,2,3.()()()122130424242333666C C C C C C 1311,2,3C 5C 5C 5P X P X P X =========则的分布列为:XX 12 3P 15 3515,()1311232555E X ∴=⨯+⨯+⨯=;()2221312(12)(22)(32)5555D X =-⨯+-⨯+-⨯=设乙公司正确完成面试的题为,则取值分别为. Y Y 0,1,2,3,, ()1027P Y ==()2132121C 339P Y ⎛⎫==⨯⨯= ⎪⎝⎭, ()2232142C 339P Y ⎛⎫==⨯⨯= ⎪⎝⎭()3283327P Y ⎛⎫===⎪⎝⎭则的分布列为: Y Y 012 3P1272949827. ()124801232279927E Y ∴=⨯+⨯+⨯+⨯=. ()222212482(02)(12)(22)(32)2799273D Y =-⨯+-⨯+-⨯+-⨯=由可得,甲公司竞标成功的可能性更大.()()()(),E X E Y D X D Y =<20.如图,在四棱锥中,四边形是正方形,是等边三角形,平面平P ABCD -ABCD PAB PAB ⊥面分别是棱的中点.,,ABCD E F ,PC AB(1)证明:平面.BE //PDF (2)求平面与平面夹角的正弦值.PBC PDF【答案】(1)证明见解析【分析】(1)以为原点,为轴建立空间直角坐标系,根据与平面的法向量垂F ,FA FP ,y z BEPDF 直,可证结论;(2)利用二面角的向量公式可求出结果.【详解】(1)因为是等边三角形,是的中点,所以, PAB F AB PF AB ⊥又平面平面,平面平面平面, PAB ⊥ABCD PAB ⋂,ABCD AB PF =⊂PAB 所以平面,底面是正方形,.PF ⊥ABCD ABCD 如图,以为原点,为轴建立空间直角坐标系,F ,FA FP ,y z不妨令,则,2AB =()()()()(0,0,0,0,1,0,2,1,0,2,1,0,F B C D P --所以,()(111,,1,,2,1,0,22E BE FD FP ⎛⎛-=== ⎝⎝设平面的法向量为,PDF (),,m x y z=则,令,可得, 200m FD x y m FP ⎧⋅=+=⎪⎨⋅==⎪⎩ 1x =()1,2,0m =- 所以,即,111202BE m ⋅=⨯-⨯= BE m ⊥ 又平面,所以平面.BE ⊄PDF BE //PDF (2)因为,所以,()()(0,1,0,2,1,0,B C P--()(2,0,0,BC BP ==设平面的法向量为,PBC ()111,,n x y z =则,令,可得, 111200n BC x n BP y ⎧⋅==⎪⎨⋅==⎪⎩11z =()0,n =又平面的一个法向量为,PDF ()1,2,0m =-所以cos<,m n m n m n⋅>===⋅所以平面与平面PBC PDF =21.4月23日是“世界读书日”.读书可以陶冶情操,提高人的思想境界,丰富人的精神世界.为了丰富校园生活,展示学生风采,某中学在全校学生中开展了“阅读半马比赛”活动. 活动要求每位学生在规定时间内阅读给定书目,并完成在线阅读检测.通过随机抽样得到100名学生的检测得分(满分:100分)如下表:[40,50)[50,60) [60,70) [70,80) [80,90) [90,100] 男生 2 3 5 15 18 12 女生 051010713(1)若检测得分不低于70分的学生称为“阅读爱好者” ①完成下列2×2列联表 阅读爱好者 非阅读爱好者 总计 男生 女生 总计②请根据所学知识判断能否在犯错误的概率不超过0.05的前提下,认为“阅读爱好者”与性别有关;(2)若检测得分不低于80分的人称为“阅读达人”.现从这100名学生中的男生“阅读达人’中,按分层抽样的方式抽取5人,再从这5人中随机抽取3人,记这三人中得分在[90,100]内的人数为X ,求X 的分布列和数学期望.附:,其中()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++()20P K k ≥0.05 0.025 0.010 0.005 0.0010k 3.841 5.024 6.635 7.879 10.828【答案】(1)① 填表见解析;②不能 (2)分布列见解析;期望为 65【分析】(1)根据题中数据完成表格,再计算的值,即可得结论;2K (2)由题意可得100名学生中的男生“阅读达人”共30人,按分层抽样得[80,90)内应抽取3人,[90,100]内应抽取2人,从而得X 的取值为0,1,2,计算出对应的概论,列出分布列即可求得期望.【详解】(1)解:由题中表格可得2×2列联表如下 阅读爱好者 非阅读爱好者 合计 男生 45 10 55 女生 30 15 45 合计 7525100由题意得,22100(45153010) 3.03 3.84125755545K ⨯⨯-⨯=≈<⨯⨯⨯所以在犯错误的概率不超过0.05的前提下,不能认为“阅读爱好者”与性别有关. (2)解:根据检测得分不低于80分的人称为“阅读达人”, 则这100名学生中的男生“阅读达人”中,按分层抽样的方式抽取. [80,90)内应抽取3人,[90,100]内应抽取2人, 所以,X 的取值为0,1,2,()()()3211233232333555C C C C C 1633012C 10C 105C 10P X P X P X ==========,,所以X 的分布列为; X 012P 110 35310()1336012105105E X =⨯+⨯+⨯=所以X 的数学期望是. 6522.若椭圆的离心率为,且经过点.22221(0)x y a b a b+=>>1231,2P ⎛⎫-- ⎪⎝⎭(1)求椭圆的标准方程;C (2)过点的直线与椭圆交于不同的两点(均与不重合),证明:直线的斜率()0,2R C ,M N P ,PM PN 之和为定值.【答案】(1)22143x y +=(2)证明见解析【分析】(1)根据题意可得点在椭圆上,将点坐标带入椭圆方程求解即可. b =P P (2)过点的直线与椭圆相交,首先要考虑直线斜率不存在的情况,然后在直线斜率存在的()0,2R 条件下,设直线方程及交点坐标,直线方程与椭圆方程联立,得到关于的一元二次方程,利用韦x 达定理求解交点横坐标之间的关系,然后求解直线的斜率之和即可. ,PM PN 【详解】(1)由题意得离心率为,点在椭圆上,1231,2P ⎛⎫-- ⎪⎝⎭所以,解得,所以椭圆方程为22121914ca ab ⎧==⎪⎪⎨⎪+=⎪⎩224,3a b ==22143x y +=(2)当直线的斜率不存在时,为椭圆的上下顶点,即为,则l ,M N (0,. 3PM PN k k +==当直线的斜率存在时,设的方程为,联立消去并整理得,l l 2y kx =+221,432,x y y kx ⎧+=⎪⎨⎪=+⎩y ,则,得, ()22341640k x kx +++=()22Δ25616340k k =-+>214k >设,则, ()()1122,,,M x y N x y 121222164,3434k x x x x k k +=-=++所以 ()()()12121212121233772122222721111211PMPNy y kx kx x x kk k k x x x x x x +++++++=+=+=+-++++++()()()2212212122216221118166342722722274162122416713434kx x k k k k k k k k k k x x x x k k k k -+++-++=+-=+-=--+++-+-+++()()()()()()232122722332721k k k k k k k k --=--=--=--综上可得,直线的斜率之和为3.,PM PN 【点睛】过椭圆上一定点,作两条直线分别与椭圆交于A ,B 两点,且两22221(0)x y a b a b +=>>00(,)P x y 直线斜率之和为,则λ (1)当时,直线恒过一个定点. 0λ≠ (2) 当时,直线AB 的斜率为定值.0λ=。

高二下学期期末考试数学试卷与答案解析(共四套)

高二下学期期末考试数学试卷与答案解析(共四套)

高二下学期期末考试数学试卷(一)注意事项:1.本试卷共22题。

全卷满分150分。

考试用时120分钟。

2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知各项为正数的等比数列{a n}中,a2=1,a4a6=64,则公比q=()A.4 B.3 C.2 D.2.从4种不同的书中买3本送给3名同学,每人各1本,不同的送法共有()A.4种B.12种C.24种D.64种3.直线与曲线相切,则b的值为()A.﹣2 B.﹣1 C.D.14.若函数f(x)=alnx﹣x2+5x在(1,3)内无极值点,则实数a的取值范围是()A.(﹣,3)B.(﹣∞,﹣)C.[3,+∞)D.(﹣∞,﹣]∪[3,+∞)5.已知集合A={1,2,3,4},B={1,2,3,4,5},从集合A中任取3个不同的元素,其中最小的元素用a表示,从集合B中任取3个不同的元素,其中最大的元素用b表示,记X=b﹣a,则随机变量X的期望为()A.B.C.3 D.46.在二项式(x﹣2y)6的展开式中,设二项式系数和为A,各项系数和为B,x的奇次幂项的系数和为C,则=()A.﹣B.C.﹣D.7.已知x与y之间的几组数据如表:x 1 2 3 4y 1 m n 4如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.5,2,2.5,得到三条线性回归直线方程分别为y=b1x+a1,y=b2x+a2,y=b3x+a3,对应的相关系数分别为r1,r2,r3,下列结论中错误的是()参考公式:线性回归方程y=中,其中,.相关系数r=.A.三条回归直线有共同交点B.相关系数中,r2最大C.b1>b2D.a1>a28.已知数列{a n}:,,,,,,,,,,,,,…(其中第一项是,接下来的22﹣1项是,,再接下来的23﹣1项是,,,,,,,依此类推.)的前n项和为S n,下列判断:①是{a n}的第2036项;②存在常数M,使得S n<M恒成立;③S2036=1018;④满足不等式S n>1019的正整数n的最小值是2100.其中正确的序号是()A.①②③B.①②④C.①③④D.②③④二、多选题:本题共4小题,每小题5分,共20分。

2024北京朝阳区高二(下)期末数学试题及答案

2024北京朝阳区高二(下)期末数学试题及答案

2024北京朝阳高二(下)期末数 学本试卷共8页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题 共50分)一、选择题共10小题,每小题5分,共50分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 设集合{}21x A x =∈≥R ,{}10B x x =∈−≤R ,则AB = A.{}1x x ≥ B.{}01x x ≤≤ C.{}0x x ≤ D.{}1x x ≤2. 已知,a b ∈R ,且a b >,则下列不等式一定成立的是A.11a b >B.11()()22a b >C.33a b >D.22ac bc > 3. 下列函数中,在区间(0,1)上单调递增的是A.2()f x x x =−B.1()f x x =C.()2x f x −=D.()f x =4. 已知3log 2a =,9log 5b =,12c =,则,,a b c 的大小关系为A.a b c <<B.b a c <<C.a c b <<D.c a b <<5. 从20名学生中随机选出2名学生代表,则甲学生被选中的概率是A.110B.16 C .15D.14 6. “杨辉三角”是数学史上的一个重要成就,本身包含许多有趣的性质,如图:第0行1 第1行1 1 第2行1 2 1 第3行1 3 3 1 第4行1 4 6 4 1 第5行1 5 10 10 5 1则第8行的第7个数是A.8B.21C.28D.56 7. “4m <”是“2410x mx −+>在(0,)x ∈+∞上恒成立”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8. 某兴趣小组组织A ,B ,C 三项比赛,请甲、乙、丙三位同学参加,每项冠军只有一人,若甲恰好拿到其中一项冠军,则不同的冠军归属有A.6种B.12种C.18种D.27种9. 某研究所开发一种新药,据监测,一次性服药t (012)t ≤≤小时后每毫升血液中的含药量y (毫克)与时间t (小时)之间近似满足图中所示的曲线关系. 据测定,每毫升血液中含药量不少于4毫克时治疗疾病有效,则12小时内药物在体内对治疗疾病一直有效所持续的时长为A.4小时B.5小时C.6小时D.7小时10. 已知函数1()44ln(2)f x x x x=−− . 设11(,())P x f x ,22(,())Q x f x 是函数图象上不同的两点,且12()()f x f x =−,则12x x +的取值范围是A.(2,)+∞B.(1,)+∞C.1(,)2+∞D.(0,1)第二部分(非选择题 共100分)二、填空题共6小题,每小题5分,共30分。

高二数学(文科)练习(必修5 选修1-1)期末复习辅导2

高二数学(文科)练习(必修5 选修1-1)期末复习辅导2

高二数学(文科)练习(必修5+选修1-1)一.选择题:(在每个小题提供的四个选项中,有且仅有一个正确答案。

每题5分,满分50分) 1.在△ABC 中,2,2,6a b B π===,则A 等于( )A .4πB .4π或34π C .3πD . 34π2.椭圆2211625xy+=的焦点为F 1,F 2,P 为椭圆上一点,若12P F =,则=2PF ( )A.2B.4C.6D.83.函数y =x 2cos x 的导数为 ( ) A .y ′=x 2cos x -2x sin xB .y ′=2x cos x -x 2sin xC . y ′=2x cos x +x 2sin xD .y ′=x cos x -x 2sin x5.若a 、b 为正实数,则a b >是22a b >的 ( ) A .充分非必要条件 B .必要非充分条件C .充分必要条件D .既非充分也非必要条件4.与直线14-=x y 平行的曲线3y x x =+的切线方程是( )A. 04=-y xB. 420x y -+=或024=--y xC. 024=--y xD. 04=-y x 或044=--y x6.经过点)62,62(-M 且与双曲线22134yx-=有共同渐近线的双曲线方程为( )A .18622=-xyB .16822=-xyC .16822=-y xD . 18622=-y x7.全称命题“所有被5整除的整数都是奇数”的否定是( ) A .所有被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个奇数,不能被5整除D .存在一个被5整除的整数不是奇数8.已知数列10,4,,2(31)n - ,则8是此数列的第( )项:A .10B .11C .12D .13 9.抛物线2(0)y ax a =<的焦点坐标是 ( )A .)4,0(aB .)41,0(a-C .)41,0(aD . )0,41(a10.在A B C ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+ 则A B C ∆的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形二.填空题:(将答案填写在题后的横线上,每题5分,满分20分) 11.二次函数()2y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++>的解集是_______________________.12.已知32()32f x ax x =++且(1)4f '-=,则实数a 的值等于_________;13.等差数列{}n a 中,14258,12,a a a a +=+=则这数列的前10项和为_________;14.到定直线L :x =3的距离与到定点A (4,0)的距离比是23的点的轨迹方程是 。

高二数学第二学期期末复习试卷 文(二)(含解析)-人教版高二全册数学试题

高二数学第二学期期末复习试卷 文(二)(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 1446.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+17.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣28.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 89.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω=.12.定义运算,复数z满足,则复数z=.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=.类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}考点:并集及其运算.专题:计算题.分析:分别求出A与B中不等式的解集确定出A与B,找出两集合的并集即可.解答:解:由A中不等式解得:x>﹣1,即A={x|x>﹣1},由B中不等式变形得:x(x﹣1)<0,解得:0<x<1,即B={x|0<x<1},则A∪B={x|x>﹣1},故选:A.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣考点:任意角的三角函数的定义.专题:计算题.分析:先求出 x=﹣1,y=2,r=,利用cosα的定义,求出cosα的值.解答:解:∵角α的终边过点(﹣1,2),∴x=﹣1,y=2,r=,cosα===﹣,故选D.点评:本题考查任意角的三角函数的定义,两点间的距离公式的应用.3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件考点:不等关系与不等式;充要条件.专题:计算题.分析:根据由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),从而得到结论.解答:解:由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),故a>1是<1 的充分不必要条件,故选 B.点评:本题考查充分条件、必要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.考点:由三视图还原实物图.专题:计算题;空间位置关系与距离.分析:根据题意,B、D两项的视图中都应该有对角线为虚线的矩形,故不符合题意;C项的正视图矩形的对角线方向不符合,也不符合题意,而A项符合题意,得到本题答案.解答:解:对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意故选:A点评:本题给出三视图,要求我们将其还原为实物图,着重考查了对三视图的理解与认识,考查了空间想象能力,属于基础题.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 144考点:频率分布表.专题:计算题.分析:根据一个容量为n的样本,某组频数和频率分别为 36 和0.25,写出这三者之间的关系式,得到关于n的方程,解方程即可.解答:解:∵一个容量为n的样本,某组频数和频率分别为 36 和0.25,∴0.25=∴n=144故选D.点评:本题考查频率分布表,本题解题的关键是知道频率,频数和样本容量之间的关系,这三者可以做到知二求一.6.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+1考点:导数的几何意义.分析:运用求导公式计算x=1时的斜率,再结合曲线上一点求出切线方程.解答:解:y=xlnx y'=1×lnx+x•=1+lnx y'(1)=1 又当x=1时y=0∴切线方程为y=x﹣1 故选C.点评:此题主要考查导数的计算,比较简单.7.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣2考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:先根据+=(1,k),⊥,求出坐标,再代入+=(1,k),即可求出k值.解答:解:设=(x,y),则=(2+x,1+y)=(1,k),∴2+x=1,1+y=k∵,∴=0,即2x+y=0,∴y=2,∴k=3故选B点评:本题考查向量加法的坐标运算,以及向量的数量积判断两个向量的垂直关系,考查计算能力,是基础题.8.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 8考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列与等比数列的通项公式与性质,列出方程,求出且a2的值.解答:解:等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,∴=a2•a5,即=a2•(a2﹣6),解得a2=8.故选:D.点评:本题考查了等差与等比数列的通项公式与应用问题,是基础题目.9.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.考点:函数的零点;二次函数的性质.专题:计算题.分析:函数f(x)=x2+2x+3a没有零点,等价于方程x2+2x+3a=0无解,由根的判别式能求出结果.解答:解:∵函数f(x)=x2+2x+3a没有零点,∴x2+2x+3a=0无解,∴△=4﹣12a<0,∴a>.故选C.点评:本题考查函数的零的求法和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,即=2c,由此推导出这个椭圆的离心率.解答:解:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,∴=2c又∵c2=a2﹣b2∴a2﹣c2﹣2ac=0∴e2+2e﹣1=0解之得:e=﹣1或e=﹣﹣1 (负值舍去).故选C点评:题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω= 6 .考点:三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的周期为,可得结论.解答:解:函数y=sin(ωx+)(ω>0)的最小正周期是=,则ω=6,故答案为:6.点评:本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.12.定义运算,复数z满足,则复数z= 2﹣i .考点:复数代数形式的乘除运算.专题:新定义.分析:根据给出的定义把化简整理后,运用复数的除法运算求z.解答:解:由,得.故答案为2﹣i.点评:本题考查了复数的代数形式的乘除运算,复数的除法采用分子分母同时乘以分母的共轭复数,是基础题.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β= 1 .类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是cos2α+cos2β+cos2γ=1 .考点:类比推理.专题:探究型.分析:本题考查的知识点是类比推理,由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据平面性质可以类比推断出空间性质,我们易得答案.解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们楞根据平面性质可以类比推断出空间性质,即在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,则有cos2α+cos2β+cos2γ=1.故答案为:1,cos2α+cos2β+cos2γ=1点评:本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是2.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标化为直角坐标,利用两点之间的距离公式即可得出.解答:解:由ρ=4sinθ化为ρ2=4ρsinθ,∴x2+y2=4y,化为x2+(y﹣2)2=4,可得圆心C (0,2).点A(4,)化为A.∴点A到圆心C的距离d==2.故答案为:2.点评:本题考查了把极坐标化为直角坐标、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为 4 .考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:计算题;压轴题;直线与圆.分析:连接PN,由题设条件推导出△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,由此能求出圆O的直径长.解答:解:连接PN,∵MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,∠M=30°,切线AP长为,∴∠MPN=∠APO=90°,∠PNO=∠PON=60°,∴∠A=30°,PM=2,∴△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,∴(4r)2=r2+(2)2,解得r=2.∴圆O的直径长为4.故答案为:4.点评:本题考查与圆有关的比例线段的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.考点:三角函数的周期性及其求法;函数奇偶性的性质;函数y=Asin(ωx+φ)的图象变换.专题:计算题;综合题.分析:(1)利用降次以及两角和的正弦,化简为一个角的一个三角函数的形式,求函数f (x)的最小正周期;(2)0<a<,化简g(x)利用它是偶函数,根据0<a<,求a的值.解答:解:(1)∵f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=sin(2x+)∴f(x)的最小正周期T==π(2)g(x)=f(x+a)=sin[2(x+α)+]=sin(2x+2α+)g(x)是偶函数,则g(0)=±=sin(2α+)∴2α+=kπ+,k∈Zα=( k∈Z)∵0<a<,∴α=点评:本题考查三角函数的周期性及其求法,函数奇偶性的应用,函数y=Asin(ωx+φ)的图象变换,考查计算能力,逻辑思维能力,是基础题.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.考点:等可能事件的概率.专题:计算题.分析:(Ⅰ)根据题意,依次列举符合条件的M即可,(Ⅱ)由(Ⅰ)列举的结果,分析可得在y轴的点有4个,即可得不在y轴上的点的个数,由等可能事件的概率公式,计算可得答案;(Ⅲ)由(Ⅰ)列举的结果,验证可得符合不等式组的点的个数,由等可能事件的概率公式,计算可得答案.解答:解:(Ⅰ)根据题意,符合条件的点M有:(﹣2,﹣2)、(﹣2,0)、(﹣2,1)、(﹣2,3)、(0,﹣2)、(0,0)、(0,1)、(0,3)、(1,﹣2)、(1,0)、(1,1)、(1,3)、(3,﹣2)、(3,0)、(3,1)、(3,3);共16个;(Ⅱ)其中在y轴上,有(﹣2,0)、(0,0)、(1,0)、(3,0),共4个,则不在y轴的点有16﹣4=12个,点M不在y轴上的概率为=;(Ⅲ)根据题意,分析可得,满足不等式组的点有(1,1)、(1,3)、(3,1),共3个;则点M正好落在区域上的概率为.点评:本题考查等可能事件的概率计算,关键是用列举法得到符合条件的点的个数,注意(Ⅲ)中是古典概型,而不是几何概型.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.考点:平面与平面垂直的性质;棱柱、棱锥、棱台的体积;空间中直线与平面之间的位置关系.专题:计算题.分析:(1)判断:AB∥平面DEF,再由直线与平面平行的判定定理进行证明.(2)过点E作EM⊥DC于点M,由面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD,知EM是三棱锥E﹣CDF的高,由此能求出三棱锥C﹣DEF的体积.解答:解:(1)判断:AB∥平面DEF,(2分)证明:因在△ABC中,E,F分别是AC,BC的中点,∴EF∥AB,(5分)又因AB⊄平面DEF,∴EF⊂平面DEF,(6分)所以AB∥平面DEF,(7分)(2)过点E作EM⊥DC于点M,∵面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD故EM⊥平面BCD 于是EM是三棱锥E﹣CDF的高,(9分)又△CDF的面积为S△CDF====,EM=,(11分)故三棱锥C﹣DEF的体积==.点评:本题考查直线与平面的位置关系的判断,考查三棱锥的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.考点:椭圆的标准方程;直线的一般式方程.专题:计算题.分析:(1)把圆C的方程化为标准方程,进而求得圆心和半径,设椭圆的标准方程,根据题设得方程组求得a和b,则椭圆的方程可得.(2)跟椭圆方程求得焦点坐标,根据两点间的距离求得|F2C|小于圆的半径,判断出F2在圆C内,过F2没有圆C的切线,设直线的方程,求得点C到直线l的距离进而求得k,则直线方程可得.解答:解:(1)圆C方程化为:(x﹣2)2+(y+)2=6,圆心C(2,﹣),半径r=设椭圆的方程为=1(a>b>0),则所以所求的椭圆的方程是:=1.(2)由(1)得到椭圆的左右焦点分别是F1(﹣2,0),F2(2,0),|F2C|==<∴F2在C内,故过F2没有圆C的切线,设l的方程为y=k(x+2),即kx﹣y+2k=0点C(2,﹣)到直线l的距离为d=,由d=得=解得:k=或k=﹣,故l的方程为x﹣5y+2=0或x+y+2=0点评:本题主要考查了椭圆的标准方程.考查了学生综合运用所学知识解决问题的能力.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.考点:利用导数研究函数的单调性;函数零点的判定定理.分析:(1)当x>时,对函数f(x)求导,令导函数大于0求x的X围;当x≤时根据二次函数的图象和性质可得答案.(2)当x>时根据函数的单调性与极值点可求出零点;当x≤时对函数判别式进行分析可得答案.解答:解(1)当x>时,f′(x)=1﹣=由f′(x)>0得x>1.∴f(x)在(1,+∞)上是增函数.当x≤时,f(x)=x2+2x+a﹣1=(x+1)2+a﹣2,∴f(x)在上是增函数∴f(x)的递增区间是(﹣1,)和(1,+∞).(2)当x>时,由(1)知f(x)在(,1)上递减,在(1,+∞)上递增且f′(1)=0.∴f(x)有极小值f(1)=1>0,此时f(x)无零点.当x≤时,f(x)=x2+2x+a﹣1,△=4﹣4(a﹣1)=8﹣4a.当△<0,即a>2时,f(x)无零点.当△=0,即a=2时,f(x)有一个零点﹣1.当△>0,且f()≥0时,即∴时f(x)有两个零点:x=或x=,即x=﹣1+或x=﹣1﹣当△>0且f()<0,即∴a<﹣时,f(x)仅有一个零点﹣1﹣点评:本题主要考查函数的单调性与其导函数的正负之间的关系和函数零点的求法.属中档题.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.考点:数列的求和;等差数列的前n项和.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用,a1=S1;当n>1时,a n=S n﹣S n﹣1可求(Ⅱ)根据题意需要分类讨论:当n为偶数和n为奇数两种情况,结合等差数列与等比数列的求和公式可求(Ⅲ)记d n=T n﹣P,结合(II)中的求和可得d n,进而可判断d n的单调性,分n为偶数,奇数两种情况讨论d n的X围,结合所求d n可判断其循环规律,从而可知判断解答:解:(Ⅰ)当n=1时,a1=S1=2;当n>1时,a n=S n﹣S n﹣1=n+1,则(Ⅱ)当n为偶数时,当n为奇数时,n﹣1为偶数,则(Ⅲ)记d n=T n﹣P当n为偶数时,.所以从第4项开始,数列{d n}的偶数项开始递增,而且d2,d4,…,d10均小于2012,d12>2012,则d n≠2012(n为偶数).当n为奇数时,.所以从第5项开始,数列{d n}的奇数项开始递增,而且d1,d3,…,d11均小于2012,d13>2012,则d n≠2012(n为奇数).故李四同学的观点是正确的.点评:本题以程序框图为载体综合考查了利用数列的递推公式求解数列的通项公式及数列的和的求解,体现了分类讨论思想的应用,。

河南高二上学期期末数学试题(解析版) (2)

河南高二上学期期末数学试题(解析版) (2)

一、单选题1.若的展开式中的常数项为-20,则a =( ) 6a x x ⎛⎫+ ⎪⎝⎭A .2B .-2C .1D .-1 【答案】D【分析】由题意利用二项展开式的通项公式,求的展开式的常数项. 【详解】已知的展开式中的通项公式为:,令,求得:,6a x x ⎛⎫+ ⎪⎝⎭6621r r r r T C a x -+=⋅⋅620r -=3r =可得展开式的常数项为:,解得:. 63320C a ⋅-=1a =-故选:D.2.设某医院仓库中有10盒同样规格的X 光片,已知其中有5 盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种X 光片的次品率依次为,现从这10盒中任取一111,,101520盒,再从这盒中任取一张X 光片,则取得的X 光片是次品的概率为( )A .0.08B .0.1C .0.15D .0.2 【答案】A【分析】利用条件概率公式即可求解.【详解】以A 1,A 2,A 3分别表示取得的这盒X 光片是由甲厂、乙厂、丙厂生产的,B 表示取得的X 光片为次品,P =,P =,P =, ()1A 510()2A 310()3A 210P =,P =,P =; ()1|B A 110()2|B A 115()3|B A 120则由全概率公式,所求概率为P =P +P +P()B ()()11|A P B A ()()22|A P B A ()()33|A P B A =×+×+×=0.08. 510110310115210120故选:A3.的值等于0121834521C C C C ++⋯++A .7351B .7355C .7513D .7315【答案】D 【详解】原式等于,故选D.433344452122......7315C C C C C ++++==4.已知向量,向量,则向量在向量上的投影向量为( )()2a =12b ⎛= ⎝ a b A . B . C . D .)()(14⎛ ⎝【答案】A【分析】根据投影向量的公式求解即可【详解】在上投影向量 a b)212a b a b b b⋅=⋅===r r r r r r 故选:A5.曲率半径可用来描述曲线上某点处的弯曲变化程度,曲率半径越大则曲线在该点处的弯曲程度越小.已知椭圆:()上点处的曲率半径公式为C 22221x y a b+=0a b >>()00,P x y .若椭圆上所有点相应的曲率半径的最大值是最小值的8倍,则椭圆的离3222220044x y R a b a b ⎛⎫=+ ⎪⎝⎭C C 心率为( )A .BCD12【答案】C【分析】根据曲率半径的定义可判断何时曲率半径最大,合适曲率半径最小,再由题设可得基本量的关系,从而可求离心率.【详解】因为曲率半径越大则曲线在该点处的弯曲程度越小,故椭圆在处曲率半径最小,则,而椭圆在处曲率半径最大, (),0a ±2minb R a =()0,b ±则,因为,所以,所以,2max a R b =max min 8R R =228a b b a =⨯2a b =e =故选:C.6.已知抛物线的焦点为, 点为抛物线上一点,点,则的最小2:4C y x =F PC ()2,2A PA PF +值为 ( )A B .2 C D .3【答案】D【分析】求出抛物线C 的准线l 的方程,过A 作l 的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l :,显然点A 在抛物线C 内,过A 作AM ⊥l 于M ,交抛2:4C y x ==1x -物线C 于P ,如图,在抛物线C 上任取不同于点P 的点,过作于点N ,连PF ,AN ,, P 'P 'P N l '⊥,P A P F ''由抛物线定义知,,||||||||||||||||||||PA PF PA PM AM AN P A P N P A P F ''''+=+=<<+=+于是得,即点P 是过A 作准线l 的垂线与抛物线C 的交点时,min (||||)||2(1)3PA PF AM +==--=取最小值,PA PF +所以的最小值为3.PA PF +故选:D7.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,假设空间站要安排甲,乙,丙,丁4名航天员开展实验,其中天和核心舱安排2人,问天实验舱与梦天实验舱各安排1人,则甲乙两人安排在同一个舱内的概率为( )A .B .C .D . 16141312【答案】A 【分析】分别求出所有的安排情况,再求甲乙两人安排在同一个舱内的情况,最后用古典概率公式可求解.【详解】从甲,乙,丙,丁4名航天员中任选两人去天和核心舱,剩下两人去剩下两个舱位,则有种可能,2242=62=12C A ⋅⨯要使得甲乙在同一个舱内,由题意,甲乙只能同时在天和核心舱,在这种安排下,剩下两人去剩下两个舱位,则有种可能. 22=2A所以甲乙两人安排在同一个舱内的概率. 21126P ==故选:A 8.现要安排六名志愿者去四个不同的场馆参加活动,每名志愿者只能去一个场馆.且每个场馆最少安排一名志愿者,则不同的分配方法有( )A .种B .种 10201280C .种D .种15601680【答案】C【分析】先对志愿者进行分组,然后安排到四个场馆,由此计算出正确答案.【详解】根据题意,若名志愿者以形式分为四个服务小组,6"2,2,1,1"共有种分配方法; 22464422C C A 1080A ⨯=若名志愿者以形式分为四个服务小组,6"3,1,1,1"共有种分配方法.3464C A 480⨯=故共有种分配方法.10804801560+=故选:C9.已知圆,圆,,分别为圆和圆上的动221:2440C x y x y ++++=222:4210C x y x y +-++=M N 1C 2C 点,为直线上的动点,则的最小值为( )P :2l y x =+MP NP+A .B . CD333-3【答案】A【解析】分析圆与圆的圆心和半径,求出与圆关于直线对称的圆,再设圆上的点1C 2C 1C l C 'C '与圆上点对称,分析可得原问题可以转化为到圆和圆上的动点距离之和最小值问M '1C M P C '2C 题,据此分析可得答案.【详解】圆,即,圆心为,半径, 221:2440C x y x y ++++=()()22121x y +++=()1,2--1R =圆,即,圆心为,半径, 222:4210C x y x y +-++=()()22214x y -++=()2,1-2r =设点关于直线对称的点为()1,2--:2l y x =+(),a b 则 ,解得:, 21121222b a b a +⎧=-⎪⎪+⎨--⎪=+⎪⎩41a b =-⎧⎨=⎩圆关于直线对称的圆为圆,其圆心为,半径,则其方程为1C :2l y x =+C '()4,1-1R '=, ()()22411x y ++-=设圆上的点与圆上点对称,则有,C 'M '1C M PM PM '=原问题可以转化为到圆和圆上的动点距离之和最小值问题,P C '2C连接,与直线交于点,此时点是满足最小的点,2C C 'l P P PN PM '+此时,即的最小值为,233PN PM C C ''+=-=MP NP +3故选:A .【点睛】关键点点睛:本题考查直线与圆的位置关系,涉及圆与圆关于直线的对称问题,解答本题的关键是求出圆直线对称的圆的方程,原问题可以转化为到圆1C :2l y x =+()()22411x y ++-=P 和圆上的动点距离之和最小值问题.C '2C 10.为排查新型冠状病毒肺炎患者,需要进行核酸检测.现有两种检测方式:(1)逐份检测;(2)混合检测:将其中k 份核酸分别取样混合在一起检测,若检测结果为阴性,则这k 份核酸全为阴性,因而这k 份核酸只要检一次就够了,如果检测结果为阳性,为了明确这k 份核酸样本究竟哪几份为阳性,就需要对这k 份核酸再逐份检测,此时,这k 份核酸的检测次数总共为次.假1k +设在接受检测的核酸样本中,每份样本的检测结果是阴性还是阳性都是独立的,并且每份样本是阳性的概率都为,若,运用概率统计的知识判断下面哪个p 值能使得混合检测方式()01p p <<10k =优于逐份检测方式.(参考数据:)( )lg 0.7940.1≈-A .0.1B .0.3C .0.4D .0.5【答案】A【分析】计算混合检测方式,样本需要检测的总次数的期望,又逐份检测方式,样本需要Y ()E Y 检测的总次数,知,利用求解可得p 的范围,即可得出选项. X ()10E X =()()E Y E X <【详解】设混合检测方式,样本需要检测的总次数Y 可能取值为1,11.,, ()()1011P Y p ==-()()101111P Y p ==--故Y 的分布列为: Y1 11 P()101p -()1011p --()()()()10101011111111101E Y p p p ∴=⨯-+⨯--=-⨯⎦-⎡⎤⎣设逐份检测方式,样本需要检测的总次数X ,则()10E X =要使得混合检测方式优于逐份检测方式,需()()E Y E X <即,即,即 ()101110110p -⨯-<()101110p ->0.1011p -->又,lg 0.7940.1≈-,lg0.7941010.794p >=∴-,.0.79.140206p ∴=<-00.206p <<∴故选:A.二、多选题11.已知在直三棱柱中,底面是一个等腰直角三角形,且,E 、F 、G 、111ABC A B C -1AB BC BB ==M 分别为的中点.则( )1111B C A B AB BC ,,,A .与平面B .与所成角为 1GB 11ACC A 1AB 1BC 3πC .平面EFBD .平面⊥平面 1//A M 1AB C 1A MC 【答案】BCD【分析】建系,利用坐标法,根据线面角,线线角的向量求法可判断AB ,根据线面平行的判定定理可判断C ,利用线面垂直的判定定理先证平面,可得,再证平面BC ⊥11ABB A 1BC AB ⊥1AB ⊥,然后根据面面垂直的判定定理即得.1A BC 【详解】如图1,建立空间之间坐标系,设,则有:2AB =,()()()()()()110,2,00,0,02,0,00,1,02,0,20,0,2A B C G C B ,,,,, ∴,,,,,()10,1,2GB =- ()2,2,0AC =- ()10,0,2CC = ()12,0,2BC = ()10,2,2AB =- 设平面ACC 1A 1的法向量为(),,n x y z = 则有,令x =1,则, 122020n AC x y n CC z ⎧⋅=-=⎪⎨⋅==⎪⎩ ()1,1,0n =r 则,111cos ,n GB n GB n GB ⋅=== ∴与平面,A 错误; 1GB 11ACC A∵, 1111111cos ,2BC AB BC AB BC AB ⋅=== ∴AB 1与BC 1所成角的余弦值为,则夹角为,B 正确; 12π3如图2:连接,设,连接OF ,1EF BE B M ,,1BE B M O =E 、M 分别为的中点,则且,11B C BC ,1//B E BM 1B E BM =∴为平行四边形,则O 为的中点,1EMBB 1MB 又∵F 为的中点,则,11A B 1//OF A M平面EFB ,平面EFB ,OF ⊂1A M Ë∴平面EFB ,C 正确;1//A M 由题可知平面即为平面,1A MC 1A BC 由题意可得:,1BC AB BC BB ⊥⊥,又,平面, 1AB BB B Ç=AB ,1BB ⊂11ABB A ∴平面,BC ⊥11ABB A 平面,则,1AB ⊂11ABB A 1BC AB ⊥又∵为正方形,则,11ABB A 11A B AB ⊥又,平面,1BC A B B ⋂=,BC 1A B ⊂1A BC 所以平面,平面,1AB ⊥1A BC 1AB ⊂1AB C ∴平面⊥平面,即平面⊥平面,D 正确.1AB C 1A BC 1AB C 1A MC 故选:BCD .12.月光石不能频繁遇水,因为其主要成分是钾钠硅酸盐.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点,椭圆的短轴与半圆的直径重合.若直线与半圆交于点A ,与半椭圆()3,0F ()0y t t =>交于点B ,则下列结论正确的是( )A B .点关于直线的对称点在半圆上 F 12y x =C .面积的最大值是 ABF △)914D .线段AB 长度的取值范围是(0,3+【答案】ACD【分析】由题意可求出半圆和椭圆的方程,即可求得椭圆离心率,判断A ;求出关于直线F的对称点即可判断B ;设坐标,表示出面积,利用基本不等式求得其最大值,12y x =,A B ABF △判断C ;结合半圆的半径以及椭圆的长半轴长,可确定线段AB 长度的取值范围,判断D ;【详解】由题意得半圆的方程为,()22+90x y x =≤设椭圆的方程为, ()222210,0x y a b x a b+=>>≥所以 ,所以, 33b c =⎧⎨=⎩218a =a =所以椭圆的方程为. ()2210189x y x +=≥A .椭圆的离心率是,故A 正确; c e a ===B .设关于直线的对称点为, ()3,0F 12y x =(),m n 可得且, 23n m =--113222m n +=⨯解得,即对称点为, 912,55m n ==912,55⎛⎫ ⎪⎝⎭因为半圆的方程为,()22+90x y x =≤所以对称点为不在半圆上,故B 错误; 912,55⎛⎫ ⎪⎝⎭C .由题得面积, ABF △1||2S AB t =⨯设,())22111,,9,03A x t x t x t ∴+=∴=<<设 ()22222,,1,189x t B x t x ∴+=∴所以,||AB =所以12S t t =⨯=,当且仅当时等号成立,故C 正确; )914≤=t =D .当时,时,,0t →||3AB →+3t →||0AB →所以线段AB 长度的取值范围是,故D 正确;(0,3+故选:ACD.三、填空题13.已知双曲线的一条渐近线方程为,且其右焦点为,则双()2222:10,0x y C a b a b-=>>43y x =()5,0曲线的标准方程为__________.C 【答案】 221916x y -=【分析】依题意可得,,即可求出、的值,从而得解. 43b a =5c =a b 【详解】双曲线的渐近线方程为, ()2222:10,0x y C a b a b-=>>43y x =可得,其右焦点为,可得,又, 43b a =()5,05c =222c a b =+解得,,3a =4b =则双曲线的方程为:. C 221916x y -=故答案为:. 221916x y -=14.如图,一个三棱柱形容器中盛有水,且侧棱.若侧面AA 1B 1B 水平放置时,液面恰好过112AA =AC ,BC ,A 1C 1,B 1C 1的中点.当底面ABC 水平放置时,液面高为__________.【答案】9【分析】先根据条件将水的实际体积算出,再根据棱柱的体积公式即可算出当底面ABC 水平放置时,液面高度.【详解】设的面积为x ,底面ABC 水平放置时,液面高为hABC A 则水的体积为 1121294V x x x =-⨯=当底面ABC 水平放置时,水的体积为,解得9V x h x =⋅=9h =故答案为:9 15.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________.【答案】 67【分析】设事件为“一瓶是蓝色”,事件为“另一瓶是红色”,事件为“另一瓶是黑色”,事件A B C D为“另一瓶是红色或黑色”,可得,利用条件概率公式可求得所求事件的概率.D B C =⋃【详解】设事件为“一瓶是蓝色”,事件为“另一瓶是红色”,事件为“另一瓶是黑色”,事件A B C D 为“另一瓶是红色或黑色”,则,且与互斥,D B C =⋃B C 又,,, ()11223225710C C C P A C +==()122515C P AB C ==()11222525C C P AC C ==故. ()()()()()()()()()67P AB P AC P D A P B C A P B A P C A P A P A =⋃=+=+=故答案为:. 67【点睛】方法点睛:求条件概率的常用方法: (1);()()()P AB P B A P A =(2);()()()n AB P B A n A =(3)转化为古典概型求解.四、双空题16.已知的展开式中前三项的二项式系数之和为46,_____;展开式中系数()2nn x *⎫+∈⎪⎭N n =最大的项________. 【答案】 9925376x -【分析】由题意得:,得,又二项式的展开式通项为:()0121C C C 1462n n n n n n -++=++=9n =,得即可解决. 9192C rrrr T x -+⎛⎫=⋅⋅ ⎪⎝⎭11991199C 2C 2C 2C 2r r r r r r r r --++⎧⋅≥⋅⎨⋅≥⋅⎩【详解】由题意得:,解得:或,()0121C C C 1462n n n n n n -++=++=9n=10-因为,n *∈N 所以(舍去),从而, 10n =-9n =因为二项式的展开式通项为:, 9192C rrrr T x -+⎛⎫=⋅⋅ ⎪⎝⎭所以系数为,要求其最大值,9C 2rr⋅所以只要满足,即, 11991199C 2C 2C 2C 2r r r r r r r r --++⎧⋅≥⋅⎨⋅≥⋅⎩()()()()()()119!9!22!9!1!10!9!9!22!9!1!8!r r r r r r r r r r r r -+⎧⋅≥⋅⎪---⎪⎨⎪⋅≥⋅⎪-+-⎩解得:, 172033r ≤≤因为, r ∈N 所以,6r =所以系数最大项为69362792C 5376T x x -⎛⎫== ⎪⎝⎭故答案为:9;925376x -五、解答题17.在平面直角坐标系中,已知圆:.xOy C 22(1)(2)9x y ++-=(1)若直线:恒过圆内一定点,求过点的最短弦所在直线的方程; l 10kx y k -+-=C M M (2)从圆外一点向圆引一条切线,切点为,且有,求的最小值. C ()11,P x y C Q PQ PO=PQ 【答案】(1); 210x y --=【分析】(1)首先求出直线所过定点,然后分析出最短弦与垂直,求出斜率,写出直l ()1,1M CM 线即可;(2)根据题意得到,即,即,化简22||9PQ PC =-22||9PO PC =-22221111(1)(2)9x y x y +=++--得到的轨迹方程为,求出点到上述直线的距离即为 最小值. P 220x y --=O PO 【详解】(1)直线的方程变形为,l ()()110k x y -+-=令,解得,1010x y -=⎧⎨-=⎩11x y =⎧⎨=⎩所以无论取何值,直线过定点, k l ()1,1M 又因为圆的圆心,C ()1,2C -因为过点的最短弦与垂直,且直线CM 的斜率, M CM 211112CM k -==---所以最短弦所在直线的斜率为,2故最短弦的直线方程为,即;()121y x -=-210x y --=(2)由于,2222||||9PC PQ r PQ =+=+所以,22||9PQ PC =-又,PQ PO =所以,22||9PO PC =-所以,化简得,22221111(1)(2)9x y x y +=++--11220x y --=所以点的轨迹方程为, P 220x y --=因为,PQ PO =所以取得最小值,即取得最小值, PQ PO点到直线的距离 O 220x y --=d即的最小值为.PQ 18.甲,乙,丙三名同学相约一起打乒乓球,已知丙与甲,乙比赛,丙每局获胜的概率分别为,23,每局比赛的结果互不影响,若乙,丙采用“三局两胜制”进行比赛,丙获胜的概率为()01p p <<. 295p (1)求的值;p (2)在甲,乙两名同学中用抽签法随机选择一名同学与丙进行一局比赛,求丙获胜的概率.【答案】(1)35(2) 1930【分析】(1)分情况,丙获胜有两种可能:丙前两局连胜,或者前两局乙,丙各胜一局且第三局丙胜,再根据独立事件的概率公式及互斥事件的概率公式计算可得; (2)根据全概率公式计算可得.【详解】(1)由题知,乙,丙进行比赛,丙每局获胜的概率为,若乙,丙采用“三局两()01p p <<胜制”进行比赛,丙获胜有两种可能:丙前两局连胜,概率为;或者前两局乙,丙各胜一局21=p p 且第三局丙胜,概率为,所以丙获胜的概率为,计算得1222(1)p p p =-C 2122C (1)p p p +-=295p p =. 35(2)设事件为:甲与丙进行比赛,事件为:乙与丙进行比赛,事件为:丙比赛获胜,则1A 2A B ,,,,所以()112P A =()212P A =()123P A B =()235P A B =.()()()()()1122121319==232530P B P A P B A P A P B A =+⨯+⨯19.甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为,,且X Y 和的分布列如下表:X YX 0 1 2P 35 110 310Y 012P1231015试对这两名工人的技术水平进行比较. 【答案】乙的技术更稳定.【分析】根据分布列分别求甲和乙的期望和方差,再进行比较. 【详解】【解】工人甲生产出次品数的均值和方差分别为 X ,()3130120.751010E X =⨯+⨯+⨯=.()()()()22231300.710.720.70.8151010D X =-⨯+-⨯+-⨯=工人乙生产出次品数的均值和方差分别为 Y ,()1310120.72105E Y =⨯+⨯+⨯=.()()()()22213100.710.720.70.612105D Y =-⨯+-⨯+-⨯=由知,两人生产出次品的平均数相同,技术水平相当,但,可见乙的技()()E X E Y =()()D X Y D >术更稳定.20.如图,在四棱锥中,平面平面,是P ABCD -PAD ⊥,2,4,ABCD PA AD BD AB ====BD的平分线,且.ADC ∠BD BC ⊥(1)若点为棱的中点,证明:平面;E PC BE A PAD (2)已知二面角的大小为,求平面和平面的夹角的余弦值. P AB D --60 PBD PCD 【答案】(1)证明见解析.(2). 35【分析】(1)延长交于点,连接,证明即可;,CB DA F PF BE PF ∥(2)以的中点为为原点 ,建立空间直角坐标系,用向量法解决问题.AD O 【详解】(1)延长交于点,连接, ,CB DA F PF 在中,CDF A 是的平分线,且, BD Q ADC ∠BD BC ⊥是等腰三角形,点是的中点,∴CDF A B CF 又是的中点,E PC ,BE PF ∴∥又平面平面,PF ⊂,PAD BE ⊄PAD 直线平面.∴BE A PAD(2)在中,, ABD △2,4,AD BD AB ===则,即,90BAD ∠=BA AD ⊥由已知得, 60,8BDC BDA CD ∠∠=== 又平面平面平面 PAD ⊥,ABCD BA ⊂ABCD 所以平面,即,BA ⊥PAD BA PA ⊥所以以为二面角的平面角,PAD ∠P AB D --所以,60PAD ∠= 又,所以为正三角形,2PA AD ==PAD A 取的中点为,连,则平面 AD O OP ,OP AD OP ⊥⊥,ABCD 如图建立空间直角坐标系,则,()()()()(1,0,0,1,,5,,1,0,0,A B C D P --所以,(()(),2,,4,DP BD DC ==--=- 设分别为平面和平面的法向量,则()()111222,,,,,m x y z n x y z ==PBD PCD ,即,取,则,00m DP m BD ⎧⋅=⎨⋅=⎩1111020x x ⎧+=⎪⎨--=⎪⎩11y =-)1,1m =-- ,即,取,则,00n DP n DC ⎧⋅=⎨⋅=⎩2222040x x ⎧=⎪⎨-+=⎪⎩21y=)1n =- 所以.3cos ,5m n m n m n ⋅==⋅则平面和平面所成夹角的余弦值为.PBD PCD 3521.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表: 甲公司送餐员送餐单数频数表: 送餐单数 38 39 40 41 42 天数 101510105乙公司送餐员送餐单数频数表:送餐单数 38 39 40 41 42 天数 51010205若将频率视为概率,回答下列两个问题:(1)记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;X X (2)小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.【答案】(1)详见解析;(2)推荐小王去乙公司应聘,理由见解析.【解析】(1)本题首先可以设乙公司送餐员送餐单数为,然后依次求出、、a 38a =39a =40a =、、时的工资以及概率,即可列出的分布列并求出数学期望;41a =42a =X p X (2)本题可求出甲公司送餐员日平均工资,然后与乙公司送餐员日平均工资进行对比,即可得出结果.【详解】(1)设乙公司送餐员送餐单数为, a 当时,,; 38a =386228X =⨯=515010p ==当时,,; 39a =396234X =⨯=101505p ==当时,,; 40a =406240X =⨯=101505p ==当时,,; 41a =40617247X =⨯+⨯=202505p ==当时,,, 42a =40627254X =⨯+⨯=515010p ==故的所有可能取值为、、、、, X 228234240247254故的分布列为:XX 228 234 240 247 254P 110 15 1525110故. 11121()228234240247254241.81055510E X =⨯+⨯+⨯+⨯+⨯=(2)甲公司送餐员日平均送餐单数为:,380.2390.3400.2410.2420.139.7⨯+⨯+⨯+⨯+⨯=则甲公司送餐员日平均工资为元,80439.7238.8+⨯=因为乙公司送餐员日平均工资为元,, 241.8238.8241.8<所以推荐小王去乙公司应聘. 【点睛】关键点点睛:(1)求分布列的关键是根据题意确定随机变量的所有可能取值和取每一个值时的概率,然后列成表格的形式后即可,(2)根据统计数据做出决策时,可根据实际情况从平均数、方差等的大小关系作出比较后得到结论.22.已知点,点M 是圆A :上任意一点,线段MB 的垂直平分线交半径MA()10B ,()22116x y ++=于点P ,当点M 在圆A 上运动时,记P 点的轨迹为E . (1)求轨迹E 的方程;(2)作轴,交轨迹E 于点Q (Q 点在x 轴的上方),直线与轨迹E 交于BQ x ⊥():,l x my n m n =+∈R C 、D (l 不过Q 点)两点,若CQ 和DQ 关于直线BQ 对称,试求m 的值.【答案】(1)22143x y +=(2) 2m =【分析】(1)利用椭圆定义即可求得轨迹E 的方程;(2)先将直线的方程与轨迹E 的方程联立,再利用设而不求的方法表示,进而得到l 0CQ DQ k k +=的关系式,从而求得m 的值.m n 、【详解】(1)圆的圆心,半径,()22:116A x y ++=()1,0A -4r =点为线段的垂直平分线与半径的交点,,P MB MA PM PB ∴=,42PA PB PA PM AM AB ∴+=+==>=点的轨迹是以、为焦点的椭圆,设其方程为,P ∴E A B ()222210x y a b a b +=>>则,,所以,,24a =22c =2a =1c =b =因此,轨迹的方程为.E 22143x y +=(2)设、,轴,点在轴的上方,()11,C x y ()22,D x y BQ x ⊥ Q x 将代入方程,可得,则, 1x =22143x y +=32y =±31,2Q ⎛⎫ ⎪⎝⎭联立可得, 223412x my n x y =+⎧⎨+=⎩()2223463120m y mny n +++-=,可得,()()222236123440m n m n ∆=-+->2234n m <+由韦达定可得,. 122634mn y y m +=-+212231234n y y m -=+因为、关于直线对称,则,CQ DQ BQ 0CQ DQ k k +=则,()()1212211233332201101122y y x y x y x x --⎛⎫⎛⎫+=⇒--+--= ⎪ ⎪--⎝⎭⎝⎭又,,11x my n =+22x my n =+则,()12123213302my y n m y y n ⎛⎫+--+-+= ⎪⎝⎭即, 222312362133034234n mn m n m n m m -⎛⎫⎛⎫⋅+--⋅--+= ⎪ ⎪++⎝⎭⎝⎭化简得: ,即()2328440m n m n +--+=()()23220m m n -+-=则或,2m =3220m n +-=当时,,3220m n +-=312n m =-此时,直线的方程为,l 331122x my m m y ⎛⎫=+-=-+ ⎪⎝⎭直线过点,不合题意.l 31,2Q ⎛⎫⎪⎝⎭综上所述,.2m =。

金太阳好教育高二下学期期末考试仿真卷理科数学(二)解析版

金太阳好教育高二下学期期末考试仿真卷理科数学(二)解析版

金太阳好教育高二下学期期末考试仿真卷理科数学(二)解析版第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·遵化期中]i 是虚数单位,复数1i z =+,则22z z+=( ) A .1i -- B .1i -+ C .1i +D .1i -【答案】C【解析】由复数1i z =+,可得()()2221i 221i 12i 12i 1i 1i 1i 11z z -+=++=+-+=+-=+++. 故选C .2.[2018·潍坊检测]观察下列各式:1a b +=,223a b +=,334a b +=,447a b +=,5511a b +=,L ,则88a b +=( )A .18B .29C .47D .76【答案】C【解析】1a b +=Q ,223a b +=,334a b +=,447a b +=,5511a b +=,L , ∴通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和,6611718a b ∴+=+=,77181129a b +=+=,88291847a b +=+=.故选C .3.[2018·牡丹江一中]若()42f x x x=-,则()1f '等于( ) A .1- B .2C .3D .6【答案】D【解析】()42f x x x =-Q ,()3224f x x x∴=+',()1426f '∴=+=.故选D . 4.[2018·伊春二中]4名同学分别报名参加数、理、化竞赛,每人限报其中的1科,不同的报名方法种数( ) A .24 B .4C .34D .43【答案】D【解析】根据题意,4名同学分别报名参加数、理、化竞赛,每人都有3种选择方法,则不同的报名方法种数有433333⨯⨯⨯=种.故选D .5.[2018·山东师范附中]在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5【答案】B【解析】根据所给的二项式写出展开式的通项()()521031551C 1C rrr rr rr T x x x --+⎛⎫=-=-⋅ ⎪⎝⎭, 令1034r -=,解得2r =,解得()224351C 10T x =-⋅=,即4x 的系数为10.故选B .6.[2018·重庆期末]根据如下样本数据:得到回归方程 1.412.ˆ4yx =-+,则( ) A .5a =B .变量x 与y 线性正相关C .当11x =时,可以确定3y =D .变量x 与y 之间是函数关系 【答案】A【解析】由题意可得,357964x +++==,6321144a ay ++++==,回归方程过样本中心点,则11 1.4612.44a +=-⨯+,求解关于实数a 的方程可得5a =,由 1.40ˆb=-<可知变量x 与y 线性负相关;当11x =时,无法确定y 的值;变量x 与y 之间是相关关系,不是函数关系.故选A .7.[2018·棠湖中学]已知随机变量ξ服从正态分布()20N σ,,若()20023P ξ>=.,则()22P ξ≤≤=﹣( )A .0477.B .0625.C .0954.D .0977.【答案】C【解析】由题意可知正态分布的图象关于直线0x =对称,则()()220023P P ξξ<=>=.,据此有()221002320954P ξ-≤≤=-⨯=...故选C .8.[2018·济南一中]下列关于函数()()22e x f x x x =-的判断正确的是( ) ①()0f x >的解集是{}|02x x <<;②(f 极小值,f是极大值;③()f x 没有最小值,也没有最大值. A .①③ B .①②③C .②D .①②【答案】D【解析】由()()2202e 02002x f x x x x x x >⇒->⇒->⇒<<,故①正确;()()2e 2x f x x '=-,由()0f x '=得x =()0f x '<得x >或x <,由()0f x '>得x ()f x ∴的单调减区间为(,-∞和)+∞,单调增区间为(.()f x ∴的极大值为f,极小值为(f ,故②正确;x <Q 时,()0f x <恒成立.()f x ∴无最小值,但有最大值f,故③不正确.故选D .9.[2018·重庆一模]如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )种A .120B .260C .340D .420【答案】D【解析】由题意可知上下两块区域可以相同,也可以不同, 则共有5431354322180240420⨯⨯⨯⨯+⨯⨯⨯⨯=+=.故选D .10.[2018·西城14中]口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( )A .80243B .100243C .80729D .100729【答案】A【解析】每次摸球中奖的概率为114529C C 20536C 9==,由于是有放回地摸球, 故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭.故选A . 11.[2018·赤峰二中]口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以表示取出球的最小号码,则E ξ=( ) A .045. B .05. C .0.55 D .0.6【答案】B【解析】()2435C 305C P ξ===,()2335C 3110C P ξ===,()3511210C P ξ===,331101205510102E ξ=⨯+⨯+⨯==..故选B . 12.[2018·天津一中]已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <',且()02f =,则不等式)A .(),0-∞B .()0,+∞C .(),2-∞D .()2,+∞【答案】B ,从而()F x 为R 上的单调增函数,即为()2F x >,从而其解集为()0,+∞.故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·黑龙江期中]若复数()()3i 2i a -+是纯虚数,则实数a =___________.【答案】23-【解析】()()()3i 2i 326i a a a -+=++-为纯虚数,则320 60a a +=-⎧⎨⎩≠,解得23a =-.故答案为23-.14.[2018·长春十一中]已知下列命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程ˆ0.52yx =-+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均减少05.个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________. 【答案】①②③【解析】①相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,是正确的;②两个变量相关性越强,则相关系数r 的绝对值就越接近于1,是正确的;③在回归直线方程0.ˆ52x y=-+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均减少05.个单位是正确的,因为回归方程,并不是样本点都落在方程上,故只能是估计值,所以说是平均增长;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越小,故原命题错误; 故答案为①②③.15.[2018·三明质检]设()9210012101241b x x a a x a x a x x x ⎛⎫+-=+++++ ⎪⎝⎭L ,则10120210222a a aa ++++=L _______. 【答案】5【解析】由题易知()999b C 11=⨯-=-,令12x =,可得1012021032b 222a a a a =+++++L , 101202105222a a a a ∴++++=L .故答案为5. 16.[2018·福建师范附中]已知函数()()1ln f x x a x a x =-+∈R 在其定义域上不单调,则a 的取值范围是__________.【答案】2a >【解析】()()1ln 0f x x a x x x =-+>Q ,()211a f x x x∴=--+'.①若函数()f x 在()0+∞,上单调递增,则()2110af x x x =--+≥'在()0,+∞上恒成立,1a x x ∴≥+在()0,+∞上恒成立,由于1y x x=+在()0,+∞上无最大值, ∴函数()f x 在()0+∞,上不单调递增.②若函数()f x 在()0+∞,上单调递减,则()2110af x x x =--+≤'在()0+∞,上恒成立,1a x x ∴≤+在()0+∞,上恒成立,又因为12x x +≥,所以当且仅当1x x=,即1x =时等号成立,2a ∴≤.综上可得,当函数()f x 在其定义域上不单调时,实数a 的取值范围是()2+∞,.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)[2018·辽宁实验中学]已知()*n ∈N ,在()2nx +的展开式中,第二项系数是第三(1)求展开式中二项系数最大项;(2)若()()()()20122111n nn x a a x a x a x +=+++++++L ,求①12n a a a +++L 的值; ②122n a a na +++L 的值.【答案】(1)333346C 2160T x x ==;(2)63;192. 【解析】(1,解得6n =,∴展开式中二项式系数最大项为333346C 2160T x x ==.(2)①()()()()()66260126211111x x a a x a x a x ⎡⎤⎣+=++=+++++++⎦L , 令0x =,得6016264a a a +++==L ,又令1x =-,得01a =. 1263n a a a +++=L ,②()()()()()66260126211111x x a a x a x a x ⎡⎤+=++=+++++++⎣⎦L ,两边求导,得()()()511262211n n x a a x na x -+=+++++L ,令0x =,得122192n a a na +++=L .18.(12分)[2018·大庆实验中学]已知函数()2ln f x x ax x =+-,a ∈R . (1)若1a =,求曲线()y f x =在点()()11f ,处的切线方程; (2)若函数()f x 在[]13,上是减函数,求实数a 的取值范围; 【答案】(1)20x y -=;(2)173⎛⎤-∞- ⎥⎝⎦,.【解析】(1)当1a =时,()2ln f x x x x =+-,所以()121f x x x+'=-,()12f '=, 又因为()12f =,所以曲线()y f x =在点()()11f ,处的切线方程为20x y -=.(2)因为函数在[]13,上是减函数,所以()212120x ax f x x a x x +-'=+-=≤在[]13,上恒成立. 做法一:令()221h x x ax =+-,有()()1030h h ⎧≤⎪⎨≤⎪⎩,得1173a a ≤-⎧⎪⎨≤-⎪⎩.故173a ≤-.∴实数a 的取值范围为173⎛⎤-∞- ⎥⎝⎦,.做法二:即2210x ax +-≤在[]13,上恒成立,则12a x x≤-在[]13,上恒成立, 令()12h x x x =-,显然()h x 在[]13,上单调递减,则()()min 3a h x h ≤=,得173a ≤-. ∴实数a 的取值范围为173⎛⎤-∞- ⎥⎝⎦,.19.(12分)[2018·牡丹江一中]2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在1575-岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9:11.(1)根据已知条件完成上面的22⨯列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X ,求X 的分布列及数学期望.附:,其中c d n a b =+++.临界值表:【答案】(1)有99%的把握认为关注“一带一路”和年龄段有关;(2)()1E X =. 【解析】(1)依题意可知抽取的“青少年”“中老年”共有1004555-=人. 完成的22⨯列联表如:()2 6.6350.01P K >=Q ,9.091 6.635>,∴有99%的把握认为关注“一带一路”和年龄段有关. (2)根据题意知,选出关注的人数为3,不关注的人数为6,在这9人中再选取3人进行面对面询问,X 的取值可以为0,1,2,3,所以X 的分布列为:20.(12分)[2018·孝感八校]现有5名男生、2名女生站成一排照相, (1)两女生要在两端,有多少种不同的站法? (2)两名女生不相邻,有多少种不同的站法?(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法? 【答案】(1)240;(2)3600;(3)3720.【解析】(1)两端的两个位置,女生任意排,中间的五个位置男生任意排,2525A A 240⋅=(种). (2)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生,5256A A 3600⋅=(种).(3)采用去杂法,在七个人的全排列中,去掉女生甲在左端的66A 个,再去掉女生乙在右端的66A 个,但女生甲在左端同时女生乙在右端的55A 种排除了两次,要找回来一次. 765765A 2A A 3720∴-+=(种). 21.(12分)[2018·榆林模拟]2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖凭着连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过4个直道与弯道的交接口()1,2,3,4k A k =.已知某男子速滑运动员顺利通过每个交接口的概率均为34,摔倒的概率均为14.假定运动员只有在摔倒或到达终点时才停止滑行,现在用X 表示该运动员滑行最后一圈时在这一圈内已经顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率;(2)求X 的分布列及数学期望()E X . 【答案】(1)27256;(2)见解析. 【解析】(1)由题意可知3312744256P ⎛⎫=⨯= ⎪⎝⎭.(2)X 的所有可能值为0,1,2,3,4. 则()()31,2,3,44k P A k ==,且1A ,2A ,3A ,4A 相互独立. 故()()1104P X P A ===,()()1231314416P X P A A ==⋅=⨯=, ()()212331924464P X P A A A ⎛⎫==⋅⋅=⨯= ⎪⎝⎭,()()312343127344256P X P A A A A ⎛⎫==⋅⋅⋅=⨯= ⎪⎝⎭,()()4123438144256P X P A A A A ⎛⎫==⋅⋅⋅== ⎪⎝⎭.从而X 的分布列为:()13927815250123441664256256256E X ∴=⨯+⨯+⨯+⨯+⨯=. 22.(12分)[2018·福建师范附中]设函数()()ln 1f x x a x =-+,()a ∈R , (1)讨论函数()f x 的单调性;(2)当函数()f x 有最大值且最大值大于31a -时,求a 的取值范围. 【答案】(1)见解析;(2)()10-,. 【解析】(1)()()ln 1(0)f x x a x x =-+>Q ,()()()1111a x f x a x x-+'∴=-+=. ①当10a +≤,即1a ≤-时,()0f x '>,∴函数()f x 在()0,+∞上单调递增. ②当10a +>,即1a >-时,令()0f x '=,解得11x a =+, 当101x a <<+时,()0f x '>,()f x 单调递增, 当11x a >+时,()0f x '<,()f x 单调递减.综上,当1a ≤-时,函数()f x 在()0,+∞上单调递增;当1a >-时,函数()f x 在10,1a ⎛⎫ ⎪+⎝⎭上单调递增,在1,1a ⎛⎫+∞ ⎪+⎝⎭上单调递减. (2)由(1)得若1a ≤-,则()f x 单调递增,无最值. 若1a >-,则当11x a =+时,()f x 取得最大值,且()max 11ln 111f x f a a ⎛⎫==- ⎪++⎝⎭. Q 函数()f x 的最大值大于31a -,1ln 1311a a ∴->-+,即()ln 130a a ++<, 令()()()ln 131g a a a a =++>-,则()g a 在()1-+∞,上单调递增, 又()00g =,∴当10a -<<时()()00g a g <=,故a 的取值范围为()10-,.。

期末模拟题(二)-2021-2022学年高二上学期数学(人教A版(2019)选择性必修第一册)

期末模拟题(二)-2021-2022学年高二上学期数学(人教A版(2019)选择性必修第一册)

高二上册数学期末模拟题(二)-人教A 版(2019)新高考一、单选题1.在数列{}n a 中,11a =,()1112n n a n a -=+≥,则4a =( ) A .32B .53C .74D .852.双曲线2214y x -=的渐近线方程是( )A .12y x =± B .2y x =±C .4x y =±D .14x y =±3.如图,在正方体1111ABCD A B C D -中,1AA a =,11A B b =,11A D c =,O 为底面ABCD 的中心,G 为11D C O 的重心,则AG =( )A .215326a b c ++B .2536a b c ++C .121336a b c ++D .1526a b c ++4.圆22(1)(2)2x y -++=关于直线:10l x y -+=对称的圆的方程为( ) A .22(1)(3)2x y ++-= B .22(1)(3)2x y -++= C .22(3)(2)2x y ++-= D .22(3)(2)2x y -++=5.已知4ln 4a a -=,3ln 3-=b b ,22ln -=cc ,其中4a ≠,3b ≠,2c ≠,则( )A .c b a <<B .c a b <<C .a b c <<D .a c b <<6.已知数列{}n a 满足123(21)2n a a n a n +++-=,则数列21n a n ⎧⎫⎨⎬+⎩⎭的前10项和是( ) A .1021B .1123C .2021D .22237.已知12F F ,为双曲线222:1(0)16x y C a a -=>的左、右焦点,点A 在双曲线的右支上,点(72)P ,是平面内一定点.若对任意实数m ,直线430x y m ++=与双曲线C 的渐近线平行,则2AP AF +的最小值为( ) A.6B.10-C.8D.28.若曲线12,C C 存在到直线l 距离相等的点,则称12,C C 相对直线l “互关”.已知曲线22212:,:(4)2C y x a C x y =+-+=相对直线:0l x y -=“互关”,则实数a 的取值范围是( ) A .(,4]∞- B .25(,]4∞- C .25(2,]4D .25()4∞+,二、多选题9.空间直角坐标系O xyz -中,已知()()1,2,2,0,1,1A B -,下列结论正确的有( ) A .(1,1,3)AB =--B .若()2,1,1m =,则⊥m ABC .点A 关于xOy 平面对称的点的坐标为()1,2,2- D.||AB =10.已知曲线C :()224y m x =-,其中m 为非零常数,则下列结论中正确的是( )A .当1m =-时,则曲线C 是一个圆B .当0m >时,则曲线C 是一个双曲线C .若3m =-时,则曲线是焦点为(0,±的椭圆 D .若曲线C2m =- 11.已知等比数列{}n a 的前n 项和为n S ,且214S a =,2a 是11a +与312a 的等差中项,数列{}nb 满足1nn n n a b S S +=⋅,数列{}n b 的前n 项和为n T ,则下列命题正确的是( )A .数列{}n a 的通项公式123n n a -=⨯B .31nn s =-C .数列{}n b 的通项公式为()()1233131nn nn b +⨯=-- D .n T 的取值范围是11,86⎡⎫⎪⎢⎣⎭12.函数()1,11ln ,1x e m x f x x x x -+⎧+<=⎨+-≥⎩的值域为[)2,+∞,则下列选项中一定正确的是( )A .1m ≥B .()()21f f m -<--C .()()()ln 21f m f m +<+D .ln 212e f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭三、填空题13.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱B 1C 1,CC 1的中点,则异面直线A 1E 与BF 所成角的余弦值为___________.14.在平面直角坐标系中,以点(0,1)为圆心且与直线20mx y m --+=相切的圆中,半径最大的圆的标准方程为______15.已知椭圆C :2214x y +=的左、右焦点分别是1F ,2F ,过点1F 的直线交椭圆于A ,B两点,则2ABF 的内切圆面积的最大值为___________.16.定义在R 上的函数()f x 满足()()13f x f x +=+,当[)0,1x ∈时,()24342x f x x +=+.设()f x 在[)()*,1n n n +∈N 上最小值为n a ,则6a =___________.四、解答题17.已知数列{}n a 的前n 项和为n S ,且12a =,()*12,2n n n a S n N n -=+∈≥.(1)求证:数列2n n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列{}n a 的通项公式;18.已知E ,F 分别是正方体1111ABCD A B C D -的棱BC 和CD 的中点.(1)求1A D 与EF 所成角的大小; (2)求1A E 与平面1B FB 所成角的余弦值.19.在平面直角坐标系xOy 中,已知两定点A (-2,2),B (0,2),动点P 满足2PA PB=(1)求动点P 的轨迹C 的方程;(2)过点(0,1)的直线l 与轨迹C 相交于M 、N 两点,且||4MN =,求直线l 的方程. 20.已知E 是曲线221:143x y C +=上任一点,过点E 作x 轴的垂线,垂足为H ,动点D 满足32HE HD =(1)求点D 的轨迹2C 的方程;(2)若点P 是直线:250l x y --=上一点,过点P 作曲线2C 的切线,切点分别为M ,N ,求使四边形OMPN 面积最小时MN 的值.21.已知数列{}n a 满足a 1=1,a n +1=2,3,n na n a n ⎧⎨+⎩为奇数为偶数(1)从下面两个条件中选一个,写出b 1,b 2,并求数列{}n b 的通项公式; ①b n =a 2n -1+3;②b n =a 2n +1-a 2n -1. (2)求数列{}n a 的前n 项和为S n .22.已知函数()()2ln f x x x ax x a R =-+∈.(1)当0a =时,求()f x 的单调区间;(2)若()f x 有两个零点12,x x ,且122x x >,证明1228x x e >.参考答案1.B 【分析】分别将2n =,3,4代入递推关系式求出2a ,3a ,4a 的值即可求解. 【详解】数列{}n a 中,11a =,()1112n n a n a -=+≥, 令2n =,可得21111121a a =+=+=, 令3n =,可得321131122a a =+=+=, 令4n =,可得431251133a a =+=+=, 故选:B. 2.B 【分析】求出a 、b 的值,即可得出双曲线的渐近线方程. 【详解】在双曲线2214y x -=中,1a =,2b =,所以,该双曲线的渐近线方程为2b y x x a =±=±. 故选:B. 3.A 【分析】结合空间线段的关系以及空间向量的线性运算即可求出结果. 【详解】在正方体1111ABCD A B C D -中,1AA a =,11A B b =,11A D c =,O 为底面ABCD 的中心,G 为11D C O 的重心,连接OG ,则()1111()23AG AO OG AB AD OD OC =+=+++111111()()()2322b c BA BC DD AB AD CC ⎡⎤=+++++++⎢⎥⎣⎦11111()()()26363b c b c a b c a =++-+++++ 215326a b c ++=.故选:A . 4.C 【分析】圆关于直线的对称圆问题,第一步求圆心关于直线的对称点,半径不变,第二步直接写出圆的方程. 【详解】圆22(1)(2)2x y -++=的圆心(1,2)-,由:10l x y -+=得1l k =设对称点的坐标为(,)m n ,利用两圆心的连线与直线垂直,两圆心的中点在直线上列方程求解, 211{121022l n k m m n +⋅=--+--+=,化简得1050m n m n ++=⎧⎨-+=⎩,解得32m n =-⎧⎨=⎩所以对称圆的方程为22(3)(2)2x y ++-=.故选:C. 5.C 【分析】先令函数()ln f x x x =-,求导判断函数()f x 的单调性,并作出函数()f x 的图像,由函数()f x 的单调性判断()()()f c f b f a >>,再由对称性可得a b c <<.【详解】 由4ln4aa -=,则ln 4ln 4a a -=-,同理ln 3ln3b b -=-,ln 2ln 2c c -=-, 令()ln f x x x =-,则()111x f x x x-'=-=,当()0,01f x x '<<<;当()0,1>>'f x x ,∴()f x 在()0,1上单调递减,()1,+∞单调递增,所以()()()432f f f >>,即可得()()()f a f b f c >>,又4a ≠,3b ≠,2c ≠由图的对称性可知,a b c <<.故选:C 6.C 【分析】用1n -替换已知式中的n ,然后两式相减求得n a ,然后由裂项相消法求和. 【详解】 因为123(21)2n a a n a n +++-=,所以2n ≥时,1213(23)2(1)n a a n a n -+++-=-,两式相减得(21)2n n a -=,221n a n =-, 又12a =,满足此式,所以221n a n =-, 21121(21)(21)2121n a n n n n n ==-+-+-+, 所以数列21n a n ⎧⎫⎨⎬+⎩⎭的前10项和为111111201133519212121⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C . 7.A 【分析】根据双曲线的性质可得直线430x y m ++=与双曲线的渐近线方程为4y x a=±,重合或平行,即可求出a ,再利用双曲线的定义转化可求最小值. 【详解】∵双曲线C :()2221016x y a a -=>,∴双曲线的渐近线方程为4y x a =±,∵对任意实数m ,直线430x y m ++=与双曲线C 的渐近线平行, ∴直线430x y m ++=与双曲线的渐近线方程为4y x a=±平行, ∴3a =,∴5c =,∴1F 为()5,0-,∵()7,2P ,∴1PF =∴211666AP AF AP AF PF +=+-≥-=, ∴2APAF +的最小值为6. 故选:A. 8.B 【分析】由点到直线的距离公式求出圆心2(40)C ,到直线l 的距离,进而得出圆上点到直线l 的最大距离max d ,当0a ≤时满足题意;当0a >时,利用导数的几何意义求出曲线1C 的切点坐标,根据点到直线的距离公式求出切点到直线l 的距离2d ,结合2max d d ≤计算即可. 【详解】 由题意知,圆2C 的圆心坐标为2(40)C ,,半径为r = 圆心2(40)C ,到直线l的距离为1d ==所以圆上的点到直线l 的最大距离为max 1d d r =+=当0a ≤时,21C y x a =+:为开口向上的抛物线,1C 、2C 存在到直线l 距离相等的点,符合题意;当0a >时,由21C y x a =+:,得2y x '=,设点00()P x y ,为曲线1C 上的一点,则曲线上过点P 的切线方程的斜率为02x ,又过点P 且与直线l 平行的切线方程的斜率为1,所以02x =1,012x =,所以切点11()24P a +,,此时切点11()24P a +,到直线l的距离为2d =, 由2max d d ≤≤164a -≤,解得232544a -≤≤,所以2504a <≤综上所述,254 a≤故选:B9.AB【分析】利用向量的坐标公式,模的计算公式,对称点的坐标,及数量积公式依次计算即可得出结果. 【详解】()()1,2,2,0,1,1A B-,∴(1,1,3)AB=--,1AB=+A正确,D 错误.若()2,1,1m=,则()()=211113=0m AB⋅⨯-+⨯-+⨯,则⊥m AB,B正确,点A关于xOy平面对称的点的坐标为()1,2,2,故C错误,故选:AB.10.ABC【分析】根据曲线方程,结合各选项给定的参数值,将方程转为为22221x ya b±=的形式判断曲线的性质即知A、B、C的正误,由椭圆的离心率求参数m判断D.【详解】A:1m=-时,曲线可整理为224x y+=,即曲线C是一个圆,正确;B:0m>时,曲线可整理为22144x ym-=,即曲线C是一个双曲线,正确;C:3m=-时,曲线可整理为221124y x+=,即曲线是焦点为(0,±的椭圆,正确;D:由上分析知:若曲线C的椭圆,则m<⎧⎪=2m<⎧=,可得12m=-或2m=-,错误.故选:ABC.11.ABD【分析】根据已知条件求出等比数列{}n a 的公比和首项,进而可以求得n a 和n S ;利用裂项相消法可得111133131n n n b +⎛⎫=- ⎪--⎝⎭和n T ,讨论数列{}n T 的单调性,即可得出n T 的范围. 【详解】A :由214S a =可得213a a =,所以等比数列{}n a 的公比3q =,所以113n n a a -=⨯.由2a 是11a +与312a 的等差中项,可得2131212a a a =++,即()2111123132a a a ⨯=++⨯,解得12a =,所以123n n a -=⨯,所以A 正确;B :()()1121331113nnnn a q S q-⨯-===---,所以B 正确;C :()()111123111331313131n n n n n n n n n a b S S -+++⨯⎛⎫===- ⎪⋅----⎝⎭,所以C 不正确;D :12n nT b b b =++⋅⋅⋅+1223111111111111113333231313131313131n n n ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭所以数列{}n T 是递增数列,得11110326n T T ⎛⎫≤<⨯-= ⎪⎝⎭,所以1186n T ≤<,所以D 正确.故选:ABD. 12.ACD 【分析】判断函数在(),1-∞上的单调性,再根据函数的值域即可求出m 的范围,即可判断A ;根据函数在(),1-∞上的单调性即可判断B ;利用导数判断函数()f x 在[)1,+∞上的单调性,令()()()1ln 2,1h x x x x =+-+≥,求出函数()h x 在[)1,+∞上的单调性,即可判断1m +与()ln 2m +的大小,从而可判断C ;令()ln xg x x=,求出函数()g x 在(]0,e 上的单调性,再根据函数在(),1-∞上的单调性即可判断D. 【详解】解:当1x ≤时,()1ln f x x x =+-,则()1110x f x x x-'=-=≥, 所以函数()f x 在[)1,+∞上递增,()()12f x f ≥=,当1x <时,()1x f x em -+=+在(),1-∞上递减, 则()()112f x f m >=+≥,解得m 1≥,故A 正确; 则12m --≤-,所以()()21f f m -≤--,故B 错误; 则23m +≥,故()ln 21m +>, 令()()()1ln 2,1h x x x x =+-+≥, 则()111022x h x x x +'=-=>++,所以函数()h x 在[)1,+∞上递增, 所以()()12ln30h x h ≥=->,所以()ln 12x x +>+,即()1ln 2m m +>+, 所以()()()ln 21f m f m +<+,故C 正确; 令()ln xg x x=,则()21ln x g x x -'=,当0x e <≤时,()0g x '≤,所以函数()g x 在(]0,e 上递增, 所以()()2g g e <,即ln 2112e<<, 所以ln 212e f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故D 正确. 故选:ACD. 13.25【分析】建立如图所示空间直角坐标系,利用数量积可求夹角的余弦值. 【详解】如图,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则1(0,0,2),(2,0,0),(2,1,2),(2,2,1)A B E F , 则1(2,1,0),(0,2,1)A E BF ==,故1112,cos ,55||A E BF A E BF A E BF ⋅===.故答案为:2514.22(1)2x y +-= 【分析】把直线方程化为点斜式,根据题意知,当切点为P 点时,半径最大且为CP ,结合两点间的距离公式即可求解. 【详解】根据题意,直线20mx y m --+=,即()21y m x -=-,恒过定点()1,2,记P 为()1,2 设要求圆的半径为r ,其圆心C 的坐标为(0,1), 其与直线20mx y m --+=相切的所有圆中,当切点为P 点时,半径最大且为CP , 所以,()()22221021r CP ==-+-=2, 则所求圆的方程为22(1)2x y +-= 故答案为:22(1)2x y +-=. 15.4π 【分析】设直线AB 的方程为3x ty =,()11,A x y ,()22,B x y ,直线方程代入椭圆方程应用韦达定理得1212,y y y y +,由2121212ABF S F F y y =-△示面积,并变形后应用基本不等式得最大值,从而可得内切圆半径最大值,即得面积最大值. 【详解】解:直线AB 的斜率不能为0,但可不存在.设直线AB的方程为x ty =,()11,A x y ,()22,B x y ,由2214x ty x y ⎧=⎪⎨+=⎪⎩,得()22410t y +--=,12y y +=12214y y t =-+, 则2121212ABF SF F y y =⋅-12=⋅====≤2=(当且仅当t =时等号成立).设2ABF 的内切圆半径为r ,2248AF BF AB a ++==, 则()22122AF BF AB r ++⋅≤, 12r ≤,则2ABF 的内切圆面积的最大值为2124ππ⎛⎫⨯= ⎪⎝⎭.故答案为:4π. 16.19 【分析】根据基本不等式可知[)0,1x ∈时()min 1f x =,又()()13f x f x +=+,可得()()13f x f x =-+,进而可求出[)1,2x ∈时()1min 4f x a ==,由此可知[)()*1,2x n n n N ∈++∈时,可得13n n a a +=+,由此可证数列{}n a 是以4为首项,3为公差的等差数列,再根据等差数列的的通项公式,即可求出结果. 【详解】当[)0,1x ∈时,()22411414413122=11422422x x x f x x x x x ⎛⎫+++⎛⎫- ⎪⎛⎫⎝⎭+- ⎪⎛⎫⎝ ⎪+⎝⎭==++⎛⎫++ ⎪⎝⎭ ⎪⎝⎭⎭ 因为32121,2x ∈+⎡⎫⎪⎢⎣⎭,所以()11121121f x x x ⎛⎫+-≥= ⎪⎛⎫⎝⎭ ⎪+⎝+⎭= 当且仅当11122x x +=+,即12x =时,取等号;所以当[)0,1x ∈时,()min 1f x =; 又()()13f x f x +=+ 所以()()13f x f x =-+; 当[)1,2x ∈时,则[)10,1x -∈, 所以()()min min 134f x f x =-+=;又()f x 在[)()*,1n n n +∈N 上最小值为n a ,所以14a =当[)()*1,2x n n n N∈++∈时,则[)()*1,1x n n n N -∈+∈所以()()min min 13f x f x =-+ 即13n n a a +=+,所以13n n a a +-=所以数列{}n a 是以4为首项,3为公差的等差数列,即()43131n a n n =+-=+ 所以619a =. 故答案为:19.17.(1)证明见解析;(2)1(1)2n n a n -=+⋅,*n N ∈.【分析】 (1)由题设可得11221n n n n S S ---=,即可证明结论; (2)由(1)可知2nn S n =⋅,再根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩计算可得;(1)由12a =,()*12,2n n n a S n N n -=+∈≥,∴112nn n n S S S ---=+,整理得:11221n n n n S S ---=,而11221S a ==, ∴2n n S ⎧⎫⎨⎬⎩⎭以1为首项,1为公差的等差数列,得证. (2)由(1)得:2nn S n =⋅,①当1n =时,112a S ==;②当2n ≥时,111(1)(1)222n n n n n n a S S n n n ---=-=--⋅=+⋅⋅,综上,1n =时1(1)2n n a n -=+⋅成立,∴1(1)2n n a n -=+⋅,*n N ∈. 18. (1)60°; (2)23.【分析】(1)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出异面直线所成角的余弦值,进而结合异面直线成角的范围即可求出结果;(2)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出求出线面角的正弦值,进而结合线面角的范围即可求出结果; (1)以AB ,AD ,1AA 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2a ,则1(0,0,2)A a ,(0,2,0)D a ,()2,,0E a a ,(),2,0F a a , 所以1(0,2,2)A D a a =-,(,,0)EF a a =-,设1A D 与EF 所成角的大小为α, 则211222211cos cos ,244A D EF A D EF A D EFa a a a ⋅====⋅+⋅+α, 因为异面直线成角的范围是(0,90⎤⎦,所以1A D 与EF 所成角的大小为60°. (2)设平面1B FB 的法向量为()0000,,n x y z =,1A E 与平面1B FB 所成角为β,0,2⎡⎤∈⎢⎥⎣⎦πβ.因为(2,0,0)B a ,1(2,0,2)B a a ,所以(,2,0)BF a a =-,1(0,0,2)BB a =,所以0000102020n BF ax ay n BB az ⎧⋅=-+=⎪⎨⋅==⎪⎩,令02x =,得0(2,1,0)n =为平面1B FB 的一个法向量,又因为1(2,,2)A E a a a =-,所以10102221045sin cos ,4414A E n a a A E n A E n a a a ⋅+====⋅++⋅+β 所以22cos 1sin 3=-ββ. 19.(1)22(2)(2)8x y -+-=; (2)x =0或3x +4y -4=0﹒ 【分析】(1)设动点P 的坐标,直接利用已知的等式2PA PB=(2)分直线l 斜率存在和不存在两种情况进行分析,利用圆心到直线的距离列出方程求解即可. (1)设动点P 的坐标为(,)x y ,则PA PB==,整理得22(2)(2)8x y -+-=,故动点P 的轨迹是圆,方程为22(2)(2)8x y -+-=; (2)由(1)知动点P 的轨迹是圆心为(2,2)C,半径R = 设F 为MN 中点,则CF l ⊥,得||||2FM FN ==, 圆心C 到直线l 的距离||2d CF ==, 当直线l 的斜率不存在时,l 的方程为0x =, 此时||2CF =,符合题意; 当直线l 的斜率存在时,设l 的方程为1y kx =+,即10kx y -+=,由题意得2d ==,解得34k =-;故直线l 的方程为3440x y +-=,综上直线l 的方程为0x =或3440x y +-=. 20.(1)224x y +=; (2【分析】(1)设(),D x y ,()00,E x y ,则()0,0H x ,由32HE HD =可得00x x y y =⎧⎪⎨=⎪⎩,再代入2200143x y +=化简即可求解;(2)由圆的切线的性质可得PM PN =,OM PM ⊥,S OM PM =⋅=圆心O 到直线l 的距离即为OP 的最小值,进而可得面积S 的最小值,再由min min 12S OP MN =⋅即可得MN 的值. (1)设(),D x y ,()00,E x y ,则()0,0H x , 由32HE HD =可得())000,,y x x y =-,所以)000x x y y -==,所以00x x y y =⎧⎪⎨=⎪⎩,因为点()00,E x y 在椭圆221:143x y C +=上,所以2200143x y +=,所以22143yx ⎫⎪⎝⎭+=,整理可得:224x y +=,所以点D 的轨迹方程为224x y +=. (2)由圆的切线性质知,切线长PM PN =,OM PM ⊥,所以四边形面积2S OM PM PM =⋅===所以当OP 最小时,面积最小,而OP 的最小值即为点O 到直线:250l x y --=的距离d ==此时min 2S ==,又因为min min 11222S OP MN MN =⋅==,可得MN =, 所以四边形OMPN面积最小时MN21.(1)所选条件见解析,124,8b b ==;12n n b +=;(2)7246229212,2292212,2n n n n n n S n n +++⎧--⎪⎪=⎨⎪+--⎪⎩为奇数为偶数. 【分析】(1)分n 为奇数和n 为偶数进行讨论,分别构造数列即可求出结果.(2)分n 为奇数和n 为偶数进行讨论,然后结合等比数列的求和公式以及分组求和即可求出结果. (1)当n 为奇数时,21323n n n a a a ++=+=+,则()2323n n a a ++=+,且134a +=,则12342n n a ++=⋅,即3223n n a +=-,当n 为偶数时,()2122326n n n n a a a a ++==+=+,则()2626n n a a ++=+,且2122a a ==,268a +=,则12682n na ++=⋅,即4226n n a +=-,若选①,则213122132332n n n n b a -++-=+=-+=,则124,8b b ==;若选②,则2132132112221212323222n n n n n n n n b a a ++-+++++-⎛⎫=-=---=-= ⎪⎝⎭,则124,8b b ==,(2)当n 为偶数时,12n n S a a a =+++()()13124n n a a a a a a -=+++++++24233422232323262626n n ++⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪⎝⎭⎝⎭232221221236122122n nn n ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-⋅+-⋅-- 4622922122n n n ++=+--当n 为奇数时,12n n S a a a =+++()()13241n n a a a a a a -=+++++++33233422232323262626n n ++⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪⎝⎭⎝⎭1123222122121136122122n n n n +-⎛⎫⎛⎫-- ⎪ ⎪+-⎝⎭⎝⎭=-⋅+-⋅-- 72921222n n +=--7246229212,2292212,2n n n n n n S n n +++⎧--⎪⎪=⎨⎪+--⎪⎩为奇数为偶数. 22.(1)单调增区间是21,e ∞⎛⎫+ ⎪⎝⎭,单调减区间是210,e ⎛⎫ ⎪⎝⎭(2)证明见解析 【分析】(1)当0a =时,()ln 2f x x '=+,结合导数正负判断函数单调区间即可;(2)因12,x x 是函数零点,得2211112222ln 0,ln 0x x ax x x x ax x -+=-+=,分离得121122ln ln 11x x a x x x x =+=+,令21(2)x tx t =>,构造()12ln x x ⋅,代换成关于t 的函数表达式()h t ,通过()h t '求出()h t 最值,进而得证. (1)答案第17页,共17页当0a =时,()()ln ,ln 2f x x x x f x x =+∴=+',令()0f x '>得21x e >,令()0f x '<得210x e <<, ()f x ∴的单调增区间是21,e ∞⎛⎫+ ⎪⎝⎭,单调减区间是210,e ⎛⎫ ⎪⎝⎭; (2)若()f x 有两个零点12,x x ,则2211112222ln 0,ln 0x x ax x x x ax x -+=-+=, 得121122ln ln 11x x a x x x x =+=+. 2120x x >>,令21(2)x tx t =>,则()111111ln ln 11tx x x x tx tx +=+, 得1ln ln 11t x t =--, 则()211ln ln ln ln ln 11t t x tx t x t ==+=--, ()()12121ln ln ln ln ln ln 11 2.111t t t t t x x x x t t t +∴=+=-+-=---- 令()()1ln 2(2)1t t h t t t +=->-,则212ln ()(1)t t t h t t -+-'=-, 令()12ln (2)t t t t t ϕ=-+->,则()22221(1)10t t t t t ϕ-=-++=>', ()t ϕ∴在()2,+∞上单调递增,()()3t 22ln202ϕϕ∴>=->. ()()20(1)t h t t ϕ∴=>-',则()h t 在()2,+∞上单调递增, ()()2823ln 22ln h t h e∴>=-=,即()1228ln ln x x e >, 1228x x e ∴>.答案第18页,共1页。

新高考高二第二学期(下学期)数学期末模拟卷二

新高考高二第二学期(下学期)数学期末模拟卷二

普通高中高二年级教学质量监测数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 的共轭复数z 满足i 42i z +=+,则||z =()A.5B.3C.32D.172.设集合1|2x A x y x ⎧⎫-⎪⎪==⎨⎬+⎪⎪⎩⎭,则()Z N A = ð()A.{2,1}--B.{}1- C.{1,0}- D.{0,1}3.储粮所用“钢板仓”,可以看成由圆锥和圆柱两部分组成的.现有一种“钢板仓”,其中圆锥与圆柱的高分别是1m 和3m ,轴截面中等腰三角形的顶角为120°,若要储存3003m 的水稻,则需要准备这种“钢板仓”的个数是()A.6B.9C.10D.114.已知()1,1,1a =为平面α的一个法向量,()1,0,0A 为α内的一点,则点()1,1,2D 到平面α的距离为()A.3B.2C.52D.635.若将函数()y f x =的图象1C 向左平移π2个单位后得到函数()y g x =的图像2C ,再将2C 上所有点的横坐标伸长到原来的2倍得到函数sin y x =的图像3C ,则()f x =()A.cos 2x- B.sin 2x- C.cos 2xD.sin 2x6.中国古代中的“礼、乐、射、御、书、数”,合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每次讲一艺.讲座次序要求“数”不在第一次也不在第六次,“礼”和“乐”不相邻,则“六艺”讲座不同的次序共有()A.480种B.336种C.144种D.96种7.若直线20x y m -+=将圆C :22(1)(2)9x y -++=的面积分为(3π2):(π2)+-,则m 的值为()A.3542-B.3542+C.31042±D.31042-±8.已知点F 为抛物线212x y =的焦点,A 为抛物线的准线与y 轴的交点,点B 为抛物线上一动点,当ABFB取得最大值时,点B 恰好在以A ,F 为焦点的椭圆上,则该椭圆的离心率为()A.1- B.1- C.22D.32二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会.自1924年起,每四年举办一届.2022年2月在北京举办了第24届冬季奥林匹克运动会,为了宣传奥运精神,红星实验学校组织了甲乙两个社团,利用一周的时间对外进行宣传,将每天宣传的次数绘制成如下频数分布折线图,则()A.甲社团宣传次数的众数小于乙社团宣传次数的众数B.甲社团宣传次数的极差大于乙社团宣传次数的极差C.甲社团宣传次数的平均数大于乙社团宣传次数的平均数D.甲社团宣传次数的方差大于乙社团宣传次数的方差10.在三角形ABC 中,若7cos 25A =,6BC =,BC 边上的高为h ,满足条件的三角形ABC 的个数为n ,则()A.当04h <<时,2n =B.当4h =时,1n =C.当h =时,1n = D.当h =时,0n =11.若等差数列{}n a 的前n 项之和为n S ,公差为d ,等比数列{}n b 的前n 项之和为n T ,公比为q (1q ≠),若21222333n n n n S T n n n n +⋅=⋅+⋅--,则下列各选项正确的是()A.9q =B.3q =C.13a d= D.12a d=12.已知点P 为正方体1111ABCD A B C D -内及表面一点,若AP BD ⊥,则()A.若//DP 平面1AB C 时,则点P 位于正方体的表面B.若点P 位于正方体的表面,则三棱锥C APD -的体积不变C.存在点P ,使得BP ⊥平面11B CDD.AP ,CD的夹角π3π,24⎡⎤∈⎢⎥⎣⎦三、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,2)a =- ,(sin ,cos )b αα= ,当a b ∥时,tan α=__________.14.已知0,0a b >>,且2a b ab +=,则ab 的最小值为_________.15.记Y kX b =+(k ,b 为实常数),若1~2,9X N ⎛⎫ ⎪⎝⎭,~(0,1)Y N ,则k b +=__________.16.已知正方形ABCD的边长为,两个不同的点M ,N 都在BD 的同侧(但M 和N 与A 在BD 的异侧),点M ,N 关于直线AC 对称,若AM CN ⊥,则点M 到直线AD 的距离的取值范围是__________.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤.17.已知在正项等比数列{}n a 中,1232a a a =,123a a +=.(1)求{}n a 的通项公式;(2)设21log n n b a +=,求11n n b b +⎧⎫⎨⎩⎭的前n 项和n S .18.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c,2(sin cos )sin 2sin cos b B A C A C =22cos sin b B C -.(1)求C ;(2)若3a =,4b =,在角C 的平分线上取点D ,且63813CD =,则点D 是否在线段AB 上?请说明理由.19.刷抖音是现在不少人喜爱的娱乐方式,既可以在工作之余借助其消除疲劳,还可以学会不少知识,现在抖音里有一款“生活常识答题”程序游戏,其规则如下:每次点击开始答题后,需连续依次回答A ,B ,C 三类题,当回答一类题结束时会根据正确率出现“优秀”或“加油”图标,若三类题答题结束后出现一个或两个“优秀”图标,则最后会显示80分,出现三个“优秀”图标,则显示200分,否则会显示-20分.小张同学正确回答A ,B ,C 三类题出现“优秀”的概率依次分别为45,34,23.(1)记小张同学答题活动结束出现“优秀”的图标个数为X ,求X 的分布列与数学期望;(2)小张同学如果答题4次,求4次中至少有2次获得200分的概率.20.在四棱锥V ABCD -中,底面ABCD 为矩形,平面ABCD ⊥平面VAB .(1)求证:平面VBC ⊥平面VAB ;(2)若VA VB ⊥,2AB BC =,求平面VCD 与平面VAB 所成锐二面角的余弦值的取值范围.21.已知椭圆E :22221x y a b+=(0a b >>)的离心率为12,且点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)过椭圆E 的右焦点F 作不与两坐标轴重合的直线l ,与E 交于不同的两点M,N ,线段MN 的中垂线与y 轴相交于点T ,求||||MN OT (O 为原点)的最小值,并求此时直线l 的方程.22.已知函数()()()21e ,12xf x xg x ax a R =-=+∈.(1)求()f x 的图象在0x =处的切线方程;(2)当[)0,x ∈+∞时,()()f x g x ≥恒成立,求a 的取值范围.。

高二数学期末复习(2)

高二数学期末复习(2)





3x y 3 k x 3 y 3 0 , „1 分


3x y 3 0, 解 得F x 3 y 3 0,

3,0 .

„„„„„„„„„„„„„„„„„3 分
设椭圆 C 的长轴长、短轴长、焦距分别为 2a,2b,2c,
-4-
高二数学备课组
参考答案
1. 2 2, 2 2


2.x +
3y – 4 = 0
3.3x+2y-1=0
4.x 2 + y 2 – 2x – 4y – 20 = 0 5.(- 7,5) 6. x + 2y – 5 = 0 或 2x – y = 0 3 7. [0,4] 8. [3 2 3,3 2 7) (3 2 7,3 2 3] π 5π 9.[0,6]∪[ 6 ,π) 10.4 11.2|a| 12. 1 , 1 2 5
(Ⅱ)要使 S 不小于 1600 平方米,则 DQ 的长应在什么范围内?
N Q C D A B
第 17 题
P M
-2-
高二数学备课组 18.已知直线 y x 1 与椭圆 在直线 l : x 2 y 0 上. (1)求此椭圆的离心率; (2 )若椭圆的右焦点关于直线 l 的对称点的在圆 x 2 y 2 4 上,求此椭圆的方程.
Smin = 1200,这时 AQ = 40,所以 DQ = 20.„„„„„„„„„„„„„„8 分 1 30b (Ⅱ)由题得2ab≥1600,而 a = b - 20,
-5-
高二数学备课组 30b 2 所以b - 20≥3200,因为 a > 0,b > 0 80 所以 3b 2 – 320b + 6400≥0,故 b≤ 3 或 b≥80, 20 所以 0 < DQ≤ 3 或 DQ≥60.„„„„„„„„„„„„„„„„„„„„„15 分

高中数学选择性必修二 高二数学上学期期末测试卷02()(无答案)

高中数学选择性必修二 高二数学上学期期末测试卷02()(无答案)

2021-2022学年上学期期末卷02高二数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅰ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教2019选择性必修第一册、选择性必修第二册第一章。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.直线3450x y ++=与圆2210x y +=相交与A ,B 两点,则AB 的长等于( ). A .3 B .4 C .6 D .1 2.已知{},,a b c 是空间的一个单位正交基底,若向量p 在基底{},,a b c 下的坐标为()3,2,1,则它在基底{},,a b a b c +-下的坐标为( ). A .15,,122⎛⎫ ⎪⎝⎭B .51,1,22⎛⎫ ⎪⎝⎭C .151,,22⎛⎫⎪⎝⎭ D .51,,122⎛⎫ ⎪⎝⎭3.若方程22121x y m m -=++表示的曲线为C ,则( )A .21m -<<-是C 为椭圆的充要条件B .21m -<<-是C 为椭圆的充分条件 C .0m >是C 为双曲线的充分不必要条件D .0m >是C 为双曲线的必要不充分条 4.圆22:68240C x y x y ++-+=关于直线y x =对称的圆的方程为( )A .()()22431x y -++= B .()()224349x y -+-= C .()()22431x y ++-= D .()()224349x y +++= 5.在数列{n a }中,1a =2,11n n n a a a +=-,2022a =( )A .2B .1C .12D .-16.直线:l y x m =-+与曲线x =m 的取值范围是( ).A.2,⎡-⎣ B.(2⎤--⎦ C.(2⎤-⎦ D.2,⎡⎣7.定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在棱长为1的正方体1111ABCD A B C D -中,直线AC 与1BC 之间的距离是( )ABC .12D .138.已知点F 为抛物线C :24y x =的焦点,点()1,0F '-,若点Р为抛物线C 上的动点,当PF PF'取得最大值时,点P 恰好在以F ,F '为焦点的椭圆上,则该椭圆的离心率为( )A .12 BC1 D1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知E ,F 分别是正方体1111ABCD A B C D -的棱BC 和CD 的中点,则( )A .1A D 与11B D 是异面直线B .1A D 与EF 所成角的大小为45︒C .1A F 与平面1B EB 所成角的余弦值为13D .二面角11C D B B --10.圆221:20x y x O +-=和圆222:280O x y x y ++-=的交点为A ,B ,则有( ) A .公共弦AB 所在直线方程为20x y -= B .线段AB 中垂线方程为220x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB1 11.等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是真命题的有( )A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项12.双纽线也称伯努利双纽线,是指定线段AB 长度为2a ,动点M 满足2MA MB a ⋅=,那么M 的轨迹称为双纽线.已知曲线1C 为双纽线,下列选项判断正确的是( ) A .曲线C 过点()0,0B.曲线C上的点的纵坐标的取值范围是⎡⎣C .曲线C 关于x 轴对称D .P 为曲线C 上的动点,,A B 的坐标为()0,1和()0,1-,则PAB △面积的最大值为2第Ⅰ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知直线1:230l ax y +-=与()2:3140l x a y +-+=,若12l l ⊥,则实数a 的值为______.14.若n S 是等差数列{}n a 的前n 项和,且105113S S =,则105a a =______. 15.已知()()1,1,0,1,0,2ab ==-,且ka b +与2a b -的夹角为钝角,则实数k 的取值范围为_____. 16.已知点P 为抛物线C :2y x 上的动点,过点P 作圆M :22(2)1x y +-=的一条切线,切点为A ,则PA PM⋅的最小值为____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知直线1:260l x y -+=和2:10l x y-+=的交点为P .(1)若直线l 经过点P 且与直线343:50x y l --=平行,求直线l 的方程;(2)若直线m 经过点P 且与两坐标轴围成的三角形的面积为5,求直线m 的方程.18.(本小题满分12分)问题:平面直角坐标系xOy 中,圆C 过点A (6,0),且___________. (在以下三个条件中任选一个,补充在横线上.)①圆心C 在直线:2780l x y -+=上,圆C 过点B (1,5);②圆C 过点(1,5)B 和(5,1)D -;③圆C 过直线:3580l x y +-=和圆226160x y y ++-=的交点. (1)求圆C 的标准方程;(2)求过点A 的圆C 的切线方程.19.(本小题满分12分)已知在数列{}n a 中,11a =-,且()13232,n n a a n n n +-=-+≥∈N .(1)求2a ,3a ,并证明数列{}n a n -是等比数列;(2)求{}n a 的通项公式;(3)求12n a a a ++⋅⋅⋅+的值.20.(本小题满分12分)如图1,在四边形ABCD 中,//,222AD BC AD AB BC CD ===,E 是AD 的中点,将ABE △沿BE 折起至A BE'的位置,使得二面角A BE C '--的大小为120︒(如图2),M ,N 分别是,'A D BC 的中点. (1)证明:MN ∥平面A BE '.(2)求二面角A BD C '--的余弦值.21.(本小题满分12分)已知数列{}n a 满足2112312222n n a a a a n -+++⋅⋅⋅+=,21log n n n a b a +=-,*N n ∈. (1)求数列{}n a ,{}n b 的通项公式; (2)设112(2)n n n n n c b b +++=,数列{}n c 的前n 项和为n T ,求证:14n T <.22.(本小题满分12分)在平面直角坐标系xOy 中,动点Р与定点F (2,0)的距离和它到定直线l :32x =P 的轨迹为曲线E .(1)求曲线E 的方程;(2)设过点A0)两条互相垂直的直线分别与曲线E 交于点M ,N (异于点A ),求证:直线MN 过定点.。

2020-2021学年上海市普陀区曹杨二中高二(下)期末数学试卷(解析版)

2020-2021学年上海市普陀区曹杨二中高二(下)期末数学试卷(解析版)

2020-2021学年上海市普陀区曹杨二中高二(下)期末数学试卷一、填空题(共12小题).1.已知复数z=1﹣i(i为虚数单位),则Imz=.2.若直线l上有三点A、B、C到平面α的距离均为1,则直线l与平面α的位置关系为.3.如果圆锥的底面积为π,母线长为2,那么该圆锥的侧面积为.4.方程的解是5.在长方体ABCD﹣A1B1C1D1中,AA1=3,AB=5,AD=2,则异面直线AB1和DD1的距离为.6.若复数(i为虚数单位)是纯虚数,则实数k的值为.7.设空间向量=(﹣1,2,m),=(2,n,﹣4),若∥,则|﹣|=.8.已知空间四边形ABCD,AB=CD=2,且AB与CD所成的角为,设E、F分别是BC、AD的中点,则EF的长度为.9.已知正四棱柱ABCD﹣A1B1C1D1内接于半径为2的球,且A、B两点的球面距离为,则该正四棱柱的体积为.10.在复数范围内方程z2+2|z|﹣1=0的解集为.11.在空间直角坐标系中,正四面体P1P2P3P4的顶点的坐标为P i(x i,y i,z i)(i=1,2,3,4).设集合A={z i|i=1,2,3,4},则集合A的元素个数可能为(写出所有可能的值).12.在三棱锥A﹣BCD中,AB、AC、AD两两垂直且长度均为6,定长为l(l<4)的线段MN的一个端点M在棱AB上运动,另一个端点N在△ACD内运动(含边界),若线段MN的中点P的轨迹的面积为,则l的值为.二、选择题13.已知直线l和两个不同的平面α,β,则下列结论正确的是()A.若l∥α,l⊥β,则α⊥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β14.设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z215.将6个相同的小球放入3个不同的盒子中,每个盒子至多可以放3个小球,且允许有空盒子,则不同的放法共有()种A.10B.16C.22D.2816.在如图所示的棱长为20的正方体ABCD﹣A1B1C1D1中,点M为CD的中点,点P在侧面ADD1A1上,且到A1D1的距离为6,到AA1的距离为5,则过点P且与A1M垂直的正方体截面的形状是()A.三角形B.四边形C.五边形D.六边形三、解答题17.有8名学生排成一排照相,求满足下列要求的排法的种数.(只需列式并计算结果)(1)甲、乙两人相邻;(2)丙、丁两人不相邻;(3)甲站在丙、丁两人的中间(未必相邻).18.如图,AB是圆柱OO1的一条母线,BC是底面的一条直径,D是圆O上一点,且AB =BC=5,CD=3.(1)求直线AC与平面ABD所成角的大小;(2)求点B到平面ACD的距离.19.已知m∈R,α、β是关于x的方程x2+4x+m=0(x∈C)的两根.(1)若α为虚数,且|α|=3,求实数m的值;(2)若|α﹣β|=2,求实数m的值.20.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,AD=2,E、F分别是AB、CD的中点,沿EF将梯形AEFD翻折至A′EFD’,使得平面A′EFD′⊥平面BEFC.(1)求证:A′E⊥BE;(2)设G为EF上的动点,当A'G+GC取最小值时,求异面直线BD′与CG所成角的大小;(3)求多面体A′BCD′EF的体积.21.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AD=4,E为PD中点,F在PC上,且=.(1)求证:AE⊥平面PCD;(2)求二面角F﹣AE﹣P的大小.(3)设平面AEF与直线PB交于点G,求的值.参考答案一、填空题1.已知复数z=1﹣i(i为虚数单位),则Imz=﹣1.解:因为z=1﹣i,故Imz=﹣1.故答案为:﹣1.2.若直线l上有三点A、B、C到平面α的距离均为1,则直线l与平面α的位置关系为平行.解:若直线l上有三点A、B、C到平面α的距离均为1,则直线l与平面α平行,不可能相交,因为三点A,B,C共线..故答案为:平行.3.如果圆锥的底面积为π,母线长为2,那么该圆锥的侧面积为2π.解:设圆锥的底面积半径r,则底面半径为πr2=π,解得r=1;由母线长为l=2,则该圆锥的侧面积为S侧=πrl=π×1×2=2π.故答案为:2π.4.方程的解是x=3或x=7解:∵,∴x=2x﹣3或x+2x﹣3=18,解得x=3或x=7.∴方程的解是x=3或x=7.故答案为:x=3或x=7.5.在长方体ABCD﹣A1B1C1D1中,AA1=3,AB=5,AD=2,则异面直线AB1和DD1的距离为2.解:如图,在长方体体ABCD﹣A1B1C1D1中,因为AD⊥平面DD1C1C,且DD1⊂平面DD1C1C,所以AD⊥DD1,同理可证AD⊥AB1故AD是异面直线AB1和DD1的公垂线段,因此AB1和DD1的距离为AD=2.故答案为:2.6.若复数(i为虚数单位)是纯虚数,则实数k的值为1.解:因为=为纯虚数,所以k﹣1=0且k+1≠0,解得k=1.故答案为:1.7.设空间向量=(﹣1,2,m),=(2,n,﹣4),若∥,则|﹣|=9.解:因为空间向量=(﹣1,2,m),=(2,n,﹣4),且∥,所以,即(2,n,﹣4)=λ(﹣1,2,m),可得,解得m=2,n=﹣4,所以=(﹣1,2,2),=(2,﹣4,﹣4),则﹣=(﹣3,6,6),所以.故答案为:9.8.已知空间四边形ABCD,AB=CD=2,且AB与CD所成的角为,设E、F分别是BC、AD的中点,则EF的长度为1或.解:如图,取BD中点M,连结FM,EM,由题可知,MF∥AB,ME∥CD,MF=,ME=,∵AB与CD所成的角为,∴或者=,当时,△FME为等边三角形,∴EF=1,当时,由余弦定理可知,EF2=EM2+MF2﹣2EM•MF•cos∠FME=,∴EF=,综上,EF=1或EF=,故答案为:1或.9.已知正四棱柱ABCD﹣A1B1C1D1内接于半径为2的球,且A、B两点的球面距离为,则该正四棱柱的体积为8.解:设球的球心为O,正四棱柱的高为h,因为球的半径为2,且A、B两点的球面距离为,则有∠AOB•2=,所以∠AOB=,又OA=OB=2,所以AB=2,即正四棱柱ABCD﹣A1B1C1D1的底面正方形的边长为2,又正四棱柱的体对角线为外接球的直径,则,解得h=,所以该正四棱柱的体积为=8.故答案为:8.10.在复数范围内方程z2+2|z|﹣1=0的解集为{1+,,﹣i,i}.解:设z=x+yi(x,y∈R),则原方程化为,则,由②可知,y=0或x=0,故原方程有实根或纯虚数根,①若y=0,则z=x,故|x|2+2|x|﹣1=0,解得x=1+或x=;②若x=0,则z=yi,则有|y|=±1,所以z=±i.综上所述,z=1+或z=或z=±i.故答案为:{1+,,﹣i,i}.11.在空间直角坐标系中,正四面体P1P2P3P4的顶点的坐标为P i(x i,y i,z i)(i=1,2,3,4).设集合A={z i|i=1,2,3,4},则集合A的元素个数可能为2或3或4(写出所有可能的值).解:若集合A中只有一个元素,则P1P2P3P4在同一个垂直于z轴的平面内,故不可能,当正四面体P1P2P3P4的底面在坐标平面xoy内时,集合A中有2个元素,当正四面体P1P2P3P4的一面与x或y轴平行,集合A有3个元素,当正四面体P1P2P3P4的各面,各边都不与x或y或z轴平行,集合中有4个元素,故集合A的元素可能为2或3或4.故答案为:2或3或4.12.在三棱锥A﹣BCD中,AB、AC、AD两两垂直且长度均为6,定长为l(l<4)的线段MN的一个端点M在棱AB上运动,另一个端点N在△ACD内运动(含边界),若线段MN的中点P的轨迹的面积为,则l的值为2.解:由题意可知,∠MAN=90°,在Rt△AMN中,AP=,线段MN的中点P的轨迹是以A为球心,为半径的球面的,所以线段MN的中点P的轨迹的面积为,则l=2.故答案为:2.二、选择题13.已知直线l和两个不同的平面α,β,则下列结论正确的是()A.若l∥α,l⊥β,则α⊥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解:设m⊂α,且m∥l,由l⊥β,则m⊥β,由面面垂直的判定定理可得:α⊥β,即选项A正确,故选:A.14.设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2解:由复数的形式可知,选项A错误;当z1z2=z1z3时,有z1z2﹣z1z3=z1(z2﹣z3)=0,又z1≠0,所以z2=z3,故选项B正确;当=z3时,则,所以=,故选项C正确;当z1z2=|z1|2时,则,可得,所以,故选项D错误.故选:BC.15.将6个相同的小球放入3个不同的盒子中,每个盒子至多可以放3个小球,且允许有空盒子,则不同的放法共有()种A.10B.16C.22D.28解:根据题意,分3种情况讨论:①2个盒子各放3个小球,一个盒子是空的,有C32=3种放法,②若每个盒子放2个小球,有1种放法,③若1个盒子放1个小球,1个盒子放2个小球,最后一个放3个小球,有A32=6种放法,则有3+1+6=10种放法,故选:A.16.在如图所示的棱长为20的正方体ABCD﹣A1B1C1D1中,点M为CD的中点,点P在侧面ADD1A1上,且到A1D1的距离为6,到AA1的距离为5,则过点P且与A1M垂直的正方体截面的形状是()A.三角形B.四边形C.五边形D.六边形解:截面形状草图,如图所示:由图可知,截面为六边形,故选:D.三、解答题17.有8名学生排成一排照相,求满足下列要求的排法的种数.(只需列式并计算结果)(1)甲、乙两人相邻;(2)丙、丁两人不相邻;(3)甲站在丙、丁两人的中间(未必相邻).解:(1)根据题意,将甲乙看成一个整体,与其他6人全排列即可,有A22A77=10080种排法;(2)根据题意,将8人全排列,有A88种排法,其中丙、丁相邻的排法有A22A77=10080种,则丙、丁两人不相邻的排法有A88﹣A22A77=30240种;(3)根据题意,将8人全排列,有A88种排法,甲乙丙三人的排法有A33=6种,其中甲站在丙、丁两人的中间有2种,则有甲站在丙、丁两人的中间有=13440种.18.如图,AB是圆柱OO1的一条母线,BC是底面的一条直径,D是圆O上一点,且AB =BC=5,CD=3.(1)求直线AC与平面ABD所成角的大小;(2)求点B到平面ACD的距离.解:(1)∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵BC是圆O的直径,∴BD⊥CD,又BD⊂平面ABD,AB⊂平面ABD,AB∩BDE=B,∴CD⊥平面ABD.∴∠CAD是AC与平面ABD所成的角.∵AB=BC=5,∴AC=5,∴sin∠CAD==.∴直线AC与平面ABD所成角的大小为arcsin.(2)过B作BM⊥AD,垂足为M,由(1)得CD⊥平面ABD,CD⊂平面ACD,∴平面ABD⊥平面ACD,又平面ABD∩平面ACD=AD,BM⊂平面ABD,BM⊥AD,∴BM⊥平面ACD.∵BD==4,∴AD==.∴BM==.即B到平面ACD的距离为.19.已知m∈R,α、β是关于x的方程x2+4x+m=0(x∈C)的两根.(1)若α为虚数,且|α|=3,求实数m的值;(2)若|α﹣β|=2,求实数m的值.解:(1)因为α、β是关于x的方程x2+4x+m=0(x∈C)的两根,因为α为虚数,设α=a+bi,则β=a﹣bi,又|α|=3,则a2+b2=9,解得,因为aβ=(a+bi)(a﹣bi)=a2+b2=9=m,所以m=9;(2)①当△=16﹣4m<0时,由(1)可知,a+bi+a﹣bi=﹣4,解得a=﹣2,又aβ=(a+bi)(a﹣bi)=a2+b2=m,因为|α﹣β|=2,所以|2bi|=2,解得b=±1,故m=5;②当△=16﹣4m≥0时,则α+β=﹣4,αβ=m,所以|α﹣β|=2,即,解得m=3.综上所述,m=3或m=5.20.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,AD=2,E、F分别是AB、CD的中点,沿EF将梯形AEFD翻折至A′EFD’,使得平面A′EFD′⊥平面BEFC.(1)求证:A′E⊥BE;(2)设G为EF上的动点,当A'G+GC取最小值时,求异面直线BD′与CG所成角的大小;(3)求多面体A′BCD′EF的体积.【解答】(1)证明:因为平面A′EFD′⊥平面BEFC,EF⊥BE,EF⊥A′E,所以∠A′EB是二面角A′﹣EF﹣B的平面角,所以∠A′EB=90°,所以A′E⊥BE;(2)解:设G为EF上的动点,当A'G+GC取最小值时,EG=2,建立空间直角坐标系,如图所示:A(0,0,2),B(2,0,0),C(2,4,0),D′(0,2,2),G(0,2,0),所以=(﹣2,2,2),=(﹣2,﹣2,0),设异面直线BD′与CG所成角为θ,则cosθ===0,所以θ=90°;(3)解:多面体A′BCD′EF的体积为:V A′BCD′EF=+V D′﹣EBCF=S△BEA′•EE1+•DE1=×2×2×2+××2×2=6.21.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AD=4,E为PD中点,F在PC上,且=.(1)求证:AE⊥平面PCD;(2)求二面角F﹣AE﹣P的大小.(3)设平面AEF与直线PB交于点G,求的值.解:(1)因为PA⊥平面ABCD,所以PA⊥CD,因为底面ABCD为正方形,所以CD⊥AD,又AD,PD⊂平面PAD,AD∩PD=D,所以CD⊥平面PAD,又AE⊂平面PAD,所以CD⊥AE,因为PA=AD=4,则△PAD是等腰三角形,又E是PD的中点,所以AE⊥PD,又PD,CD⊂平面PCD,PD∩CD=D,所以AE⊥平面PCD.(2)如图所示分别以AB,AD,AP所在直线为x,y,z轴建立坐标系,则A(0,0,0),D(0,4,0),E(0,2,2),F(1,1,3),P(0,0,4),C (4,4,0)则,设平面AEF的一个法向量为,所以⇒,取c=1,解得b=﹣1,a=2,所以.是平面AEF的一个法向量,设二面角F﹣AE﹣P的平面角为θ,则.(3)平面AEF与直线PB交于点G,设,则,设G(a,b,c),则,⇒(a,b,c﹣4)=λ(4,0,﹣4)⇒a=4λ,b=0=m⇒⇒﹣8λ+0+4﹣4λ=0⇒,所以.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P A B
C D E (第8题) 高二文科数学期末练习(二)
1.22
11_______(1)(1)i i i i -++=+-. 2
.函数()f x =
的定义域为 3.设()2sin f x x x =-,若0()0f x '=且0(0,)x π∈,则0x =___ ____.
4.设等差数列{}n a 的前n 项和为n S ,若13a =-,132k a +=
,12k S =-,则正整数k = ▲ . 5.如果函数2()21
x f x a =--是定义在(,0)(0,)-∞⋃+∞上的奇函数, 则a 的值为 ▲ 6.()f x 是R 上的偶函数,当0x <时,()()0xf x f x '-<且(4)0f -=,则不等式()0f x x
<的解集为 .
7.定义R 上的奇函数()f x 满足51()2()f x f x +=-
,若3(1)1,(2014)3t f f t +≥=-,则实数t 的取值范围为 ▲ .
8.在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面PAD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面PAD ;
(2)平面PBC ⊥平面PAB .
10.已知数列{a n }的前n 项和为S n ,满足log 2(S n +1)=n +1,求a n .
11.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .
(1)求a 2,a 3;
(2)求{a n }的通项公式.
11.已知数列{a n}中,a1=3,点(a n,a n+1)在直线y=x+2上.
(1)求数列{a n}的通项公式;
(2)若b n=a n·3n,求数列{a n}的前n项和T n.
12.已知函数
2
()ln,
a
f x x a R
x
=+∈.
(1)若函数()
f x在[2,)
+∞上是增函数,求实数a的取值范围;(2)若函数()
f x在[1,]e上的最小值为3,求实数a的值.。

相关文档
最新文档