2019年秋七年级数学上册 1.5 有理数的乘法和除法 第2课时 有理数的乘除混合运算优质课件 (新

合集下载

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2第2课时有理数的加减乘除混合运算复习课件新版新人教版

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2第2课时有理数的加减乘除混合运算复习课件新版新人教版

A.-1.1
B.-1.8
C.-3.2
D.-3.9
4.在算式 4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的
值最小( C ) A.+
B.-
C.×
D.÷
5.计算316-256×(-3)-145÷-35的结果是( B )
A.4
B.2
C.-2
D.-4
6.计算: (1)42×-17+(-0.25)÷34; (2)-1-2.5÷-114; (3)[12-4×(3-10)]÷4. 解:(1)-613;(2)1;(3)10.
第一章 有理数
1.4.2 第2课时 有理数的加减乘除混合运算
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
★教学目标★ 1.会进行有理数的除法运算,会简化分数. 2.会进行有理数的加减乘除混合运算.
★情景问题引入★ (1)怎样计算下面的算式? 423×-154+(-0.4)÷-245 这个算式含有哪些运算?你认为运算顺序怎么样? (2)这些算式属于有理数加、减、乘、除混合运算,怎样进行加、减、乘、除 运算呢?这节课我们来学习这个问题.
当堂测评
1.[2017·揭西县期末]下列运算中,正确的是( B ) A.(-2)+(+1)=-3 B.(-2)-(-1)=-1 C.(-2)×(-1)=-2 D.(-2)÷(-1)=-2
2.[2017·双柏县期末]计算-5-3×4 的结果是( A )
A.-17
B.-7
C.-8
D.-32
3.计算:[2017·武汉]2×3+(-4)= 2 .
4;③23×-94÷(-1)=32;④(-4)÷12×(-2)=16.其中计算正确的个数为( C )
A.4 个

七年级(上册)数学课后答案解析

七年级(上册)数学课后答案解析

七年级上册第一章1.1具有相反意义的量
1.2数轴相反数与绝对值
1.3有理数大小的比较
1.4.1有理数的加法
1.4.2有理数的减法
1.5有理数的乘法和除法
1.6有理数的乘方
1.7有理数的混合运算
第一章复习题
第二章2.1用字母表示
2.2列代数式
2.3代数式的值
2.4整式
2.5整式的加法和减法
第二章复习题
第三章3.1建立一元一次方程模型
3.2等式的性质
3.2一元一次方程的解法
3.4一元一次方程模型的应用
第三章复习题
第四章4.1几何图形
4.2线段射线直线
4.3.1角与角的大小
4.3.2角的度量与计算
第五章复习题
5.1数据的收集与抽样
5.2统计图
第六章复习题。

有理数的乘除(第2课时 多个有理数的乘法)(共30张PPT) 沪科版(2024)七年级数学上册

有理数的乘除(第2课时 多个有理数的乘法)(共30张PPT)   沪科版(2024)七年级数学上册
【解】应抽取写着-3,-8,+5的3张卡片,
它们的积是(-3)×(-8)×(+5)=120.
分层练习-拓展
14. 如图,请你参考老师的讲解,用运算律简便计算:
(1)999×(-15);
【解】原式=(1 000-1)×(-15)
=-15 000+15
=-14 985.

(2)999×118 +999×

(2)(-4)×6×(-7)×(-3) 负
(3)(-1)×(-1)×(-1)

(4)(-2)×(-2)×(-2)×(-2)

新课本练习
2. 计算:
81
1 1.25 8 ;
20
5 9 31 2
2 .
1
用分配律
=- 12 ×(-12)
更简单
=1
解法2:
1
1
1
原式= × −12 + × −12 − × −12 乘法分配律
4
6
2
=(- 3) +( -2)-(- 6)
=1
练一练
1. 在计算(-0.125)×15×(-8)×
8)]× Hale Waihona Puke ×−


=[(-0.125)×(-
的过程中,运用的运算律是 乘法交换
有一个因数为0,积为0.



×




× 的结果为(

D
)
【解析】
先判断符号,再将带分数化为假分数进行乘法计算.
易错点
几个有理数相乘时忽视符号法则而致错
10. 计算:(-12.5)×

北师大版-数学-七年级上册-有理数的乘法 第2课时 教材内容解析与重难点突破

北师大版-数学-七年级上册-有理数的乘法 第2课时 教材内容解析与重难点突破

有理数的乘法第2课时教材内容解析与重难点突破1.教材分析本节课内容分为两个部分,第一部分是若干个有理数的乘法运算,第二部分是乘法的运算律及其简单应用.若干个有理数相乘的符号法则与有理数乘法的运算律是本节课的教学重点,而负号问题的处理(包括若干个非零有理数相乘符号法则的应用,以及分配律使用时负号的处理)是本节课的教学难点.本节课教学,要选择一定量有代表性、典型性的问题,让学生练习以巩固若干个有理数相乘的符号法则及有理数乘法运算的运算律.2.重难点突破⑴多个有理数乘法的符号法则突破建议①探究多个有理数相乘的符号法则,可以利用两个有理数的乘法法则,通过若干个具体的正、负数相乘逐一计算验证,得到“若干个不为0的有理数相乘,其积的符号由负因数的个数决定”的结论.②几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后再把各因数的绝对值相乘.若负因数的个数是偶数,其积为正数;若负因数的个数是奇数,其积为负数.③多个有理数相乘,若有一个数是0,则可以不逐一计算,直接得出最终结果为0.反之,如果若干个有理数相乘的积为0,那么这些因数中,至少有一个因数为0.例1.五个有理数的积为负数,则五个数中负数的个数是( ).A.1B.3C.5D.1或3或5解析:多个有理数相乘的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.由于本题中5个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数可能是1,或3,或5,因此答案应选D.例2.2013个数相乘,若积为0,那么这2013个数( ).A.都为0B.只有一个为0C.至少一个为0D.有两个数互为倒数解析:根据“0乘以任何数都等于0”可知,这2013个数相乘积为0,则其中至少有一个因数为0,所以答案应选择C.⑵乘法的运算律突破建议①有理数乘法的运算律有3条,分别是乘法的交换律、结合律与分配律.有理数乘法的交换律与结合律与有理数加法的交换律、结合律类似,只是运算不同而已,一个是加法,一个是乘法.有理数乘法的交换律是“交换两个因数的位置,积不变”;有理数乘法的结合律是“三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变”.教学时,可以使用类比的方法,既给学生以熟悉感,同时又要说明区别.②分配律涉及到有理数的乘法、加法两种运算.正向运用去掉了括号,逆向运用提取了公因数,因此,乘法的分配律有着广泛的应用. 课本例4就是乘法分配律正向运用提高运算速度和准确率的例子.乘法分配律逆向运用可以变和为积,使得运算简便,可以应用于以后要学习的合并同类项、代数式化简等问题.③使用乘法的三条运算律与加法的运算律一样,一定要注意将有理数的符号作整体的移动,不能将符号丢掉或弄错.同时需要注意,两个或三个有理数相乘的运算律,可以推广到三个以上有理数相乘的情况,建议通过编制若干个具体的非零有理数相乘的练习题,引导学生加深对多个有理数相乘时可以使用交换律、结合律、分配律的理解.④用字母表示有理数乘法的运算律:,,,目的是表明运算律具有一般性,即表达式中的字母,可以表示任意有理数,可正、可负、可为0.同时,还需要提请学生注意,这三个运算律都既可以正向使用,也可以逆向使用.要通过编制一些正、逆向使用的练习题,让学生体会学习乘法运算律的必要性,争取让学生能够熟练和灵活应用乘法的运算律.例3.,这样简便运算的根据是( ).A.加法结合律B.乘法交换律C.乘法结合律D.分配律解析:根据算式形式与运算结果可知,此题利用了乘法的分配律,答案应选D.例4.用简便方法计算: .解析:观察算式可知,是三个积的加减法运算,每一个积的两个因数中,都有一个因数含有1.57的倍数,如3.14是1.57的2倍速,6.28是1.57的4倍,据此探究逆向使用乘法分配律的可能性.原式,答案等于314.。

北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的乘法 第2课时 有理数的乘法运算律

北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的乘法 第2课时 有理数的乘法运算律
=1
=4 000×25-5×25(____乘__法__分__配__律_____)
4.(4 分)运用运算律填空:
(1)(-3)×(-6)=-6×___(_-__3_)__;
(2)[(-3)×2]×(-5)=-3×[__2__×(-5)];
1 (3)3
×[(-9)+(-43
)]=31
×__(_-__9_)_+31
数学 七年级上册 北师版
第二章 有理数及其运算
2.7 有理数的乘法
第2课时 有理数的乘法运算律
1.(4 分)算式-54 ×(10-54 +0.05)=-8+1-0.04 这个运算运用了( D ) A.加法结合律 B.乘法交换律
C.乘法结合律 D.乘法分配律
2.(4 分)在算式-57×24+36×24-79×24=(-57+36-79)×24 中,逆用了( D )
15 (3)1916
×(-8)=(20-116
)×(-8)=20×(-8)-116
×(-8)=-160+21
=-
15912
【素养提升】
12.(15 分)计算:(1+21 )×(1-13 )=32 ×32 =1, (1+21 )×(1+14 )×(1-13 )×(1-15 ) =32 ×54 ×32 ×45 =(32 ×23 )×(54 ×45 ) =1×1=1.
8.下列变形不正确的是( C )
A.5×(-6)=(-6)×5 B.(41 -21 )×(-12)=(-12)×(41 -12 ) C.(-16 +13 )×(-4)=(-4)×(-16 )+13 ×4 D.(-25)×(-16)×(-4)=[(-25)×(-4)]×(-16)
9.计算
5 137Βιβλιοθήκη ×_(_-__34__)__.

七年级数学上册第1章有理数1.5有理数的乘法和除法1.5.1有理数的乘法第2课时乘法的运算律课件新版湘教版

七年级数学上册第1章有理数1.5有理数的乘法和除法1.5.1有理数的乘法第2课时乘法的运算律课件新版湘教版

2019/5/25
最新中小学教学课件
23
谢谢欣赏!
2019/5/25
最新中小学教学课件
24
A.abc>0 C.abc=0
B.abc<0 D.无法确定
1. 计算-2×-13×114×(-3)×(-91)所得的正确结果
为( C )
91 A. 7 C.13
B.-13 546
D. 42
2. 计算:18+152×(-24)+12×12-13×32的正确结果是 (B)
6. 下列说法中正确的是( B ) A.几个有理数相乘,当负因数有奇数个时,积为 负 B.几个有理数相乘,当积为负数时,负因数有奇数 个 C.几个有理数相乘,当正因数有奇数个时,积为负 D.几个有理数相乘,当因数有奇数个时,积为负
7. 已知 a,b,c 的位置在数轴上如图所示,则 abc 与 0 的关系是( A )
(2)用规律计算:
21+1 × 13-1 × 14+1 × 15-1 ×…× 20118+1
×20119-1.
解:原式=
1 (1)(1) 1009 个
=-1.
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。

人教版七年级上册数学:第一章《有理数》1.4.1 第2课时《有理数乘法的运算律及运用》

人教版七年级上册数学:第一章《有理数》1.4.1 第2课时《有理数乘法的运算律及运用》
足交换律、结合律和分配律,例如
3×5=5×3 (3×5)×2=3×(5×2) 3×(5+2)=3×5+3×2
引入负数后,三种运算律是否还成立呢?
一、有理数乘法的运算律
合作探究
第一组:
(1) 2×3= 6
3×2= 6
2×3 =3×2
(2) (3×4)×0.25= 3
3×(4×0.25)= 3
(3×4)×0.25 =3×(4×0.25)
(3) 2×(3+4)= 14
2×3+2×4= 14
2×(3+4)= 2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
第二组:
(1)5×(-6) =-30 (-6 )×5= -30 5× (-6) = (-6) ×5
(2)[3×(-4)]×(- 5)=(-12)×(-5) = 60 3×[(-4)×(-5)]= 3×20= 60
2.25 4.-6
课堂小结
1.乘法交换律: 两个数相乘,交换两个因数的位置,积不变. ab=ba 2.乘法结合律: 三个数相乘,先把前两个数相乘,或先把后
(ab)c = a(bc) 两个数相乘,积不变. 3.乘法分配律: 一个数同两个数的和相乘,等于把这个数 a(b+c) = ab+ac 分别同这两个数相乘,再把积相加.
_各__运__算__律__在__有__理__数__范__围__内__仍__然__适__用____.
归纳总结
1.乘法交换律:
数的范围已扩充 到有理数.
两个数相乘,交换两个因数的位置,积相等.
ab=ba
2.乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两个
数相乘,积相等. (ab)c = a(bc)

新沪科版7年级上册数学教学课件 1.5 有理数的乘除 1.有理数的乘法 第1课时 有理数的乘法

新沪科版7年级上册数学教学课件 1.5 有理数的乘除 1.有理数的乘法 第1课时 有理数的乘法
1.5 有理数的乘除1.有理数的乘法第1课时 有理数的乘法
沪科版 七年级上册
新课导入
(﹢2)×(﹢3)= ,(﹢2)×0= ,(﹢5)×(﹢7)= .
如果两个有理数相乘,其中有负数,应该怎么计算?
6
0
35
在实验室中,甲标本的温度每 1 min 下降 2 ℃,乙标本的温度每 1 min 上升 3 ℃. 已知甲、乙标本现在的温度都是 0℃.
-13.8
1
-17
0
-1
【教材P35 练习 第2题】
3. 写出下列各数的倒数: ,0.25,-6,1,-1.
4
1
-1
【教材P35 练习 第3题】
4. 判断正误:(1)0 没有倒数. ( )(2)正数的倒数是正数,负数的倒数是负数. ( )
(-2)×3 = -6
问题2
2 min 前乙标本的温度比现在高还是低?高(或低)多少?
现在
1min min 前甲标本的温度比现在高还是低?高(或低)多少?
3min前
2min前
1min前
现在
(-2)×(-3) = 6
此外,两个有理数相乘,当一个因数是 0 时,积仍是 0.
(-2)×0 = 0
0×(-2) = 0
归 纳
(-2)×3 = -6
3×(-2) = -6
(-2)×(-3) = 6
(-2)×0 = 0
0×(-2) = 0
有理数的乘法法则:
1. 两数相乘,同号得正,异号得负,并把绝对值相乘.
2. 任何数与 0 相乘仍得 0.
例1 计算:(﹣5)×(﹣6);(﹣ ) × ;(﹣ ) ×(﹣ );8×(﹣1.25).
我们用负数和正数分别表示温度的下降和上升,例如下降2℃ 记作 -2℃,上升 3℃ 记作 3 ℃.

1.5.1 第2课时 有理数乘法的运算律课件 (共24张PPT)湘教版(2024)数学七年级上册

1.5.1 第2课时 有理数乘法的运算律课件 (共24张PPT)湘教版(2024)数学七年级上册

.
(_2_4_)_13_ (_24_)_ __34_ _(_2_4_)_16_ (_2_4)____85
=-8+18-4+15 =-12+33 =21.
特别提醒: 1.不要漏掉符号; 2.不要漏乘.
想一想
问题:利用有理数的乘法运算律计算: (-1)×a= -a .
(-1)×a+a
= (-1)×a+1×a
知识要点
一般地,有理数的乘法满足乘法对加法的分配律: a×(b+c)= a×b+a×c , (b+c)×a= b×a+c×a .
即一个有理数与两个有理数的和相乘,等于把这 个数分别与这两个数相乘,再把积相加.
合作探究
(1) 先填空,再判断下面两组算式的结果是否分别相等.

3
1 6

1 6
=[(-1)+1]×a =0×a =0.
因此 (-1)×a 与 a 互为相反数, 即 (-1)×a=-a.
2 多个有理数相乘
探究:观察下列各式,它们的积是正的还是负的? 2×3×4×(-5); 2×3×(-4)×(-5); 2×(-3)×(-4)×(-5); (-2)×(-3)×(-4)×(-5).
算式
得数 负因数的个数
2×3×4×(-5)
-120
1
2×3×(-4)×(-5)
120
2
2×(-3)×(-4)×(-5)
-120
3
(-2)×(-3)×(-4)×(-5)
120
4
思考:(1)几个不为 0 的数相乘,积的符号与负数的
个数之间有什么关系?
(2)有一个因数为 0 时,积是多少?
归纳总结
几个不等于 0 的数相乘, 当有_偶__数__个负数时,积为正数; 当有_奇__数__个负数时,积为负数. 有一个因数为 0 时,积是 0.

七年级数学人教版(上册)【知识讲解】第2课时多个有理数的乘法

七年级数学人教版(上册)【知识讲解】第2课时多个有理数的乘法

63 =-(20×5×10×5)
=-36.
=-.
5
8
3
(3)(-11)×|-13|×(-2.2) ×(-14).
58
11
7
解:原式=-11×13×(- 5 )×(-4)
5 8 11 7 =-(11×13× 5 ×4)
14 =-13.
12.有一个游戏,规则如下:如图,城中人想要冲出围城,可 以横走也可以竖走,但不可以斜走,每走一格就可以得到格中相应 的分数作为生命值,每格中的分数用乘法累计.当生命值小于+9, 并且处于最外圈时,就可以冲出围城,生命值为负数则不可以出 城.例如:(-2)×(+2)×(+2)×(-1)=+8,就是一条冲出围城的路 线.把你找到的冲出围城的路线写下来,也可以直接用箭头将路线 在图中表示出来.
A.大于 0
B.小于 0
C.大于或等于 0
D.小于或等于 0
8.【数形结合思想】有理数 a,b,c,d 在数轴上的对应点的位 置如图所示,则 abc > 0,abcd > 0.(填“>”或“<”)
9.除 0 外绝对值小于 3 的所有整数的积是 4 .
10.已知“!”是一种运算符号,并且 1!=1,2!=1×2,3!
解:原式=0.
3
4
7
(4)(-7)×(-5)×(-12).
34 7 解:原式=-(7×5×12)
1 =-5.
54
3
(5)(-12)×15×(-2)×(-6).
5 43 解:原式=-12×15×2×6
=-1.
5
1
(6)4×(-1.2)×(-9).
56
1
解:原式=4×(-5)×(-9)
561 =4×5×9

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第2课时分数化简及有理数新人教版

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第2课时分数化简及有理数新人教版
1.4.2 有理数的除法
第2课时 分数化简及有理数的乘除混合运算
•பைடு நூலகம்R·七年级上册
• 学习目标: 1.学会化简分子、分母中含有“-”号的分数. 2.熟练地进行有理数的乘除混合运算.
总结: 化简分数的方法是怎样的?
分子分母同时除以它们的最大公约数.
总结:
乘除混合运算往往先将除法化为乘法, 然后确定积的符号,最后求出结果.
课堂小结
化简分数的方法: 分子分母同时除以它们的最大公约数.
有理数乘除混合运算步骤:
乘除混合运算往往先将除法化为乘法, 然后确定积的符号,最后求出结果.

高邑县第四中学七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方第2课时有理数的混合运算教案

高邑县第四中学七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方第2课时有理数的混合运算教案

第2课时有理数的混合运算【知识与技能】了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.【过程与方法】能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【情感态度】培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力.【教学重点】有理数的混合运算顺序是确定的.【教学难点】根据有理数的混合运算顺序,正确地进行有理数的混合运算.一、情境导入,初步认识计算:3-(-2)3×6.这个式子先算什么,后算什么?【教学说明】教师引导学生做这道题,让学生说一说运算顺序,接着师生共同归纳出下面的结论.【归纳结论】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.二、典例精析,掌握新知例1计算下列各题:【分析】按照有理数混合运算的顺序——先算括号,再乘方,然后算乘除,最后算加减进行计算,每步计算先确定符号再计算结果.【教学说明】有理数的计算要遵循先观察,后计算,先确定符号,再计算结果的原则;观察时,先看每个算式可以用括号和“+、-”号分成几个部分(如第(1)题可分为三部分,第(2)题可分为两部分),再看每个部分能否进行简算(如\[21×317-713×722÷312\]2及(0.12510×89)均可进行简算),乘除法中带分数一般化为假分数进行计算.完成此例题后,教师让学生自行阅读教材第43~44页例3、例4.试一试教材第44页练习.例2观察下面三行数:1,4,9,16,25,…;①0,3,8,15,24,…;②4,7,12,19,28,…;③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第12个,计算这三个数的和.分析通过比较可以发现,第②③行数据都是在①的基础上进行加减后得到的,所以根据这个思路很容易知道怎么解题.解:(1)第①行数是12,22,32,42,52,….(2)对比①②两行中的数据,可以发现:第②行数是第①行相应数减1,即12-1,22-1,32-1,42-1,52-1,….对比①③两行中的数据,可以发现,第③行数是第①行相应数加3,即12+3,22+3,32+3,42+3,52+3,….(3)每行第12个数是122,122-1,122+3,其和是122+122-1+122+3=434.【教学说明】这道例题与课本上的例题比较类似,教师可事先让学生学习教材例4后再解这道题.例3已知y=ax5+bx3+cx-5,当x=-3时,y=7;求x=3的y的值.解:当x=-3时,y=a·(-3)5+b·(-3)3+c·(-3)-5=-35a-33b-3c-5=7,∴35a+33b+3c=-12那么,当x=3时,y=35a+33b+3c-5=-12-5=-17【教学说明】本题重在让学生体会整体思想的运用.三、运用新知,深化理解1.计算下列各题.2.根据下表,探索规律:根据规律写出37与320的个位数字.【教学说明】第1题中的几道题都是有关混合运算的题,教师先让学生思考,再让学生在黑板上解答,然后全体学生共同订正,总结规律与注意事项.第2题为探索题,教师可与学生共同探索,提示学生注意看个位数字的变化规律.2.解:由表格知,3n中,当n是连续自然数变化时,幂3n的个位数字是3,9,7,1,3,9,7,1,…周期变化,且四个数为一个周期,易知37的个位数字为7,20 ÷4=5,则320的个位数字与第四个数的个位数字相同,即320的个位数字与34的个位数字相同,为1.四、师生互动,课堂小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算;2.在运算中要注意像-72与(-7)2等这类式子的区别.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.本课时教学重在培养学生计算能力,要求学生先通过交流,正确归纳出有理数混合运算顺序,再在实际解题过程中寻找规律,发现问题,学生间互相辨析指正.教师在指导过程中,强调学生对易错点特别警醒,解题时仔细分析问题结构特征,合理选择步骤和运算律.第3课时整式的加法和减法【知识与技能】能运用合并同类项和去括号法则进行整式的加法和减法.【过程与方法】经历将整式去括号、合并同类项的化简过程,培养学生将所学知识点结合使用的能力.【情感态度】在观察、探索的过程中,培养学生主动归纳、学习的意识.【教学重点】熟练进行整式的加法和减法.【教学难点】准确理解整式的加法和减法的意义,解决实际问题.一、情景导入,初步认知1.化简:2(a+1)-a.2.想一想,如何进行整式的加减运算.【教学说明】通过两个问题,回顾前面所学过的合并同类项和去括号法则,引出新的知识.二、思考探究,获取新知1.计算:(1)(5x-1)+(x+1)(2)(2x+1)-(4-2x)2.动脑筋:有两个大小不一样的长方体纸盒,如图所示,已知大纸盒的体积是小纸盒体积的24倍.(1)这两个纸盒的体积和为多少?(2)大纸盒与小纸盒的体积差为多少?【教学说明】让学生加强对新知的理解和应用,培养学生分析问题、解决问题的能力.三、运用新知,深化理解1.教材P75例5、62.若两个整式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.解:另一个加式=(2x2+xy+3y2)-(x2-xy)=2x2+xy+3y2-x2+xy=x2+2xy+3y2.3.求3a2-2ab+6与5a2-6ab-7的和与差.答案:和是8a2-8ab-1,差是-2a2+4ab+13.4.先化简,再求值:5(3a2b-ab2)-(ab2+3a2b),其中a=12,b=-1.解:化简,得12a2b-6ab2,把a=12,b=-1化入化简,得-6.5.求下列式子的值:2[mn+(-3m)]-3(2n-mn),其中m+n=2,mn=-3.解:化简,得5mn-6m-6n,变形为5mn-6(m+n),把mn=-3,m+n=2代入得-27.6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.解:由A+B+C=0,得C=-A-B=-(a2+b2-c2)-(-4a2+2b2+3c2)=-a2-b2+c2+4a2-2b2-3c2=3a2-3b2-2c2.7.为了加强地球和月球,人们在地球和月球上各加上了一道铁箍,现在想把铁箍各向外扩展1米,问哪个所增加的铁箍长.解:设地球的半径为R米,月球的半径为r米,则地球上的铁箍增加的长度为2π(R+1)-2πR=2π月球上的铁箍增加的长度为2π(r+1)-2πr=2π所以两者所增加的铁箍的长度是相同的.【教学说明】让学生巩固所学知识,能熟练将各知识点结合使用.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题2.5”中第5、6、8题.对整合知识点求解的过程没能很好掌握,还有对去括号法则理解不够,练习过程中总出现各种问题,课堂上需要及时解决出现的问题,否则课后作业没有效果.三元一次方程组的解法知识要点:1.定义:含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.用代入消元法解三元一次方程组的步骤:①利用代人法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求三元一次方程组的解.3.用加减消元法解三元一次方程组的步骤:①利用加减法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求的三元一次方程组的解.一、单选题1.如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与( )个砝码C的质量相等.A.1 B.2 C.3 D.42.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.143.方程组1231x y zx y zx y z-+=⎧⎪+-=⎨⎪-+=⎩的解为A.11xyz=⎧⎪=⎨⎪=⎩B.111xyz=⎧⎪=⎨⎪=⎩C.121434xyz⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩D .121434xyz⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩4.三元一次方程组321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩的解是()A.112xyz=-⎧⎪=⎨⎪=⎩B.124xyz=-⎧⎪=-⎨⎪=-⎩C.221xyz=-⎧⎪=⎨⎪=⎩D.227xyy=⎧⎪=-⎨⎪=-⎩5.三元一次方程组的解是()A.B.C.D.6.已知x=2,y=﹣1,z=﹣3是三元一次方程组72325mx ny znx y mzx y z k--=⎧⎪--=⎨⎪++=⎩的解,则m2﹣7n+3k的值为( )A.125 B.119 C.113 D.717.设x y z234==,则x2y3zx y z-+++的值为()A.27B.69C.89D.578.利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A.84cm B.85cm C.86cm D.87cm9.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为( )A.2 B.3 C.4 D.5二、填空题10.已知方程组123a bb ca c-=-⎧⎪-=⎨⎪+=⎩,则a=______________.11.“微信”已成为人们日常交流的一种重要工具,前不久在“微信群”中看到如下一幅图片,被群友们所热议.请你运用初中所学数学知识求出桌子的高度应是__________.12.方程组42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩的解是_____.13.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y,得一元一次方程2x=3,解得x =,从而得y=_____,z=____.14.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=_____.三、解答题15.解方程组:34, 2312,6.x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩①②③16.已知方程组522718x y ax y a-=⎧⎨+=-⎩的解x、y互为相反数,求出a的值并求出方程组的解.17.一方有难八方支援,某市政府筹集抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型可供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车来运送,需运费8200元,则分别需甲、乙两种车各几辆?(2)为了节约运费,该市政府共调用16辆甲、乙,丙三种车都参与运送物资,试求出有几种运送方案,哪种方案的运费最省?其费用是多少元?答案1.B2.B3.C4.C5.D6.C7.C8.B9.D10.2 11.130 cm12.325 abc=⎧⎪=-⎨⎪=-⎩13.,. 14.4015.2,3,1. xyz=⎧⎪=⎨⎪=⎩16.a=274,9494xy⎧=⎪⎪⎨⎪=-⎪⎩.17.(1)需甲车型8辆,需车型10辆;(2)有二种运送方案:①甲车型6辆,乙车型5辆,丙车型5辆;②甲车型4辆,乙车型10辆,丙车型2辆;方案②运费最省,最少运费是7800元。

有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)

有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)
人教版(2024)七年级数学上册 第二章 有理数的运算
2.2.2 有理数的除法
第二课时 有理数加减乘除混合运算
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.
通过类比小学学过的运算顺序,能得出有理数的运算顺
序,按照有理数的运算顺序,正确熟练地进行有理数的加、
减、乘、除混合运算,提高学生的运算能力(重点).
-22 .

11.

【新视角·规律探究题】 a 是不为1的有理数,我们把


称为 a 的差倒数.如:2的差倒数是
=-1,-1的差倒




数是
= .已知 a1=- , a2是 a1的差倒数, a3是
−(−)


a2的差倒数, a4是 a3的差倒数,……,以此类推,则
a2 024=


.
只能用一次),使得运算结果为24或-24,其中红色扑克牌代表负数,黑色扑克牌
代表正数,A,J,Q,K分别代表1,11,12,13.
(1)如果抽到的四张牌是“黑桃3,4,10和红桃6”,请你运用上述规则写出三个
不同的算式,使其结果等于24或-24;
解: 答案不唯一.(1)(10-4)-3×(-6)=24;3×(-6)-(10-4)=-24;
2.有理数的加减乘除混合运算
问题:下列式子含有哪几种运算?先算什么,后算什么?
第二级运算
乘除运算
1
3 50 2 1 ?
5
第一级运算
加减运算
典例剖析
例7
计算:
(1) −8+4÷(−2);

1.5有理数的乘法和除法1.5.1 有理数的乘法七年级上册数学湘教版

1.5有理数的乘法和除法1.5.1 有理数的乘法七年级上册数学湘教版
24 -



3
4
6
8


=-8+18+(-4)+15
易错警示:
1.不要漏掉符号;
=-12+33
解:








2.不要漏乘.
=21
新知探究
知识点2 有理数乘法的运算律
例3 计算:


3
2

(1)






1
1
1
1
(2) +

新知探究
知识点2 有理数乘法的运算律
例3 计算:


3
2

(1)






1
1
1
1
(2) +
2 3 4 5
7 13
(3) (-12.5)×(-2.5)×(-8)× 4 .




2 3 4 5
2
3 4

【课本P32 练习 第2题】

(5) (-4.2)×1.3 ;
1 5 ;
(2) 6 7




8
5



(4) 15 12

(6) (-1.5)× (-6.4) .







8
5
8 5 =2 ;


解: (4) 15 12 =15
(4) 0×(-18)=0 .
随堂练习
2. 计算:

七年级数学上1.5有理数的乘法和除法1.5.1第2课时有理数乘法的运算律教案2新版湘教版

七年级数学上1.5有理数的乘法和除法1.5.1第2课时有理数乘法的运算律教案2新版湘教版

1.5 有理数的乘法和除法1.5.1有理数的乘法第2课时有理数乘法的运算律教学目标:1、知识与技能: 经历探索乘法运算律的过程,进一步发展观察、验证、猜想、归纳的能力,促使学生学好乘法运算律及多个有理数相乘积的符号的确定。

2、过程与方法: 运用乘法的运算律简化乘法运算。

重点、难点: 1、重点:乘法运算律的理解和运用2、难点:乘法运算律的灵活运用及运算中符号的确定。

教学过程:一、创设情景,导入新课复习:有理数的乘法法则,互为倒数的定义,两个有理数相乘积的符号的确定。

二、合作交流,解读探究1、做一做:P32“做一做”填空,并比较她们的结果。

<1> (-2) ×7=, 7×(-2)=(-3)×(-4)=,(-4)×(-3)=师:由上面的两组式子,我们发现了什么规律?生:乘法满足交换律。

<2> [3×(-4)]×(-5)=×(-5)=3×[(-4)×(-5)]=3×=师:由上面的两组式子,我们发现了什么规律?学:乘法满足结合律。

<3>(-6)×[4+(-9)]=(-6)×=(-6)×4+(-6)×(-9)=+=师:由上面的两组式子,我们发现了什么规律?学:乘法满足分配律2、想一想: <1>由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立。

那么同学们现在再给你们几分钟的时间,你们分别写出满足乘法的交换律、结合律以及分配律的式子。

2、刚才我们都是通过具体的数来表示乘法的交换律、结合律与分配律的,现在请你们用字母表示乘法的交换律、结合律与分配律。

乘法的交换律:a×b=b×a乘法的结合律:(a×b)×c=a×(b×c)乘法的分配律:a×(b+c)=a×b+a×c三、应用迁移,巩固提高1、例2计算:(1) (-12)×(-37)×65 (2) 6×(-10)×0.1×31 (3)-30×(21-32+54) (4) 4.99×(-12) (1)、(2)两题的解题过程引导学先处理符号,再运用交换律与结算.(3)师:这道题如何计算能相对简便一些,请同学们思考一下。

2024年秋新湘教版7年级上册数学教学课件 第1章 有理数 1.5.2 有理数的除法

2024年秋新湘教版7年级上册数学教学课件 第1章  有理数 1.5.2 有理数的除法
类似地,由于(-2)×(-3)= 6,
由于 2 ×(-3) = -6 ,
因此, 6÷(- 3)= -2, ③
因此, (-6)÷(-3)=2. ④
从这些式子受到启发,抽象出有理数的除法运算: 对于两个有理数a,b,其中b不为0,如果有一个有理数c,使得cb = a,那么规定a÷b=c,且把c叫作a除以b的商.
(4)0÷(-10)=0.
思 考
若两个有理数的乘积等于1,则把其中一个数叫作另一个数的倒数, 也称它们互为倒数.0没有倒数.
因此,⑤式表明,10除以-5等于10乘-5的倒数;⑥式表明,-10除以-5等于-10乘-5的倒数.
补充练习
(1)1的倒数为_____;
(2)-1的倒数为______;
(1)(-24)÷4;
(2)(-18)÷(-9);
计算:
(2)(-18)÷(-9)=+(18÷9)=2.
(3)10÷(-5);
(3)10÷(-5)=-( 10 ÷ 5 )=-2.
解:(1)(-24)÷4=-(24÷4)=-6.
求解的步骤:第一步:确定商的符号;第二步:绝对值相除
(4)0÷(-10).
抽 象
同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除. 0 除以任何一个不等于0的数都得0.
由于有理数的除法是通过乘法来规定的,因此由①至④式可以得出:
(+)÷(+)→(+)
(-)÷(-)→(+)
(-)÷(+)→(-)
(+)÷有理数
1.5 有理数的乘法和除法
1.5.2 有理数的除法
学习目标
1.认识有理数的除法,经历除法的运算过程.2.理解除法法则,体验除法与乘法的转化关系.3.掌握有理数的除法及乘除混合运算.(重点、难点)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档