2018-2019学年新人教版初二下册期末数学试卷(含答案)
最新人教版八年级下册数学《期末考试试题》(含答案)
人教版八年级下册期末考试数 学 试 卷一、单项选择题(将题中唯一正确答案的序号填在题后的括号内.每小题2分,共12分) 1.要使25x +有意义,x 必须满足( ) A. 52x ≥- B. 52x ≤- C. x 为任何实数 D. x 为非负数 2.下列二次根式①12,②22,③23,④27,能与3合并的是( ) A. ①和② B. ②和③ C. ①和④ D. ③和④ 3.如果p(2,m),A (1,1),B (4,0)三点在同一条直线,那么m 的值为( )A. 2B. -23C. 23D. 14.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A. B. C. D. 5.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④ 6.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()+的值为( )A. 13B. 19C. 25D. 169二、填空题(每小题3分,共24分)7.化简:22738⨯= . 8.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的表示的数为_____.9.如图,函数2y x =和4y ax +=的图象交于点()3A m ,,则不等式24x ax +<的解集是_____.10.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).11.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.12.一次函数y kx b =+(k ,b 为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.13.如图,菱形ABCD 中,AE 垂直平分BC ,垂足为E ,2AB cm =.那么菱形ABCD 的对角线BD 的长是_____cm .14.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得60B ∠︒=,接着活动学具成为图2所示正方形,并测得正方形的对角线40AC cm =,则图1中对角线AC 的长为_____cm .三、解答题(每题5分,共20分)15.化简:1(312248)233-+÷. 16.计算:2(21)(21)(32)+-+-.17.已知23x =-,23y +=,求代数式22x y -的值.18.已知,正比例函数1y k x=的图象与一次函数23y k x -=的图象交于点6(3)P -,. (1)求1k ,2k 的值; (2)求一次函数23y k x -=的图象与3y =,3x =围成的三角形的面积.四、解答题(每小题7分,共28分)19.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.操作发现:小颖在图 1 中画出△ABC ,其顶点 A ,B ,C 都是格点,同时构造正方形 BDEF , 使它的顶点都在格点上,且它的边 DE ,EF 分别经过点 C ,A ,她借助此图求出了△ABC 的面积.(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB = ,BC = ,AC= ;△ABC 的面积为 . 解决问题:(2)已知△ABC 中,AB 10,BC =2 5AC =5 2,请你根据小颖的思路,在图 2的正方形网格中画出△ABC,并直接写出△ABC 的面积.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.21.如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.22.如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.证=.明:FD AB五、解答题(每小题8分,共16分)23.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个; (2)求出甲厂印刷费y 甲与证书数量x 的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.24. 如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D,AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.六、解答题(每小题10分,共20分)25.如图,直线6y kx +=分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(80)-,,点A 的坐标为(03),.(1)求k 的值;(2)若点()P x y ,是第二象限内的直线上的一个动点,当点P 运动过程中,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,OPA ∆的面积为278,并说明理由.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么?运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.答案与解析一、单项选择题(将题中唯一正确答案的序号填在题后的括号内.每小题2分,共12分)1.x必须满足()A.52x≥- B.52x≤- C. x为任何实数 D. x为非负数【答案】A【解析】【分析】根据二次根式有意义的条件可得2x+5≥0,再解不等式即可.2x+5≥0,解得:52x≥-.故选A.【点睛】本题考查二次根式有意义条件,关键是掌握二次根式中的被开方数是非负数.2.合并的是()A. ①和②B. ②和③C. ①和④D. ③和④【答案】C【解析】【分析】先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.,是同类二次根式,故选:C.【点睛】本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.3.如果p(2,m),A(1,1),B(4,0)三点在同一条直线,那么m的值为()A. 2B. -23C.23D. 1【答案】C【解析】【分析】先设直线的解析式为y=kx+b (k≠0),再把A (1,1),B (4,0)代入求出k 的值,进而得出直线AB 的解析式,把点P (2,m )代入求出m 的值即可.【详解】解:设直线的解析式为y=kx+b (k≠0),∵A(1,1),B (4,0),∴104k b k b =+⎧⎨=+⎩,解得1343k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为y=13-x+43, ∵P(2,m )在直线上,∴m=(13-)×2+43=23. 故选C .“点睛”本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A. B. C. D.【答案】D【解析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D5.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】 分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF 是平行四边形,故①错误;添加条件②∠ADE =∠CBF .∵ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠DAC =∠BCA ,∴△ADE ≌△CBF ,∴DE =BF ,∠DEA =∠BFC ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴DEBF 是平行四边形,故②正确;添加条件③AF =CE .易得AD =BC ,∠DAC =∠BCA ,∴△ADF ≌△CBE ,∴DF =BE ,∠DFE =∠BEF ,∴DF ∥BE ,∴DEBF 是平行四边形,故③正确;添加条件④∠AEB =∠CFD .∵ABCD 是平行四边形,DC =AB ,DC ∥AB ,∴∠DCF =∠BAE .∵∠AEB =∠CFD ,∴△ABE ≌△CDF ,∴DF =BE .∵∠AEB =∠CFD ,∴∠DFE =∠BEF ,∴DF∥BE ,∴DEBF 是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D .点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.6.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()+的值为( )A. 13B. 19C. 25D. 169【答案】C【解析】 试题分析:根据题意得:222c a b =+=13,4×12ab=13﹣1=12,即2ab=12,则2()a b +=222a ab b ++=13+12=25,故选C .考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.二、填空题(每小题3分,共24分)7.化简:22738⨯= . 【答案】32. 【解析】试题分析:原式=227933842⨯==. 考点:二次根式的乘除法.8.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的表示的数为_____.101【解析】 【分析】首先根据勾股定理计算出AC 的长,进而得到AM 的长,再根据A 点表示1-,可得M 点表示的数.【详解】解:由勾股定理得:22223110AC AB CB =++=则10AM =, A Q 点表示1-,M ∴101,101.【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.9.如图,函数2y x =和4y ax +=的图象交于点()3A m ,,则不等式24x ax +<的解集是_____.【答案】3x <【解析】【分析】观察图象,写出直线2y x =在直线4y ax =+的下方所对应的自变量的范围即可.【详解】解:观察图象得:当3x <时,24x ax <+,即不等式24x ax <+的解集为3x <.故答案为:3x <.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的解集.10.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.11.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.【答案】10米【解析】【分析】根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果.【详解】解:如图,设大树高为AB=10米,小树高为CD=4米,过C 点作CE ⊥AB 于E ,则EBDC 是矩形,连接AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6米,在Rt △AEC 中,AC=22AE EC +=10米故答案为10.【点睛】本题考查勾股定理的应用,即222a b c +=.12.一次函数y kx b =+(k ,b为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.【答案】x =3【解析】【分析】直接根据图象找到y =kx +b =4的自变量的值即可.【详解】观察图象知道一次函数y =kx +b (k 、b 为常数,且k≠0)的图象经过点(3,4),所以关于x 的方程kx +b =4的解为x =3,故答案为x =3.【点睛】本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键. 13.如图,菱形ABCD 中,AE 垂直平分BC ,垂足为E ,2AB cm =.那么菱形ABCD 的对角线BD 的长是_____cm .【答案】23 【解析】 【分析】 由AE 垂直平分BC 可得AC AB =,再由菱形的性质得出OA ,根据勾股定理求出OB ,即可得出BD .【详解】解:Q AE 垂直平分BC ,AB =2cm ,∴AB AC ==2cm ,在菱形ABCD 中,12OA AC =,12OB BD =,AC BD ⊥, 1OA ∴=, 22213OB ∴=-=,223BD OB ∴==;故答案为:23.【点睛】本题考查了垂直平分线的性质、菱形的性质、勾股定理的运用;熟练掌握菱形的性质,运用勾股定理求出OB 是解决问题的关键.14.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得60B ∠︒=,接着活动学具成为图2所示正方形,并测得正方形的对角线40AC cm =,则图1中对角线AC 的长为_____cm .【答案】202【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明ABC ∆是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .在图2中,Q 四边形ABCD 是正方形,AB BC ∴=,90B ∠=︒,∵40AC cm =,202AB BC ∴==cm ,在图1中,四边形ABCD 是菱形,BA BC =, 60B ∠=︒Q ,ABC ∆∴是等边三角形,202AC BC ∴==cm , 故答案为:202 【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(每题5分,共20分)15.化简:1(312248)233÷. 【答案】143. 【解析】试题分析:先进行二次根式的化简,然后进行二次根式的除法运算. 试题解析:原式=(3333÷3 =3﹣13+2 =143.16.计算:21)2)+.【答案】8-【解析】【分析】首先利用平方差公式和完全平方公式计算,然后合并同类二次根式即可.【详解】解:原式=21(34)-+-=17+-=8-【点睛】本题考查了二次根式的混合运算,正确理解平方差公式和完全平方公式的结构是关键.17.已知2x =,2y +=22x y -的值.【答案】-【解析】【分析】先将22x y -分解因式,然后将2x =-2y =代入求值即可.【详解】解:∵22()()x y x y x y -=+-将2x =2y +=原式(22(22=+⨯4(=⨯-=-【点睛】本题考查了因式分解和二次根式混合运算,熟练掌握因式分解和运算法则是解题的关键.18.已知,正比例函数1y k x =的图象与一次函数23y k x -=的图象交于点6(3)P -,. (1)求1k ,2k 的值;(2)求一次函数23y k x -=的图象与3y =,3x =围成的三角形的面积.【答案】(1)12k =-,21k =-;(2)40.5【解析】【分析】(1)把交点P 的坐标代入两个函数解析式计算即可得解;(2)设直线3y =与3x =交于点C ,则(3,3)C ,一次函数3y x =--与3x =,3y =分别交于点A 、B ,求出A 、B 两点的坐标,再根据三角形的面积公式列式计算即可.【详解】解:(1)Q 正比例函数1y k x =的图象与一次函数23y k x =-的图象交于点(3,6)P -, 136k ∴=-,2336k -=-,解得12k =-,21k =-;(2)如图,设直线3y =与3x =交于点C ,则(3,3)C .一次函数的解析式为3y x =--.设直线3y x =--与3x =,3y =分别交于点A 、B ,当3x =时,336y =--=-,(3,6)A ∴-.当3y =时,33x =--,解得6x =-,(6,3)B ∴-. 11·9940.522ABC S BC AC ∆∴==⨯⨯=.【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.四、解答题(每小题7分,共28分)19.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.操作发现:小颖在图 1 中画出△ABC ,其顶点 A ,B ,C 都是格点,同时构造正方形 BDEF , 使它的顶点都在格点上,且它的边 DE ,EF 分别经过点 C ,A ,她借助此图求出了△ABC 的面积.(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB = ,BC = ,AC= ;△ABC 的面积为 . 解决问题:(2)已知△ABC 中,AB 10,BC =2 5AC =5 2,请你根据小颖的思路,在图 2的正方形网格中画出△ABC ,并直接写出△ABC 的面积.【答案】(1)1317,10,2;(2)图见解析,5 【解析】【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【详解】解:(1)AB 223+4=5,BC 221+417,AC 221+310, △ABC 的面积为:4×4﹣12×3×4-12×1×4﹣12×3×1= 132, 故答案为5; 1710132;(2)△ABC 的面积:7×2﹣12×3×1﹣12×4×2﹣12×7×1=5.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.【答案】(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】【分析】(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1)5162748291712421a⨯+⨯+⨯+⨯+⨯==++++,将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击的中位数787.52b +==, ∵乙射击的次数是10次,∴2222222(37)(47)(67)2(77)3(87)(97)(107)c ⎡⎤=-+-+-+⨯-+⨯-+-+-⎣⎦=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.21.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.【答案】(1)(0,3);(2)112y x =-. 【解析】【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222(13)OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.22.如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F .证明:FD AB =.【答案】见解析【解析】【分析】由在平行四边形ABCD 中,E 是AD 边上的中点,易证得()ABE DFE AAS ∆≅∆,从而证得FD AB =.【详解】证明:Q 四边形ABCD 是平行四边形,//AB CD ∴,则AB ∥CF ,ABE F ∴∠=∠,E Q 是AD 边上的中点,AE DE ∴=,在ABE ∆和DFE ∆中,ABE F AEB DEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE DFE AAS ∴∆≅∆,FD AB ∴=.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.五、解答题(每小题8分,共16分)23.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个; (2)求出甲厂的印刷费y 甲与证书数量x 的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.【答案】(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元.【解析】【分析】(1)根据纵轴图象判断即可,用2到6千个时费用除以证件个数计算即可得解;(2)设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,利用待定系数法解答即可;(3)用待定系数法求出乙厂x >2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.【详解】解:(1)(1)由图可知,甲厂的制版费为1千元; 当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;故答案为1;1.5;(2)解:设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,可得: 146b k b =⎧⎨=+⎩,解得: 0.51k b =⎧⎨=⎩, 所以甲厂的印刷费y 甲与证书数量x 的函数关系式为:y=0.5x+1;(3)解:设乙厂x >2时的函数解析式为y=k 2x+b 2 ,则 22222364k b k b +=⎧⎨+=⎩,解得 220.252.5k b =⎧⎨=⎩, ∴y=0.25x+2.5,x=8时,y=0.25×8+2.5=4.5千元,甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元, 印制8千个的费用为0.5×8+1=4+1=5千元, 5﹣4.5=0.5千元=500元,所以,选择乙厂节省费用,节省费用500元.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.24. 如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D,AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.【答案】(1)证明见试题解析;(2)4.【解析】【详解】试题分析:(1)由AE=DF ,∠A=∠D ,AB=DC ,易证得△AEC ≌△DFB ,即可得BF=EC ,∠ACE=∠DBF ,且EC ∥BF ,即可判定四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE=CE ,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC ,∴AC=DB ,在△AEC 和△DFB 中{AC DBA D AE DF=∠=∠=,∴△AEC ≌△DFB (SAS ),∴BF=EC ,∠ACE=∠DBF ,∴EC ∥BF ,∴四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE=CE ,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4时,四边形BFCE 是菱形,故答案为4.【考点】平行四边形的判定;菱形的判定.六、解答题(每小题10分,共20分)25.如图,直线6y kx +=分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(80)-,,点A 的坐标为(03),.(1)求k 的值;(2)若点()P x y ,是第二象限内的直线上的一个动点,当点P 运动过程中,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)34;(2)3(80)2=--<<S x x ;(3)P 点坐标为969(,)416-时,OPA ∆的面积为278,理由见解析【解析】【分析】 (1)把E 的坐标为(−8,0)代入y=kx +6中即可求出k 的值;(2)如图,OA 的长度可以根据A 的坐标求出,OA 作为△OP A 的底,P 点横坐标的绝对值作为高的长度,那么根据三角形的面积公式就可以求出△OP A 的面积S 与x 的函数关系式,自变量x 的取值范围可以利用点P (x ,y )是第二象限内的直线上的一个动点来确定;(3)可以利用(2)的结果求出P 的横坐标,然后就可以求出P 的纵坐标.【详解】解:(1)Q 直线6y kx =+分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(8,0)-, 086k ∴=-+,34k ∴=; (2)如图,过P 作PH OA ⊥于H ,Q 点3(,6)4P x x +是第二象限内的直线上的一个动点,则80x -<<, PH x x ∴==-,∵点A 的坐标为(0,3),∴OA =3,∴1133()(80)222=⋅⋅=⨯⨯-=--<<S OA PH x x x ; (3)当P 点坐标为969(,)416-时,OPA ∆的面积为278,理由如下: 当278S =时,即32728-=x , 解得:94x =-, 6916y ∴=. P ∴坐标为9(4-,69)16. 【点睛】此题把一次函数与三角形的面积相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.解答此题的关键是根据一次函数的特点,分别求出已知各点的坐标再计算.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么?运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.【答案】(1)见解析;(2)GE=BE+GD 成立,理由见解析;(3)685【解析】【分析】 (1)利用已知条件,可证出△BCE ≌△DCF (SAS ),即可得到CE=CF ;(2)借助(1)的结论得出∠BCE =∠DCF ,再通过角的计算得出∠GCF =∠GCE ,由SAS 可得△ECG ≌△FCG ,则EG=GF ,从而得出GE=DF+GD=BE+GD ;(3)过C 作CG ⊥AD ,交AD 延长线于G ,先证四边形ABCG 是正方形(有一组邻边相等的矩形是正方形),再设DE =x ,利用(1)、(2)的结论,在Rt △AED 中利用勾股定理构造方程即可求出DE .【详解】(1)证明:如图①,在正方形ABCD 中,BC=CD ,∠B =∠ADC =90°,∴∠CDF=90°,即∠B =∠CDF =90°,在△BCE 和△DCF 中,BC DC B CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),∴CE=CF ;(2)解:如图①,GE=BE+GD 成立,理由如下:由(1)得△BCE ≌△DCF ,∴∠BCE=∠DCF ,∴∠ECD +∠ECB=∠ECD +∠FCD ,即∠ECF =∠BCD =90°,又∵∠GCE =45°,∴∠GCF =∠ECF −∠ECG =45°,则∠GCF=∠GCE ,在△GEC 和△GFC 中,CE CF GCE GCF GC GC =⎧⎪∠=∠⎨⎪=⎩,∴△GEC ≌△GFC (SAS ),∴EG=GF ,∴GE=DF+GD=BE+GD ;(3)解:如图②,过C 作CG ⊥AD 于G ,∴∠CGA=90°,在四边形ABCD 中,AD ∥BC ,∠A =∠B =90°,∴四边形ABCG 为矩形,又∵AB=BC ,∴四边形ABCG 为正方形,∴AG =BC=AB =16,∵∠DCE =45°,由(1)和(2)的结论可得:ED=BE+DG ,设DE=x ,∵4BE =,∴AE =12,DG=x −4,∴AD =AG −DG =20−x在Rt △AED 中,由勾股定理得:DE 2=AD 2+AE 2,即x 2=(20−x )2+122 解得:685=x , 即685=DE . 【点睛】本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.。
2018-2019学年广东省潮州市湘桥区八年级(下)期末数学试卷
2018-2019学年广东省潮州市湘桥区八年级(下)期末数学试卷2018-201年广东省潮州市湘桥区八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)计算 $2\frac{1}{2}\times\frac{4}{5}$ 的结果是()A.2B.2.5C.3D.1.52.(3分)下列运算正确的是()A.$7-(-3)=10$B.$-5-(-3)=-2$C.$-3-5=-8$D.$-6+(-4)=-10$3.(3分)下列各组数中不能作为直角三角形三边长的是()A.5,13,12B.3,4,5C.6,7,10D.8,15,174.(3分)某地区连续10天的最高气温统计如表,则该地区这10天最高气温的中位数是()最高气温(℃)18 19 20 21 22天数 1 2 2 3 2A.20℃B.20.5℃C.21℃D.21.5℃5.(3分)如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为()A.5B.4C.3D.26.(3分)在平行四边形ABCD中,∠A=55°,则∠D 的度数是()A.105°B.115°C.125°D.55°7.(3分)下列说法中错误的是()A.四边相等的四边形是菱形B.菱形的对角线长度相等C.一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形8.(3分)关于一次函数y=﹣2x+3,下列结论正确的是()A.图象经过(3,﹣5)B.图象经过第一、二、三象限C.y随x的增大而增大D.图象与y轴交于点(0,3)9.(3分)甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差$S_{甲}=3$,$S_{乙}=1.8$,则射击成绩较稳定的是()A.甲B.乙C.一样D.不能确定10.(3分)如图,矩形ABCD的周长是28,点O是线段AC的中点,点P是AD的中点,△AOD的周长与△COD的周长差是2(且AD>CD),则△AOP的周长为()A.12B.14C.16D.18二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)若 $\frac{a}{b}=\frac{3}{4}$,则$\frac{2a-3b}{2a+3b}$ 的值为______。
2018-2019学年人教版初二数学下册期中试卷(含答案)
2018-2019学年八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.3.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(0,﹣1)C.C(1,﹣1)D.(1,0)4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM的一个动点,若PA=4,则PQ的最小值为()A.2B.4C.2D.5.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm6.若关于x的不等式组的整数解共有4个,则a的取值范围是()A.﹣2<a≤﹣1B.﹣2≤a<﹣1C.﹣1<a≤0D.﹣1≤a<0二、填空题(本大题共6小题,每小题3分,共18分)7.命题“直角三角形两锐角互余”的逆命题是:.8.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数为°.9.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.10.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打折.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.12.如图,在△ABC中,AB=AC=2,∠BAC=120°,点A的坐标是(1,0),点B.C在y轴上,在x轴上是否存在点P,使△PAB、△PBC、△PAC都是等腰三角形,满足条件的P点的坐标.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式:5x﹣13≥2(x﹣2)(2)如图,将△ABC绕点C顺时针方向旋转40°得到△DEC,若AC⊥DE,求∠BAC的度数.14.解不等式组,并把解集在数轴上表示出来.15.请你只用无刻度的直尺按要求作图:(1)如图①,AD、BE是△ABC的角平分线,且相交于点O,请你作出∠C的平分线.(2)如图②,AC与BD相交于O,且∠DAO=∠BAO=∠CBO=∠ABO,请你作出∠AOB的平分线.16.如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.17.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.例如:=3×6﹣4×5=﹣2,如果有>0,求x的取值范围.四、(本大题共3小题,每小题8分,共24分)18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.若关于x,y的二元一次方程组中,x的值为正数,y的值为负数,求m的取值范围.20.如图,在四边形ABCD中,已知AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?为什么?五、(本大题共2小题,每小题9分,共18分)21.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?22.如图,某船于上午11时30分在A处观察海岛B在北偏东60°,该船以10海里/小时的速度向东航行至C处,再观察海岛在北偏东30°,且船距离海岛20海里(1)求该船到达C处的时刻.(2)若该船从C处继续向东航行,何时到达B岛正南的D处?六、(本大题共12分)23.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为10cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A、图形不是中心对称图形;B、图形是中心对称图形;C、图形不是中心对称图形;D、图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后能与自身重合.2.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法,可得答案.【解答】解:2x﹣6>0,解得x>3,故选:A.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).3.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(0,﹣1)C.C(1,﹣1)D.(1,0)【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故选:C.【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM的一个动点,若PA=4,则PQ的最小值为()A.2B.4C.2D.【分析】作PQ⊥OM于Q,根据角平分线的性质解答.【解答】解:作PQ⊥OM于Q,则此时PQ最小,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PQ=PA=4,即PQ的最小值为4,故选:B.【点评】本题考查的是角平分线的性质、垂线段最短,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选:C.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.6.若关于x的不等式组的整数解共有4个,则a的取值范围是()A.﹣2<a≤﹣1B.﹣2≤a<﹣1C.﹣1<a≤0D.﹣1≤a<0【分析】表示出不等式组的解集,由解集中的整数解共有4个,确定出a的范围即可.【解答】解:不等式组整理得:,即a<x<3,由不等式组的整数解共有4个,得到﹣2≤a<﹣1,故选:B.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个角互余,那么这个三角形是直角三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个角互余,那么这个三角形是直角三角形.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数为45°.【分析】根据角的和差定义计算即可;【解答】解:∵将△AOB绕点O按逆时针方向旋转60°后得到△COD,∴∠DOB=60°,∵∠AOB=15°,∴∠AOD=60°﹣15°=45°.故答案为45.【点评】本题考查旋转变换,角的和差定义等知识,解题的关键是理解题意,属于中考基础题.9.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】由图知:①当x>1时,y>0;②当x<1时,y<0;因此当y<0时,x<1;由此可得解.【解答】解:根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,﹣2);即当x<1时,函数值y的范围是y<0;因而当不等式kx+b<0时,x的取值范围是x<1.故答案为:x<1【点评】本题主要考查的是关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.10.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打8折.【分析】设至多可打x折,根据“某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%”,列出关于x的一元一次不等式,解之即可.【解答】解:设至多可打x折,根据题意得:1575×≥1200(1+5%),解得:x≥8,即至多可打8折,故答案为:8.【点评】本题考查一元一次不等式的应用,正确找出不等量关系,列出一元一次不等式是解题的关键.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.12.如图,在△ABC中,AB=AC=2,∠BAC=120°,点A的坐标是(1,0),点B.C在y轴上,在x轴上是否存在点P,使△PAB、△PBC、△PAC都是等腰三角形,满足条件的P点的坐标(﹣1,0)(3,0).【分析】先由等腰三角形三线合一的性质得出OB=OC,∠OAB=∠OAC=60°,再取A(1,0)关于y轴的对称点P(﹣1,0),根据轴对称的性质得到PB=AB,PC=AC,∠BPA=∠BAP=60°,所以PB=AB=PC=AC,从而根据等腰三角形的定义得出△PAB、△PBC、△PAC都是等腰三角形.【解答】解:∵AB=AC=2,AO⊥BC,∠BAC=120°,∴OB=OC,∠OAB=∠OAC=∠BAC=60°,∴取A(1,0)关于y轴的对称点P(﹣1,0),则PB=AB,PC=AC,∠BPA=∠BAP=60°,∴PB=AB=PC=AC,∴△PAB、△PBC、△PAC都是等腰三角形,同理可得(3,0)也符合题意.所以在x轴上存在点P(﹣1,0)(3,0),使△PAB、△PBC、△PAC都是等腰三角形;故答案为:(﹣1,0)(3,0),【点评】本题考查了等腰三角形的判定与性质,坐标与图形性质,难度适中,由等腰三角形三线合一的性质得出OB=OC,∠OAB=∠OAC=60°是解题的关键.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式:5x﹣13≥2(x﹣2)(2)如图,将△ABC绕点C顺时针方向旋转40°得到△DEC,若AC⊥DE,求∠BAC的度数.【分析】(1)按照去括号、移项、合并同类项、化系数为1的步骤解不等式即可;(2)设AC交DE于H.在Rt△CDH中求出∠D即可解决问题;【解答】解:(1)5x﹣13≥2(x﹣2)5x﹣13≥2x﹣4,3x≥9x≥3(2)设AC交DE于H.∵∠BCE=∠ACD=40°,AC⊥DE,∴∠CHD=90°,∴∠D=90°﹣40°=50°,∴∠A=∠D=50°.【点评】本题考查旋转变换、三角形内角和定理、解一元一次不等式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.解不等式组,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式2x+3>﹣5,得:x>﹣4,解不等式﹣1≥3(x﹣1),得:x≤1,则不等式组的解集为﹣4<x≤1,将不等式组的解集表示在数轴上如下:【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.请你只用无刻度的直尺按要求作图:(1)如图①,AD、BE是△ABC的角平分线,且相交于点O,请你作出∠C的平分线.(2)如图②,AC与BD相交于O,且∠DAO=∠BAO=∠CBO=∠ABO,请你作出∠AOB的平分线.【分析】(1)连接OC并延长交AB于F,则利用三角形的三条角平分线相交于一点可判断CF平分∠ACB;(2)AD和BC的延长线相交于E,连接EC并延长交AB于F,可证明△OAB和△EAB为等腰三角形,则根据等腰三角形的性质可判断OF平分∠AOB.【解答】解:(1)如图①,CF为所作;(2)如图②,OF为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).16.如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.【分析】由旋转和翻折的性质可知:AC=AF,然后再求得∠CAF=60°,从而可得出△ACF为等边三角形.【解答】解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠FAD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.【点评】本题主要考查的是翻折变换、旋转变换、等边三角形的性质和判定,证得AC=AF,∠CAF =60°是解题的关键.17.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.例如:=3×6﹣4×5=﹣2,如果有>0,求x的取值范围.【分析】根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:由题意可得2x﹣3(x﹣2)>0,解得x<6.故x的取值范围是x<6.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.四、(本大题共3小题,每小题8分,共24分)18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.若关于x,y的二元一次方程组中,x的值为正数,y的值为负数,求m的取值范围.【分析】先求出方程组的解,即可得出关于m的不等式组,求出不等式组的解集即可.【解答】解:,①+②,得:2x=2m+6,x=m+3,①﹣②,得:4y=4m﹣4,y=m﹣1,∵x的值为正数,y的值为负数,∴,解得﹣3<m<1.【点评】本题考查了解二元一次方程组,解一元一次不等式组,能正确解二元一次方程组和解一元一次不等式组是解此题的关键,题目比较好,难度适中.20.如图,在四边形ABCD中,已知AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?为什么?【分析】(1)通过求证△FEC≌△AED来证明CF=AD;(2)若点B在线段AF的垂直平分线上,则应有AB=BF∵AB=8,CF=AD=2,∴BC=BF﹣CF =8﹣2=6时有AB=BF.【解答】(1)证明:∵AD∥BC,∴∠F=∠DAE.又∵∠FEC=∠AED,∴∠ECF=∠ADE,∵E为CD中点,∴CE=DE,在△FEC与△AED中,∵,∴△FEC≌△AED,∴CF=AD;(2)当BC=6时,点B在线段AF的垂直平分线上,其理由是:∵BC=6,AD=2,AB=8,∴AB=BC+AD,又∵CF=AD,BC+CF=BF,∴AB=BF,∴△ABF是等腰三角形,∴点B在AF的垂直平分线上.【点评】此题考查全等三角形的判定和性质,关键是利用了:(1)梯形的性质,(2)全等三角形的判定和性质,(3)中垂线的性质进行分析.五、(本大题共2小题,每小题9分,共18分)21.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有10人,学生有50人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?【分析】(1)设参加活动的教师有a人,学生有b人,根据等量关系:师生共60人;若师生均购买二等座票,则共需1020元;列出方程组,求出方程组的解即可;(2)①根据购买一、二等座票全部费用=购买一等座票钱数+教师购买二等座票钱数+学生购买二等座票钱数,依此可得解析式;②根据不等关系:购买一、二等座票全部费用不多于1032元,列出方程求解即可.【解答】解:(1)设参加活动的教师有a人,学生有b人,依题意有,解得.故参加活动的教师有10人,学生有50人;(2)①依题意有:y=26x+22(10﹣x)+16×50=4x+1020.故y关于x的函数关系式是y=4x+1020(0<x<10);②依题意有4x+1020≤1032,解得x≤3.故提早前往的教师最多只能3人.故答案为:10,50.【点评】本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.22.如图,某船于上午11时30分在A处观察海岛B在北偏东60°,该船以10海里/小时的速度向东航行至C处,再观察海岛在北偏东30°,且船距离海岛20海里(1)求该船到达C处的时刻.(2)若该船从C处继续向东航行,何时到达B岛正南的D处?【分析】(1)根据题意得:∠A=30°,∠BCD=60°,BC=20海里,根据三角形外角的性质,易证得∠ABC=∠A,根据等角对等边,即可求得AC=BC,又由船的速度为10海里/时,即可求得船到达C点的时间;(2)由在Rt△BCD中,∠BCD=60°,BC=20海里,即可求得CD的长,继而求得到达B岛正南的D处的时间.【解答】解:(1)根据题意得:∠A=30°,∠BCD=60°,BC=20海里,∴∠ABC=∠BCD﹣∠A=60°﹣30°=30°,∴∠ABC=∠A,∴AC=BC=20(海里),∵船的速度为10海里/时,∴20÷10=2(小时),∴船到达C点的时间为:13时30分;(2)在Rt△BCD中,∠BCD=60°,BC=20海里,∴CD=BC•cos60°=20×=10(海里),∵10÷10=1(小时),∴在14时30分到达B岛正南的D处.【点评】此题考查了方向角问题、等腰三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.六、(本大题共12分)23.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为10cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).【分析】(1)运用勾股定理直接求出;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴2AB2=BC2,∴AB==4cm;(2)过A作AF⊥BC交BC于点F,则AF=BC=4cm,∵S=10cm2△ABD∴AF×BD=20,∴BD=5cm.若D在B点右侧,则CD=3cm,t=1.5s;若D在B点左侧,则CD=13cm,t=6.5s.(3)动点E从点C沿射线CM方向运动秒或当动点E从点C沿射线CM的反向延长线方向运动8秒时,△ABD≌△ACE.理由如下:(说理过程简要说明即可)①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=8﹣2t∴t=8﹣2t,∴t=,证明:在△ABD和△ACE中∵,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=2t﹣8,∴t=2t﹣8,∴t=8,证明:在△ABD和△ACE中∵,∴△ABD≌△ACE(SAS).【点评】本题考查了等腰直角三角形、全等三角形的性质及面积,综合性强,题目难度适中.。
八年级下期末考试数学试卷四套试卷(含答案)
017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
广东省深圳市坪山区2018-2019学年八年级下学期期末考试数学试题(WORD版,含答案)
深圳市坪山区2018-2019学年八年级下学期期末考试数学试卷说明:1、试题卷共6页,答题卡2页,考试时间90分钟,满分100分。
2、请在答题卡上填涂学校、班级、姓名、考生号,不得在其它地方作任何标记。
3、答案必须写在答题卡指定位置上,否则不给分。
第I 卷 选择题一、选择题:(每小题3分,共36分,每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应的位置上.)1.下列图形中,可以看作是中心对称图形的是( )答案:A 2.使分式1xx -有意义的x 的取值范围是( ) A .x ≥1 B .x ≤1C .x ≠1D .x >1答案:C3.如果a >b ,下列各式中正确的是( ) A .ac >bc B .a ﹣3>b ﹣3C .﹣2a >﹣2bD .22a b < 答案:B 4.不等式组1048x x ->⎧⎨≤⎩的解集在数轴上表示为( )答案:C5.如图,△ABC 中,AB =AC =10,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则DE 的长为( ) A .5B .6C .8D .10答案:A6.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33°B.80°C.57°D.67°答案:A7.一个多边形的每一个内角都等于135°,则它的边数是()A.6 B.8 C.10 D.12答案:B8.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=()A.25°B.30°C.35°D.55°答案:A9.一次环保知识竞赛共有25道题,每一题答对得4分,答错或不答都扣1分,在这次竟赛中,小明被评为优秀(85分或85分以上),小明至少要答对多少道题?如果设小明答对了x道题,根据题意列式得()A.4x﹣1×(25﹣x)>85 B.4x+1×(25﹣x)≤85C.4x﹣1×(25﹣x)≥85 D.4x+1×(25﹣x)>85答案:C10.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=65°,则∠ACD 的度数为()A.65°B.60°C.55°D.45°答案:C11.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k﹣m)x+b<0的解集为()A.x<1 B.x>1 C.x<3 D.x>3答案:B12.如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②S ABCD=AB•AC;③OB=AB:④OE=14BC.其中成立的有()A.①②③B.①②④C.①③④D.②③④答案:B;二、填空题:(每小题3分,共12分,请把答案写在答题卡相应的位置上,)13.分解因式:3y2﹣12=.答案:3(y+2)(y﹣2)14.分式||55xx-+的值为0.则x的值为.答案:515.如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为.答案:3216.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB =6,AC =3,则BE = . 答案:1.5三、解答题:(本大题共7题,其中第17题6分,第18题6分,第19题6分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分,)17.解不等式52x -+1>x ﹣3. 解:去分母,得:5226x x -+>- 移项,得:2652x x ->-+-解得:x <318.先化简,再求值:2239(1)x x x x ---÷,其中x =2. 解:原式=239x x x x--÷=31(3)(3)3x x x x x x -⨯=+-+, 当x =2时,原式=1519.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题(1)画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1,并写出点C 1的坐标; (2)画出将△ABC 关于原点O 对称的图形△A 2B 2C 2,并写出点C 2的坐标.解:(1)如下图, C 1((-1,2),(2)如下图,C2((-3,-2),20.(8分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.解:(1)作DE⊥AB于E,因为AD为角平分线,所以,DC=DE,在直角三角形BDE中,∠B=30°,所以,BD=2DE,所以,BD =2CD(2)CD =2,则BD =4, 所以,BC =6,设AC =x ,则AB =2x , AB 2=AC 2+BC 2, 4x 2=x 2+36,解得:x =23,所以,AC =23 △ABD 的面积S =12×BC ×AC =6321.(8分)某工厂准备购买A 、B 两种零件,已知A 种零件的单价比B 种零件的单价多20元,而用800元购买A 种零件的数量和用600元购买B 种零件的数量相等 (1)求A 、B 两种零件的单价;(2)根据需要,工厂准备购买A 、B 两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A 种零件多少件?解:(1)设B 种零件的单价为x 元,则A 零件的单价为(x +20)元,则80060020x x=+ 解得:x =60经检验:x =60 是原分式方程的解, x+20=80.答:A 种零件的单价为80元,B 种零件的单价为60元。
人教版初中数学八年级下期末数学试卷(含答案)
八年级下册期末数学试卷 一、选择题 1.下列标志图中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列式子从左至右变形不正确的是( )A .b b 3232-=-B .b a b a 22=--C .22++=b a b aD .=3.以下问题,不适合采用全面调查方式的是( )A .调查全班同学对商丘“京雄商”高铁的了解程度B .“冠状病毒”疫情期间,对所有疑似病例病人进行病毒检测C .为准备开学,对全班同学进行每日温度测量统计D .了解梁园区全体中小学生对“冠状病毒”的知晓程度4.若π-3为二次根式,则m 的取值范围是( )A .m <3B .m≤3C .m ≥3D .m >3 5.如果1+a 与12的和等于33,那么a 的值是( )A .0B .1C .2D .36.下列命题正确的是( )A .平行四边形的对角线一定相等B .三角形任意一条边上的高线、中线和角平分线三线合一C .三角形的中位线平行于第三边并且等于它的一半D .三角形的两边之和小于第三边7.一个多边形每一个外角都等于36°,则这个多边形的边数为( )A .12B .10C .8D .6 8.要使分式41-+x x 有意义,则x 的取值应满足( ) A .x≠4B .x≠﹣1C .x =4D .x =﹣19.如图,AB =AC ,∠A =40°,AB 的垂直平分线DE交AC 于点E ,垂足为D ,则∠EBC 的度数是( )A .30°B .40°C .70°D .80° 10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x 台机器,则可列方程为( )A .50450600+=x x B .50450600-=x x C .x x 45050600=+ D .x x 45050600=- 11.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD于E ,AB =6,BC =4,则EC 的长( )A .1B .1.5C .2D .3 12.如图,四边形ABCD 中,AB =CD ,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE ,若DE =BF ,则下列结论:①CF =AE ;②OE =OF ;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )A .4B .3C .2D .1二、填空题(每题3分,共12分)13.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为 .14.已知x ,y 是二元一次方程组⎩⎨⎧=+=-1232y x y x 的解,则代数式x 2﹣4y 2的值为 . 15.若关于x 的分式方程2332=-++-xm x x 有增根,则m 的值为 . 16.有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是 .三、解答题(共52分)17.先化简,再求值x x x x 212312+-÷⎪⎭⎫ ⎝⎛+-,其中x =2019.18.解分式方程:2431122--=+--x x x .19.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?20.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.21.如图,平行四边形ABCD中,点O是AC与BD的交点,过点O的直线与BA,DC的延长线分别交于点E,F.(1)求证:△AOE≌△COF;(2)连接EC,AF,求证:四边形AECF是平行四边形.22.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x 天做完其中一部分,乙队用了y 天做完另一部分,若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?23.如图,等边△ABC 的边长是4,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =21BC ,连接CD 和EF .(1)求证:DE =CF ;(2)求EF 的长;(3)求四边形DEFC 的面积.参考答案 1.A .2.C .3.D .4.B .5.C . 6.C . 7.B . 8.A . 9.A .10.C . 11.C . 12.B .二、填空题(每题3分,共12分)13.八. 14.3. 15.-1.16. 348+或16.解:由题意可得:AB =4,∵∠C =30°,∴BC =8,AC =43,∵图中所示的中位线剪开,∴CD =AD =23,CF =BF =4,DF =2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+23+23=8+43;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=16;如图3所示,可以拼成一个等腰梯形,周长为:4+2+4+4+2=16.故答案为:8+43或16.三、解答题(共52分)17.解:原式=1)2(232-+⋅+-+x x x x x =1)2(21-+⋅+-x x x x x =x当x =2019时,原式=2019.18.解:方程整理得:)12(211122--=+--x x x 2x ﹣4+4x ﹣2=﹣3,6x =3,解得:x =21, 经检验x =21是增根,分式方程无解. 19.解:设个植树小组有x 人去植树,共有y 棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:⎩⎨⎧<--<+=8)1(80204x y x y ,将y =4x +20代入第二个式子得: 0<4x +20﹣8(x ﹣1)<8,5<x <7.答这个植树小组有6人去植树,共有4×6+20=44棵树.20.解:(1)全等,理由是:∵∠1=∠2,∴DE =CE ,在Rt △ADE 和Rt △BEC 中,⎩⎨⎧==CE DE BC AE ∴Rt △ADE ≌Rt △BEC (HL );(2)是直角三角形,理由是:∵Rt △ADE ≌Rt △BEC ,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC =90°,∴△CDE 是直角三角形.21.解:(1)∵四边形ABCD 是平行四边形,∴AO =OC ,AB ∥CD .∴∠E =∠F .∵在△AOE 与△COF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CO AO COF AOE F E ,∴△AOE ≌△COF (AAS );(2)如图,连接EC 、AF ,由(1)可知△AOE ≌△COF ,∴OE =OF ,∵AO =CO ,∴四边形AECF 是平行四边形.22.解:(1)设乙工程队单独做需要x 天完成任务,由题意,得1204012030=⨯++x , 解得:x =100,经检验,x =100是原方程的根.答:乙工程队单独做需要100天才能完成任务;(2)根据题意得110040=+y x 整理得 y =100﹣25x . ∵y <70,∴100﹣25x <70. 解得 x >12.又∵x <15且为整数,∴x =13或14.当x =13时,y 不是整数,所以x =13不符合题意,舍去.当x =14时,y =100﹣35=65.答:甲队实际做了14天,乙队实际做了65天.23.如图,等边△ABC 的边长是4,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =21BC ,连接CD 和EF .(1)求证:DE =CF ;(2)求EF 的长;(3)求四边形DEFC 的面积.解:(1)在△ABC 中,∵D 、E 分别为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴DE =21BC , ∵CF =21BC , ∴DE =CF .(2)∵AC =BC ,AD =BD ,∴CD ⊥AB ,∵BC =4,BD =2,∴CD =2224 =23,∵DE ∥CF ,DE =CF ,∴四边形DEFC 是平行四边形,∴EF =CD =23.(3)过点D 作DH ⊥BC 于H .∵∠DHC =90°,∠DCB =30°,∴DH =21DC =3, ∵DE =CF =2,∴S 四边形DEFC =CF •DH =2×3=23.。
山东省临沂市莒南县2018-2019学年八年级第二学期期末数学试卷(解析版)
山东省临沂市莒南县2018-2019学年八年级第二学期期末数学试卷一、选择题(共14小题,满分42分)1.函数y=的自变量x的取值范围是()A.x>2B.x≥2C.x≠2D.x≤22.下列计算正确的是()A.=B.3C.×=7D.=23.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=64.在平面直角坐标系xOy中,函数y=﹣2x﹣3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.已知关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值范围是()A.m>1B.m≤1C.m<﹣1D.m≤﹣16.我市欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:根据录用程序,作为人们教师面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,你认为将录取()A.甲B.乙C.丙D.丁7.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形8.将直线y=2x向右平移2个单位,再向上移动4个单位,所得的直线的解析式是()A.y=2x B.y=2x+2C.y=2x﹣4D.y=2x+49.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x +1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D . x (x ﹣1)=21010.如表是某公司员工月收入的资料.能够反映该公司全体员工月收入水平的统计量是( )A .平均数和众数B .平均数和中位数C .中位数和众数D .平均数和方差11.如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法: ①若AC =BD ,则四边形EFGH 为矩形;②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .412.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米13.若一组数据x1+1,x2+1,…,x n+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,x n+2的平均数和方差分别为()A.17,2B.18,2C.17,3D.18,314.如图,矩形ABCD中,E,F分别是线段BC,AD的中点,AB=2,AD=4,动点P沿EC,CD,DF的路线由点E运动到点F,则△PAB的面积s是动点P运动的路径总长x的函数,这个函数的大致图象可能是()A.B.C.D.二、填空题(本题共5小题,每小题3分,满分15分)15.某正比例函数的图象经过点(﹣1,2),则此函数关系式为.16.已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为.17.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.18.如图,在菱形ABCD中,∠ABC=120°,点E是边AB的中点,P是对角线AC上的一个动点,若AB=2,则PB+PE的最小值是.19.对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为d1,到y轴的距离为d2,若d1≥d2,则称d1为点P的最大距离;若d1<d2,则称d2为点P的最大距离.例如:点P(﹣3,4)到到x轴的距离为4,到y轴的距离为3,因为3<4,所以点P的最大距离为4.若点C在直线y=﹣x﹣2上,且点C的最大距离为5,则点C的坐标是.三、解答题(共7小题,满分63分)20.(8分)计算(1);(2)解方程2x2﹣x﹣1=0.21.(8分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛,成绩如图所示:(1)根据图示填写下表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?22.(8分)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?23.(8分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.24.(8分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.26.(14分)如图(含备用图),在直角坐标系中,已知直线y=kx+3与x轴相交于点A(2,0),与y轴交于点B.(1)求k的值及△AOB的面积;(2)点C在x轴上,若△ABC是以AB为腰的等腰三角形,直接写出点C的坐标;(3)点M(3,0)在x轴上,若点P是直线AB上的一个动点,当△PBM的面积与△AOB的面积相等时,求点P的坐标.参考答案与试题解析一、选择题(共14小题,满分42分)1.【分析】根据被开方数为非负数列出不等式,解之可得.【解答】解:根据题意知x﹣2≥0,解得:x≥2,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:,故选项A错误,,故选项B错误,,故选项C正确,,故选项D错误,故选:C.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.3.【分析】移项,配方(方程两边都加上4),即可得出选项.【解答】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,即加上一次项系数一半的平方,难度适中.4.【分析】由k、b的正负,利用一次函数图象与系数的关系即可得出函数y=﹣2x﹣3的图象经过第二、三、四象限,此题得解.【解答】解:∵k=﹣2<0,b=﹣3<0,∴函数y=﹣2x﹣3的图象经过第二、三、四象限.故选:D.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.5.【分析】根据判别式的意义得到△=(﹣2)2﹣4m<0,然后解关于m的不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.【分析】根据加权平均数的公式分别求出甲、乙、丙、丁四人的平均成绩,做比较后即可得出结论.【解答】解:甲的平均成绩为:×(86×6+90×4)=87.6(分),乙的平均成绩为:×(91×6+83×4)=87.8(分),丙的平均成绩为:×(90×6+83×4)=87.2(分),丁的平均成绩为:×(83×6+92×4)=86.4(分),∵87.8>87.6>87.2>86.4,∴乙的平均成绩最高.故选:B.【点评】本题考查了加权平均数,解题的关键是能够熟练的运用加权平均数的公式求一组数据的加权平均数.本题属于基础题,难度不大,牢牢掌握加权平均数的公式是关键.7.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、化简后有b2=a2+c2,根据勾股定理,则△ABC是直角三角形,故正确;C、解得应为∠B=60度,是等边三角形,故错误.D、设三边分别为5x,3x,4x,根据勾股定理,a2=c2+b2,则△ABC是直角三角形,故正确;故选:C.【点评】考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法,难度不大.8.【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)+4=2x.故选:A.【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.9.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.10.【分析】求出数据的众数和中位数,再与25名员工的收入进行比较即可.【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为3400元;由于在25名员工中在此数据及以上的有13人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.【点评】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.11.【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.【点评】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.12.【分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可;【解答】解:甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x﹣70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选:D.【点评】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.13.【分析】根据平均数和方差的变化规律,即可得出答案.【解答】解:∵数据x1+1,x2+1,…,x n+1的平均数为17,∴x1+2,x2+2,…,x n+2的平均数为18,∵数据x1+1,x2+1,…,x n+1的方差为2,∴数据x1+2,x2+2,…,x n+2的方差不变,还是2;故选:B.【点评】本题考查了方差与平均数,用到的知识点:如果一组数据x1,x2,…,x n的平均数为,方差为S2,那么另一组数据ax1+b,ax2+b,…,ax n+b的平均数为a+b,方差为a2S2.14.【分析】根据题意分析△PAB的面积的变化趋势即可.【解答】解:根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为0.故选:C.【点评】本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.二、填空题(本题共5小题,每小题3分,满分15分)15.【分析】设此函数的解析式为y=kx(k≠0),再把点(﹣1,2)代入进行检验即可.【解答】解:设此函数的解析式为y=kx(k≠0),∵点(﹣1,2)在此函数图象上,∴﹣k=2,解得k=﹣2,∴此函数的关系式为y=﹣2x.故答案为:y=﹣2x.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.【分析】根据题意,解方程x2+2x﹣9=0,解得a和b的值,然后代入求值即可.【解答】解:由a2+2a﹣9=0得a2=9﹣2a,代入a2+2a﹣b=9﹣(a+b),由根与系数关系得a+b=﹣2,所以a2+a﹣b=11,故答案为11.【点评】本题主要考查根与系数的关系,解一元二次方程,关键在于通过解方程求出a和b的值.17.【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.【分析】找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.【解答】解:连接DE交AC于P,连接DB,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠ABC=120°,∴∠BAD=60°,∵AD=AB,∴△ABD是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质).在Rt△ADE中,DE==.∴PB+PE的最小值为.故答案为:.【点评】本题主要考查轴对称﹣最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.19.【分析】根据点C的“最大距离”为5,可得x=±5或y=±5,代入可得结果.【解答】解:设点C的坐标(x,y),∵点C的“最大距离”为5,∴x=±5或y=±5,当x=5时,y=﹣7,当x=﹣5时,y=3,当y=5时,x=﹣7,当y=﹣5时,x=3,∴点C(﹣5,3)或(3,﹣5).故答案为:(﹣5,3)或(3,﹣5).【点评】本题考查一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决数学问题.三、解答题(共7小题,满分63分)20.【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用十字相乘法分解因式解方程即可.【解答】解:(1)原式=4﹣3﹣(5﹣3)=4﹣3﹣2;(2)2x2﹣x﹣1=0(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.【点评】此题主要考查了因式分解法解方程以及二次根式的混合运算,正确分解因式是解题关键.21.【分析】(1)根据众数、中位数和平均数的概念求解可得;(2)利用中位数和平均数的定义求解可得;(3)根据方差的意义求解可得.【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,∴九(1)班5名选手的复赛成绩的平均数为×(75+80+85+85+100)=85,众数为85;九(2)班5名选手的复赛成绩为:70、100、100、75、80,九(2)的中位数为80,(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3)=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,因为70<160,所以九(1)班成绩稳定些.【点评】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.22.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.【点评】综合考查了平行四边形及菱形的有关性质;利用解一元二次方程得到两种图形的边长是解决本题的关键.23.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.∵∠AHF=20°,∠AHD=50°,∴∠DEF=∠DHF=∠AHF+∠AHD=20°+50°=70°【点评】本题考查了平行四边形的判定,三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.24.【分析】(1)根据题意和函数图象可以分别求出手机支付金额y(元)与骑行时间x(时)各段对应的函数解析式;(2)根据题意可以求得会员卡支付对应的函数解析式,再根据函数图象即可解答本题.【解答】解:(1)当0≤x≤0.5时,y=0,当x≥0.5时,设手机支付金额y(元)与骑行时间x(时)的函数关系式是y=kx+b,,解得,,即当x≥0.5时,手机支付金额y(元)与骑行时间x(时)的函数关系式是y=x﹣0.5,由上可得,手机支付金额y(元)与骑行时间x(时)的函数关系式是y=;(2)设会员卡支付对应的函数解析式为y=ax,则0.75=a×1,得a=0.75,即会员卡支付对应的函数解析式为y=0.75x,令0.75x=x﹣0.5,得x=2,由图象可知,当x>2时,会员卡支付便宜,答:当0<x<2时,李老师选择手机支付比较合算,当x=2时,李老师选择两种支付一样,当x>2时,李老师选择会员卡支付比较合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想和一次函数的性质解答,这是一道典型的方案选择问题.25.【分析】(1)由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形;(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(2)当△ABC满足∠BAC=90°时,四边形ADCE是正方形.证明:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE是矩形,∴矩形ADCE是正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.26.【分析】(1)将点A的坐标代入函数解析式求得k的值,根据直线方程求得点B的坐标,然后求得相关线段的长度,由三角形的面积公式解答;(2)根据等腰三角形的性质和两点间的距离公式解答;(3)分类讨论:点P在x轴的上方和下方,两种情况,利用三角形的面积公式和已知条件,列出方程,利用方程求得点P的坐标即可.【解答】解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得k=﹣,∴y=﹣x+3.当x=0时,y=3.∴B (0,3),OB =3.当y =0时,﹣ x +3=0,∴x =2,∴A (2,0),OA =2,∴S △AOB =OA •OB =×2×3=3.(2)如图2,①当AB =BC 时,点C 与点A (2,0)关于y 轴对称,故C (﹣2,0)符合题意;②当AB =AC 时,由A (2,0),B (0,3)得到AB ==,由AC =AC ′=得到C ′(+2,0)、C ″(2﹣,0).综上所述,符合条件的点C 的坐标是(﹣2,0)或(+2,0)或(2﹣,0);(3)∵M (3,0),∴OM =3,∴AM =3﹣2=1.由(1)知,S △AOB =3,∴S △PBM =S △AOB =3;①当点P 在x 轴下方时,S △PBM =S △PAM +S △ABM =+•AM •|y P |=+×1×|y P |=3, ∴|y P |=3,∵点P 在x 轴下方,∴y P =﹣3.当y =﹣3时,代入y =﹣x +3得,﹣3=﹣x +3,解得x =4.∴P (4,﹣3);②当点P 在x 轴上方时,S △PBM =S △APM ﹣S △ABM =•AM •|y P |﹣=×1×|y P |﹣=3, ∴|y P |=9,∵点P 在x 轴上方,∴y P =3.当y=9时,代入y=﹣x+3得,9=﹣x+3,解得x=﹣4.∴P(﹣4,9).【点评】本题综合考查了一次函数与几何知识的应用,题中运用点的坐标与图形的知识求出相关线段的长度是解题的关键.另外,注意分类讨论和“数形结合”数学思想的应用.。
2018-2019学年上海市普陀区第二学期八年级期末试卷(含答案)
普陀2018学年第二学期八年级数学学科期末考试卷(考试时间:90分钟,满分:100分)一、单项选择题(本大题共6题,每题2分,满分12分)1.下列函数中,一次函数是().A .y x =B .y kx b =+C .11y x =+D .22y x x =-2.下列方程中,有实数根的方程是().A .4160x +=B .2230x x ++=C .2402x x -=-D 0+=3.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为().A .1x >-B .2x <-C .1x <-D .无法确定4.下列事件中,属于随机事件的是().A .凸多边形的内角和为500︒B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边5.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r 的结果是().A .CA u u u rB .AC u u u r C .0rD .AEu u u r 6.如图,在四边形ABCD 中,AC 与BD 相交于点O ,AD BC ∥,AC BD =,那么下列条件中不能..判定四边形ABCD 是矩形的是().A .AD BC=B .AB CD =C .DAB ABC ∠=∠D .DAB DCB∠=∠二、填空题(本大题共12题,每小题3分,满分36分)7.若一次函数(2)1y k x =-+中,y 随x 的增大而减小,则k 的取值范围是.8.已知直线(2)3y k x =-+与直线32y x =-平行,那么k =.9.方程320x +=在实数范围内的解是.10.方程2422x x x =--的解是.11.用换元法解方程221231x x x x -+=-时,如果设21x y x-=,那么得到关于y 的整式方程为.12.将二元二次方程22560x xy y -+=化为两个一次方程为.13.一个菱形的两条对角线长分别为12cm 、16cm ,这个菱形的周长=cm .14.如图,在四边形ABCD 中,AB CD ≠,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是.15.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是.16.已知在等腰梯形ABCD 中,CD AB ∥,AD BC =,对角线AC BD ⊥,垂足为O ,若3CD =,8AB =,梯形的高为.17.如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE =,且45ECF ∠=︒,则CF 的长为.18.如图,在ABCD Y 中,AC 与BD 相交于点O ,60AOB ∠=︒,4BD =,将ABC △沿直线AC 翻折后,点B 落在点E 处,那么AED S =△.三、解答题(共7题,满分52分)192511x x -=-+.20.解方程组:2241226x y x y ⎧-=⎨+=⎩.21.如图,点E 、F 、G 、H 分别是四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)如果图中线段都可画成有向线段........,那么在这些有向线段所表示的向量中,与向量EF u u u r 相等的向量是;(2)设AB a =u u u r r ,BC b =u u u r r ,AD c =u u u r r .试用向量a r ,b r 或c r 表示下列向量:AC =u u u r ;DC =u u u r ;(3)求作:BC DG -u u u r u u u r.(请在原图..上作图,不要求写作法,但要写出结论)22.某校学生在“蓝天下的至爱”帮困活动中,纷纷拿零花钱,参加募捐活动.甲班学生共募捐840元,乙班学生共募捐1000元,乙班学生的数比甲班学生的人均捐款数多5元,且人数比甲班少2名,求甲班和乙班学生的人数.23.某边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶(如图1).图2中1l 、2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1)求1l 、2l 的函数解析式;(2)当A 逃到离海岸12海里的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃入公海前将其拦截?若能,请求出此时B 离海岸的距离;若不能,请说明理由.24.已知:如图1,在ABCD Y 中,点G 为对角线AC 的中点,过点G 的直线EF 分别交边AB 、CD 于点E 、F ,过点G 的直线MN 分别交边AD 、BC 于点M 、N ,且AGE CGN ∠=∠.(1)求证:四边形ENFM 为平行四边形;(2)如图2,当四边形ENFM 为矩形时,求证:BE BN =.25.如图,已知直角梯形ABCD ,AD BC ∥,90DCB ∠=︒,过点A 作AH BC ⊥,垂足为点H ,4CD =,2BH =,点F 是CD 边上的一动点,过F 作线段AB 的垂直平分线,交AB 于点E ,并交射线BC 于点G .(1)如图1,当点F 与点C 重合时,求BC 的长;(2)设AD x =,DF y =,求y 与x 的函数关系式,并写出定义域;(3)如图2,联结DE ,当DEF △是等腰三角形时,求AD 的长.普陀2018学年第二学期八年级期末考试数学试卷参考答案一、选择题(本大题共6题,每小题2分,满分12分)1.A 2.C 3.C 4.C 5.B 6.B二、填空题(本大题共12题,每小题3分,满分36分)7.2k >8.59.x =10.2x =-11.2320y y -+=12.30x y -=和20x y -=13.4014.AD BC =15.3516.5.517.18.三、解答题(本大题共7题,第19题~第22题每小题6分,共24分;第23题、第24题每小题8分,共16分,第25题12分,满分52分)191=-,2511x x -=-+,7x =-,2444914x x x +=-+,218450x x -+=.13x =,215x =.经检验:它们都是增根,舍去.所以原方程无解.20.解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩,解得41x y =⎧⎨=⎩,所以原方程组的解是41x y =⎧⎨=⎩.21.(1)HGu u u r (2)AC a b =+u u u r r r ;DC a b c =+-u u u r r r r .(3)∵BC DG BC GC BG -=-=u u u r u u u r u u u r u u u r u u u r,∴BC u u u r为所求作向量.作图略22.解:设乙班学生的人数为x 名,则甲班学生的人数为(2)x +名.根据题意,得100084052x x -=+.整理,得2304000x x --=.解得140x =,210x =-.经检验:140x =,210x =-都是原方程的根,但210x =-不符合题意,舍去.242x +=答:甲班学生的人数为42名,乙班学生的人数为40名.23.解:(1)由题意,设()111:0l s k t k =≠.∵(10,5)在此函数图像上,∴1105k =,解得112k =,∴12s t =.由题意,设()222:0l s k t b k =+≠.∵(0,5),(10,7)在此函数图像上,∴205107b k b +=⎧⎨+=⎩.解得215k =,5b =.∴155s t =+.(2)由题意,得12155s t s t ⎧=⎪⎪⎨⎪=+⎪⎩,解得503253t s ⎧=⎪⎪⎨⎪=⎪⎩.∵25123<,∴B 能追上A .此时B 离海岸的距离为253海里.24.(1)证明:∵四边形ABCD 为平行四边形,∴AB CD ∥.∴EAG FCG ∠=∠.∵点G 为对角线AC 的中点,∴AG GC =.∵AGE FGC ∠=∠,∴EAG FCG △≌△.∴EG FG =.同理MG NG=∴四边形ENFM 为平行四边形.(2)证明:∵四边形ENFM 为矩形,∴EF MN =,且12EG EF =,12GN MN =.∴EG NG =.(不可无上步而直接写EG NG FG MG ===)又∵AG CG =,AGE CGN ∠=∠.∴EAG NCG △≌△.∴AE CN =,BAC ACB ∠=∠.∴AB BC =.∴AB AE BC CN -=-.即BE BN =.25.解:(1)∵梯形ABCD 中,AD BC ∥,AH BC ⊥,90DCB ∠=︒,∴AD CH=∵CE 是线段AB 的垂直平分线,∴BC AC=在Rt ADC △中,222AD DC AC +=又∵4DC =,2BH =,设AD HC x ==,2BC x AC =+=,222(2)4x x +=+∴3x =∴235BC =+=(2)联结AF ,BF∵EF 是线段AB 的垂直平分线,∴AF BF=∵AD x =,DF y =,∴4FC y=-在Rt ADF △中,222AF x y=+在\sqrt{5}中,222(2)(4)BF x y =++-∴2222(2)(4)x y x y +=++-∴5(03)2x y x +=<≤(3)在Rt ABH △中,4AH =,2BH =,∴25AB =,5AE BE ==当DEF △是等腰三角形时①∵FD FE=∴DEF EDF∠=∠∵90ADC AEF ∠=∠=︒∴AED ADE∠=∠∴5AD AE ==②DE EF=取DC 中点M ,联结EM ∵E 为AB 的中点∴EM 为梯形中位线∴EM DC⊥∵DE EF=∴M 为DF 中点,∴此时F 与C 重合∴3AD =③DE DF=联结DE 并延长交CB 延长线于点P此时EAD EBP △≌△.∴AD PB x ==,2BC x =+,DE PE y==∴22PC x =+,2DP y=∴在Rt PDC △中,222(22)4(2)x y ++=,∵52x y +=∴解得153x =,21x =-(不合题意含去)∴综上所述,当DEF △是等腰三角形时,AD 53或53。
河南省洛阳市2018-2019学年八年级(下)期末数学试卷(含解析)
河南省洛阳市2018-2019学年八年级第二学期期末数学试卷一、选择题(共10小题,30分)1.二次根式中x的取值范围是()A.x≥﹣2B.x≥2C.x≥0D.x>﹣22.估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间3.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.众数B.方差C.平均数D.中位数4.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种5.下列式子一定成立的是()A.=a B.=C.=D.=26.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:(米)若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是08.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52B.48C.40D.209.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.10.如图,在▱ABCD中,AB=4,BC=6.以点C为圆心,适当长为半径画弧,交BC于点E,交CD于点F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,射线CP交BA的延长线于点Q,则AQ的长是()A.1B.1C.2D.2二、填空题(共5小题,15分)11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1>2x+m>0的解集为.13.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.14.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.15.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=.三、解答题(共8个小题,共75分)16.(8分)计算下列各式的值:(1)÷×;(2)(1﹣)2﹣|﹣2|.17.(8分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE 沿直线AE 折叠,得到多边形AB ′C ′E ,且B ′C ′恰好经过点D .求线段CE 的长度.18.(9分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了人 .19.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,4),且与x 轴相交于点B ,与正比例函数y =2x 的图象相交于点C ,点C 的横坐标为1. (1)求一次函数y =kx +b 的解析式;(2)若点D 在y 轴上,且满足S △COD ═S △BOC ,请直接写出点D 的坐标.20.(10分)如图,▱ABCD中,点E是CD的中点,连接AE并延长交BC延长线于点F (1)求证:CF=AD;(2)连接BD、DF,①当∠ABC=90°时,△BDF的形状是;②若∠ABC=50°,当∠C FD=°时,四边形ABCD是菱形.21.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?22.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产.已知A、B两城分别有肥料210吨和290吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡肥料x吨①用含x的代数式完成下表②设总运费为y元,写出y与x的函数关系式,并求出最少总运费;(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时从A城运往C乡肥料多少吨时总运费最少?23.(11分)(1)问题背景:如图1,△ABC中,AB=AC,点D是BC的中点,∠BAC=120°①若AB=AC=2,则BC=;②若AB=AC=a,则B C=.(用含a的式子表示);(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C 三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;(3)拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.若AE=6,CE=3,请直接写出BF的长,BF=.参考答案与试题解析一、选择题(共10小题,30分)1.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:x+2≥0,∴x≥﹣2,故选:A.【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.【点评】此题主要考查了估算无理数的能力,要求学生正确理解无理数的性质,进行估算,“夹逼法”是估算的一般方法,也是常用方法.3.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4.【分析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3种来判定.5.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=|a|,不符合题意;B、当a≥0,b≥0时,=•,不符合题意;C、原式不一定成立,不符合题意;D、==2,符合题意,故选:D.【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.6.【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.8.【分析】由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.【解答】解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.9.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.10.【分析】利用基本作图得到∠BCQ=∠DCQ,再根据平行四边形的性质得到AB∥CD,所以∠Q =∠DCQ,从而得到∠Q=∠BCQ,所以BQ=BC=6,然后计算BQ﹣AB即可.【解答】解:由作法得CQ平分∠BCD,∴∠BCQ=∠DCQ,∵四边形ABCD为平行四边形,∴AB∥CD,∴∠Q=∠DCQ,∴∠Q=∠BCQ,∴BQ=BC=6,∴AQ=BQ﹣AB=6﹣4=2.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.二、填空题(共5小题,15分)11.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.12.【分析】先将点P(n,2)代入y=﹣x+1,求出n的值,再将P点坐标代入y=2x+m,求出m,进而求出y=2x+4与x轴的交点坐标,然后找出直线y=﹣x+1落在y=2x+m的上方且都在x轴上方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x+1的图象过点P(n,2),∴2=﹣n+1,解得n=﹣1,∴P(﹣1,2),将P(﹣1,2)代入y=2x+m,得2=﹣2+m,解得m=4,∴y=2x+4,当y=0时,2x+4=0,解得x=﹣2,∴y=2x+4与x轴的交点是(﹣2,0),∴关于x的不等式﹣x+1>2x+m>0的解集为﹣2<x<﹣1.故答案为﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.13.【分析】先根据众数的定义求出x=5,再根据中位数的定义求解可得.【解答】解:∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则数据为1、3、3、5、5、6,∴这组数据为=4,故答案为:4.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.14.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,∵AB=AD,∠BAE=∠D,AE=DF∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=8,CF=CD﹣DF=8﹣2=6∴BF==10∴GH=5故答案为:5【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.15.【分析】连接BE,根据题意可以证明△AEB是直角三角形,然后根据三角形全等和勾股定理即可证明AE2+AD2=2AC2,即可求AC的值.【解答】解:连接BE,∵△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,∴∠ECA+∠ACD=∠ACE+∠ECB=90°,∠CEA=∠CDE=45°,∠CAB=∠CBA=45°,∴∠DCA=∠ECB,且CE=CD,CA=CB∴△DCA≌△ECB(SAS),∴AD=BE,∠CEB=∠CDA,∴∠BEA=∠CEB+∠CDA=∠CEA+∠CDA=90°,∴△AEB是直角三角形,∴AE2+BE2=AB2,在Rt△ACB中,AC=BC,AC2+BC2=2AC2=AB2,∴2AC2=AE2+BE2,即AE2+AD2=2AC2;∵AD=,AE=3,∴AC=故答案为:【点评】本题考查全等三角形的判定与性质、等腰三角形的性质,解答本题的关键是找到AE2+AD2=2AC2.三、解答题(8个小题,共75分)16.【分析】(1)利用二次根式的乘除法则运算;(2)根据完全平方公式和绝对值的意义计算.【解答】解:(1)原式==;(2)原式=1﹣2+3+﹣2=2﹣.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【分析】由矩形的性质可得AD=BC=5,AB=CD=3,∠B=∠C=90°,由折叠的性质可得AB=AB'=3,CE=C'E,B'C'=BC=5,∠B'=∠B=90°,∠C=∠C'=90°,由勾股定理可求B'D的长,可得C'D的长,由勾股定理可求CE的长.【解答】解:∵四边形ABCD是矩形∴AD=BC=5,AB=CD=3,∠B=∠C=90°∵将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,∴AB=AB'=3,CE=C'E,B'C'=BC=5,∠B'=∠B=90°,∠C=∠C'=90°∵B'D==4,∴C 'D =B 'C '﹣B 'D =1,∵DE 2=C 'E 2+C 'D 2,∴(3﹣CE )2=CE 2+1,∴CE =【点评】本题考查了折叠变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键. 18.【分析】(1)由6册人数及其所占百分比求出总人数,再根据各册数的人数和等于总人数可得5册人数,再;补全条形统计图(2)用360°乘以对应人数所占比例即可得;(3)由4册和5册的人数和为14,中位数没有改变知总人数不能超过27,据此可得答案.【解答】解:(1)∵被调查的总人数为6÷25%=24(人),∴5册的人数为24﹣(5+6+4)=9(人),如图所示:(2)扇形统计图中册数为4的扇形的圆心角的度数为360°×=75°;(3)∵4册和5册的人数和为14,中位数没有改变,∴总人数不能超过27,即最多补查了3人.故答案为:3. 【点评】本题考查了统计图与中位数,熟练掌握条形统计图与扇形统计图是解题的关键. 19.【分析】(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m ),根据三角形的面积公式结合S △COD =S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标.【解答】解:(1)∵当x =1时,y =2x =2,∴点C 的坐标为(1,2).将A (﹣2,4)、C (1,2)代入y =kx +b ,得:,解得:.∴一次函数的解析式为y =﹣x +;(2)当y =0时,有﹣x +=0,解得:x =4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m ),∵S △COD =S △BOC ,即×1×|m |=××4×2,解得:m =±4,∴点D 的坐标为D (0,4)或D (0,﹣4).【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =S △BOC ,找出关于m 的一元一次方程. 20.【分析】(1)根据平行四边形的性质得到AD ∥BC ,得到∠DAE =∠CFE ,根据全等三角形的判定和性质即可得到结论;(2)①根据矩形的判定定理得到▱ABCD 是矩形,得到AC =BD ,等量代换即可得到结论; ②根据菱形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE =∠CFE ,∵点E 是CD 的中点,∴DE =CE ,在△ADE与△FCE中,,∴△ADE≌△FCE(AAS),∴AD=CF;(2)①△BDF是等腰三角形,∵∠ABC=90°,∴▱ABCD是矩形,∴AC=BD,∵AD=CF,∴四边形ADFC是平行四边形,∴DF=AC,∴BD=DF,∴△BDF是等腰三角形;②当∠CFD=65°时,四边形ABCD是菱形,∵▱ABCD是菱形,∴AD=CD,∵AD=CF,∴CD=CF,∵∠ABC=50°,∴∠DCF=50°,∴∠CFD=(180°﹣50°)=65°.故答案为:等腰三角形,65.【点评】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.21.【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣0.1x+60.(2)∵当y=﹣0.1x+60=8时,x=520,即行驶520千米时,油箱中的剩余油量为8升.当x=450千米时,解得y=15升.∴75﹣(520﹣450)=5千米,即油箱中的剩余油量为8升时,距离加油站5千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是5千米.【点评】本题考查一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.22.【分析】(1)①根据题意即可完成表格;②用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(2)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,并得结论.【解答】解:(1)①由从A城运往C乡肥料x吨,可得从A城运往D乡肥料为(210﹣x)吨;从B城运往C乡肥料(240﹣x)吨,从B城运往C乡肥料(50+x)吨;故答案为:210﹣x;240﹣x;50+x;②y=20x+25(210﹣x)+15(240﹣x)+24(x+50)=4x+10050,由于y=4x+10050是一次函数,k=4>0,y随x的增大而增大.因为x≥0,所以当x=0时,运费最少,最少运费是10050元;(2)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(210﹣x)+15(240﹣x)+24(x+50)=(4﹣a)x+10050,当0<a<4时,∵4﹣a>0∴当x=0时,运费最少是10050元;当4<a<6时,∵4﹣a<0,∴当x最大时,运费最少.即当x=210时,运费最少.当a=4时,不管A城运往D乡多少吨(不超过210吨),运费都是10050元.【点评】本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论.23.【分析】(1)①由等腰三角形的性质得出∠B=∠C=30°,AD⊥BC,BD=CD,由直角三角形的性质得出AD=AB=1,BD=AD=,即可得出BC=2AD=2;②由等腰三角形的性质得出∠B=∠C=30°,AD⊥BC,BD=CD,由直角三角形的性质得出AD=AB=,BD=AD=a,即可得出BC=2AD=a;(2)①由SAS证明△ADB≌△AEC即可;②由全等三角形的性质得出BD=CE,由三角函数得出DH=A D•cos30°=AD,由等腰三角形的性质得出DH=HE,即可得出结论;(3)证明A、D、E、C四点共圆,由圆周角定理得出∠ADC=∠AEC=120°,证明△EFC是等边三角形,得出EF=CE=3,AH=HE=3,求出HF=HE+EF=6,在Rt△BHF中,由三角函数即可得出结果.【解答】(1)问题背景:解:①∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵点D是BC的中点,∴AD⊥BC,BD=CD,∴AD=AB=1,BD=AD=,∴BC=2AD=2;故答案为:2;②∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵点D是BC的中点,∴AD⊥BC,BD=CD,∴AD=AB=,BD=AD=a,∴BC=2AD=a;故答案为:a;(2)迁移应用:①证明:∵△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,∴AB=AC,AD=AE,∠BAD=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS);②解:结论:CD=AD+BD.理由如下:如图2中,作AH⊥CD于H.∵△ADB≌△AEC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.(3)拓展延伸:解:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,∴EF=CE=3,AE=6,∴AH=HE=3,∴HF=HE+EF=6,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==4;故答案为:4.【点评】本题是四边形综合题目,考查了全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.。
2018-2019学年湖北省武汉市洪山区八年级(下)期末数学试卷解析版
2018-2019学年湖北省武汉市洪山区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)使二次根式有意义的a的取值范围是()A.a≥﹣2B.a≥2C.a≤2D.a≤﹣22.(3分)下列各式中,化简后能与合并的是()A.B.C.D.3.(3分)一组数据2、3、4、6、6、7的众数是()A.3B.4C.5D.64.(3分)已知一次函数y=(k﹣1)x.若y随x的增大而增大,则k的取值范围是()A.k<1B.k>1C.k<0D.k>05.(3分)在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.56.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q7.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8 8.(3分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,AC=6,则菱形ABCD的面积为()A.6B.12C.15D.109.(3分)如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为(a、b为正整数),则a+b的值为()A.10B.11C.12D.1310.(3分)如图,已知平行四边形ABCD,AB=6,BC=9,∠A=120°,点P是边AB 上一动点,作PE⊥BC于点E,作∠EPF=120°(PF在PE右边)且始终保持PE+PF =3,连接CF、DF,设m=CF+DF,则m满足()A.m≥3B.m≥6C.3≤m<9+3D.3<m<3+9二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若正比例函数y=kx的图象经过点(1,2),则k=.12.(3分)已知y=,则x+y的值为.13.(3分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差S2甲乙丙丁(秒)30302828S2 1.21 1.05 1.21 1.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择.14.(3分)小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时,他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象小明从家出发,经过分钟在返回途中追上爸爸.15.(3分)如图,已知△ABC是等边三角形,点D在边BC上,以AD为边向左作等边△ADE,连结BE,作BF∥AE交AC于点F,若AF=2,CF=4,则AE=.16.(3分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线时,若AD=4,DG=2,则CE =.三、解答题(共8题,共72分)17.(8分)计算:18.(8分)如图,已知正方形ABCD,点E、F分别在边BC、CD上,若BE=CF,判断AE、BF的关系并证明.19.(8分)为弘扬中华传统文化,了解学生整体数学阅读能力,某校组次阅读理解大赛的初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图分组/分频数频率A组50≤x<6060.12B组60≤x<70a0.28C组70≤x<80160.32D组80≤x<90100.20E组90≤x≤10040.08(1)表中的a=;抽取部分学生的成绩的中位数在组;(2)把上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人.20.(8分)如图在平面直角坐标系中直线AB:y=kx+b经过A(,﹣1),分别交x轴、直线y=x、y轴于点B、P、C,已知B(2,0)(1)求直线AB的解析式;(2)直线y=m分别交直线AB于点E、交直线y=x于点F,若点F在点E的右边,说明m满足的条件.21.(8分)如图,在8×8的网格中,网格线的公共点称为格点已知格点A(1,1)、B(6,1),如图所示线段AC上存在另外一个格点(1)建立平面直角坐标系,并标注x轴、y轴、原点;(2)直接写出线段AC经过的另外一个格点的坐标:;(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点D的射线BD,使BD⊥AC(保留画图痕迹),并直接写出点D的坐标:.22.(10分)武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放A、B型商品共250件进行试销,A型商品成本价160元/件,B商品成本价150元/件,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设投放A型商品x件,该公司销售这批商品的利润y元.(1)直接写出y与x之间的函数关系式:.(2)为了使这批商品的利润最大,该公司应该向市场投放多少件A型商品?最大利润是多少?(3)该公司决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,当该公司售完这250件商品并捐献资金后获得的最大收益为18000元时,求a的值23.(10分)已知正方形ABCD,直线l垂直平分线段BC,点M是直线l上一动点,连结BM,将线段BM绕点M顺时针旋转90°得到线段MN,连接BN.(1)如图1,点M在正方形内部,连接NC,求∠BCN的度数;(2)如图2,点M在正方形内部,连接ND,若ND⊥MN,求的值;(3)连结DM,若DM⊥BN,直接写出=.24.(12分)已知直线l1:y=kx+2k与函数y=|x﹣a|+a(1)直线l1经过定点P,直接写出点P的坐标;(2)当a=1时,直线与函数y=|x﹣a|+a的图象存在唯一的公共点,在图1中画出y=|x ﹣a|+a的函数图象并直接写出k满足的条件;(3)如图2,在平面直角坐标系中存在正方形ABCD,已知A(2,2)、C(﹣2,﹣2).请认真思考函数y=|x﹣a|+a的图象的特征,解决下列问题:①当a=﹣1时,请直接写出函数y=|x﹣a|+a的图象与正方形ABCD的边的交点坐标;②设正方形ABCD在函数y=|x﹣a|+a的图象上方的部分的面积为S,求出S与a的函数关系式.2018-2019学年湖北省武汉市洪山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)使二次根式有意义的a的取值范围是()A.a≥﹣2B.a≥2C.a≤2D.a≤﹣2【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【解答】解:根据题意得:2﹣a≥0,解得a≤2.故选:C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)下列各式中,化简后能与合并的是()A.B.C.D.【分析】先化成最简二次根式,再根据同类二次根式的定义判断即可.【解答】解:A、=2,不能与合并;B、=2,能与合并;C、=,不能与合并;D、=,不能与合并;故选:B.【点评】本题考查了同类二次根式的应用,注意:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式.3.(3分)一组数据2、3、4、6、6、7的众数是()A.3B.4C.5D.6【分析】众数是一组数据中出现次数最多的数据,根据众数的定义求出这组数的众数即可.【解答】解:数据6出现了两次最多为众数.故选:D.【点评】本题属于基础题,考查了确定一组数据的众数的能力.4.(3分)已知一次函数y=(k﹣1)x.若y随x的增大而增大,则k的取值范围是()A.k<1B.k>1C.k<0D.k>0【分析】根据图象的增减性来确定(k﹣1)的取值范围,从而求解.【解答】解:∵一次函数y=(k﹣1)x,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选:B.【点评】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.5.(3分)在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.5【分析】根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵AC=4cm,BC=3,∴AB==5,∵D为斜边AB的中点,∴CD=AB=×5=.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q【分析】由条件可判断出直线所经过的象限,再进行判断即可.【解答】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴y随x的增大而减小,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.【点评】本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b <0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.7.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【分析】由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【解答】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.8.(3分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,AC=6,则菱形ABCD的面积为()A.6B.12C.15D.10【分析】由菱形的性质和等腰三角形的性质可得AF=FC=3,BF⊥AC,由三角形中位线定理可求BC=4,由勾股定理可求BF的长,即可求解.【解答】解:如图,连接BF∵四边形ABCD是菱形∴AB=BC,且点F是AC中点∴AF=FC=3,BF⊥AC∵E,F分别是AB,AC的中点∴BC=2EF=4∴BF==∴S=×AC×BF=3△ABC=6∴菱形ABCD的面积=2S△ABC故选:A.【点评】本题考查了菱形的性质,三角形中位线定理,等腰三角形的性质,勾股定理,求FB的长是本题的关键.9.(3分)如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为(a、b为正整数),则a+b的值为()A.10B.11C.12D.13【分析】连接MN,FH,由勾股定理可求FH的长,由三角形中位线定理可求MN的长,由题意列出等式可求a,b的值,即可求解.【解答】解:如图,连接MN,FH,∵正方形EFGH的边长为∴FH=∵M,N是EF,EH的中点∴MN=∵AD=1∴2×+=1∴4a﹣2﹣2b+a﹣4=0,且a、b为正整数∴a=4,b=7∴a+b=11故选:B.【点评】本题考查了中点四边形,正方形的性质,勾股定理,三角形中位线定理,求出MN的长是本题的关键.10.(3分)如图,已知平行四边形ABCD,AB=6,BC=9,∠A=120°,点P是边AB 上一动点,作PE⊥BC于点E,作∠EPF=120°(PF在PE右边)且始终保持PE+PF =3,连接CF、DF,设m=CF+DF,则m满足()A.m≥3B.m≥6C.3≤m<9+3D.3<m<3+9【分析】根据平行四边形性质及动点P的运动规律可判断出:当点P与A重合时,CF+DF 的值最大;当点P与点B重合时,CF+DF的值最小;再分两种情形分别求出CF+DF的最大值和最小值即可.【解答】解:如图1,∵平行四边形ABCD,∴AD∥BC,AD=BC=9,∵∠A=120°,AB=6,∴∠B=60°,∵PE⊥BC,∴∠PEB=90°,∴∠BPE=30°,∵∠EPF=120°,∴∠APF=30°,∴当点P与A重合时,CF+DF的值最大;当点P与点B重合时,CF+DF的值最小;如图2,当点P与A重合时,作AE⊥BC于E,此时,点F与A重合,CF+DF的值最大;∵平行四边形ABCD,∴AD∥BC,AD=BC=9,∵AE⊥BC,∴∠AEB=∠AEC=90°,∵∠A=120°,AB=6,∴∠B=60°,∴AE=AB•sin∠B=6sin60°=3,BE=AB•cos∠B=6cos60°=3,∴CE=BC﹣BE=6﹣3=6,在Rt△ACE中,AC===3,∴CA+DA=3+9,∴m<3+9,如图3,当点P与点B重合时,此时CF+DF的值最小,作AG⊥BC于G,过F作TH⊥BC于H交AD于T,∵平行四边形ABCD,∴AD∥BC,AD=BC=9,∵AG⊥BC,∴AG⊥AD,∴∠AGB=∠AGC=∠DAG=90°,∵TH⊥BC,∴∠GHT=90°,∴AGHT是矩形,∴TH=AG=3,∵BF=PE+PF=3,∠ABF=30°,∴∠FBH=30°,∴FH=BF•sin∠FBH=3sin30°=,BH=BF•cos∠FBH=3cos30°=,∴CH=BC﹣BH=9﹣=,TF=TH﹣FH=3﹣=,DT=∴CF===3,DF===3,∴CF+DF的最小值=3+3,∵PF在PE右边,即点P不与点A、B重合,∴3+3<CF+DF<3+9,即3+3<m<3+9,故选:D.【点评】本题考查了平行四边形性质,直角三角形性质,勾股定理,特殊角三角函数值等知识点,解题时要分析出CF+DF的最大值和最小值.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若正比例函数y=kx的图象经过点(1,2),则k=2.【分析】由点(1,2)在正比例函数图象上,根据一次函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.【解答】解:∵正比例函数y=kx的图象经过点(1,2),∴2=k×1,即k=2.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×1.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.12.(3分)已知y=,则x+y的值为1.【分析】根据二次根式有意义的条件即可求出x与y的值.【解答】解:由题意可知:x﹣1≥0且1﹣x≥0,∴x=1,∴y=0,∴x+y=1+0=1,故答案为:1【点评】本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.13.(3分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差S2甲乙丙丁(秒)30302828S2 1.21 1.05 1.21 1.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择丁.【分析】根据平均数与方差的意义,选择平均值较小且方差较小的同学参加比赛即可.【解答】解:∵丙、丁还原魔方用时比甲、乙用时少,又丁的方差小于丙的方差,∴还原魔方用时少又发挥稳定的同学是丁.故答案为丁.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.也考查了平均数.14.(3分)小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时,他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象小明从家出发,经过20分钟在返回途中追上爸爸.【分析】由题意得点B的坐标为(12,2400),小明骑车返回用时也是10分钟,因此点D的坐标为(22,0),小明的爸爸返回的时间为2400÷96=25分,点F的坐标(25,0)因此可以求出BD、EF的函数关系式,由关系式求出交点的横坐标即可【解答】解:由题意得:B(12,2400),D(22,0),F(25,0),E(0,2400)设直线BD、EF的关系式分别为s1=k1t+b1,s2=k2t+b2,把B(12,2400),D(22,0),F(25,0),E(0,2400)代入相应的关系式得:,,解得:,,直线BD、EF的关系式分别为s1=﹣240t+5280,s2=﹣96t+2400,当s1=s2时,即:﹣240t+5280=﹣96t+2400,解得:t=20,故答案为:20.【点评】考查一次函数的图象和性质、二元一次方程组的应用等知识,正确的识图,得出点的坐标求出直线的关系式是解决问题的首要问题.15.(3分)如图,已知△ABC是等边三角形,点D在边BC上,以AD为边向左作等边△ADE,连结BE,作BF∥AE交AC于点F,若AF=2,CF=4,则AE=2.【分析】证明△ADC≌△BFA全等,即可得到BF=AD,可证明四边形AEBF为平行四边形,求得BF的长即可得到AE的长度.【解答】解:∵△ABC和△ADE是等边三角形∴∠EAD=∠EAB+∠BAD=60°∠BAC=∠DAC+∠BAD=60°∴∠EAB=∠DAC∵AE∥BF∴∠EAB=∠ABF∴∠ABF=∠CAD∴在△ADC和△BFA中,,∴△ADC≌△BFA(ASA)∴BF=AD=AE∵AE∥BF且AE=BF∴四边形AEBF为平行四边形∴2(52﹣BF2)=48,解得BF=2∴BF=AE=2故答案为2【点评】本题主要考查三角形全等知识点,熟练掌握三角形全等条件是解答本题的关键.16.(3分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线时,若AD=4,DG=2,则CE=2或2.【分析】分两种情况,①当点G在线段BD的延长线上时和②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【解答】解:①当点G在线段BD的延长线上时,如图所示.过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADB=∠GDM=45°.∵GM⊥AD,DG=2,∴MD=MG=2,∴AM=AD+DM=6在Rt△AMG中,由勾股定理,得AG==2,∴CE=AG=2;②当点G在线段BD上时,如图2所示,过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADG=45°∵GM⊥AD,DG=2,∴MD=MG=2,∴AM=AD﹣MG=2在Rt△AMG中,由勾股定理,得AG==2,∴CE=AG=2,故CE的长为2或2.故答案为:2或2【点评】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的性质和判定,勾股定理,判定三角形全等是解本题的关键.三、解答题(共8题,共72分)17.(8分)计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.18.(8分)如图,已知正方形ABCD,点E、F分别在边BC、CD上,若BE=CF,判断AE、BF的关系并证明.【分析】根据正方形的性质可以证明△ABE≌△BCF,可以得出AE=BF,∠BAE=∠CBF,再由直角三角形的性质就可以得出∠BGE=90°,从而得出结论.【解答】解:AE=BF且AE⊥BF.理由是:∵四边形ABCD是正方形,∴AB=BC=CD,∠ABC=∠BCD=90°.在△ABE与△BCF中,∴△ABE≌△BCF(SAS)∴AE=BF,∠BAE=∠CBF.∵∠ABE=90°∴∠BAE+∠AEB=90°∴∠CBF+∠AEB=90°∴∠BGE=90°∴AE⊥BF.∴AE=BF且AE⊥BF.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,直角三角形的性质的运用.在解答时求出△ABE≌△BCF是关键.19.(8分)为弘扬中华传统文化,了解学生整体数学阅读能力,某校组次阅读理解大赛的初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图分组/分频数频率A组50≤x<6060.12B组60≤x<70a0.28C组70≤x<80160.32D组80≤x<90100.20E组90≤x≤10040.08(1)表中的a=14;抽取部分学生的成绩的中位数在C组;(2)把上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人.【分析】(1)由A组频数及其频率可得总人数,总人数乘以B组频率可得a的值,根据中位数的定义可得答案;(2)根据以上所求数据可补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)∵样本容量为6÷0.12=50,∴a=50×0.28=14,∵被调查的总人数为50,其中位数为第25、26个数据的平均数,而第25、26个数据均落在C组,∴这组数据的中位数落在C组,故答案为:14、C;(2)补全频数分布直方图如下:(3)估计该校进入决赛的学生大约有1000×=80(人).【点评】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.20.(8分)如图在平面直角坐标系中直线AB:y=kx+b经过A(,﹣1),分别交x轴、直线y=x、y轴于点B、P、C,已知B(2,0)(1)求直线AB的解析式;(2)直线y=m分别交直线AB于点E、交直线y=x于点F,若点F在点E的右边,说明m满足的条件.【分析】(1)将A、B两点的坐标代入y=kx+b,利用待定系数法即可求出直线AB的解析式;(2)设点E(x E,m),点F(x F,m),将E点坐标代入直线AB的解析式,F点坐标代入直线线y=x,得出E、F两点横坐标的不等式,再根据点F在点E的右边,列出不等式,求解即可.【解答】解:(1)∵直线AB:y=kx+b经过A(,﹣1),B(2,0),∴,解得,∴直线AB的解析式为y=﹣2x+4;(2)如图,设点E(x E,m),点F(x F,m),则m=﹣2x E+4,m=x F,∴x E=﹣m+2,x F=m.∵点F在点E的右边,∴m>﹣m+2,解得m>,即m满足的条件是m>.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了待定系数法求一次函数的解析式.21.(8分)如图,在8×8的网格中,网格线的公共点称为格点已知格点A(1,1)、B(6,1),如图所示线段AC上存在另外一个格点(1)建立平面直角坐标系,并标注x轴、y轴、原点;(2)直接写出线段AC经过的另外一个格点的坐标:(5,4);(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点D的射线BD,使BD⊥AC(保留画图痕迹),并直接写出点D的坐标:(3,5).【分析】(1)根据要求作出平面直角坐标系即可.(2)观察图形即可找到点E,写出点E坐标即可.(3)构造全等三角形,利用全等三角形的性质解决问题即可.【解答】解:(1)平面直角坐标系如图所示.(2)符合条件的点E坐标为(5,4).故答案为(5,4).(3)射线BD如图所示,D(3,5).故答案为(3,5).【点评】本题考查作图﹣应用与设计,解题的关键是灵活运用所学知识解决问题,学会构造全等三角形,利用全等三角形的性质解决直角问题,属于中考常考题型.22.(10分)武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放A、B型商品共250件进行试销,A型商品成本价160元/件,B商品成本价150元/件,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设投放A型商品x件,该公司销售这批商品的利润y元.(1)直接写出y与x之间的函数关系式:y=10x+17500.(2)为了使这批商品的利润最大,该公司应该向市场投放多少件A型商品?最大利润是多少?(3)该公司决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,当该公司售完这250件商品并捐献资金后获得的最大收益为18000元时,求a的值【分析】(1)根据题意即可得出y与x之间的函数关系式;(2)根据题意得出x的取值范围,再根据一次函数的性质解答即可;(3)根据题意得y=10x+17500﹣ax=(10﹣a)x+17500,再根据一次函数的性质解答即可.【解答】解:(1)根据题意得,y=(240﹣160)x+(220﹣150)×(250﹣x),即y=10x+17500.故答案为:y=10x+17500;(2)由题意可知80≤x≤250﹣x,即80≤x≤125,由(1)的结论可知y随x的增大而增大,当x=125时,y=1250+17500=18750,∴该公司应该向市场投放125件A型商品,最大利润,18750元;(3)根据题意可知一共捐出ax元,∴y=10x+17500﹣ax=(10﹣a)x+17500,当10﹣a<0时,y=(10﹣a)x+17500的最大值小于17500,当10﹣a>0时,x=125时,y有最大值,即125(10﹣a)=18000﹣17500,∴a=6,即满足条件时a的值为6.【点评】本题考查了一次函数的应用识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.23.(10分)已知正方形ABCD,直线l垂直平分线段BC,点M是直线l上一动点,连结BM,将线段BM绕点M顺时针旋转90°得到线段MN,连接BN.(1)如图1,点M在正方形内部,连接NC,求∠BCN的度数;(2)如图2,点M在正方形内部,连接ND,若ND⊥MN,求的值;(3)连结DM,若DM⊥BN,直接写出=或.【分析】(1)如图1中,设直线l交BC于K.在直线l上取一点O,使得KO=BK.连接OB,OC,ON.证明△KBM∽△OBN,推出∠BKM=∠BON=90°,可得C,O,N 共线,即可解决问题.(2)如图2中,作CK⊥DN于K,在KC上取一点J,使得KJ=DK,连接DJ.首先证明CN=CD,设DK=NK=a,则DJ=a,利用勾股定理求出CD2,即可解决问题.(3)分两种情形:如图3﹣1中,当点M在BC的下方时,设DM交BN于K.如图3﹣2中,当点M在正方形内部时,同法可证△BDN是等边三角形.证明△BDN是等边三角形即可解决问题.【解答】解:(1)如图1中,设直线l交BC于K.在直线l上取一点O,使得KO=BK.连接OB,OC,ON.∵△BMN,△BOK都是等腰直角三角形,∴∠OBK=∠MBN=45°,OB=BK,BN=BM,∴∠KBN=∠OBB,==,∴△KBM∽△OBN,∴∠BKM=∠BON=90°,∵OK=BK=CK,∴∠BOC=90°,∴∠CON=180°,∴C,O,N共线,∴∠NCB=45°.(2)如图2中,作CK⊥DN于K,在KC上取一点J,使得KJ=DK,连接DJ.∵BC=CD,∠NCB=∠NCD,CN=CN,∴△NCB≌△NCD,∴∠CNB=∠CND,∵DN⊥MN,∴∠DNM=90°,∵∠BNM=45°,∴∠BND=135°,∴∠CND=∠CNB=67.5°,∴∠CDN=67.5°,∴∠CND=∠CDN,∵CK⊥DN,∴DK=NK,设DK=NK=a,则DJ=a,∵∠DJK=∠JCD+∠CDJ=45°,∠JCD=22.5°,∴∠JCD=∠JDC,∴DJ=JC=a,∴CD2=DK2+CK2=a2+(a+a)2=(4+2)a2,∵DN2=4a2,∴==2﹣.(3)如图3﹣1中,当点M在BC的下方时,设DM交BN于K.∵MB=MN.DM⊥BM,∴BK=KN,∴DB=DN,∵NC⊥BD,平分BD,∴ND=NB,∴DB=DN=BN,∴△DBN是等边三角形,设MK=BK=KN=a,则DK=BK=a,∴==.如图3﹣2中,当点M在正方形内部时,同法可证△BDN是等边三角形.设设MK=BK=KN=a,则DK=BK=a,∴==.综上所述,的值为或.故答案为或.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形或全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.24.(12分)已知直线l1:y=kx+2k与函数y=|x﹣a|+a(1)直线l1经过定点P,直接写出点P的坐标;(2)当a=1时,直线与函数y=|x﹣a|+a的图象存在唯一的公共点,在图1中画出y=|x ﹣a|+a的函数图象并直接写出k满足的条件;(3)如图2,在平面直角坐标系中存在正方形ABCD,已知A(2,2)、C(﹣2,﹣2).请认真思考函数y=|x﹣a|+a的图象的特征,解决下列问题:①当a=﹣1时,请直接写出函数y=|x﹣a|+a的图象与正方形ABCD的边的交点坐标;②设正方形ABCD在函数y=|x﹣a|+a的图象上方的部分的面积为S,求出S与a的函数关系式.【分析】(1)y=kx+2k=k(x+2),即可求解;(2)临界点有以下三种情况:直线过点A(1,1)、直线与图象右侧直线平行、直线与图象左侧直线平行,分别求解即可;(3)分当图象与函数无交点、点T在AD上、点T在边CD上、点T与点C重合三种情况,分别求解即可.【解答】解:(1)y=kx+2k=k(x+2),∴直线经过定点(﹣2,0),∴P(﹣2,0);(2)当a=1时,y=|x﹣1|+1,函数图象如下:直线与函数y=|x﹣a|+a的图象存在唯一的公共点,有以下三种情况:①当直线过点A(1,1)时,将点A的坐标代入y=kx+2k得:1=3k,解得:k=;②k=1直线和函数恰好有一个交点,且直线与图象右侧直线平行,故当k≥1时,直线和函数恰好有一个交点;③k=﹣1直线与图象左侧直线平行,直线和函数恰好没有交点,且故当k<﹣1时,直线和函数恰好没有交点;综上,k=或k≥1或k<﹣1;(3)如下图,图象的顶点为H (a ,a ),函数与正方形的交点为点T 、点A ,①当图象与函数无交点时,S =0,a >2;②当点T 在AD 上时,如图2(左),此时0<a ≤2,过点H 作HM ⊥AD 于点M ,则S =×MH ×AD =(2﹣a )×2×(2﹣a )=a 2﹣4a +4;③当点T 在边CD 上时,此时﹣2<a ≤0,连接HC ,S =S △ACD ﹣S △THC =8﹣×(2﹣a )(2﹣a )=﹣a 2﹣4a +4;④当点T 与点C 重合时,S =8;综上,S =.【点评】本题考查的是一次函数综合运用,涉及到函数平移、正方形性质、图形的面积计算等,正确理解题意,分情况作图,是本题解题的关键.。
江苏省徐州市2018-2019学年八年级下期末数学试卷含答案解析
第1页(共22页)页)2018-2019学年江苏省徐州市八年级(下)期末数学试卷一.选择题(共有8小题,每小题3分,共24分,四个选项中只有一个选项是符合题意的) 1.=( ) A .﹣2019 B .2019 C .±2019D .2.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(图形的是( )A .B .C .D .3.设n 为正整数,且n <<n+1,则n 的值为(的值为( ) A .5 B .6C .7D .84.矩形具有而菱形不具有的性质是(.矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等 C .对角线互相平分.对角线互相平分 D .两组对角分别相等.两组对角分别相等5.要使式子有意义,则x 的取值范围是(的取值范围是( ) A .x >0 B .x ≥﹣2 C .x ≥2 D .x ≤26.若反比例函数y=的图象位于第二、四象限,则k 的取值可以是(的取值可以是( ) A .0 B .1C .2D .37.分式方程的解为(的解为( )A .x=1B .x=2C .x=3D .x=48.已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为(之间的函数关系用图象大致可以表示为( )A .B .C .D .二.填空题 9.计算:= .10.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ʹOB ʹ,若∠AOB=15°,则∠AOB ʹ的度数是数是 .11.要使式子=﹣a 成立,a 的取值范围是的取值范围是 .12.当分式的值为0时,x 的值为的值为 .13.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是 .14.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m n(填“>”“<”或“=”号).号).15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器所需时间相同,现在平均每天生产 台机器.16.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD 上一点,则PM+PN的最小值= .二.解答题(共10小题,共72分)17.计算:7+3﹣5.18.化简:÷(+1)19.已知: +=0,求+的值.的值.20.解方程:.21.已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)当﹣3<x<﹣1时,求y的取值范围.22.已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C 作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.23.甲、乙两个公司为某敬老院各捐款300000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐款20元.则甲、乙两公司各有多少元?24.某商店规定:购物总金额满200元,所购物品均可享受8折优惠;购物满500元,所购物品均可享受7.5折优惠.(1)设用100元购买标价为x(元/kg)的商品y(kg),写出y与x之间的函数表达式,并注明自变量x的取值范围;(2)设用240元购买标价为x(元/kg)的商品y(kg),写出y与x之间的函数表达式;(3)小明用600元在该商店购物,除购买标价为12元/袋的食品50袋外,所余金额均购买标价为16元/千克的散装糖果,小明购买了多少散装糖果?25.已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2).)求这两个函数的表达式;(1)求这两个函数的表达式;(2)如果点C与点A关于x轴对称,求△ABC的面积.26.(2019•盐城)如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)2018-2019学年江苏省徐州市八年级(下)期末数学试卷参考答案与试题解析一.选择题(共有8小题,每小题3分,共24分,四个选项中只有一个选项是符合题意的) 1.=( ) A .﹣2019B .2019C .±2019D .【考点】二次根式的性质与化简.【分析】直接根据二次根式的性质进行计算即可. 【解答】解:原式=2019. 故选B .【点评】本题考查的是二次根式的性质与化简,熟知二次根式的化简法则是解答此题的管家.2.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(图形的是( )A .B .C .D .【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可. 【解答】解:A 、是中心对称图形,故本选项正确; B 、不是中心对称图形,故本选项错误;、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误; D 、不是中心对称图形,故本选项错误; 故选A .【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.设n 为正整数,且n <<n+1,则n 的值为(的值为( )A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.4.矩形具有而菱形不具有的性质是(.矩形具有而菱形不具有的性质是( )A.两组对边分别平行 B.对角线相等.对角线相等C.对角线互相平分 D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.5.要使式子有意义,则x的取值范围是(的取值范围是( )A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.本题考查的知识点为:二次根式的被开方数是非负数.6.若反比例函数y=的图象位于第二、四象限,则k 的取值可以是(的取值可以是( ) A .0B .1C .2D .3【考点】反比例函数的性质.【分析】反比例函数y=的图象位于第二、四象限,比例系数k ﹣1<0,即k <1,根据k 的取值范围进行选择.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k ﹣1<0, 即k <1. 故选A .【点评】本题考查了反比例函数的性质.对于反比例函数y=(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内. 7.分式方程的解为(的解为( )A .x=1B .x=2C .x=3D .x=4 【考点】解分式方程.【分析】首先分式两边同时乘以最简公分母2x (x ﹣1)去分母,去分母,再移项合并同类项即可得到再移项合并同类项即可得到x 的值,然后要检验.【解答】解:,去分母得:3x ﹣3=2x , 移项得:3x ﹣2x=3, 合并同类项得:x=3,检验:把x=3代入最简公分母2x (x ﹣1)=12≠0,故x=3是原方程的解, 故原方程的解为:X=3, 故选:C .【点评】此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.是同学们最容易出错的地方.8.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为(之间的函数关系用图象大致可以表示为( ) A. B. C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.二.填空题9.计算: = a﹣1 .【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==a﹣1.故答案为:a﹣1【点评】此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母.10.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ʹOB ʹ,若∠AOB=15°,则∠AOB ʹ的度数是数是 30° .【考点】旋转的性质. 【专题】几何图形问题.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可. 【解答】解:∵将△AOB 绕点O 按逆时针方向旋转45°后得到△A ʹOB ʹ, ∴∠A ʹOA=45°,∠AOB=∠A ʹOB ʹ=15°, ∴∠AOB ʹ=∠A ʹOA ﹣∠A ʹOB=45°﹣15°=30°, 故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A ʹOA=45°,∠AOB=∠A ʹOB ʹ=15°是解题关键.11.要使式子=﹣a 成立,a 的取值范围是的取值范围是 a ≤0 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质进行解答即可.【解答】解:∵式子=﹣a 成立,∴a ≤0. 故答案为:a ≤0.【点评】本题考查的是二次根式的性质与化简,熟知二次根式的化简法则是解答此题的管家.12.当分式的值为0时,x 的值为的值为 2 .【考点】分式的值为零的条件.【分析】根据分式值为零的条件:分子为0,分母不为0,可得答案.,可得答案.,得分式的值为0,得解:由【解答】解:由,解得x=2,故答案为:2.【点评】本题考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是),则它们的另一个交点坐标是 (﹣3,﹣4) .【考点】反比例函数图象的对称性.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4). 故答案是:(﹣3,﹣4).【点评】此题考查了函数交点的对称性,通过数形结合和中心对称的定义很容易解决.14.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m < n(填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.台机器所需时间相同,现在平均每天生产 200 台机器.【考点】分式方程的应用.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得: =.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原就是一个隐含条件,注意挖掘.计划多生产50台机器”就是一个隐含条件,注意挖掘.16.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD 上一点,则PM+PN的最小值= 5 .【考点】轴对称-最短路线问题;菱形的性质.【专题】压轴题.【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【解答】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC, ∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.【点评】本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.二.解答题(共10小题,共72分)17.计算:7+3﹣5.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并同类二次根式得出即可.【解答】解:7+3﹣5=7×4+3×2﹣5×5=9.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.18.化简:÷(+1)【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.已知: +=0,求+的值.【考点】二次根式的化简求值.【分析】根据非负数的性质得出a=3,b=2,再代入解答即可.【解答】解:因为+=0,可得:a=3,b=2,把a=3,b=2代入.【点评】此题考查二次根式的化简,关键是由非负数的性质得出a=3,b=2.20.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x﹣2)(x+3),得6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),6x+18=x 2﹣2x﹣x2﹣x+6,化简得,9x=﹣12,解得x=.经检验,x=是原方程的解.【点评】本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.21.已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)当﹣3<x<﹣1时,求y的取值范围.【考点】待定系数法求反比例函数解析式;反比例函数的性质.待定系数法求反比例函数解析式;反比例函数的性质.【分析】(1)把点A(2,3)代入反比例函数y=(k为常数,k≠0)中,求出k的值,即可得出这个函数的解析式;(2)分别求出当x=﹣1时,当x=﹣3时y的值,从而得出y的取值范围.【解答】解:(1)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),∴3=,∴k=6,∴这个函数的解析式为:y=;(2)∵当x=﹣1时,y=﹣6,当x=﹣3时,y=﹣2,∴当﹣3<x<﹣1时,y的取值范围是﹣6<y<﹣2.关键是掌握凡是反比例函数图象经过的点,【点评】此题考查了待定系数法求反比例函数的解析式,此题考查了待定系数法求反比例函数的解析式,关键是掌握凡是反比例函数图象经过的点,必能满足解析式.22.已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C 作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.矩形的性质;全等三角形的判定与性质;菱形的判定.【考点】矩形的性质;全等三角形的判定与性质;菱形的判定.【专题】证明题.内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得∠【分析】(1)根据两直线平行,然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.【解答】证明:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA););(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中,OC=OD,∴四边形ODFC是菱形.【点评】本题考查了矩形的性质,全等三角形的判定与性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.23.甲、乙两个公司为某敬老院各捐款300000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐款20元.则甲、乙两公司各有多少元?元.则甲、乙两公司各有多少元?【考点】分式方程的应用.【分析】利用等量关系:甲公司的人数=乙公司的人数×(1+20%).根据这个等量关系可得出方程求解.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,根据题意得:=×(1+20%)解得:x=100经检验x=100是原方程的根,故x+20=100+20=120.答:甲公司人均捐款100元,乙公司人均捐款120元【点评】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.某商店规定:购物总金额满200元,所购物品均可享受8折优惠;购物满500元,所购物品均可享受7.5折优惠.(1)设用100元购买标价为x(元/kg)的商品y(kg),写出y与x之间的函数表达式,并注明自变量x的取值范围;之间的函数表达式;(2)设用240元购买标价为x(元/kg)的商品y(kg),写出y与x之间的函数表达式;(3)小明用600元在该商店购物,除购买标价为12元/袋的食品50袋外,所余金额均购买标价为16元/千克的散装糖果,小明购买了多少散装糖果?【考点】一次函数的应用.【分析】(1)购买100元的商品时,没有优惠;(2)购买240元的商品时,所购物品均可享受8折优惠;(3)购买标价为12元/袋的食品50袋,所购物品均可享受7.5折优惠;所余金额为600﹣12×50×0.75,据此可以判断购买标价为16元/千克的散装糖果的单价.【解答】解:(1)用100元购买标价为x(元/kg)的商品y(kg),xy=100,则y=(0<x≤100);(2)用240元购买标价为x(元/kg)的商品y(kg)时,xy=240×0.8,则y=(200≤x<500);(3)购买标价为12元/袋的食品50袋所需的费用:12×50×0.75=450(元),(元),则600﹣450=150(元),150÷16=9.375(千克).答:小明购买了9.375千克散装糖果.【点评】本题考查了一次函数的应用.解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.25.已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2). (1)求这两个函数的表达式;(2)如果点C与点A关于x轴对称,求△ABC的面积.反比例函数与一次函数的交点问题.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A的坐标代入反比例函数的解析式即可求得k的值,然后求得B的坐标,利用待定系数法求得一次函数的解析式;(2)求得C的坐标,即可求得AC,然后根据三角形的面积公式即可求得.【解答】解:(1)把A(1,4)代入y=,则4=k,则反比例函数的解析式是:y=;∵点B(m,﹣2),∴﹣2=,解得m=﹣2,∵反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(﹣2,﹣2),∴,解得:,则一次函数的解析式是:y=2x+2.(2)∵A(1,4),∴C(1,﹣4),∴AC=8,∴S△ABC=×8×(1+2)=12.【点评】本题考查了一次函数和反比例函数的交点问题,三角形面积的求法,轴对称的性质,待定系数法求解析式是本题的关键.26.(2019•盐城)如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)【考点】正方形的性质;全等三角形的判定与性质.几何综合题.【专题】几何综合题.【分析】(1)由四边形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS证得△ADD1≌△CAB,根据全等三角形的对应边相等,即可得DD1=AB;(2)首先过点C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四边形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS证得△ADD1≌△CAH,根据全等三角形的对应边相等,即可得DD1=AH,同理EE1=BH,则可得AB=DD1+EE1.(3)证明方法同(2),易得AB=DD1﹣EE1.【解答】(1)证明:∵四边形CADF、CBEG是正方形,∴AD=CA,∠DAC=∠ABC=90°,∴∠DAD1+∠CAB=90°,∵DD1⊥AB,∴∠DD1A=∠ABC=90°,∴∠DAD1+∠ADD1=90°,∴∠ADD1=∠CAB,在△ADD1和△CAB中,,∴△ADD1≌△CAB(AAS),∴DD1=AB;(2)解:AB=DD1+EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH+BH=DD1+EE1;(3)解:AB=DD1﹣EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH﹣BH=DD1﹣EE1.【点评】此题考查了正方形的性质与全等三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.。
2018-2019学年江西省南昌市南昌县八年级(下)期末数学试卷 解析版
2018-2019学年江西省南昌市南昌县八年级(下)期末数学试卷一.选择题(共8小题)1.使代数式有意义的x的取值范围()A.x>2B.x≥2C.x>3D.x≥2且x≠3 2.下列各组数中,不是勾股数的是()A.9,12,15B.8,15,17C.12,18,22D.5,12,133.如图,在△ABC中,AB=8,BC=12,AC=10,点D、E分别是BC、CA的中点,则△DEC的周长为()A.15B.18C.20D.224.下列图象中,表示y是x的函数的是()A.B.C.D.5.已知,点P1(x1,y1)、P2(x2,y2)是直线y=﹣x﹣3上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y26.张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A.B.C.D.7.关于函数y=x﹣5,下列结论正确的是()A.函数图象必经过点(1,4)B.y随x的增大而增大C.函数图象经过二三四象限D.y随x的增大而减小8.已知一组数据a1,a2,a3,a4,a5的平均数为5,则另一组数据a1+5,a2﹣5,a3+5,a4﹣5,a5+5的平均数为()A.4B.5C.6D.10二.填空题(共6小题)9.若a=2+,则a2﹣4a+5的值是.10.如果一组数据3,4,x,6,7的平均数为5,则这组数据的中位数和方差分别是和.11.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“众数、方差、平均数、中位数”中填答案)12.函数y=2x﹣3的图象向下平移3个单位,所得新图象的函数表达式是.13.如图,直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n﹣2的解集为.14.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是.三.解答题(共8小题)15.已知x=(+),y=(﹣),求代数式+的值.16.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由.参赛者推荐语读书心得读书讲座甲878595乙94888817.如图,在平面直角坐标系xOy中,O为坐标原点,已知直线l1经过点A(﹣6,0),它与y轴交于点B,点B在y轴正半轴上,且OA=2OB.求直线l的函数解析式.18.如图,△ABC中,AB=AC,AD是BC边上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE、CE.若BC=6,∠DOC=60°.(1)求证:四边形ADCE是矩形;(2)求四边形ADCE的面积.19.如图,在矩形ABCD中,AB=8,BC=16,点P从点D出发向点A运动,运动到点A 停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是每秒1个单位,连接PQ、AQ、CP.设点P、Q运动的时间为t秒.(1)当t为何值时,四边形ABQP是矩形;(2)当t=6时,判断四边形AQCP的形状,并说明理由.20.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.21.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为(请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积.22.如图,已知函数y=mx的图象为直线l1,函数y=kx+b的图象为直线l2,直线l1、l2分别交x轴于点B和点C(3,0),分别交y轴于点D和E,l1和l2相交于点A(2,2).(1)填空:m=;求直线l2的解析式为;(2)若点M是x轴上一点,连接AM,当△ABM的面积是△ACM面积的2倍时,请求出符合条件的点M的坐标;(3)若函数y=nx﹣6的图象是直线l3,且l1、l2、l3不能围成三角形,直接写出n的值.参考答案与试题解析一.选择题(共8小题)1.使代数式有意义的x的取值范围()A.x>2B.x≥2C.x>3D.x≥2且x≠3【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选:D.2.下列各组数中,不是勾股数的是()A.9,12,15B.8,15,17C.12,18,22D.5,12,13【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、92+122=152,能构成直角三角形,是正整数,故是勾股数;B、82+152=172,能构成直角三角形,是正整数,故是勾股数;C、122+182≠222,不能构成直角三角形,故不是勾股数;D、52+122=132,能构成直角三角形,是正整数,故是勾股数;故选:C.3.如图,在△ABC中,AB=8,BC=12,AC=10,点D、E分别是BC、CA的中点,则△DEC的周长为()A.15B.18C.20D.22【分析】根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【解答】解:∵点D、E分别是BC、CA的中点,∴DE=AB=4,CE=AC=5,DC=BC=6,∴△DEC的周长=DE+EC+CD=15,故选:A.4.下列图象中,表示y是x的函数的是()A.B.C.D.【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【解答】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A、B、D错误.故选:C.5.已知,点P1(x1,y1)、P2(x2,y2)是直线y=﹣x﹣3上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2【分析】根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣x﹣3上的点y随x的增大而减小,又∵点P1(x1,y1)、P2(x2,y2)是直线y=﹣x﹣3上的两点,若x1<x2,则y1>y2,故选:D.6.张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A.B.C.D.【分析】根据题意可以分析出各段对应的函数图象,注意乘车速度大于步行速度,同样的时间内,乘车行驶的路程大.【解答】解:由题意可得,刚开始张老师乘车从甲镇去乙村,离甲镇的距离是随着时间的增大而增大,然后步行去乙村,离甲镇的距离继续增大,但是变化的幅度没有前面乘车变化的幅度大,故选:C.7.关于函数y=x﹣5,下列结论正确的是()A.函数图象必经过点(1,4)B.y随x的增大而增大C.函数图象经过二三四象限D.y随x的增大而减小【分析】根据图象经过的点必能满足解析式,再利用一次函数的性质进行分析即可.【解答】解:A、函数图象不经过点(1,4),故原题说法错误;B、k=>0,y随x的增大而增大,故原题说法正确;C、函数图象经过一、三、四象限,故原题说法错误;D、k=>0,y随x的增大而增大,故原题说法错误;故选:B.8.已知一组数据a1,a2,a3,a4,a5的平均数为5,则另一组数据a1+5,a2﹣5,a3+5,a4﹣5,a5+5的平均数为()A.4B.5C.6D.10【分析】根据平均数的性质,所有数之和除以总个数即可得出平均数.【解答】解:依题意得:a1+5+a2﹣5+a3+5+a4﹣5+a5+5=a1+a2+a3+a4+a5+5=30,所以平均数为6.故选:C.二.填空题(共6小题)9.若a=2+,则a2﹣4a+5的值是8.【分析】先由已知条件得到a﹣2=,再利用完全平方公式得到a2﹣4a+5=(a﹣2)2+1,然后利用整体的方法计算.【解答】解:∵a=2+,∴a﹣2=,∴a2﹣4a+5=(a﹣2)2+1=()2+1=8.故答案为8.10.如果一组数据3,4,x,6,7的平均数为5,则这组数据的中位数和方差分别是5和2.【分析】先根据平均数的定义求出x的值,再根据中位数和方差的定义求解可得.【解答】解:根据题意,得:=5,解得x=5,∴这组数据为3、4、5、6、7,则这组数据的中位数为5,方差为×[(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2,故答案为:5、2.11.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数(从“众数、方差、平均数、中位数”中填答案)【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故答案为:中位数.12.函数y=2x﹣3的图象向下平移3个单位,所得新图象的函数表达式是y=2x﹣6.【分析】根据“上加下减”的原则进行解答即可.【解答】解:把函数y=2x﹣3的图象向下平移3个单位后,所得图象的函数关系式为y =2x﹣3﹣3,即y=2x﹣6.故答案为y=2x﹣6.13.如图,直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n﹣2的解集为x>1.【分析】利用函数图象,写出直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:如图所述:不等式mx+n>x+n﹣2的解集为x>1.故答案是:x>1.14.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是x=2.【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【解答】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),∴,解得,∴关于x的方程kx=b即为:x=3,解得x=2,故答案为:x=2.三.解答题(共8小题)15.已知x=(+),y=(﹣),求代数式+的值.【分析】先计算出x+y,xy,再利用通分和完全平方公式得到原式=,然后利用整体代入的方法计算.【解答】解:∵x=(+),y=(﹣),∴x+y=.xy=,∴+====10.16.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由.参赛者推荐语读书心得读书讲座甲878595乙948888【分析】根据加权平均数的概念列式计算可得答案.【解答】解:甲能获胜.∵==90.4,==89.2,∴甲能获胜.17.如图,在平面直角坐标系xOy中,O为坐标原点,已知直线l1经过点A(﹣6,0),它与y轴交于点B,点B在y轴正半轴上,且OA=2OB.求直线l的函数解析式.【分析】先求出B(0,3),再由待定系数法求出直线l1的解析式.【解答】解:∵A(﹣6,0),∴OA=6,∵OA=2OB,∴OB=3,∵B在y轴正半轴,∴B(0,3),∴设直线l1解析式为:y=kx+3(k≠0),∵A(﹣6,0)在此图象上,代入得6k+3=0,解得k=,∴y=x+3.18.如图,△ABC中,AB=AC,AD是BC边上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE、CE.若BC=6,∠DOC=60°.(1)求证:四边形ADCE是矩形;(2)求四边形ADCE的面积.【分析】(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)由等腰三角形的性质求得DC,证明△OCD为等边三角形,求得AC的长,由勾股定理可求得AD的长,利用矩形的面积公式求出即可.【解答】(1)证明:∵点O是AC中点,∴OA=OC,又∵OE=OD,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°,∴四边形ADCE的是矩形.(2)解:∵AB=AC,AD是BC边上的高,BC=6,∴BD=DC=3,∵四边形ADCE的是矩形,∴OD=OC=AC.∵∠DOC=60°,∴△DOC是等边三角形,∴OC=DC=3,∴AC=6.在Rt△ADC中,∠ADC=90°,DC=3,AC=6,由勾股定理得:AD===3,∴四边形ADCE的面积S=AD×DC=3×3=9.19.如图,在矩形ABCD中,AB=8,BC=16,点P从点D出发向点A运动,运动到点A 停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是每秒1个单位,连接PQ、AQ、CP.设点P、Q运动的时间为t秒.(1)当t为何值时,四边形ABQP是矩形;(2)当t=6时,判断四边形AQCP的形状,并说明理由.【分析】(1)由矩形性质得出BC=AD=16,AB=CD=8,由已知可得,BQ=DP=t,AP=CQ=16﹣t,当BQ=AP时,四边形ABQP为矩形,得出方程,解方程即可;(2)t=6时,BQ=6,DP=6,得出CQ=10,AP=16﹣6=10,AP=CQ,AP∥CQ,则四边形AQCP为平行四边形,由勾股定理求出AQ=10,得出AQ=CQ,即可得出结论.【解答】解:(1)∵在矩形ABCD中,AB=8,BC=16,∴BC=AD=16,AB=CD=8,由已知可得,BQ=DP=t,AP=CQ=16﹣t,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,解得:t=8,∴当t=8s时,四边形ABQP为矩形;(2)四边形AQCP为菱形;理由如下:∵t=6,∴BQ=6,DP=6,∴CQ=16﹣6=10,AP=16﹣6=10,∴AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,在Rt△ABQ中,AQ===10,∴AQ=CQ,∴平行四边形AQCP为菱形,即当t=6时,四边形AQCP为菱形.20.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校858585B校8580100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出A校、B校的方差即可.【解答】解:(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.21.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形是常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为::(请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积.【分析】(1)直接利用常态三角形的定义判断即可;(2)利用勾股定理以及结合常态三角形的定义得出两直角边的关系,进而得出答案;(3)直接利用直角三角形的性质结合常态三角形的定义得出BD的长,进而求出答案.【解答】解:(1)∵22+42=4×()2=20,∴△ABC三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;(2)∵Rt△ABC是常态三角形,∴设两直角边长为:a,b,斜边长为:c,则a2+b2=c2,a2+c2=4b2,则2a2=3b2,故a:b=:,∴设a=x,b=x,则c=x,∴此三角形的三边长之比为:::.故答案为:::;(3)∵Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,△BCD是常态三角形,∴当AD=BD=DC,CD2+BD2=4×62时,解得:BD=DC=6,则AB=12,故AC==6,则△ABC的面积为:×6×6=.当AD=BD=DC,CD2+BC2=4×BD2时,解得:BD=DC=2,则AB=4,故AC=2,则△ABC的面积为:×6×2=6.故△ABC的面积为或6.22.如图,已知函数y=mx的图象为直线l1,函数y=kx+b的图象为直线l2,直线l1、l2分别交x轴于点B和点C(3,0),分别交y轴于点D和E,l1和l2相交于点A(2,2).(1)填空:m=;求直线l2的解析式为y=﹣2x+6;(2)若点M是x轴上一点,连接AM,当△ABM的面积是△ACM面积的2倍时,请求出符合条件的点M的坐标;(3)若函数y=nx﹣6的图象是直线l3,且l1、l2、l3不能围成三角形,直接写出n的值.【分析】(1)将点A坐标代入y=mx中,即可得出m的值;将带你A,C坐标代入y =kx+b中,即可根据待定系数法求得解析式;(2)先利用两三角形面积关系判断出CM=2BM,再分两种情况,即可得出结论;(3)分三种情况,利用两直线平行,比例系数相等即可得出结论.【解答】解:(1)∵点A(2,2)在函数y=mx的图象上,∴2m+=2,∴m=,∵直线过点C(3,0)、A(2,2),可得方程组为,解得,∴直线l2的解析式为y=﹣2x+6;故答案为:m=;y=﹣2x+6;(2)∵B是l1与x轴的交点,当y=0时,x+=0,∴x=﹣4,B坐标为(﹣4,0),同理可得,C点坐标(3,0),设点A到x轴的距离为h∵S△ABM=BM•h,S△ACM=CM•h,又∵△ABM的面积是△ACM面积的2,∴BM•h=2×CM•h,∴BM=2CM第一种情况,当M在线段BC上时,∵BM+CM=BC=7,∴3CM=7,CM=,∴M1坐标(,0),第二种情况,当M在射线BC上时,∵BC+CM=BM∴CM=BC=7∴M2坐标(10,0),∴M点的坐标为(,0)或(10,0),(3)∵l1、l2、l3不能围成三角形,∴直线l3经过点A或l3∥l1或l3∥l2,①∵直线l3的解析式为y=nx﹣6,A(2,2),∴2n﹣6=2,∴n=4,②当l3∥l1时,则n=,③当l3∥l2时,则n=﹣2,即n的值为4或或﹣2.。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
2018-2019学年浙江省台州市椒江区八年级(下)期末数学试卷 (解析版)
2018-2019学年浙江省台州市椒江区八年级(下)期末数学试卷一.选择题(共10小题)1.下列二次根式中,最简二次根式是()A.B.C.D.2.下列各组数据作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.6,7,83.在▱ABCD中,∠A+∠C=100°,则∠B的度数是()A.50°B.40°C.140°D.130°4.与2最接近的整数是()A.4B.5C.6D.75.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.6.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数7.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD8.如图,在Rt△ABC中,∠ACB=90°,D为斜边上AB的中点,动点P从B点出发,沿B→C→A运动,如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则a的值为()A.3B.4C.6D.129.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt△ABC是“匀称三角形”,且∠C=90°,AC>BC,则AC:BC:AB为()A.:1:2B.2::C.2:1:D.无法确定10.如图,一次函数y=﹣2x+6的图象与两坐标轴分别交于A、B两点,点C是线段AB上不与点A、B重合的一点,过点C分别作CD、CE垂直x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大二.填空题(共6小题)11.二次根式中字母x的取值范围是.12.某校举行八年级课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.63m,其方差分别是s甲2=3.8,s乙2=1.4,则参赛学生身高比较整齐的班级是班.13.一次函数y=2x﹣3的图象不经过第象限.14.命题“四个角相等的四边形是矩形”的逆命题是.15.Rt△ABC中,∠C=90°,AB=10,BC=6,若AC边上存在一点P,使得P A2﹣PC2=BC2,则PB=.16.如图,在平面直角坐标系xOy中,已知正方形ABCO,A(0,4).点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为.三.解答题17.计算:(1)﹣4+;(2)(2﹣)(2+)+(﹣3)÷.18.如图,在四边形ABCD中,AB∥CD,AC,BD相交于点O,O是AC的中点,E,F分别是OA,OD的中点.求证:BC=2EF.19.如图是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点,点A,B均在格点上,请仅用无刻度的直尺在网格中画一个Rt△ABC,使点C在格点上.(不写作法,保留作图痕迹)20.如图,直线y=2x和y=ax+4相交于点A(m,3).(1)求m的值;(2)观察图象,直接写出不等式2x≤ax+4的解集为.21.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成如下统计表.数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析,解答下列问题:(1)完成表格;平均数(首)中位数(首)众数(首)活动启动之初5 4.5大赛后一个月6(2)试选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.22.在区体育局的策划下,体育馆将组织明星篮球赛,为此区体育局推出两种购票方案(设购票张数为x,购票总价为y元):方案一:提供8000元赞助后,每张票价为50元;方案二:购票不超过100张时,每张票价为120元,超过100张时,超过部分的票每张票价为60元.(1)若购买120张票时,按方案一和方案二应付的购票总价分别是、元;(2)直接写出方案一、方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一较合算?23.如图1,BD是矩形ABCD的对角线,AD=2,AB=4.将△BCD沿射线BD方向平移到△B'C'D'的位置,分别连接AB',CD,AD',BC′,如图2,若B'D'平分∠AB'C'.(1)试判断四边形AB'C'D的形状,并说明理由;(2)将四边形ABC′D'沿它的两条对角线依次剪开分别得到四个三角形,用所得到的这四个三角形拼成与四边形ABC'D'面积相等的矩形,请直接写出所有可能排成的矩形周长,并画出相应的示意图.24.在平面直角坐标系xOy中,若直线与x轴夹角为45°时,则称该直线为x轴的“相关直线“.已知点A,B的坐标分别为A(0,3),B(﹣1,0).(1)若x轴的“相关直线“y=kx+m过点A,则k=;(2)如图,以AB为边作正方形ABCD,使C、D位于第二象限.①若x轴的“相关直线”l平分正方形ABCD的面积,求l的解析式;②若x轴的“相关直线”交y轴于点M(0,b),且与正方形ABCD有公共点,请直接写出b的取值范围.2018-2019学年浙江省台州市椒江区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列二次根式中,最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义得出答案.【解答】解:A、==,不是最简二次根式,不合题意;B、=,不是最简二次根式,不合题意;C、是最简二次根式,符合题意;D、=2,不是最简二次根式,不合题意;故选:C.2.下列各组数据作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.6,7,8【分析】要判断三个数是否为直角三角形的三边长,根据勾股定理逆定理只需要判断最大的数的平方是否等于另外两个数的平方和即可.【解答】解:A、22+32≠42,不能构成直角三角形,故本选项不符合题意;B、32+42=52,能构成直角三角形,故本选项符合题意;C、42+52≠62,不能构成直角三角形,故本选项不符合题意;D、62+72≠82,不能构成直角三角形,故本选项不符合题意;故选:B.3.在▱ABCD中,∠A+∠C=100°,则∠B的度数是()A.50°B.40°C.140°D.130°【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=100°,∴∠A=50°,∴∠B=∠180°﹣∠A=130°,故选:D.4.与2最接近的整数是()A.4B.5C.6D.7【分析】根据即可得出与2最接近的整数.【解答】解:∵2.42<6<2.52,∴,∴4.8,∴与2最接近的整数是5.故选:B.5.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.【分析】根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.【解答】解:A、很明显,给自变量一个值,不是有唯一的值对应,所以不是函数,故此选项符合题意;B、是函数,故此选项不符合题意;C、是二次函数,故此选项不符合题意;D、是二次函数,故此选项不符合题意.故选:A.6.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.7.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD【分析】根据矩形的性质即可判断;【解答】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选:B.8.如图,在Rt△ABC中,∠ACB=90°,D为斜边上AB的中点,动点P从B点出发,沿B→C→A运动,如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则a的值为()A.3B.4C.6D.12【分析】根据已知条件和图象可以得到BC、AC的长度,当x=4时,点P与点C重合,此时△DPC的面积等于△ABC面积的一半,从而可以求出y的最大值,即为a的值.【解答】解:根据题意可得,BC=4,AC=7﹣4=3,当x=4时,点P与点C重合,∵∠ACB=90°,点D为AB的中点,∴S△BDP=S△ABC,∴y=××3×4=3,即a的值为3,故选:A.9.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt△ABC是“匀称三角形”,且∠C=90°,AC>BC,则AC:BC:AB为()A.:1:2B.2::C.2:1:D.无法确定【分析】作Rt△ABC的三条中线AD、BE、CF,由“匀称中线”的定义可判断“匀称中线”是BE,它是AC边上的中线,设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE =90°,根据勾股定理可求出BC、AB,则AC:BC:AB的值可求出.【解答】解:如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=AB≠BA,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC==a,在Rt△ABC中,AB==a,∴AC:BC:AB=2a:a:a=2::.故选:B.10.如图,一次函数y=﹣2x+6的图象与两坐标轴分别交于A、B两点,点C是线段AB上不与点A、B重合的一点,过点C分别作CD、CE垂直x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,﹣2m+6),根据矩形的周长公式即可得出C矩形CDOE=12﹣2m,再根据m的变化可得答案.【解答】解:设点C的坐标为(m,﹣2m+6)(0<m<3),则CE=m,CD=﹣2m+6,∴C矩形CDOE=2(CE+CD)=12﹣2m.∴当C从点A出发向点B运动时,m逐渐增大,则矩形CDOE的周长变小.故选:C.二.填空题(共6小题)11.二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.12.某校举行八年级课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.63m,其方差分别是s甲2=3.8,s乙2=1.4,则参赛学生身高比较整齐的班级是乙班.【分析】根据方差的意义求解可得.【解答】解:∵s甲2=3.8,s乙2=1.4,∴s乙2<s甲2,∴参赛学生身高比较整齐的班级是乙班,故答案为:乙.13.一次函数y=2x﹣3的图象不经过第二象限.【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【解答】解:∵一次函数y=2x﹣3中,k=2>0,∴此函数图象经过一、三象限,∵b=﹣3<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故答案为:二.14.命题“四个角相等的四边形是矩形”的逆命题是矩形的四个角相等.【分析】根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“四个角相等的四边形是矩形”的逆命题是矩形的四个角相等,故答案为:矩形的四个角相等.15.Rt△ABC中,∠C=90°,AB=10,BC=6,若AC边上存在一点P,使得P A2﹣PC2=BC2,则PB=.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,AB=10,BC=6,∴AC===8;∵P A2﹣PC2=BC2,即(8﹣PC)2﹣PC2=62,解得PC=,在Rt△PBC中,PB===.故答案为:.16.如图,在平面直角坐标系xOy中,已知正方形ABCO,A(0,4).点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为2.【分析】如图,作EH⊥x轴于H,连接CE.利用全等三角形的性质证明∠ECH=45°,推出点E在∠BCH的角平分线所在直线上运动,作OE′⊥CE,求出OE′的长即可解决问题;【解答】解:如图,作EH⊥x轴于H,连接CE.∵∠AOD=∠ADE=∠EHD=90°,∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ADO=∠DEH,∵AD=DE,∴△ADO≌△DEH(AAS),∴OA=DH=OC,OD=EH,∴OD=CH=EH,∴∠ECH=45°,∴点E在∠BCH的角平分线所在直线上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,∵OC=4,∴OE'=2,∴OE的最小值为2,故答案为:2.三.解答题17.计算:(1)﹣4+;(2)(2﹣)(2+)+(﹣3)÷.【考点】4F:平方差公式;79:二次根式的混合运算.【专题】514:二次根式;66:运算能力.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和二次根式的除法法则运算.【解答】解:(1)原式=2﹣2+2=2;(2)原式=4﹣3+﹣3=1+3﹣3=4﹣3.18.如图,在四边形ABCD中,AB∥CD,AC,BD相交于点O,O是AC的中点,E,F分别是OA,OD的中点.求证:BC=2EF.【考点】KD:全等三角形的判定与性质;KX:三角形中位线定理.【专题】553:图形的全等;64:几何直观.【分析】根据全等三角形的判定和性质得出AB=CD,进而利用平行四边形的判定和性质解答即可.【解答】证明:∵AB∥CD,∴∠BAO=∠DCO,∵O是AC的中点,∴OA=OC,在△ABO与△CDO中,∴△ABO≌△CDO(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴AD=BC,∵E,F分别是OA,OD的中点,∴AD=2EF,∴BC=2EF.19.如图是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点,点A,B均在格点上,请仅用无刻度的直尺在网格中画一个Rt△ABC,使点C在格点上.(不写作法,保留作图痕迹)【考点】KQ:勾股定理;KS:勾股定理的逆定理;L8:菱形的性质;N4:作图—应用与设计作图.【专题】13:作图题;69:应用意识.【分析】利用菱形的对角线互相垂直解决问题即可.【解答】解:如图,△ABC即为所求.20.如图,直线y=2x和y=ax+4相交于点A(m,3).(1)求m的值;(2)观察图象,直接写出不等式2x≤ax+4的解集为x≤.【考点】FD:一次函数与一元一次不等式;FF:两条直线相交或平行问题.【专题】538:用函数的观点看方程(组)或不等式;69:应用意识.【分析】(1)把A(m,3)代入y=2x,即可求得m的值;(2)以交点为分界,结合图象写出不等式2x≤ax+4的解集即可.【解答】解:(1)把A(m,3)代入y=2x,得2m=3,解得m=;(2)由图象得,不等式2x≤ax+4的解集为x≤.故答案为x≤.21.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成如下统计表.数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析,解答下列问题:(1)完成表格;平均数(首)中位数(首)众数(首)活动启动之初5 4.546大赛后一个月66(2)试选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数;WA:统计量的选择.【专题】541:数据的收集与整理;65:数据分析观念.【分析】(1)根据统计图中的数据可以求得这组数据的中位数,平均数和众数;(2)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)活动启动之初这组数据的众数是4(首),大赛后一个月后这组数据的中位数是:(6+6)÷2=6(首),大赛后一个月后这组数据的平均数是:=6(首),故答案为:4;6;6;(2)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.22.在区体育局的策划下,体育馆将组织明星篮球赛,为此区体育局推出两种购票方案(设购票张数为x,购票总价为y元):方案一:提供8000元赞助后,每张票价为50元;方案二:购票不超过100张时,每张票价为120元,超过100张时,超过部分的票每张票价为60元.(1)若购买120张票时,按方案一和方案二应付的购票总价分别是14000元、13200元;(2)直接写出方案一、方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一较合算?【考点】C9:一元一次不等式的应用;FH:一次函数的应用.【专题】524:一元一次不等式(组)及应用;533:一次函数及其应用;66:运算能力;69:应用意识.【分析】(1)根据题意,可以分别计算出购买120张票时,按方案一和方案二应付的购票总价;(2)根据题意,可以写出方案一、方案二中y与x的函数关系式;(3)根据题意,令(2)中函数关系式中的方案一的函数值小于方案二中的函数值,然后即可得到x的取值范围,再根据x为整数,即可得到至少买多少张票时选择方案一较合算.【解答】解:(1)当购买120张票时,方案一的购票总价是:8000+120×50=8000+6000=14000(元),方案二的购票总价是:100×120+(120﹣100)×60=13200(元),故答案为:14000元,13200;(2)由题意可得,方案一中y与x的函数关系式是y=8000+50x,方案二中y与x的函数关系式是y=;(3)令8000+50x<60x+6000,解得,x>200,答:至少购买201张票时选择方案一较合算.23.如图1,BD是矩形ABCD的对角线,AD=2,AB=4.将△BCD沿射线BD方向平移到△B'C'D'的位置,分别连接AB',CD,AD',BC′,如图2,若B'D'平分∠AB'C'.(1)试判断四边形AB'C'D的形状,并说明理由;(2)将四边形ABC′D'沿它的两条对角线依次剪开分别得到四个三角形,用所得到的这四个三角形拼成与四边形ABC'D'面积相等的矩形,请直接写出所有可能排成的矩形周长,并画出相应的示意图.【考点】KF:角平分线的性质;LB:矩形的性质;PC:图形的剪拼.【专题】13:作图题;556:矩形菱形正方形;558:平移、旋转与对称;67:推理能力.【分析】(1)由平移得到B'C'=BC=AD,∠D'B'C'=∠ADB=60°,推出四边形AB'C'D 是平行四边形,根据角平分线的定义得到∠DB′C′=∠AB′D,求得AD=AB′,于是得到结论;(2)根据两种不同的拼法,分别求得可能拼成的矩形周长.【解答】解:(1)∵由平移可得,B'C'=BC=AD,∠D'B'C'=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'D'平分∠AB'C',∴∠DB′C′=∠AB′D,∴∠ADB′=∠AB′D,∴AD=AB′,∴四边形AB'C'D是菱形;(2)∵AD=2,AB=4,∴BD=2,连接AC′交B′D′于O,∴AO==,BO==,∴将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为8或.24.在平面直角坐标系xOy中,若直线与x轴夹角为45°时,则称该直线为x轴的“相关直线“.已知点A,B的坐标分别为A(0,3),B(﹣1,0).(1)若x轴的“相关直线“y=kx+m过点A,则k=±1;(2)如图,以AB为边作正方形ABCD,使C、D位于第二象限.①若x轴的“相关直线”l平分正方形ABCD的面积,求l的解析式;②若x轴的“相关直线”交y轴于点M(0,b),且与正方形ABCD有公共点,请直接写出b的取值范围.【考点】FI:一次函数综合题.【专题】533:一次函数及其应用;553:图形的全等;554:等腰三角形与直角三角形;556:矩形菱形正方形;69:应用意识.【分析】(1)分两种情况讨论,先求出直线y=kx+m与x轴的交点坐标,代入解析式可求k的值;(2)①过点C作CH⊥x轴,垂足为H,连接AC,BD交于点N,由“AAS”可证△ABO ≌△BCH,可得CH=BO=1,AO=BH=3,可得点C坐标,可求点N坐标,设x轴的“相关直线”l的解析式为:y=x+n或y=﹣x+n,将点N坐标代入可求解;②分两种情况讨论,将特殊点坐标代入解析式可求b的值,即可求b的取值范围.【解答】解:(1)∵A(0,3),B(﹣1,0),∴AO=3,BO=1,∵y=kx+m是x轴的“相关直线,∴直线y=kx+m与x轴夹角为45°,如图1,当直线y=kx+m与x轴交于正半轴,交点为F,∴∠AFO=45°,∴∠AFO=∠F AO=45°,∴OA=OF=3,∴点F(3,0),由题意可得:,解得:k=﹣1,当直线y=kx+m与x轴交于负半轴,交点为E,∴∠AEO=45°,∴∠AEO=∠EAO=45°,∴OA=OE=3,∴点E(﹣3,0),由题意可得:,∴k=﹣1,综上所述:k=±1,故答案为:±1;(2)如图2,过点C作CH⊥x轴,垂足为H,连接AC,BD交于点N,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,AN=CN,∴∠ABO+∠CBH=90°,又∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,又∵∠CHB=∠AOB=90°,∴△ABO≌△BCH(AAS),∴CH=BO=1,AO=BH=3,∴点C(﹣4,1),∵点N是AC的中点,∴点N(﹣2,2),设x轴的“相关直线”l的解析式为:y=x+n或y=﹣x+n,∵x轴的“相关直线”l平分正方形ABCD的面积,∴x轴的“相关直线”l过点N,∴2=﹣2+n或2=2+n,∴n=4或0,∴l的解析式为;y=x+4或y=﹣x;(3)∵x轴的“相关直线”交y轴于点M(0,b),∴设x轴的“相关直线”的解析式为:y=x+b或y=﹣x+b,∵点C(﹣4,1),A(0,3),B(﹣1,0),∴点D(﹣3,4),如图,当x轴的“相关直线”的解析式为:y=x+b,∵y=x+b与正方形ABCD有公共点,∴y=x+b与正方形ABCD至少有一个交点,∴当y=x+b过点D时,则4=﹣3+b,∴b=7,∴当y=x+b过点B时,则0=﹣1+b,∴b=1,∴1≤b≤7;当x轴的“相关直线”的解析式为:y=﹣x+b,∵y=﹣x+b与正方形ABCD有公共点,∴y=﹣x+b与正方形ABCD至少有一个交点,∴当y=﹣x+b过点A时,则3=0+b,∴b=3,∴当y=﹣x+b过点C时,则1=4+b,∴b=﹣3,∴﹣3≤b≤3;综上所述:当x轴的“相关直线”的比例系数为1时,1≤b≤7;当x轴的“相关直线”的比例系数为﹣1时,﹣3≤b≤3.。
2018-2019学年浙江省温州市乐清市八年级(下)期末数学试卷试题及答案(解析版)
2018-2019学年浙江省温州市乐清市八年级(下)期末数学试卷一、选择題(本题有10个小题,每小题3分,共30分)1.下列视力表的部分图案中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .2有意义,则x 应满足( )A .3x …B .3x >C .3x -…D .3x ≠3.五边形的内角和是( ) A .180︒B .360︒C .540︒D .720︒4.某班18名男生参加中考体育模拟测试,1000m 跑步项目成绩如下表:则该班男生成绩的中位数是( ) A .7B .7.5C .8D .95.用配方法解方程2640x x --=,下列配方正确的是( ) A .2(3)13x -=B .2(3)13x +=C .2(6)4x -=D .2(3)5x -=6a =,则0a …”时,第一步应假设( )A a ≠B .0a …C .0a <D .0a >7.下列命题是真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线相等的菱形是正方形C .对角线互相垂直且相等的四边形是正方形D .对角线相等的四边形是矩形 8.反比例函数ky x=的图象如图所示,则k 的值可能是( )A.3-B.1C.2D.49.如图,在正方形ABCD中,E为边BC上一点,将ABE∆沿AE折叠至ABE∆处,BE与AC 交于点F,若69EFC∠=︒,则CAE∠的大小为()A.10︒B.12︒C.14︒D.15︒10.在平面直角坐标系中,反比例函数kyx=的图象上有三点(2,2)P,(4,)Q m-,(,)M a b,若0a<且PM PQ>,则b的取值范围为()A.4b<B.1b<-或40b-<<C.10b-<<D.4b<-或10b-<<二、填空题(本题有6小题,每小题3分,共18分)11.当2x=-的值为.12.甲,乙,丙三位同学近5次快速阅读模拟比赛成绩平均分均为86分,且甲,乙,丙的方差是2100S=甲,2110S=乙,290S=丙,则发挥最稳定的同学是.13.若关于x的方程240x x m++=有实数根,则m的值可以是.(写出一个即可)14.如图,在矩形ABCD中,E,F分别是边AD和CD的中点,3EF=,则BD的长为.15.如图,在平行四边形ABCD中,5AB=,3AD=,BAD∠的平分线AE交CD于点E,连结BE,若BAD BEC∠=∠,则平行四边形ABCD的面积为.16.如图,正方形ABCD面积为1,延长DA至点G,使得AG AD=,以DG为边在正方形另一侧作菱形DGFE,其中45∠=︒,依次延长AB,BC,CD类似以上操作再作三个EFG形状大小都相同的菱形,形成风车状图形,依次连结点F,H,M,N,则四边形FHMN 的面积为.三、解答题(本题共有7小题,共52分)17.(1-(2)解方程:270-=x x18.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):(1)若七巧板拼图,趣题巧解,数学应用三项得分分别按40%,20%,40%折算计入总分,最终谁能获胜?(2)若七巧板拼图按20%折算,小麦(填“可能”或“不可能”)获胜.19.如图,在平行四边形ABCD中,AC是它的一条对角线,BE AC⊥于点E,DF AC⊥于点F,求证:四边形BEDF是平行四边形.20.如图,在66⨯的方格纸中,每一个小正方形的边长均为1,点A,B在格点上,用无刻度直尺按下列要求作图,保留必要的作图痕迹(1)在图1中,以AB为边画一个正方形ABCD;(2)在图2中,以AB为边画一个面积为5的矩形(ABCD CD可以不在格点上).21.如图,在平面直角坐标系中,菱形OABC的顶点A,C在反比例函数kyx=图象上,直线AC交OB于点D,交x,y正半轴于点E,F,且OE OF==(1)求OB的长;(2)若AB=,求k的值.22.市政规划出一块矩形土地用于某项目开发,其中100AB m=,180BC m=,设计分区如图所示,E为矩形内一点,作EG AD⊥于点G,//EH BC交AB,CD于点F,H,过点H作//HI BE交BC于点Ⅰ,其中丙区域用于主建筑区,其余各区域均用于不同种类绿化(1)若点G是AD的中点,求BI的长;(2)要求绿化占地面积不小于27500m,规定乙区域面积为24500m①若将甲区域设计成正方形形状,能否达到设计绿化要求?请说明理由;②若主建筑丙区域不低于乙区域面积的32,则AF的最大值为m.(请直接写出答案)23.如图,4AB AC==,90BAC∠=︒,点D,E分别在线段AC,AB上,且AD AE=.(1)求证:BD CE=;(2)已知F,G分别是BD,CE的中点,连接FG.①若12FG BD=,求C∠的度数;②连接GD,DE,EF,当AD的长为何值时,四边形DEFG是矩形?2018-2019学年浙江省温州市乐清市八年级(下)期末数学试卷参考答案与试题解析一、选择題(本题有10个小题,每小题3分,共30分)1.下列视力表的部分图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:B.2有意义,则x应满足()A.3x…B.3x>C.3x-…D.3x≠【解答】解:根据题意得:30x-…,解得:3x….故选:A.3.五边形的内角和是()A.180︒B.360︒C.540︒D.720︒【解答】解:五边形的内角和是:(52)180-⨯︒3180=⨯︒540=︒故选:C.4.某班18名男生参加中考体育模拟测试,1000m跑步项目成绩如下表:则该班男生成绩的中位数是()A.7B.7.5C.8D.9【解答】解:该班男生成绩的中位数是8882+=, 故选:C .5.用配方法解方程2640x x --=,下列配方正确的是( ) A .2(3)13x -=B .2(3)13x +=C .2(6)4x -=D .2(3)5x -=【解答】解:方程2640x x --=变形得:264x x -=, 配方得:26913x x -+=,即2(3)13x -=, 故选:A .6a =,则0a …”时,第一步应假设( )A a ≠B .0a …C .0a <D .0a >【解答】a =,则0a …”时,第一步应假设0a <. 故选:C .7.下列命题是真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线相等的菱形是正方形C .对角线互相垂直且相等的四边形是正方形D .对角线相等的四边形是矩形【解答】解:A 、对角线互相垂直的平行四边形是菱形,故错误,是假命题; B 、对角线相等的菱形是正方形,正确,是真命题;C 、对角线互相垂直且相等的平行四边形是正方形,故错误,是假命题;D 、对角线相等的平行四边形是矩形,故错误,是假命题,故选:B . 8.反比例函数ky x=的图象如图所示,则k 的值可能是( )A.3-B.1C.2D.4【解答】解:由图象可知:12k>⨯,故选:D.9.如图,在正方形ABCD中,E为边BC上一点,将ABE∆沿AE折叠至ABE∆处,BE与AC 交于点F,若69EFC∠=︒,则CAE∠的大小为()A.10︒B.12︒C.14︒D.15︒【解答】解:69EFC∠=︒,45ACE∠=︒,6945114BEF∴∠=+=︒,由折叠的性质可知:1572BEA BEF∠=∠=︒,905733BAE∴∠=-=︒,453312EAC∴∠=-=︒.故选:B.10.在平面直角坐标系中,反比例函数kyx=的图象上有三点(2,2)P,(4,)Q m-,(,)M a b,若0a<且PM PQ>,则b的取值范围为()A.4b<B.1b<-或40b-<< C.10b-<<D.4b<-或10b-<<【解答】解:如图:点(2,2)P在反比例函数kyx=的图象上4k∴=,点(4,)Q m-,在反比例函数kyx=的图象上1m∴=-,(4,1) Q∴--由双曲线关于y x=轴对称,因此与1(4,1)Q--对称的2(1,4)Q--,(,)M a b在反比例函数kyx=的图象上,且0a<,PM PQ>,∴点M 在第三象限1Q 左边的曲线上,或在2Q 右侧的曲线上, ∴点M 的纵坐标b 的取值范围为:10b -<<或4b <-,故选:D .二、填空题(本题有6小题,每小题3分,共18分)11.当2x =-的值为 3 .【解答】解:把2x =-,得3==.故答案是:3.12.甲,乙,丙三位同学近5次快速阅读模拟比赛成绩平均分均为86分,且甲,乙,丙的方差是2100S =甲,2110S =乙,290S =丙,则发挥最稳定的同学是 丙 . 【解答】解:2100S =甲,2110S =乙,290S =丙, ∴222S S S <<乙丙甲, ∴发挥最稳定的同学是丙,故答案为:丙.13.若关于x 的方程240x x m ++=有实数根,则m 的值可以是 4 .(写出一个即可) 【解答】解:根据题意得△2440m =-…, 解得4m …, 所以m 可取4. 故答案为4.14.如图,在矩形ABCD 中,E ,F 分别是边AD 和CD 的中点,3EF =,则BD 的长为 6 .【解答】解:如图,连接AC,四边形ABCD是矩形∴=AC BDE,F分别是边AD和CD的中点,3EF=,AC EF∴==26∴=BD6故答案为:615.如图,在平行四边形ABCD中,5∠的平分线AE交CD于点E,AD=,BADAB=,3连结BE,若BAD BEC∠=∠,则平行四边形ABCD的面积为【解答】解:过点B作BF CD⊥于F,如图所示:AE是BAD∠的平分线,∴∠=∠,DAE BAE四边形ABCD是平行四边形,==,BAD BCEAB CD,∠=∠,//∴==,35AB CDAD BC∴∠=∠,BAE DEA∴∠=∠,DAE DEA∴==,3AD DE2CE CD DE ∴=-=,BAD BEC ∠=∠,BCE BEC ∴∠=∠,112CF EF CE ∴===,BF ===,∴平行四边形ABCD 的面积225BF CD ===,故答案为:16.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ∠=︒,依次延长AB ,BC ,CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点F ,H ,M ,N ,则四边形FHMN的面积为 13+【解答】解:如图,延长CD 交FN 于点P ,过N 作NK CD ⊥于K ,延长FE 交CD 于Q ,交NS 于R ,ABCD 是正方形,90CDG GDK ∴∠=∠=︒,1ABCD S =正方形,1AD CD AG DQ ∴====2DG CT ∴==DEFG 是菱形,2DE EF DG ∴===同理,2CT TN ==45EFG ∠=︒,45EDG SCT NTK ∴∠=∠=∠=︒//FE DG ,//CT SN ,DG CT ⊥90FQP FRN DQE NKT ∴∠=∠=∠=∠=︒DQ EQ TK NK ∴====,2FQ FE EQ =+=90NKT KQR FRN ∠=∠=∠=︒∴四边形NKQR 是矩形QR NK ∴==2FR FQ QR ∴=+=+11NR KQ DK DQ ==-==22222(2113FN FR NR ∴=+=++=+,延长NS 交ML 于Z ,易证()NMZ FNR SAS ∆≅∆FN MN ∴=,NFR MNZ ∠=∠90NFR FNR ∠+∠=︒90NNZ FNR ∴∠+∠=︒即90FNM ∠=︒同理90NFH FHM ∠=∠=︒∴四边形FHMN 是正方形213FHMN S FN ∴==+,故答案为:13+三、解答题(本题共有7小题,共52分)17.(1- (2)解方程:270x x -=【解答】解:(1)原式=+=-=;(2)(7)0x x-=,x=或70x-=,所以10x=,27x=.18.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):(1)若七巧板拼图,趣题巧解,数学应用三项得分分别按40%,20%,40%折算计入总分,最终谁能获胜?(2)若七巧板拼图按20%折算,小麦不可能(填“可能”或“不可能”)获胜.【解答】解:(1)由题意得,小米总分为:8040%9020%8840%85.2⨯+⨯+⨯=,小麦总分为:9040%8620%8540%87.2⨯+⨯+⨯=,85.287.2<,∴小麦获胜;(2)设趣味巧解占%a和数学应用占%b,则小米:80乘以20%90+乘以%88a+乘以%160.90.88b a b=++小麦:90乘以20%86+乘以%85a+乘以%180.860.85b a b=++80a b+=,160.90.88(180.860.85)160.90.88180.860.850.040.0320.010.40a b a b a b a b a b a∴++-++=++---=+-=+>,∴小麦不可能获胜,故答案为:不可能.19.如图,在平行四边形ABCD 中,AC 是它的一条对角线,BE AC ⊥于点E ,DF AC ⊥于点F ,求证:四边形BEDF 是平行四边形.【解答】证明:四边形ABCD 是平行四边形,AB DC ∴=,且//AB DC ,BAE DCF ∴∠=∠.又BE AC ⊥,DF AC ⊥,90AEB CFD ∴∠=∠=︒.在ABE ∆与CDF ∆中,AEB CFD BAE CDF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=;BE AC ⊥,DF AC ⊥,//BE DF ∴,∴四边形BEDF 是平行四边形.20.如图,在66⨯的方格纸中,每一个小正方形的边长均为1,点A ,B 在格点上,用无刻度直尺按下列要求作图,保留必要的作图痕迹(1)在图1中,以AB 为边画一个正方形ABCD ;(2)在图2中,以AB 为边画一个面积为5的矩形(ABCD CD 可以不在格点上).【解答】解:(1)如图1中,正方形ABCD 即为所求.(2)如图2中,矩形ABCD即为所求.21.如图,在平面直角坐标系中,菱形OABC的顶点A,C在反比例函数kyx=图象上,直线AC交OB于点D,交x,y正半轴于点E,F,且OE OF==(1)求OB的长;(2)若AB=,求k的值.【解答】解:(1)OE OF==6EF∴==,45OEF OFE∠=∠=︒,菱形OABC,OA AB BC CO∴===,OB AC⊥,DC DA=,DO DB=,DOE∴∆为等腰直角三角形,132DO DE EF∴===,26OB DO∴==;答:OB的长为6.(2)过点A作AN OE⊥,垂足为N,则ANE∆是等腰直角三角形,AN NE∴=设AN x=,则NE x=,ON x=-,在Rt AON∆中,由勾股定理得:222)x x -+=,解得:1x =2x =当1x =A ,C ,当2x =C ,A ,因此:4k ==答:k 的值为:4.22.市政规划出一块矩形土地用于某项目开发,其中100AB m =,180BC m =,设计分区如图所示,E 为矩形内一点,作EG AD ⊥于点G ,//EH BC 交AB ,CD 于点F ,H ,过点H 作//HI BE 交BC 于点Ⅰ,其中丙区域用于主建筑区,其余各区域均用于不同种类绿化(1)若点G 是AD 的中点,求BI 的长;(2)要求绿化占地面积不小于27500m ,规定乙区域面积为24500m①若将甲区域设计成正方形形状,能否达到设计绿化要求?请说明理由; ②若主建筑丙区域不低于乙区域面积的32,则AF 的最大值为 40 m .(请直接写出答案)【解答】解:(1)四边形ABCD 是矩形,180AD BC m ∴==,//AB CD ,//AD BC ,EG AD ⊥,//EH BC ,//HI BE ,∴四边形AFEG 和四边形DGEH 是矩形,四边形BIHE 是平行四边形, AG EF ∴=,DG EH =,EH BI =,点G 是AD 的中点,1902DG AD m ∴==, 90BI EH DG m ∴===;(2)①设正方形AFEG 的边长为xm , 由题意得:212(100)450075002x x x +⨯⨯⨯-+…, 解得:30x …, 当30x =时,450015030EH ==, 则18015030EF =-=,符合要求;∴若将甲区域设计成正方形形状,能达到设计绿化要求; ②设AF xm =,则4500EH m x =, 由题意得:45003(100)45002x x -⨯…, 解得:40x …,即40AF m …,即AF 的最大值为40m ,故答案为:40.23.如图,4AB AC ==,90BAC ∠=︒,点D ,E 分别在线段AC ,AB 上,且AD AE =.(1)求证:BD CE =;(2)已知F ,G 分别是BD ,CE 的中点,连接FG . ①若12FG BD =,求C ∠的度数; ②连接GD ,DE ,EF ,当AD 的长为何值时,四边形DEFG 是矩形?【解答】解:(1)证明:在ABD ∆与ACE ∆中, AB AC =,A A ∠=∠,AD AE =,()ABD ACE SAS ∴∆≅∆,BD CE ∴=;(2)①连接AF 、AG ,如图:AF 、AG 分别是Rt ABD ∆、Rt ACE ∆的斜边中线, 12AF BD BF ∴==,12AG CE GC ==, 又BD CE =,12FG BD =, AFG ∴∆是等边三角形,易证ABF ACG ∆≅∆()SSS ,BAF B C CAG ∴∠=∠=∠=∠,(9060)215C ∴∠=︒-︒÷=︒,答:C ∠的度数为15︒.②连接BC ,连接EF 、DG 并延长分别交BC 与点M 、N ,如图: ABC ∆、AED ∆都是等腰直角三角形,//DE BC ∴, F ,G 分别是BD ,CE 的中点,∴易证DEF BMF ∆≅,DEG NCG ∆≅ ()ASA BM DE NC ∴==,若四边形DEFG 是矩形,则DE MN =, ∴13DE BC =, ABC AED ∆∆∽, ∴13AD DE AC BC ==, 4AC =,43AD ∴=. 答:当AD 的长为43时,四边形DEFG 是矩形.。
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年江苏省扬州市江都区八年级(下)期末数学试卷含解析
2018-2019学年江苏省扬州市江都区八年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.2.(3分)今年我区有近8000名考生参加中考,为了调查这些考生的数学成绩的情况,从中随机抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.每位考生的数学成绩是个体C.近8000名考生是总体D.1000名学生是样本容量3.(3分)生活中“几乎不可能”表示()A.不可能事件B.确定事件C.必然事件D.随机事件4.(3分)如果把分式中x、y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的4 倍B.扩大为原来的2倍C.不变D.缩小为原来的5.(3分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.6.(3分)如图,小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中任选两个作为补充条件,使▱ABCD为正方形.现有下列四种选法,你认为其中错误的是()A.②③B.①③C.①②D.③④7.(3分)已知b>0,化简的结果是()A.B.C.D.8.(3分)如图,▱ABCD的顶点A的坐标为(﹣),顶点B在y轴上,顶点C、D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则▱ABCD面积为()A.8B.10C.12D.16二、填空题(本大题共有10小题,每小题3分,共30分)9.(3分)最简二次根式是同类二次根式,则a的值为.10.(3分)掷一枚均匀的硬币,前3次抛掷的结果都是正面朝上,那么第4次抛掷的结果正面朝上的概率为.11.(3分)函数中,自变量x的取值范围是.12.(3分)已知a是的小数部分,则a2+2a+2=.13.(3分)已知﹣=2,则代数式的值是.14.(3分)已知关于x的分式方程的解是负数,则m的取值范围是.15.(3分)已知正比例函数y1=k1x(k1>0)的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是.16.(3分)如图,在矩形ABCD中,AB=8,BC=6,点P为边AB上任意一点,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,则PE+PF=.17.(3分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC的两边AB、BC分别交于点M、N,连接OM、ON、MN,若∠MON=45°,MN=2,则点C的坐标为.18.(3分)如图,线段AB是直线y=x+1的一部分,其中点A在y轴上,点B横坐标为2,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P (2019,m)与Q(2025,n)均在该波浪线上,G为x轴上一动点,则△PQG周长的最小值为.三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(1)(6)﹣(3)(2)(m+2﹣)×20.(8分)解方程:(1)=0(2)=1﹣21.(8分)先化简,再求值:,其中a=+1,b=﹣1.22.(8分)某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(说明:测试总人数的前30%考生为A等级,前30%至前70%为B等级,前70%至前90%为C 等级,90%以后为D等级)(1)抽取了名学生成绩;(2)请把频数分布直方图补充完整;(3)扇形统计图中A等级所在的扇形的圆心角度数是;(4)若测试总人数前90%为合格,该校初二年级有900名学生,求全年级生物合格的学生共约多少人.23.(10分)如图,已知△ABC的三个顶点坐标为A(﹣3,4)、B(﹣7,1)、C(﹣2,1).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标:;(2)将△ABC绕坐标原点O顺时针旋转90°,直接写出点A的对应点P的坐标:;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标:.24.(10分)某市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?25.(10分)如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(n,﹣1).(1)求一次函数和反比例函数的关系式;(2)根据图象写出0<<x+b的解集:;(3)求△OAB的面积.26.(10分)某数学兴趣小组课外活动时,发现特殊四边形的边长与对角线存在一定的关系.如图①,在正方形ABCD中,对角线AC,BD交于点O,则AB2+BC2=AC2.如图②,在矩形ABCD中,对角线AC,BD交于点O,则AB2+BC2=AC2.(1)如图③,在菱形ABCD中,对角线AC,BD交于点O,则AB2+BC2=AC2+BD2.(2)小华通过几何画板度量计算,发现平行四边形ABCD中,如图④,对角线AC,BD交于点O,则得到的结论和(1)的结论一样,小伟和小红通过添加如图④的辅助线证明了这个结论的正确性,请利用图形完成证明.27.(12分)在四边形ABCD中,AD∥BC,AB=6cm,AD=14cm,BC=20cm,∠ABC=90°,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形ABQP成为矩形?(2)当t为何值时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.28.(12分)(1)阅读理解:我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,如图1,经过:经过平面内一点P作坐标轴的平行线PM和PN交x轴和y轴于M、N,点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,如M表示数2.5,N表示数2,则点P的坐标为(2.5,2),如图ω=30°,直角三角形的顶点A与坐标原点O重合,点B、C分别在x轴和y轴上,AB=,则点B、C在此斜坐标系内的坐标分别为B,C.(2)尝试应用:如图3,ω=45°,O为坐标原点,边长为1的正方形OABC的边OA在x轴上,设直线y=kx+b 经过A,C两点,求k、b的值.(3)自主探究:如图4,ω=60°,O为坐标原点,M(2,2),矩形ABCM的边AB在坐标轴上且面积为3,求顶点C的坐标.2018-2019学年江苏省扬州市江都区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.2.【解答】解:A、抽取1000名考生的数学成绩是样本,故本选项错误;B、每位考生的数学成绩是个体,故本选项正确;C、近8000名考生的数学成绩是总体,故本选项错误;D、1000是样本容量,故本选项错误.故选:B.3.【解答】解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.因此“几乎不可能”表示的是随机事件.故选:D.4.【解答】解:∵分式中的x与y都扩大为原来的2倍,∴分式中的分子扩大为原来的4倍,分母扩大为原来的2倍,∴分式的值扩大为原来的2倍.故选:B.5.【解答】解:当k>0时,反比例函数图象经过一三象限;一次函数图象经过第一、二、三象限,故A、C错误;当k<0时,反比例函数经过第二、四象限;一次函数经过第二、三、四象限,故B错误,D正确;故选:D.6.【解答】解:A 、∵四边形ABCD 是平行四边形, ∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意; B 、∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意; C 、∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意; D 、∵四边形ABCD 是平行四边形,∴当③AC =BD 时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意. 故选:A .7.【解答】解:∵b >0,﹣a 3b ≥0, ∴a ≤0.∴原式=﹣a .故选:C .8.【解答】解:过点D 作DF ⊥x 轴,垂足为F ,过C 、B 作x 、y 轴的垂线相交于点G ,连接BD , ∵A (﹣),E (0,2),∴OA =,OE =2,AE ==,∵▱ABCD , ∴S △ABD =S △BCD ,又∵四边形BCDE 的面积是△ABE 面积的3倍, ∴S △ABE =S △BDE , ∴AE =ED =2.5, ∵△AEO ∽△ADF ,∴,∴DF =2•EO =4,∴D(,4)∴反比例函数的关系式为:y=,在Rt△ADF中,AF=,易证△ADF≌△BCG,∴BG=AF=3,CG=DF=4,当x=BG=3时,y=2,∴C(3,2)∴OB=CG﹣CH=4﹣2=2,=×4×=3,∴S△ABE又∵四边形BCDE的面积是△ABE面积的3倍,∴▱ABCD的面积=4S=4×3=12,△ABE故选:C.二、填空题(本大题共有10小题,每小题3分,共30分)9.【解答】解:∵最简二次根式是同类二次根式,∴a+1=5,∴a=4.故答案为:4.10.【解答】解:由于每一次正面朝上的概率相等,∴第4次抛掷的结果正面朝上的概率为0.5,故答案为:0.511.【解答】解:根据题意得:x+1≥0且x﹣2≠0,解得:x≥﹣1且x≠2.故答案为:x≥﹣1且x≠2.12.【解答】解:∵1<<2,∴a=﹣1,∴a2+2a+2=+2=3﹣2+1+2﹣2+2=4.故答案为:4.13.【解答】解:由﹣==2,得到x﹣y=2xy,则原式===1,故答案为:114.【解答】解:去分母得:m﹣2=x+1,解得:x=m﹣3,由分式方程的解为负数,得到m﹣3<0,且m﹣3≠﹣1,解得:m<3且m≠2,故答案为:m<3且m≠215.【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,如图,由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故答案为﹣2<x<0或x>2.16.【解答】解:连接OP,如图:∵四边形ABCD是矩形,∴∠ABC=90°,OA=OC,OB=OD,AC=BD,∴OA =OB ,AC ===10,∴S 矩形ABCD =AB •BC =48,S △AOB =S 矩形ABCD =12,OA =OB =5,∴S △AOB =S △AOP +S △BOP =OA •PE +OB •PF =OA (PE +PF )=×5×(PE +PF )=12, ∴PE +PF =;故答案为:.17.【解答】解:连接OB ,交MN 于点E ,如图:∵正方形OABC ,∴OA =AB =BC =CO ,由M 、N 是反比例函数y =的图象与正方形OABC 的两边AB 、BC 的交点,∴CN =AM ,∴△OAM ≌△OCN ,∴OM =ON ,∵∠MON =45°∴△BMN 是等腰直角三角形,MN =2∴OB 是MN 的垂直平分线,∴ME =EN =1,BM =BN =,易证△OEN ≌△△OCN ,得EN =CN =1,∴OC =BC =BN +CE =,∴C (0,)故答案为:(0,)18.【解答】解:当x=2时,y=x+1=2+1=3,∴B(2,3)∵B(2,3)在双曲线y=上,∴k=6把x=6代入y=得:y=1,∴C(6,1)∵2019÷6=336……3,∴点P落在第337个“A﹣B﹣C”的P处,而点Q落在第337个“A﹣B﹣C”的Q处,示意如图:因此可以推算出:P(2019,2)Q(2025,2),△PQG周长的最小,PQ=6定值,只要GP+GQ最小即可,由对称可得到点Q的位置,此时GP=GQ=,∴△PQG周长的最小值为PQ+GP+GQ=6+.故答案为:6+.三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=12﹣2﹣+2=11;(2)原式=•=•=2(m+3)=2m+6.20.【解答】解:(1)去分母得:3x+3﹣x﹣3=0,解得:x=0,经检验x=0是分式方程的解;(2)去分母得:2x=4x﹣2﹣4x+3,解得:x=,经检验x=是增根,分式方程无解.21.【解答】解:=•=;当a=+1,b=﹣1时,原式==.22.【解答】解:(1)根据题意得:23÷46%=50(名),则抽取了50名学生成绩;故答案为:50;(2)D等级的学生有50﹣(10+23+12)=5(名),补全直方图,如图所示:(3)根据题意得:20%×360°=72°,故答案为:72°;(4)根据题意得:900×90%=810(人),则全年级生物合格的学生共约810人.23.【解答】解:(1)△A′B′C′,如图所示,A′(3,﹣4).(2)如图所示,P(4,3).(3)满足条件的点D的坐标为(﹣8,4)或(2,4)或(﹣6,﹣2).故答案为:(3,4),(4,3),(﹣8,4)或(2,4)或(﹣6,﹣2).24.【解答】解:设原来平均每亩产量是x 万千克,则改良后平均每亩产量是1.5x 万千克,依题意,得:﹣=10,解得:x =,经检验,x =是原方程的解,且符合题意.答:原来平均每亩产量是万千克.25.【解答】解:(1)把A 点坐标(1,4)分别代入y =、y =x +b ,得k =1×4,1+b =4,解得k =4,b =3,所以反比例函数、一次函数的解析式分别为y =,y =x +3;(2)由图象可知,当x >1时,反比例函数落在一次函数图象下方,且反比例函数在第一象限, 所以0<<x +b 的解集是x >1.故答案为x >1;(3)如图,设直线AB 与x 轴交于点C .∵y =x +3,∴当y =0时,x +3=0,x =﹣3,∴C (﹣3,0).∴S △AOB =S △AOC +S △BOC =×3×4+×3×1=.26.【解答】(1)解:∵在菱形ABCD 中,对角线AC ,BD 交于点O ,∴AO =CO =BD ,AC ⊥BD ,∴AB 2+BC 2=OA 2+OB 2+OB 2+OC 2=(AC )2+(BD )2+(BD )2+(AC )2=AC 2+BD 2;故答案为:,;(2)解:过B 作 BE ⊥AC 于E ,∵AB 2=AE 2+BE 2,BC 2=EC 2+BE 2,∴AB 2+BC 2=AE 2+EC 2+2BE 2,∵BE 2=BO 2﹣OE 2,∴AB 2+BC 2=AE 2+EC 2+2(BO 2﹣OE 2)=AE 2﹣OE 2+CE 2﹣OE 2+2BO 2=(AE +OE )(AE ﹣OE )+(CE +OE )(CE ﹣OE )+2OB 2=AO (AE +OE +CE ﹣OE )+2OB 2=AO •AC +2BO 2=AC 2+BD 2.27.【解答】解:(1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =20﹣3t ,∴t =20﹣3t ,解得t=5.∴当t=5时,四边形ABQP成为矩形;(2)①当AP=BQ时,t=20﹣3t,此时t=5,四边形ABQP是平行四边形;②当PD=BQ时,14﹣t=20﹣3t,此时t=3,四边形PBQD是平行四边形时;③当PD=QC时,14﹣t=3t,此时t=3.5,四边形PQCD为平行四边形;综上所述,当t=5或t=3或t=3.5时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形.(3)四边形PBQD不能成为菱形.理由如下:∵PD∥BQ,∴当PD=BQ=BP时,四边形PBQD能成为菱形.由PD=BQ,得14﹣t=20﹣3t,解得:t=3,当t=3时,PD=14﹣3=11,BQ=20﹣9=11,AP=AD﹣PD=14﹣11=3.在Rt△ABP中,AB=6,AP=3,根据勾股定理得,BP═=≠11,∴四边形PBQD不能成为菱形;如果Q点的速度改变为vcm/s时,能够使四边形PBQD在时刻ts为菱形,由题意得,,解得:.故点Q的速度为cm/s时,能够使四边形PBQD在s这一时刻为菱形.28.【解答】解:(1)如答图1中,B(,0),C(0,2),故答案为:(,0),C(0,2);(2)如图2中,由题意C(﹣1,),A(1,0),由直线AC是解析式为y=kx+b,得:,解得.∴y=﹣x+.(3)如答图3,矩形ABCM,易得AM=,∵矩形ABCM面积为3,∴AM•MC=3.∴MC=3.∴C(5,2).同理可得答图4中的点C的坐标是(﹣1,2).答图5中的点C的坐标是(2,5).答图6中的点C的坐标是(2,﹣1).综上所述,点C的坐标是:(5,2)或(﹣1,2)或(2,5)或(2,﹣1).。
2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)
2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。
湖南省长沙市湖南师大附中高新实验中学2018-2019学年八年级下学期期末数学试题(含答案及解析)
湖南师大附中高新实验中学 2018—2019 学年度第二学期八年级期末考数学试卷一、选择题(本题共 12 个小题,每小题 3 分,满分 36 分)1. 下列函数中,y 是x 的正比例函数的是( ) A. 3x y =B. 21y x =-C. 22y x =D. 21y x =-+【答案】A 【解析】 【分析】根据正比例函数的定义逐一判断即可. 【详解】A. 3xy =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意; C. 22y x =不是正比例函数,故C 不符合题意; D. 21y x =-+不是正比例函数,故D 不符合题意. 故选A.【点睛】此题考查的是正比例函数,掌握正比例函数的定义是解决此题的关键. 2. 方程x (x ﹣1)=0的根是( ) A. x =0 B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=﹣1【答案】C 【解析】 【分析】由题意推出x =0,或(x ﹣1)=0,解方程即可求出x 的值. 【详解】解:∵x (x ﹣1)=0, ∴x 1=0,x 2=1, 故选C .【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键. 3. 甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表: 选手甲乙丙丁方差 0.0230.0180.0200.021则这10次跳绳中,这四个人发挥最稳定的是( ) A. 甲 B. 乙C. 丙D. 丁【答案】B 【解析】试题分析:方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.由S 乙2<S 丙2<S 丁2<S 甲2, ∴这10次跳绳中,这四个人发挥最稳定的是乙. 故选B .考点:方差,算术平均数.4. 已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A. 1 B. ﹣1C. 0D. 无法确定【答案】B 【解析】解:根据题意得:(m ﹣1)+1+1=0, 解得:m=﹣1. 故选B5. 若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A. ()223y x =++ B. ()223y x =-+C. ()223y x =+-D. ()223y x =--【答案】B 【解析】试题分析:∵函数y=x 2的图象的顶点坐标为()0,?0,将函数y=x 2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是()()02,?032,?3++⇒.∴所得抛物线的表达式为()223y x=-+.故选B.考点:二次函数图象与平移变换.6. 已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A. y轴B. 直线x=52C. 直线x=1D. 直线x=32【答案】D 【解析】观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x=03322+=.故选D.7. 对一组数据:﹣2,1,2,1,下列说法不正确的是()A. 平均数是1B. 众数是1C. 中位数是1D. 极差是4【答案】A【解析】试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.考点:极差,算术平均数,中位数,众数.8. 一次函数y = 2x - 2 的大致图象是()A. B. C. D.【答案】A【解析】【分析】先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.【详解】解:∵k=2,b=-2,∴函数y=2x-2的图象经过第一、三、四象限.故选A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9. 如图,在平行四边形ABCD中,下列各式不一定正确的是()A.012180∠+∠=B. 023180∠+∠=C. 034180∠+∠=D. 024180∠+∠=【答案】D 【解析】由▱ABCD的性质及图形可知:A、∠1和∠2是邻补角,故∠1+∠2=180°,正确;B、因为AD∥BC,所以∠2+∠3=180°,正确;C、因为AB∥CD,所以∠3+∠4=180°,正确;D、根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确;故选D.10. P1(x1,y1),P2(x2,y2)是正比例函数1y x2=-图象上的两点,下列判断中,正确的是A. y1>y2 B. y1<y2C. 当x 1<x 2时,y 1<y 2D. 当x 1<x 2时,y 1>y 2【答案】D 【解析】试题分析:∵1y x 2=-,k=12-<0,∴y 随x 的增大而减小. ∴当x 1<x 2时,y 1>y 2.故选D . 11. 如图所示,函数1y x =和21433y x =+的图象相交于(–1,1),(2,2)两点.当12y y >时,x 的取值范围是( )A. x <–1B. x <–1或x >2C. x >2D. –1<x <2【答案】B 【解析】试题解析:当x≥0时,y 1=x ,又21433y x =+, ∵两直线的交点为(2,2), ∴当x <0时,y 1=-x ,又21433y x =+, ∵两直线的交点为(-1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <-1或x >2. 故选B .12. 已知二次函数22y ax bx =--(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( ) A.34或1 B.14或1 C.34或12D.14或34【答案】A 【解析】 【分析】首先根据题意确定a 、b 的符号,然后进一步确定a 的取值范围,根据a ﹣b 为整数确定a 、b 的值,从而确定答案.【详解】依题意知a >0,2ba>0,a+b ﹣2=0, 故b >0,且b=2﹣a , a ﹣b=a ﹣(2﹣a )=2a ﹣2, 于是0<a <2, ∴﹣2<2a ﹣2<2, 又a ﹣b 为整数, ∴2a ﹣2=﹣1,0,1,故a=12,1,32, b=32,1,12, ∴ab=34或1,故选A .【点睛】根据开口和对称轴可以得到b 的范围.按照左同右异规则.当对称轴在y 轴的左侧,则a,b 符号相同,在右侧则a,b 符号相反.二、填空题(本题共 6 个小题,每小题 3 分,满分 18 分)13. 直线 y =2x +3 与 x 轴相交于点 A ,则点 A 的坐标为_____. 【答案】(−32,0) 【解析】 【分析】根据一次函数与x 轴的交点,y=0;即可求出A 点的坐标. 【详解】解:∵当y=0时,有2x 30+=,解得:3x 2=-, ∴A 点的坐标为(−32,0); 故答案为(−32,0). 【点睛】本题考查了一次函数与x 轴的交点坐标,解答此题的关键是熟知一次函数与坐标轴的交点,与x 轴有交点,则y=0. 14. 函数y=1的自变量x 的取值范围是_____.【答案】x≥0 【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0. 考点:二次根式有意义15. 如图菱形 ABCD 的对角线 AC ,BD 的长分别为 12 cm ,16 cm ,则这个菱形的周长为____.【答案】40cm 【解析】 【分析】根据菱形的对角线互相垂直平分可得AC ⊥BD ,OA=12AC ,OB=12BD ,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解. 【详解】解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,OA=12AC=12×12=6cm , OB=12BD=12×16=8cm , 根据勾股定理得,22226810AB OA OB ++=, 所以,这个菱形的周长=4×10=40cm . 故答案为40cm.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记. 16. 若关于 y 的一元二次方程 y 2﹣4y +k +3=﹣2y +4 有实根,则 k 的取值范围是_____. 【答案】k 2≤ 【解析】 【分析】首先把方程化为一般形式,再根据方程有实根可得△=240b ac -≥,再代入a 、b 、c 的值再解不等式即可. 【详解】解:y 2﹣4y +k +3=﹣2y +4,化为一般式得:2210y y k -+-=, 再根据方程有实根可得:△=240b ac -≥,则2241k 10--⨯⨯-≥()(),解得:k 2≤;∴则 k 的取值范围是:k 2≤. 故答案为k 2≤.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17. 在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m ,那么它的下部应设计的高度为_____. 【答案】512- 【解析】 【分析】设雕像的下部高为x m ,则上部长为(1-x )m ,然后根据题意列出方程求解即可. 【详解】解:设雕像的下部高为x m ,则题意得:11x xx -=, 整理得:210x x +-=, 解得:1512x =- 或 2512x =-- (舍去); ∴它的下部应设计的高度为5122-:. 故答案为512-. 【点睛】本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.18. 二次函数 y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线 x =1,则下列四个结论:①c >0; ②2a +b =0; ③b 2-4ac >0; ④a -b +c >0;正确的是_____.【答案】①②③ 【解析】 【分析】由抛物线开口方向得到a <0,由抛物线与y 轴交点位置得到c >0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x 轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线与y 轴交点位于y 轴正半轴, ∴c >0,所以①正确; ∵抛物线的对称轴为直线x 12ba=-=, ∴b=-2a ,即2a+b=0,所以②正确; ∵抛物线与x 轴有两个不同的交点, ∴b2-4ac >0,所以③正确; ∵x=-1时,y <0, ∴a-b+c <0,所以④错误. 故答案为①②③.【点睛】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b2-4ac <0时,抛物线与x 轴没有交点.三.解答题(本题共 8 个小题,满分 66 分)19. 已知y 是x 的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式. 【答案】y=x-2. 【解析】试题分析:设这个一次函数的解析式为y="kx+b," 分别将x=3,y=1和x=−2,y=−4分别代入y=kx+b 得方程组,解这个方程组即可求得k 、b 的值,也就求得了函数的解析式.试题解析:解:设这个一次函数的解析式为y="kx+b," 将x=3,y=1和x=−2,y=−4分别代入y=kx+b 得,31{24k b k b +=-+=-, 解这个方程组得,1{2k b ==-.∴所求一次函数的解析式为y=x —2. 考点:用待定系数法求函数解析式.20. 已知:12x x 、是一元二次方程2510x x --=的两实数根. (1)求 1222+x x 的值; (2)求 x 1- x 2的值. 【答案】(1)27;(2)29± 【解析】 【分析】(1)根据根与系数的关系,求出12 x x +和 12x x 的值,即可得到答案;(2)根据题意,可得212x x -=()1222122x x x x -+,计算即可得到答案. 【详解】解:(1)∵12,x x 是一元二次方程2510x x --=的两实数根, ∴12x x 5+=,12x x 1=-,∴122221212225227x x x x x x =+-=+=+();(2)根据题意,212x x -=()122212227229x x x x -=+=+, ∴12x x 29-=±;【点睛】本题考查了一元二次方程的根与系数的关系,解题的关键是掌握12b x x a +=-,12cx x a=,然后变形计算即可.21. 七年级某班体育委员统计了全班同学 60 秒垫排球次数,并列出下列频数分布表:次数 0≤x <10 10≤x <2020≤x <30 30≤x <4040≤x <5050≤x <60频数14211554(1)全班共有 名同学;(2)垫排球次数 x 在 20≤x <40 范围的同学有 名,占全班人数的 %;(3)若使垫排球次数 x 在 20≤x <40 范围的同学到九年级毕业时占全班人数的 87.12%,则八、九年级平均每年的垫排球次数增长率为多少? 【答案】(1)50;(2)36,72;(3)10%. 【解析】 【分析】(1)由图可知所有的频数之和即为人数;(2)由图可知,把20≤x <40的两组频数相加即可,然后除以总人数即可得到答案;(3)先计算到九年级20≤x <40的人数,然后设增长率为m ,列出方程,解除m 即可.【详解】解:(1)全班总人数=1+4+21+15+5+4=50(人),故答案为50.(2)垫排球次数 x 在 20≤x <40 范围的同学有:21+15=36(人); 百分比为:36100%72%50⨯=; 故答案为36,72.(3)根据题意,设平均每年的增长率为m ,则2361m 5087.12%⨯+=⨯()解得:120.110% 2.1m m ===-,(舍去),故八、九年级平均每年的垫排球次数增长率为:10%.【点睛】本题考查了一元二次方程的应用和频数分布表,频数分布表能够表示出具体数字,知道频率=频数÷总数和考查根据图表获取信息的能力,以及增长率的计算.解题的关键是在频数分布表中得到正确的信息. 22. 如图,分别以 Rt △ ABC 的直角边 AC 及斜边 AB 向外作等边△ ACD ,等边△ ABE .已知∠ABC =60°,EF ⊥AB ,垂足为 F ,连接 DF .(1)证明:△ACB ≌△EFB ;(2)求证:四边形 ADFE 是平行四边形.【答案】(1)见详解;(2)见详解.【解析】【分析】(1)由△ABE 是等边三角形可知:AB=BE ,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC ,接下来依据AAS 证明△ABC ≌△EBF 即可;(2)由△ABC ≌△EBF 可得到EF=AC ,由△ACD 是的等边三角形进而可证明AC=AD=EF ,然后再证明∠BAD=90°,可证明EF ∥AD ,故此可得到四边形EFDA 为平行四边形.【详解】解:(1)证明:∵△ABE 是等边三角形,EF ⊥AB ,∴∠EBF=60°,AE=BE ,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)证明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.【点睛】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等边三角形的性质,解题的关键是掌握证明全等三角形的判定方法和证明平行四边形的判定方法.23. 2019 年7 月1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:信息1:一个垃圾分类桶的售价比进价高12 元;信息2:卖3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;请根据以上信息,解答下列问题:(1)该商品的进价和售价各多少元?(2)商店平均每天卖出垃圾分类桶16 个.经调查发现,若销售单价每降低1 元,每天可多售出2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?【答案】(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.【解析】【分析】(1)根据题意,设一个垃圾分类桶的进价为x 元,则售价为(x+12)元,列出方程,解方程即可得到答案; (2)根据题意,可设每天获利为w ,当垃圾分类桶的售价为y 元时,每天获利w 最大,然后列出方程,解出方程即可得到答案.【详解】解:(1)设一个垃圾分类桶的进价为x 元,则售价为(x+12)元,则3x 124x ⨯+=,解得:x 36=,∴售价为:36+12=48元.答:一个垃圾分类桶的进价为36元,售价为48元;(2)设每天获利为w ,当一个垃圾分类桶的售价为y 元时,每天获利最大,则()()w y 3616248y ⎡⎤=-⨯+-⎣⎦,整理得:()2w 246200y =--+;∴当y 46= 时,商店每天获利最大,最大利润为:200元.【点睛】该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.24. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图 1,等腰直角四边形 ABCD ,AB =BC ,∠ABC =90°.图 1①若 AB =CD =1,AB ∥CD ,求对角线 BD 的长.②若 AC ⊥BD ,求证:AD =CD ;(2) 如图 2,矩形 ABCD 的长宽为方程 2x -14x +40=0 的两根,其中(BC >AB ),点 E 从 A 点出发,以 1 个单位每秒的速度向终点 D 运动;同时点 F 从 C 点出发,以 2 个单位每秒的速度向终点 B 运动,当点 E 、F 运动过程中使四边形 ABFE 是等腰直角四边形时,求 EF 的长.图2【答案】(1)①BD=2;②证明见详解;(2)25或17【解析】【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)先解方程,求出AB和BC的长度,然后根据题意,讨论当AB=AE,或AB=BF时,四边形ABFE是等腰直角四边形.当AB=AE=4时,连接EF,过F作FG⊥AE,交AE于点G,可得运动的时间为4s,可得CF=8,然后得到GE=2,利用勾股定理得到EF的长度;当AB=BF=4时,连接EF,过点E作EH⊥BF,交BF于点H ,可得CF=6,运动的时间为3s,可得AE=3,然后得到FH=1,利用勾股定理求得EF的长度. 【详解】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC=22112+=;②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠BAC=∠BCA,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)由AB和BC的长度是方程2x-14x+40=0的两根,则解方程:2x -14x +40=0得,12410x x ==,,∵BC >AB ,∴AB=4,BC=10.根据题意,当AB=AE 和AB=BF 时,四边形ABFE 是等腰直角四边形;当AB=AE 时,如图,连接EF ,过F 作FG ⊥AE ,交AE 于点G :∴AB=AE=4,四边形ABFG 是矩形,∴运动的时间为:414s ÷=,∴CF=248⨯=,∴BF=2=AG ,∴GE=2,GF=AB=4,由勾股定理得:EF=222425+=;当AB=BF 时,如图,连接EF ,过点E 作EH ⊥BF ,交BF 于点H :∴AB=BF=4,∴CF=10-4=6, 则运动的时间为:623s ÷=,∴AE=3,EH=AB=4∴FH=4-3=1,由勾股定理得:221417+=;故EF 长度为:2517【点睛】本题考查四边形综合题、矩形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.25. 已知二次函数2y x bx c =++(b ,c 为常数).(1)当2b =,3c =-时,求二次函数的最小值;(2)当5c =时,若在函数值1y =的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式; (3)当2c b =时,若在自变量x 的值满足b ≤x ≤3b +的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.【答案】(1)二次函数取得最小值-4;(2)245y x x =++或245y x x =-+;(3)27y x =+或2416y x x =-+.【解析】【分析】(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为25y x bx =++,又因函数值y=1的情况下,只有一个自变量x 的值与其对应,说明方程251x bx ++=有两个相等的实数根,利用0∆=即可解得b 值,从而求得函数解析式. (3)当c=b 2时,二次函数的解析式为22y x bx b =++,它的图象是开口向上,对称轴为2b x =-的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b -<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b -≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b ->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式.【详解】解:(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,即2y (x 1)4=+-. ∴当x=-1时,二次函数取得最小值-4.(2)当c=5时,二次函数的解析式为25y x bx =++.由题意得,方程251x bx ++=有两个相等的实数根.有2160b ∆=-=,解得124,4b b ==-,∴此时二次函数的解析式为245y x x =++或245y x x =-+.(3)当c=b 2时,二次函数的解析式为22y x bx b =++.它的图象是开口向上,对称轴为2b x =-的抛物线. ①若2b -<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大,故当x=b 时,2223y b b b b b =+⋅+=为最小值.∴2321b =,解得17b =,27b =-(舍去).②若b≤2b -≤b+3,即-2≤b≤0, 当x=2b -时,2223224b b y b b b ⎛⎫⎛⎫=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭为最小值. ∴23214b =,解得127b =(舍去),227b =-(舍去). ③若2b ->b+3,即b <-2, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而减小,故当x=b+3时,222(3)(3)399y b b b b b b =++++=++为最小值.∴239921b b ++=,即2340b b +-=解得11b =(舍去),24b =-.综上所述,7b =或b=-4.∴此时二次函数的解析式为277y x x =++或2416y x x =-+.考点:二次函数综合题.26. 已知直线 y =kx +b (k ≠0)过点 F (0,1),与抛物线 214y x =相交于B 、C 两点(1)如图1,当点C 的横坐标为1 时,求直线BC 的解析式;(2)在(1)的条件下,点M 是直线BC 上一动点,过点M 作y 轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由;(3)如图2,设B(m,n)(m<0),过点E(0,-1)的直线l∥x 轴,BR⊥l 于R,CS⊥l 于S,连接FR、FS.试判断△ RFS 的形状,并说明理由.【答案】(1)314y x=-+;(2)存在;M点坐标为:(-3,134),⎝⎭,⎝⎭;(3)△RFS是直角三角形;证明见详解.【解析】【分析】(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,3x1 4-+),则D(x,14x2),表示出DM,分类讨论列方程求解;(3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=12∠BFC=90°,所以△RFS是直角三角形.【详解】解:(1)因为点C在抛物线上,所以C(1,14),又∵直线BC过C、F两点,故得方程组:114 bk b=⎧⎪⎨+=⎪⎩解之,得341kb⎧=-⎪⎨⎪=⎩,所以直线BC的解析式为:314y x=-+;(2)存在;理由如下:要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,设M (x ,3x 14-+),则D (x ,14x 2), ∵MD ∥y 轴, ∴231144MD x x =-+-, 由MD=OF ,可得:2311144x x -+-=; ①当2311144x x -+-=时, 解得:x 1=0(舍)或x 1=-3,所以M (-3,134); ②当2311144x x -+-=-时, 解得:3412x -±=, 所以M 3411734128⎛-+ ⎝⎭或M 3411734128⎛⎫-- ⎪ ⎪⎝⎭, 综上所述,存在这样的点M ,使以M 、D 、O 、F 为顶点的四边形为平行四边形,M 点坐标为:(-3,134),3411734128⎛-+ ⎝⎭,34117341,28⎛-+- ⎝⎭; (3)△RFS 是直角三角形;理由如下:过点F 作FT ⊥BR 于点T ,如图2所示,∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,22BF BT TF=+22(1)n m=-+2(1)4n n=-+2(1)n=+∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS=12∠BFC=90°,∴△RFS是直角三角形.【点睛】本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.解题的关键是掌握待定系数法求解析式,以及学会运用分类讨论和数形结合等数学思想去解题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A. 选取一个班级的学生B. 选取50名男生C. 选取50名女生D. 在该校各年级中随机选取50名学生2.若点P(m,m+3)在第二象限,则m的值可能是()A. 1B. 0C.D.3.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.4.如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A. BD的长度增大B. 四边形ABCD的周长不变C. 四边形ABCD的面积不变D. 四边形ABCD由矩形变为平行四边形5.在平面直角坐标系中,一次函数y=1-x的图象是()A. B.C. D.6.如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A. B. C. D.7.将点B(5,-1)向上平移3个单位长度得到点A(a+1,1-b),则()A. ,B. ,C. ,D. ,8.如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A. 4吨B. 5吨C. 6吨D. 7吨9.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A. 减小2B. 增加2C. 减小4D. 增加410.如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(-4,2),点B的坐标为(2,-4),则坐标原点可能为()A.B.C.D.11.用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x的函数关系式及x的取值范围是()A. B.C. D.12.如图,小明家相对于学校的位置下列描述最准确的是()A. 距离学校1200米处B. 北偏东方向上的1200米处C. 南偏西方向上的1200米处D. 南偏西方向上的1200米处13.若函数y=kx(k≠0)的图象过(2,-3),则关于此函数的叙述不正确的是()A. y随x的增大而增大B.C. 函数图象经过原点D. 函数图象过二、四象限14.某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A. ①②B. ①④C. ②③D. ③④15.数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD则关于两人的证明过程,说法正确的是()A. 甲、乙两人都对B. 甲对,乙不对C. 乙对,甲不对D. 甲、乙两人都不对16.如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A. 点AB. 点BC. 点CD. 不能确定二、填空题(本大题共4小题,共12.0分)17.根据如图的程序计算,当输出的结果y=5.5时,则输入x=______.18.如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n-1+∠A n=2040°,若∠P=60°,则n的值为______.19.学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下表:则表中a的值是______.20.一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到-3℃;从次日5时至次日8时,气温又将由-3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续______时,你认为是否有必要对大棚蔬菜采取防冻措施?______(填“有”或“没有”)三、解答题(本大题共6小题,共56.0分)21.平面直角坐标系中,已知点A(-a,2a+3),B(1,a-2)(1)若点A在第一象限的角平分线上时,则a=______;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为______;(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.22.如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证______由已知,BE=DF,又由______,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.23.为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费______元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?24.某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是______万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则______卖区销售额最高,该卖区占5月份商场销售总额的百分比是______,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.25.请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是______.(2)下表是x与y的对应值:①m=______;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=______;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为______;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x-1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y时x的取值范围.26.如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x 轴于点F1,(1)若A(4,0)B(1,4),则①由△______≌△______,得点F的坐标为______;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A (4,0),B(m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为______.答案和解析1.【答案】D【解析】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.根据调查数据要具有随机性,进而得出符合题意的答案.此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.2.【答案】C【解析】解:∵点P(m,m+3)在第二象限,可得:,解得:-3<m<0,所以m的值可能是-1.5,故选:C.点在第二象限的条件是:横坐标是负数,纵坐标是正数.此题考查点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.【答案】D【解析】解:A、B、C当x取值时,y有唯一的值对应,故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.此题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.4.【答案】C【解析】解:∵将CD在BC上方绕点C顺时针旋转,∴BD的长度增大,CD的长度不变,∵四边形ABCD的周长=2(BC+CD),且BC,CD的长度不变∴四边形ABCD的周长不变∵四边形ABCD的面积=×BC×(点D到BC的距离),且BC不变,点D到BC的距离在旋转的过程中随点D的位置的变化而变化,∴四边形ABCD的面积是变化的∵旋转中,AB=CD,AD=BC∴四边形ABCD是平行四边形故选:C.由旋转的性质和平行四边形的性质可求解.本题考查了旋转的性质,平行四边形的判定等知识,熟练运用旋转的性质是本题的关键.5.【答案】A【解析】解:一次函数y=-x+1,其中k=-1,b=1,其图象为:,故选:A.观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.6.【答案】D【解析】解:∵BE平分∠ABC,∴∠ABC=2∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CBE=∠AEB=25°,∠ABC+∠C=180°,∴∠ABC=2∠CBE=50°,∴∠C=180°-50°=130°;故选:D.先根据角平分线的定义得到,∠ABC=2∠EBC,再根据平行四边形的性质得出AD∥BC,AB∥CD,即可得出∠CBE=∠AEB=25°,∠ABC+∠C=180°,得出∠ABC=2∠CBE=50°,即可得出∠C的度数.此题考查了平行四边形的性质、平行线的性质、角平分线的定义的运用,熟练掌握平行四边形的性质是关键.7.【答案】B【解析】解:由题意:,解得,故选:B.根据左减右加,上加下减的规律解决问题即可.本题考查坐标与图形变化-平移,解题的关键是熟练掌握平移的坐标变化的规律,属于中考常考题型.8.【答案】B【解析】解:由图知4吨和6吨对应的圆心角度数为90°,7吨对应的圆心角度数为60°,则5吨对应的圆心角度数为360°-(90°+90°+60°)=120°,故选:B.根据四个部分对应的圆心角度数和为360°求出5吨所对应的圆心角度数,从而得出答案.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.9.【答案】D【解析】解:∵当x的值减小1,y的值就减小2,∴y-2=k(x-1)+b=kx-k+b,即y=kx-k+b+2.又∵y=kx+b,∴-k+b+2=b,即-k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故选:D.先根据题意列出关于k的方程,求出k的值即可得出结论.本题考查的是一次函数的性质,先根据题意得出k的值是解答此题的关键.10.【答案】A【解析】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(-4,2),点B的坐标为(2,-4),∴,解得:,∴直线AB为y=-x-2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b 决定了直线与y轴的交点位置.11.【答案】B【解析】解:∵三角形底边长为ycm,腰长为xcm,周长为48cm,∴2x+y=48 即y=48-2x由三角形三边关系可得:12<x<24故选:B.由三角形周长及三角形三边关系可求得.本题考察三角形三边的关系,为基础题型.12.【答案】C【解析】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.此题主要考查了方向角,关键是掌握方向角的描述方法.13.【答案】A【解析】解:把点(2,-3)代入y=kx(k≠0)得:2k=-3,解得:k=-,函数的解析式为:y=-x,A.k=-<0,y随着x的增大而减小,即A项不正确,B.k=-,即B项正确,C.该函数是正比例函数,图象经过原点,即C项正确,D.函数图象过二、四象限,即D项正确,故选:A.把点(2,-3)代入y=kx(k≠0)得到关于k的一元一次方程,解之,即可得到该函数的解析式,根据正比例函数的性质,依次分析各个选项,即可得到答案.本题考查了一次函数图象上点的坐标特征,正比例函数的性质,正确掌握代入法和正比例函数的性质是解题的关键.14.【答案】B【解析】解:由图象可得,该产品产量与销售量均呈直线上升的趋势,该产品库存积压越来越大,应该压缩生产或设法促销,故①错误,③正确,该产品已经出现供大于求的趋势价格将趋跌,故②正确,由图象不能得到销售价格,故不能判断是否亏损,故④错误,故选:B.根据函数图象和一次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】A【解析】解:甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.故选:A.甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.本题考查菱形的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】C【解析】解:∵滚动第1次,落在x轴上的点C(3.0),即:C(1+2,0),滚动第2次,落在x轴上的点A(4.0),即:A(2+2,0),滚动第3次,落在x轴上的点B(5.0),即:B(3+2,0),滚动第4次,落在x轴上的点C(6.0),即:C(4+2,0),滚动第5次,落在x轴上的点A(7.0),即:A(5+2,0),∴滚动n次,落在x轴上的点,(n+2,0),∴(2018-2)÷3=672,∴经过(2018,0)的点是等边三角形ABC顶点中的C,故选:C.先找出点A,B,C落在x轴上横坐标的特点,找出规律,再确定出滚动次数进行计算.此题是等边三角形的性质,主要考查了从滚动中找出规律,根据规律确定坐标对应点是解本题的关键.17.【答案】0.5【解析】解:y=5.5时,x+5=5.5,解得x=0.5,-x+5=5.5,解得x=-0.5(舍去).故答案为:0.5.分别把y=5.5代入代数式,计算即可.本题考查的是求函数值.当已知函数解析式时,求函数值就是求代数式的值.18.【答案】14【解析】解:(2040°+180°-60°)=(n-2)×180°所以n=14,故答案为14.减去一个三角形,去掉180°,∠P=60°,所以原多边形内角和是2040°+120°=2160°,再根据内角和求解.本题考查了多边形的内角和定理,关键是确定n边形的内角和.19.【答案】15【解析】解:∵b+c=1-30%=70%,∴被调查的总人数为(10+25)÷70%=50(人),则a=50×30%=15(人),故答案为:15.先根据百分比之和为1求得b+c的值,再用第1、2组的人数和除以其所占百分比求得总人数,最后用总人数乘以第3组的百分比可得答案.本题主要考查统计表,解题的关键是掌握各分组的百分比之和为1,并根据小组人数及其对应百分比求得总人数.20.【答案】有【解析】解:∵0时至次日5时气温变化速度为=℃/h,∴0℃下降到-3℃所需时间为:(0-3)÷=h,∵次日5时至次日8时气温变化速度为=℃/h,∴气温又将由-3℃上升到0℃所需要的时间为:[0-(-3)]÷=∴0℃以下的气温条件将持续时间为:+=h>3.5,故需要对大棚蔬菜采取防冻措施.故答案为:,有.根据题意列算式即可求出答案.本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则以及根据题意列出算式,本题属于中等题题型21.【答案】-1 (1,2)【解析】解:(1)∵点A在第一象限的角平分线上,∴-a=2a+3,解得:a=-1,故答案为:-1;(2)∵点B到x轴的距离是到y轴的距离的2倍,∴a-2=2,解得:a=4,∴点B的坐标为(1,2),故答案为:(1,2);(3)∵线段AB∥x轴,∴2a+3=a-2,解得:a=-5,∴点A(5,-7),B(1,-7),则AC=5-1=4.(1)根据第一象限的角平分线上点的横纵坐标相等得出关于a的方程,解之可得;(2)根据点B到x轴的距离是到y轴的距离的2倍得出关于a的方程,解之可得;(3)由AB∥x轴知纵坐标相等求出a的值,从而得出a的值,再得出点A,B的坐标,从而求得AB的长度.本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系,关系清晰,则本题很容易求解.22.【答案】四边形BEDF为平行四边形BE∥DF【解析】(1)证明:∵四边形ABCD是平行四边形;∴AD=BC,AD∥BC,∴AF∥CE,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形;(2)解:由(1)知:四边形AFCE是平行四边形,可得AE∥CF,∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,∴BF∥DE,∴四边形EHFG为平行四边形.故答案为:四边形BEDF为平行四边形,BE∥DF.(1)由平行四边形的性质得出AD=BC,AD∥BC,AF∥CE,求出AF=CE,即可得出结论;(2)由(1)知:四边形AFCE是平行四边形,可得AE∥CF,再证出四边形BEDF为平行四边形,得出BF∥DE,即可得出结论.本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形是解题关键.23.【答案】160【解析】解:(1)由图可知,当x≤50时,每吨的价格为:200÷50=4元/吨,则2月份用水量为40吨,则该月应交水费:40×4=160(元),故答案为:160;(2)当x≥50时,设y与x的函数关系式y=kx+b,,得,即当x≥50时,y与x的函数关系式是y=6x-100;(3)将x=150代入y=6x-100,得y=6×150-100=800,答:每月用于水费的支出最多为800元.(1)根据函数图象中的数据可以求得x≤50时,每吨水的价格,从而可以求得2月份用水量为40吨应交的水费;(2)根据函数图象中的数据可以求得当x≥50时,y与x的函数关系式;(3)根据题意和(2)中的函数解析式可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】36 B8.4%【解析】解:(1)5月份的销售额=600-180-90-115-95=120(万元),统计图如图所示:(2)5月份家电销售额120×30%=36(万元),四月份家电的销售额=95×32%=30.4(万元),家电部5月份的销售总额比4月份多了,不同意他的看法.故答案为36.(3)B卖区销售额最高,=8.4%.D卖区销售额最差,应该加强管理.故答案为:B,8.4%.(1)根据总体等于个体之和即可解决问题.(2)分别求出4月份,5月份的家电销售额,即可判断.(3)利用扇形图3,即可判断.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】全体实数 4 -9 1【解析】解:(1)全体实数;(2)4和-9;(3)①图象如右图所示.②1,③函数关于y轴对称;(4)由两函数解析式组成方程组得:,解得:,∴两个函数图象有公共交点,其交点坐标为(2,3),由函数图象可知:当y1≥y时x的取值范围是x≥2.由图象和表格可知函数y=|x|+1的图象关于y轴对称,拐点坐标为(0,),本题考查了原函数图象和性质,又学习新函数的创新题,综合二元一次方程组求交点坐标和两函数值大小比较求自变量的范围,来研究两函数关系.26.【答案】OFF1BOB1(-4,1)3【解析】解:(1)①如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(-4,1),故答案为OFF1,BOB1,(-4,1).②作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2∥DF,O1O2=DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2∥DF,O1O2=DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a-1),∵F(-4,1),FM=DM,∴M(,),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长==3.故答案为3.(1)①证明△OFF1≌△BOB1(AAS)即可解决问题.②作DH⊥OA于H.理由全等三角形的性质解决问题即可.(2)结论:O1O2∥DF,O1O2=DF.如图2中,连接BF,BD.利用三角形的中位线定理解决问题即可.(3)如图3中,作DH⊥OA于H.利用a表示点M的坐标,判断出点M的运动轨迹是线段,求出线段的端点坐标即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会探究规律寻找点的运动轨迹,属于中考压轴题.。