1 用树状图或表格求概率 第1课时 导学案
用树状图和表格法求概率教案
用树状图和表格法求概率教案一、教学目标:1. 让学生掌握树状图和表格法的基本概念及应用。
2. 培养学生运用树状图和表格法求解概率问题的能力。
3. 培养学生分析问题、解决问题的能力。
二、教学内容:1. 树状图和表格法的定义及原理。
2. 树状图和表格法的绘制方法。
3. 树状图和表格法在求解概率问题中的应用。
三、教学重点与难点:1. 重点:树状图和表格法的绘制方法,及其在求解概率问题中的应用。
2. 难点:如何引导学生运用树状图和表格法分析问题,并求解复杂概率问题。
四、教学方法:1. 采用讲授法,讲解树状图和表格法的定义、原理及绘制方法。
2. 采用案例分析法,让学生通过实际案例体会树状图和表格法的应用。
3. 采用小组讨论法,引导学生分组讨论,共同解决问题。
4. 采用练习法,让学生在实践中巩固所学知识。
五、教学过程:1. 导入新课:通过一个简单的概率问题,引发学生对树状图和表格法的兴趣。
2. 讲解树状图和表格法的定义、原理及绘制方法。
3. 分析案例:举例讲解树状图和表格法在求解概率问题中的应用。
4. 小组讨论:让学生分组讨论,运用树状图和表格法分析问题。
5. 练习巩固:布置练习题,让学生在实践中运用树状图和表格法解决问题。
6. 总结反馈:对学生的练习情况进行点评,总结树状图和表格法的优点和注意事项。
7. 课后作业:布置课后作业,巩固所学知识。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,了解学生对树状图和表格法的掌握程度。
2. 练习题评价:对学生的练习题进行批改,评估学生运用树状图和表格法解决问题的能力。
3. 课后作业评价:查看学生的课后作业完成情况,检验学生对课堂所学知识的巩固程度。
七、教学资源:1. PPT课件:制作精美的PPT课件,展示树状图和表格法的定义、原理、绘制方法及应用案例。
2. 练习题库:准备一定数量的练习题,供学生在课堂练习和课后巩固使用。
3.1.1 用树状图或表格求概率 教案
1.通过抛硬币游戏,帮助学生了解计算一类事件发生等可能性的方法,体会概率的意义.2.能通过列表、画树状图等方法列举出简单事件的所有可能结果,以及指定事件的所有可能结果,从而计算概率,并使学生进一步认识随机现象.3.通过观察、实验等活动,理解在保持实验条件不变的条件下,事件发生的频率与概率之间的关系,知道通过大量的重复实验,可以用频率来估计概率,进一步体会概率是描述随机现象的数学模型,感受随机的数学思想.重点1.会用树状图法和列表法求出简单事件发生的概率.2.会利用频率来估计概率.难点1.能通过列表、画树状图等方法列举出简单事件的所有可能结果,以及指定事件的所有可能结果,从而计算概率,并使学生进一步认识随机现象.2.通过观察、实验等活动,理解在保持实验条件不变的条件下,事件发生的频率与概率之间的关系,知道通过大量的重复实验,可以用频率来估计概率,进一步体会概率是描述随机现象的数学模型,感受随机的数学思想.学情分析对于九年级学生来说,参与活动、利用实验解决数学问题已经不再陌生了,他们已经初步具备了利用实践操作来检验真知的能力.积极参与实验活动,从实验中体会和感受,可以有效帮助学生对这部分知识的理解和运用.教学建议1.概率涉及很多新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知识经验建立起紧密的联系.2.教师要引导学生将获得的新概念、新模型与已有的概念、模型进行对照、比较,找出它们之间的联系和区别,优化自己的认知结构.3.在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟模型提取的思维机制,获取模型选取的经验.感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高.本单元共用 3 课时教材第 60~62 页,本节课主要介绍用树状图或表格求概率和用频率估计概率.本节课的内容是在学生已经简单了解概率知识的基础上编排的一节课,意在通过树状图或表格计算出简单事件发生的概率,体会概率是描述不确定现象的数学模型,让学生了解事件发生的可能性及游戏规则的公平性,帮助学生澄清一些生活中的错误的经验.这部分内容有利于培养学生的随机概念,是义务教育阶段唯一培养学生从不确定的角度来观察世界的数学内容,学生明智地应付变化和不确定性,有助于学生理解社会,适应生活,教材从不同的情景出发,让学生感受用树状图或表格解决问题,进一步丰富学生对概率的认识,从而丰富学生的数学体验,提高分析问题、解决问题的能力.知识与能力1.用画树状图或表格的方法来列出简单随机事件所有等可能的结果,以及指定事件的所有结果.2.能通过画树状图或表格,求出简单事件发生的概率.过程与方法经历实验、列表、统计、运算等活动的过程,在活动中进一步发展学生合作交流的意识和能力,通过学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,提高学生分析问题和解决问题的能力.情感、态度与价值观1.培养学生实事求是的科学态度,发展学生合作交流的意识和能力.2.体会到根据实际情境设计出合理的模拟实验来研究问题的思维理念,积极参与数学活动.重点用树状图法和列表法求出简单事件发生的概率.难点根据问题的实际背景列举出所有等可能的结果.在引进表示一个事件发生的可能性大小的数是概率的基础上,引导学生利用已做过的实验的实验数据(稳定时的频率值)得到这些事件发生的概率,从而让学生明确只要确定事件发生的频率就可以得到事件发生的概率,最后从几个具体的实验操作求事件发生的概率.在教学过程中充分让学生自主思考、分析、实验、经历“猜测结果—进行实验—分析实验结果”的过程,满足学生的表现欲及探究欲.教师准备:多媒体课件.学生准备:练习本.一、创设情境、导入新课同学们,大家都听说过(或经历过)转盘游戏、摇号摸奖、买彩票获奖这类事情吧?1.说一说三种事件发生的概率和表示(1)必然事件发生的概率为 1,记作 P(必然事件)=1.(2)不可能事件发生的概率为 0,记作 P(不可能事件)=0.(3)若 A 为不确定事件,则 0<P(A)<1.2.等可能性事件的两个特征.(1)出现的结果有有限多个.(2)各结果发生的可能性相等.小明、小颖和小凡都想周末去看电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影,游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上, 则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜.教师:有没有不重不漏地列出等可能结果的方法呢?今天我们来分析一下这个问题. (板书课题:用树状图或表格求概率)二、探索新知1.连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上、一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.通过大量重复试验发现,在一般情况下,“一枚正面朝上、一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,对小凡比较有利.2.探究用树状图法或表格计算概率.在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.我们通常借助树状图或表格列出所有可能出现的结果,如图所示或如表所示.教师:观察图或表,所有等可能性的结果有几种?分别是什么?他们每个人获胜的概率是多少呢?学生:总共有 4 种结果,且每种结果出现的可能性相同,分别为(正,正),(正, 反),(反,正),(反,反).则小明获胜的结果有 1 种:(正,正),所以小明获胜的概率是;小颖获胜的结果有 1 种:(反,反),所以小颖获胜的概率也是;小凡获胜的结果有 2 种:(正, 反)(反,正),所以小凡获胜的概率是 .教师:通过利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.(设计意图:教师引导学生对问题的解决进行回顾,让学生体会树状图或表格解决问题的优点.)三、课堂练习1.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A. B. C. D.2.某学校游戏节活动中,设计了一个有奖转盘游戏:如图,A 转盘被分成三个面积相等的扇形,B 转盘被分成四个面积相等的扇形,每一个扇形内都标有相应的数字.先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向下一区域内为止),然后.将两次记录的数据相乘.(1)请利用列表法求乘积结果为负数的概率;(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?A 盘B 盘四、课堂小结1.同学们,在生活中,你见过哪些现象运用了本节课的知识?2.我们如何运用本节课所学的概率知识来应对生活中出现的一些事情呢?(如识别骗子的游戏骗局等)(设计意图:师生共同探讨,用生活中的实例来深化学生对本课知识点的认识和理解.)教材第 62 页习题 3.1 第 2 题.本节内容跟实际生活经验较为接近,因此在教学设计中,我们从掷硬币游戏引入新课,让学生真切体验到学习数学的必要性和趣味性.最后在学生畅谈如何将本节课所学的概率知识运用到生活中去,如何使自己变得更有智慧,如何运用概率知识识破游戏骗局,减少做事情的盲目性中结束.学生的学习积极性较高,使他们真正体验到数学来源于实践又服务于实践的新课程理念.。
九年级数学上册用树状图或表格求概率导学案
九年级数学上册用树状图或表格求概率导学案年级九班级学科数学课题 3.1.3用树状图或表格求概率第课时总课时编制人审核人使用时间第五周星期三使用者课堂流程具体内容学习目标学习重点:进一步经历用树状图、列表法计算随机事件发生的概率.学习难点:正确地利用列表法计算随机事件发生的概率.操作流程学法指导温故知新1.当试验次数很大时,一个事件发生也稳定在相应的附近.因此,我们可以通过多次试验,用一个事件发生的来估计这一事件发生的 .2.利用或可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.(3分钟)自主、合作、探究、交流【自主探究】做一做:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?(14分钟)承上启下教师引导,共同质疑,破解知识重点、难点。
知识应用,查看对新知识的理解程度。
展示、评价、点拨、【课堂探究】用如图所示的转盘进行“配紫色”游戏.小颖制作了下图,并据此求出游戏者获胜的概率是1/2.利用画树状图或列表法求概率时应注意写什么?(20分钟)学生自主参与、合作探究、展示交流并予以评价。
总结2:讨论课本66页例2.课堂检测设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为1/3. (8分钟)在规定时间内完成。
教师公布答案,统计各题完成情况,衡量教学效果。
教后反思。
第1课时 用树状图或表格求概率第1课时 用树状图或表格求概率教案北师大版九年级上册数学 第1课时
第三章 概率的进一步认识3.1 用树状图或表格求概率第1课时 用树状图或表格求概率教 学 目 标教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重 点 用树状图和列表法计算随机事件发生的概率.难 点 通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏. 二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢? 小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 23456相应的概率 5151 51 51 51]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.探索活动:( 教材P62 例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?(同学们请认真阅读课本62页及63页的例题讲解部分、特别是树状图的列举)。
用树状图或表格求概率1导学案 教
九年级数学导学案课题: 2.1.1 用树状图或表格求概率 学习目标 1、进一步理解当试验次数较大时试验频率稳定于概率.2、会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.学习重点 借助树状图和列表法计算涉及两步试验的随机事件发生的概率。
学习过程一、自主学习相关知识回顾1、一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率, 记作P (A )= p.2、一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m 种结果,那么事件A 发生的概率P (A )=mn,0≤P (A )≤1.特别地,必然事件发生的概率为1,不可能事件发生的概率为0.3、小明和小凡一起做游戏。
在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。
(1)这个游戏对双方公平吗?(2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负? 二、合作探究活动内容:小明、小凡和小颖都想去看周末电影,但只有一张电影票。
三人决定一起做游戏,谁获胜谁就去看电影。
游戏规则如下:连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
你认为这个游戏公平吗?做一做:每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:抛掷的结果 两枚正面朝上两枚反面朝上一枚正面朝上、一枚反面朝上频数 频率思考:由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。
由此,你认为这个游戏公平吗?主备: 授课: 日期: 次数: 三、互动展示在上面抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?请将各自的试验数据汇总后,填写下面的表格:抛掷第一枚硬币抛掷第二枚硬币正面朝上的次数正面朝上的次数 反面朝上的次数反面朝上的次数正面朝上的次数 反面朝上的次数做一做:我们可以用下面的树状图或表格表示所有可能出现的结果知识点:利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。
《用树状图或表格求概率》教案
一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作交流、思考问题的能力。
二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。
2. 教学难点:如何运用树状图和表格求复杂事件的概率。
三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。
2. 学生准备:笔记本、彩笔。
四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。
2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。
3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。
4. 练习环节:让学生独立完成练习题,巩固所学方法。
五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。
六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。
七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。
八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。
A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
《用树状图或表格求概率(1)》导学案_最新修正版
九年级数学(下)导学案姓名:班级:日期:§6.1用树状图或表格求概率(1)【学习内容】用树状图或表格求概率(P68-P70页)【学习目标】①进一步理解当试验次数较大时试验频率稳定于概率.②会借助树状图和列表法计算涉及两步试验的随机事件发生的概率【自研课】定向导学(15分钟)对子间等级评定: ★(五星评定)对子间提出的问题:【正课】互动展示•当堂反馈(45分钟)【训练课】(时段:晚自习,时间20分钟) 一、选择题1、在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A 、51B 、13C 、58D 、382、四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案,现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A 、14 B 、12 C 、34D 、1 3、从0、1和2、3两组数中各随机抽出一个数,抽取的两个数相加,和不小于3的概率是( ) A 、0 B 、41 C 、21 D 、434、袋中装有编号为1,2的三个质地均匀,大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取的编号相同的概率为( )二、解答题:5、准备两组相同的牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各摸出一张牌,称为一次试验。
(1)一次试验中两张牌的牌面数字和可能有哪些值? (2)你认为两张牌的牌面数字和为多少的概率最大? (3)请你估计,两张牌的牌面数字和等于5的概率是多少?(4)请你利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于5的概率6、一个盒子中装有一个白球、一个黄球。
这些球除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,再从中随机摸出一个球。
求:(1)两次都摸到黄球的概率; (2)两次摸到同颜色球的概率;7、小明有两支水笔,分别为红色、蓝色;两块橡皮擦,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.今天我知道了:我发现了:我学会了:【教师寄语】《新课堂,我展示,我快乐,我成功》-------。
用树状图或表格求概率优秀教案
用树状图或表格求概率(第一课时)教学目标:1.经历猜测收集数据分析数据等过程,进一步体验数据的随机性;2.能运用画树状图和表格求简单事件的概率;3.能利用概率解决一些实际问题,理解概率对生产生活的指导作用。
教学重点:能运用画树状图和表格求简单事件的概率。
教学时间:2课时课前准备:全班分为10个小组,每组抛两枚硬币100次,记录正面、反面、一正一反次数。
教学过程:一:设置情境引入课题1.抛一枚色子,点数是3的概率是2.抛一枚硬币,正面向上的概率是3.袋中有2个红球3个白球,从中任意摸出一个球是红球的概率是4.小强和小军做游戏,抛两枚硬币,如果两枚都是正面小强胜,如果一正一反小军胜,这个游戏公平吗?前三个问题复习回过以前学习内容,第四个问题为切入本节内容。
二:新课学习1.由第四问让学生充分思考讨论后,教师统计课前准备内容,得出三种情形的概率,结论和大部分学生思考产生冲突,激发学生学习兴趣。
抛两枚硬币有哪些可能性呢?你能列出来吗?正正,正反,反正,反反教师指出前三问是一步试验,第四问是两步试验,两步试验的可能性可以用表格和树状图解决。
(板书课题)本节课学习用表格求概率。
如这个问题可列表如下:2.例1 第一个袋中有三张卡片,卡片上分别标有数字1, 2,3,第二个袋中有两张相同的概率是多少?分析:这是几步试验?用什么方法解决?解:∵共有6种可能性,其中数字相同有两种,∴两张卡片上数字相同的概率是62=31。
3.变式练习:第一个袋中有三张卡片,卡片上分别标有数字1, 2,3,第二个袋中有两张卡片,卡片上分别标有数字2,3.从两个袋中各摸出一张卡片,两张卡片上数字之和是偶数的概率是多少?P (两张卡片上数字之和是偶数)=63=213做一做: 袋中有4个完全相同的小球,分别标有数字1,2,3,4,现从中摸出一个小球记下数字后放回袋中,再从中摸出一个小球记下数字,两次摸出的小球上数字相同的概率是多少? 一名学生板演,其余自练。
用树状图和表格法求概率教案
一、教学目标1. 让学生理解概率的基本概念,掌握用树状图和表格法求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 概率的基本概念。
2. 树状图法求概率。
3. 表格法求概率。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:概率的基本概念,树状图法求概率,表格法求概率。
2. 教学难点:树状图和表格法的绘制,实际问题中的概率计算。
四、教学方法1. 采用讲授法讲解概率的基本概念、树状图法和表格法。
2. 利用案例分析、小组讨论、动手实践等方式培养学生的实际应用能力。
3. 利用多媒体课件辅助教学,提高学生的学习兴趣。
五、教学过程1. 导入新课:通过讲解概率的定义和意义,引起学生对概率的兴趣。
2. 讲解概率的基本概念:必然事件、不可能事件、随机事件。
3. 讲解树状图法求概率:介绍树状图的绘制方法,举例讲解如何用树状图求概率。
4. 讲解表格法求概率:介绍表格的绘制方法,举例讲解如何用表格求概率。
5. 实践环节:让学生分组讨论,选取典型案例,运用树状图法和表格法求概率。
6. 总结提升:对所学内容进行总结,强调树状图法和表格法在实际问题中的应用。
7. 布置作业:让学生课后练习,巩固所学知识。
六、教学评价1. 评价学生对概率基本概念的理解程度。
2. 评价学生对树状图法和表格法求概率的掌握程度。
3. 评价学生运用概率知识解决实际问题的能力。
七、教学反思1. 反思教学过程中学生的参与程度,是否充分调动了学生的积极性。
2. 反思教学方法是否适合学生的学习需求,是否需要调整。
3. 反思教学内容是否全面,是否有需要补充或删减的部分。
八、教学拓展1. 引导学生探讨概率在生活中的应用,如彩票、赌博等。
2. 引导学生了解概率在其他学科领域的应用,如数学、物理等。
3. 引导学生关注概率在现代科技领域的发展,如、大数据等。
九、教学资源1. 多媒体课件:用于展示概率的基本概念、树状图和表格法。
【导学案】6.1 用树状图或表格求概率 第1课时 导学案
1 用树状图或表格求概率第1课时导学案学习目标1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步提高学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.学习策略1.了解随机现象的特点,了解概率的意义,树立试验探究的观念,这是概率教学的核心思想。
2.及时发现学生练习中出现的错误,进行讲评,使学生能当堂掌握用树状图和列表法求理论概率.学习过程一.复习回顾:1.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是750.2.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( B)A.12B.13C.15D.16二.新课学习:1.阅读教材P68“做一做”前面的内容,然后回答下面的问题:(1)这个游戏对三人是否公平?请相互交流.(2)阅读教材P68“议一议”部分内容,完成“议一议”中的三个问题,请相互交流.探究体会:由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同.无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的.因此,我们可以用下面的树状图或表格表示所有可能出现的结果:第一枚硬币 第二枚硬币 正 反 正 (正,正) (正,反) 反 (反,正)(反,反)三.尝试应用:1.完成教材P 71随堂练习.2.在A 、B 两个盒子都装入写有数字0、1的两张卡片,分别从每个盒子里任取1张卡片,两张卡片上的数字之积为0的概率是多少? 四.自主总结:1、每一次试验具有的可能性相同2、利用树状图或表格可以方便地求出事件发生的概率. 五.达标测试1.如果一次试验中,所有可能出现的结果有n 个,而且所有结果出现的可能性相同,那么每个结果出现的概率( )A .都是1 B .都是1nC .不一定相等D .都是n2.如图,有以下3个条件:①A C =AB ,②AB ∥CD ,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A .0B .13C .23D .13.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( )A .14B .13C .12D .23二、填空题:4.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;5.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;6.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .三、解答题:7.左边有两张卡片分别标着数字1和2,右边有三张卡片分别标着数字3、4和5.鹦鹉随机从左边叼一张卡片作十位数,再从右边叼一张卡片作个位数.那么鹦鹉叼出的数字恰好是23的概率是多少?8.小颖有两件上衣,分别是红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?9.有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为奇数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?10.在这场疫情中,“新型冠状性病毒”拆散了许多家庭,也有不少人的生命戛然而止,令人心痛.小明为了纪念这场疫情,自己动手做了四张扑克牌,四张扑克牌的文字分别为“武”、“汉”、“加”、“油”.小明将4张扑克牌翻成反面,然后搅匀扑克牌,搅匀后从中随机抽取一张牌,记录字后然后放回去,接着抽取一张牌,记录第二张牌上的字.请用画树状图或列表的方法,求出摸到两次“武”字的概率.达标测试答案:一.选择题1. B.2. D3. A.二.填空题4. 52.5. .6..三.解析题7.解:画树状图得:∵共有6种等可能的结果,鹦鹉叼出的数字恰好是23的概率有1种情况,∴恰好是白色上衣和白色裤子的概率是:61. 8.解:画树状图得:∵共有4种等可能的结果,恰好是白色上衣和白色裤子的有1种情况, ∴恰好是白色上衣和白色裤子的概率是:.9.解:(1)列表得:1 2 3 4 5 (1,5) (2,5) (3,5) (4,5) 6 (1,6) (2,6) (3,6) (4,6) 7 (1,7) (2,7) (3,7) (4,7) 8(1,8)(2,8)(3,8)(4,8)根据表格共能组成16种不同的计分.(2)根据表格数据将两个数字之和相加底面上的数字之和为奇数的概率168=21 (3)底面上的数字之和为偶数的概率是168=21. 10.解:将武汉加油分别记为1、2、3、4, 列表如下:1 2 3 4 1 11 12 13 14 2 21 22 23 24 3 31 32 33 34 441424344由表可知共有16种等可能结果,其中摸到两次“武”字的只有1种结果, ∴摸到两次“武”字的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。
北师大版数学九年级上册 3.1 用树状图或表格求概率 第1课时 教案
北师大版数学九年级上册 3.1 用树状图或表格求概率第1课时教案第三章概率的进一步认识3.1用树状图或表格求概率第1课时整体设计教学目标【知识与技能】1.通过大量试验发现概率的大小.2.会用树状图或表格求概率.【过程与方法】通过试验活动培养学生发现、总结问题的能力.【情感态度与价值观】培养学生的交流与合作意识.教学重难点【重点】用树状图或表格求概率.【难点】通过大量试验发现概率的大小.教学准备【教师准备】试验用的表格、硬币等.【学生准备】复习有关概率的知识.教学过程新课导入导入一:抛两枚一模一样的质地均匀的正方体骰子可能出现哪些结果它们发生的可能性是否一样向上点数一样的可能性又是多少这些问题都可以用画树状图法或列表法进行求解.导入二:十一黄金周期间,梁先生驾驶汽车从甲地经乙地到丙地游玩.甲地到乙地有三条公路,乙地到丙地也有三条公路,每条公路的长度如图所示,梁先生任选一条从甲地到丙地的路线,这条路正好是最短路线的可能性是多少说说你是怎么算出来的.新知构建[过渡语]抛两枚硬币正反面朝上的概率情况是怎样的探究活动一:这个游戏公平吗小明、小颖和小凡都想周末去看电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.师生活动:学生分小组进行试验,然后累计各组的试验数据,分别计算这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.教师参与到学生当中,给有困难的学生个别指导.[设计意图]本课问题情境的建立可以立足于自己班级学生的实际情况,也可以采用不同的问题环境进行呈现,不需要局限于电影票.这样可以很好地吸引学生的参与,引发热烈的研究兴趣.教师提问:(1)掷第一枚硬币可能出现哪些结果它们发生的可能性是否一样(2)掷第二枚硬币可能出现哪些结果它们发生的可能性是否一样(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果它们发生的可能性是否一样如果第一枚硬币反面朝上呢学生思考并回答问题.教师活动:我们通常借助树状图或表格列出所有可能出现的结果:第一枚硬币和第二枚硬币所有可能出现的结果总共有4种,每种结果出现的可能性相同,其中:小明获胜的结果有1种:(正,正),所以小明获胜的概率是.小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是.小凡获胜的结果有2种:(正,反)(反,正),所以小凡获胜的概率是.因此,这个游戏对三人是不公平的.探究活动二:验证游戏的公平性.师发给学生下面表格:情况正,正正,反反,正反,反次数每个小组做20次试验,汇总后看看结果如何总结:在计算复杂事件发生的概率时往往采用画树状图或列表格法(下面统称列表法)进行分析,利用树状图或表格,可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.树状图法适合两步或两步以上完成的事件,列表法适合两步完成的事件.[知识拓展]在利用画树状图法或列表法求概率时,各种情况出现的可能性必须相同,把可能性不同的情况当成等可能的情况处理是错误的.课堂小结检测反馈1.从1,2,-3三个数中,随机抽取2个数相乘,积为正数的概率为()答案:2.小刚3掷一枚质地均匀的正方体骰子,骰子的6个面分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为()答案:3.我们可以用和的方法来计算发生的概率.答案:列表法画树状图随机事件4.用列出表格的方法来分析和求解某些事件的概率的方法叫,用画树状图的方法列出某事件的所有可能的结果,求出其概率的方法叫.答案:列表法树状图法板书设计第1课时1.探究活动一树状图法列表法2.探究活动二布置作业【必做题】教材第62页习题3.1的1,2题.【选做题】教材第62页习题3.1的3题.。
3.1用树状图或表格求概率(教案)
此外,在总结回顾环节,虽然学生们对概率知识有了较好的掌握,但仍有部分学生对某些知识点存在疑惑。针对这一问题,我计划在课后加强个别辅导,关注学生的个体差异,确保他们能够真正理解并运用概率知识。
3.重点难点解析:在讲授过程中,我会特别强调概率的定义和列举法这两个重点。对于难点部分,如如何完整地列举所有可能结果,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子、抽卡片等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛硬币、掷骰子等。这个操作将演示概率的基本原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《3.1用树状图或表格求概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算某个事件发生机会的ห้องสมุดไป่ตู้况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.1 第1课时 用树状图或表格求概率(教学设计-精品教案)
3.1用树状图或表格求概率第1课时用树状图或表格求概率教学目标1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步提高学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.教学重难点【教学重点】运用树状图和列表法计算简单事件发生的概率. 【教学难点】通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.课前准备课件等.教学过程一、情境导入,生成问题1.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是750.2.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( B )A.12B.13C.15D.16二、自学互研,生成能力知识模块一 探索用树状图或表格求简单随机事件的概率 自主探究阅读教材P 60“做一做”前面的内容,然后回答下面的问题: 1.这个游戏对三人是否公平?请相互交流.2.阅读教材P 60“议一议”部分内容,完成“议一议”中的三个问题,请相互交流. 合作探究1.分小组完成教材P 60“做一做”学习任务.归纳结论:通过大量重复试验我们发现,在一般情况下,“一枚正面朝上、一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.2.深入探究:在上面抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?探究体会:由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同.无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的.因此,我们可以用下面的树状图或表格表示所有可能出现的结果:其中,小明获胜的结果有一种:(正,正).所以小明获胜的概率是14;小颖获胜的结果有一种:(反,反).所以小颖获胜的概率也是14;小凡获胜的结果有两种:(正,反)(反,正).所以小凡获胜的概率是24.因此,这个游戏对三人是不公平的.归纳结论:利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.知识模块二 利用树状图或表格求简单事件发生的概率 自主探究解答下列问题:1.如果一次试验中,所有可能出现的结果有n 个,而且所有结果出现的可能性相同,那么每个结果出现的概率( B )A .都是1B .都是1nC .不一定相等D .都是n2.如图,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( D )A .0 B.13 C.23D .1合作探究典例讲解:把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两个盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表法求解).解:画树状图:由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种. ∴P (和为偶数)=59.列表如下:(1,3) (2,3) (3,3)由上表可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P (和为偶数)=59.对应练习:1.完成教材P 61随堂练习.2.在A 、B 两个盒子都装入写有数字0、1的两张卡片,分别从每个盒子里任取1张卡片,两张卡片上的数字之积为0的概率是多少?解法1:画树状图如下:从A 盒或B 盒中任取一张卡片,上面有数字0或1的可能性相等,由树状图可以看出,两张卡片上的数字之积有4种等可能的结果,其中两数之积为0的结果有3种,于是P (积为0)=34.解法2:列表如下:由表可知,两张卡片上的数字之积共有4种等可能的结果,积为0的结果有3种.所以P (积为0)=34.三、交流展示,生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.四、检测反馈,达成目标1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( A )A.14B.13C.12D.232.在a 2 4a 4的空格 中,任意填上“+”或“-”,在所得的代数式中,可以构成完全平方式的概率是( B )A .1 B.12 C.13 D.143.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A 、B 、C 三种型号,乙品牌有D 、E 两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.将下面所画树状图补充完整.一共有6种结果,每种结果出现的可能性相同.那么A 型号器材被选中的概率为13.五、课后反思,查漏补缺1.收获:_________________________________________________________ 2.存在困惑:____________________________________________________。
3.1用树状图或表格求概率(一)导学案(1)
1课题 6.1用树状图或列表求概率(1)编写人 审核人 总第 课时班级 姓名 小组【学习目标】1通过实验进行感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系,并能用实验频率估计事件发生的概率。
2、能用画树状图或列表的方法求一些简单的事件的概率。
教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率. 【教学过程】一、复习巩固1、随机抛掷一枚质地均匀的硬币,则出现“正面朝上”的概率为__________。
2、随机抛掷一枚质地均匀的骰子,则出现点数为2的概率为 _____________3、一个不透光的黑色袋子中放入除颜色外均相同的2个白球和4个黑球,则从中任意抽取一个球,则抽到黑球的概率为__________。
二.自主学习在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?请将各自的试验数据汇总后,填写下面的表格:其中,小明获胜的结果有一种:(正,正)。
所以小明获胜的概率是 小颖获胜的结果有一种:(反,反)。
所以小颖获胜的概率也是小凡获胜的结果有两种:(正,反)(反,正)。
所以小凡获胜的概率是 因此,这个游戏对三人是不公平的。
利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。
二.深入探究:活动内容1:准备两组相同的牌,每组两张,两张牌的牌面数字 分别是1和2.从每组牌中各摸出一张牌,称为一次试验。
(1)你认为两张牌的牌面数字和为多少的概率最大?(2)请你利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于3个概率解:通过列表的方式三.合作交流 一个盒子中装有一个红球、一个白球。
这些球除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,再从中随机摸出一个球。
利用树状图或列表求:(1)两次都摸到红球的概率; (2)两次摸到不同颜色球的概率;四.当堂检测(必做题)随堂练习.(选做题)请同学们课后完成下面练习:小明和小颖做掷骰子的游戏,规则如下:① 游戏前,每人选一个数字: ② 每次同时掷两枚均匀骰子;③ 如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜. (1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.。
第1课时 用树状图或表格求概率教案精选教案3
第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率教学目标:知识与技能目标:学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
过程与方法目标:经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
情感与态度目标:通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学重点:习运用列表法或树形图法计算事件的概率。
教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学过程1.创设情景,发现新知例:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。
这个例题难度较大,事件可能出现的结果有36种。
若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难。
所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏(前一课已有例2作基础)。
(1)创设情景引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。
作为游戏者,你会选择哪个装置呢?并请说明理由。
14【设计意图】选用这个引例,是基于以下考虑:以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境。
(2)学生分组讨论,探索交流在这个环节里,首先要求学生分组讨论,探索交流。
3.1.1 用树状图或表格求概率 教案 北师大版数学
3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42
;
因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。
《用树状图或表格求概率》教案
《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是反映事件发生可能性大小的量。
强调概率的取值范围:0≤P(A)≤1。
1.2 必然事件和不可能事件必然事件的概率为1,不可能事件的概率为0。
举例说明。
第二章:树状图法求概率2.1 树状图的概念介绍树状图是一种图形化表示事件的方法。
强调树状图的优点:直观、清晰。
2.2 树状图法求概率步骤一:画出树状图。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第三章:列表法求概率3.1 列表法的概念介绍列表法是将所有可能的结果列出来,便于计算概率的方法。
强调列表法的优点:简单、直观。
3.2 列表法求概率步骤一:列出所有可能的结果。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指在一次试验中,一个事件的发生不影响另一个事件的发生。
强调独立事件概率的乘法规则。
4.2 独立事件的概率计算步骤一:列出所有独立事件的组合。
步骤二:计算每个独立事件的概率。
步骤三:将各独立事件的概率相乘。
第五章:互斥事件的概率5.1 互斥事件的定义解释互斥事件是指在一次试验中,两个事件不可能发生。
强调互斥事件概率的加法规则。
5.2 互斥事件的概率计算步骤一:列出所有互斥事件的组合。
步骤二:计算每个互斥事件的概率。
步骤三:将各互斥事件的概率相加。
本教案通过讲解概率的基本概念,以及树状图法、列表法求概率,重点介绍了独立事件和互斥事件的概率计算方法。
希望对您的教学有所帮助!第六章:条件概率6.1 条件概率的定义解释条件概率是指在某一事件已经发生的条件下,另一事件发生的概率。
强调条件概率的取值范围:0≤P(B|A)≤1。
6.2 条件概率的计算步骤一:计算事件A的概率P(A)。
步骤二:计算事件A和事件B发生的概率P(AB)。
步骤三:计算条件概率P(B|A)=P(AB)/P(A)。
第七章:全概率公式7.1 全概率公式的概念介绍全概率公式是用来计算一个事件发生的总概率的公式。
用树状图或表格求概率第1课时教学学案
北师大九年级上第三章概率的进一步认识3.1用树状图或表格求概率导学案活动一:复习引入一、你还记得么?1、生活中有些事情我们能肯定它一定会发生,这些事情称为2、有些事情我们能肯定它一定不会发生,这些事情称为3、有些事情我们事先无法肯定它会不会发生,这些事情称为4、在n次重复试验中。
不确定事件A发生了m次,则比值n:m就称为事件A发生的频率。
5、我们把刻画事件A发生的可能性的大小的数值称为事件A 发生的概率,记做P(A)6、一般,大量的重复性实验中,我们常用不确定事件A发生的频率来估计事件A发生的概率。
概率是研究大量同类随机事件的统计规律的数学学科7、一般,如果一个事件有n种等可能结果,而事件A包含其中的m种可能结果,那么事件A发生的概率就是8、对于任何事件的概率值一定介于0和1之间,即0≤概率值P≤1二、新活动:小明、小凡和小颖都想去看周末电影,但只有一张电影票。
三人决定一起做游戏,谁获胜谁就去看电影。
游戏规则如下:连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
你认为这个游戏公平吗?活动二:合作探究活动1:七年级时我们曾经连续抛掷一枚质地均匀的硬币,并记录每次试验的结果(用几何画板进行模拟演示)活动2:两人一小组合作,其中一人同时抛掷两枚硬币,另一人记录每一次试验的结果,共抛掷10次。
根据记录填写下面的表格:活动3:统计全班的数据,再填入表格。
由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。
由此,你认为这个游戏公平吗?深入探究:在上面抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?我们可以用树状图或表格表示所有可能出现的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 用树状图或表格求概率
第1课时导学案
学习目标
1.能运用树状图和列表法计算简单事件发生的概率.
2.经历试验、统计等活动过程,在活动中进一步提高学生合作交流的意识和能力.
3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.
学习策略
1.了解随机现象的特点,了解概率的意义,树立试验探究的观念,这是概率教学的核心思想。
2.及时发现学生练习中出现的错误,进行讲评,使学生能当堂掌握用树状图和列表法求理论概率.
学习过程
一.复习回顾:
1.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位
同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是7
50
.2.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( B)
A.1
2
B.
1
3
C.
1
5
D.
1
6
二.新课学习:
1.阅读教材P60“做一做”前面的内容,然后回答下面的问题:
(1)这个游戏对三人是否公平?请相互交流.
(2)阅读教材P60“议一议”部分内容,完成“议一议”中的三个问题,请相互交流.
探究体会:由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同.无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的.因此,我们可以用下面的树状图或表格表示所有可能出现的结果:
第一枚硬币 第二枚硬币 正 反 正 (正,正) (正,反) 反 (反,正)
(反,反)
三.尝试应用:
1.完成教材P 61随堂练习.
2.在A 、B 两个盒子都装入写有数字0、1的两张卡片,分别从每个盒子里任取1张卡片,两张卡片上的数字之积为0的概率是多少? 四.自主总结:
1、每一次试验具有的可能性相同
2、利用树状图或表格可以方便地求出事件发生的概率. 五.达标测试
1.如果一次试验中,所有可能出现的结果有n 个,而且所有结果出现的可能性相同,那么每个结果出现的概率( )A .都是1 B .都是1
n
C .不一定相等
D .都是n
2.如图,有以下3个条件:①A C =AB ,②AB ∥CD ,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )
A .0
B .13
C .23
D .1
3.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( )
A .14
B .13
C .12
D .23
二、填空题:
4.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;
5.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;
6.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .
三、解答题:
7.左边有两张卡片分别标着数字1和2,右边有三张卡片分别标着数字3、4和5.鹦鹉随机从左边叼一张卡片作十位数,再从右边叼一张卡片作个位数.那么鹦鹉叼出的数字恰好是23的概率是多少?
8.小颖有两件上衣,分别是红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?
9.有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面
上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:
(1)共能组成多少种不同的计分?
(2)底面上的数字之和为奇数的概率是多少? (3)底面上的数字之和为偶数的概率是多少?
达标测试答案:
一.选择题 1. B . 2. D 3. A .
二.填空题
4. 5
2.
5. .
6.
.
三.解析题
7.解:画树状图得:
∵共有6种等可能的结果,鹦鹉叼出的数字恰好是23的概率有1种情况,∴恰好是白色上衣和白色裤
1.
子的概率是:
6
8.解:画树状图得:
∵共有4种等可能的结果,恰好是白色上衣和白色裤子的有1种情况,
∴恰好是白色上衣和白色裤子的概率是:.
9.解:(1)列表得:
1 2 3 4
5 (1,5)(2,5)(3,5)(4,5)
6 (1,6)(2,6)(3,6)(4,6)
7 (1,7)(2,7)(3,7)(4,7)
8 (1,8)(2,8)(3,8)(4,8)
根据表格共能组成16种不同的计分.
(2)根据表格数据将两个数字之和相加底面上的数字之和为奇数的概率168=2
1 (3)底面上的数字之和为偶数的概率是168=2
1.。