3。2.1解一元一次方程----合并同类项 教案
《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册
《3.2 解一元一次方程(一)——合并同类项与移项》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在学习一元一次方程时,掌握合并同类项与移项的基本方法。
通过实际操作,提高学生的计算能力和逻辑思维能力,为后续学习一元一次方程的解法打下坚实的基础。
二、作业内容本作业主要包括以下几个部分:1. 复习与巩固:要求学生回顾并复习一元一次方程的基本概念,包括合并同类项的定义和方法。
2. 实践操作:设计一系列练习题,让学生通过实际操作,掌握合并同类项的技巧。
练习题包括填空题、选择题和计算题等。
3. 移项练习:设计一系列关于移项的练习题,包括将常数项移至等式另一侧的练习,以及将未知数项移至等式另一侧的练习。
4. 实际问题应用:设计一些实际问题,让学生运用所学知识解决实际问题,如购物找零、行程问题等。
三、作业要求为确保学生能够有效地完成本作业,特提出以下要求:1. 学生在完成作业时,需按照步骤和顺序进行,先复习巩固基础知识,再逐一完成实践操作部分的练习题。
2. 学生在合并同类项时,应理解同类项的概念,准确判断同类项并进行合并。
在移项时,应正确运用移项的规则,确保等式两边的平衡。
3. 在实际问题应用部分,学生应理解问题的背景和要求,运用所学知识进行解答。
在解答过程中,应注重解题思路的清晰和解题步骤的规范。
4. 学生在完成作业后,需进行自我检查和修正,确保答案的准确性。
如有疑问或困难,可向老师或同学请教。
四、作业评价本作业的评价标准主要包括以下几个方面:1. 基础知识的掌握程度;2. 实践操作的准确性和熟练程度;3. 解题思路的清晰度和规范性;4. 实际问题的解决能力和应用能力。
五、作业反馈为确保学生能够及时了解自己的学习情况并加以改进,老师需在批改作业后进行以下反馈:1. 对学生的作业进行逐一评价,指出优点和不足;2. 对学生的解题思路和步骤进行点评和指导;3. 对学生的实际问题的解决能力进行评价和建议;4. 对学生的学习提出进一步的建议和要求。
人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案
3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。
2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。
3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。
【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。
(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。
2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与原》。
“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。
二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。
分析:设前年购买计算机x台。
则去年购买计算机2x台,今年购买计算机4x台。
问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。
前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。
思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。
3.2解一元一次方程(一)——合并同类项与移项(第1课时)教案 2021-2022学年人教版数学七
3.2解一元一次方程(一)——合并同类项与移项(第1课时)【学习目标】1. 能够根据题意找出实际问题中的相等关系,列出一元一次方程;2. 运用合并同类项解形如ax+bx=c的一元一次方程.【教学重难点】重点:运用合并同类项解形如ax+bx=c的一元一次方程.难点:列方程解决实际问题.【教学方法】自主探究法、活动探究法、小组合作法.【教学过程】第一环节:导入新课约公元825年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?第二环节:自主学习1、认真阅读课本86---87页,思考:(1)解方程:2x+5x=10+4并说清每一步恒等变形的理论依据.______________________(化成ax=b的形式即合并同类项)_________________________(化成x=c的形式即系数化1)(2)完成课本第88页的练习1.2、例题讲解.出示教材第86页问题1:①引导学生分析题中的等量关系式,学生发言设未知数②教师让学生独立完成解答,指名板演解题过程.(3)回顾解方程的过程,思考“合并同类项”起了什么样的作用?合并同类项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程x=a的形式转化.第三环节:精讲例题2x -25x =6-8 7x -2.5x +3x -1.5x =-15×4-6×3(教师板书例题的解答过程,为学生提供示范.)第四环节:合作探究例2 有一列数,按一定规律排成1,-3,9,-27,81,-243,…其中某三个相邻数想和是-1701,这三个数各是多少?分析:1.知道三个数中的某个,就能知道另两个吗?2.我们需要分析这组数的规律.第五环节:课堂检测1.解“问题2”的另两个方程.2.教科书第92页习题3.2第1、7题.第六环节:课堂小结1.你今天学习的解方程有哪些步骤?2.合并同类项在解方程的过程中起到了什么作用?第七环节:作业布置课本第99页习题19.2第7、9题.1.三个连续整数之和为36,求:这三个整数分别是多少?2.做这一课时的基础训练.【板书设计】3.2解一元一次方程(一)---合并同类项与移项(第1课时)1.解一元一次方程的步骤:(1)合并同类项(2)系数化为1【课后反思】本节课首先请学生独立思考,然后互相交流解题思路.集体讲评,理清每一步恒等变形的理论依据,会分析实际问题中的等量关系式,规范解题过程.纠正自身存在的错误.对于例2的处理先让学生独立思考然后合作交流,最后书写过程.。
3.2 合并同类项与移项教案
教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。
本节课是在教授了一元一次方程解法第一课时因此尤为重要。
同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。
3.2.1解一元一次方程(一)----合并同类项与移项课件
系数化为1,得:
5x = 4
1.5x=-0.3
系数化为1,得:
X=4/5
X = - 0.2
(3) 3 x 1.3 x 5 x 2.7 x 12 3 6 4 解:合并同类项,得:
4x = - 60
系数化为1,得:
X = - 15
x 3x 7; (4) 2 2
解:合并同类项,得: 2X=7 系数化为1,得: X=7/2
合并同类项,得: 5x=25 系数化为1,得: X=5
[练习二] 解下列方程:
(1)x 2 3 x (2) x 1 2 x
5 5 3x (4) x 2 x 1 2 x (3) 3
(5) x 3x 1.2 4.8 5 x (6) 5x-200=2x+100
[思考]
[ 思 考 :方程 3x 20 ]
4 x 25 的两边都含有的项(3x与4 x )
和常数项( 20与 25),
怎样才能把它化成
x a (a为常数)的形式呢?
解:利用等式的性质1,得 3x+20-4x=4x+25-4x 3x+20 -4x =25 。 3x+20-4x-20=25-20 。 3x-4x=25 -20。
解:(1)合并同类项得: 两边除以4 ,得 ∴ X= 2; (2) 合并同类项得:
(1)9x—5 x =8 ; (2)4x-6x-x =-15;
4x=
=
8
x的系数化为1,得 ∴ X=
-3x
-15
5(1) 6x —x = 4 ;
解:合并同类项,得: (2)-4x + 6x-0.5x =-0.3; 解:合并同类项,得:
人教版七年级数学上册《合并同类项解一元一次方程(一)》教学设计
解一元一次方程(一)——合并同类项一、内容及内容解析人教版义务教育课程标准实验教科书,七年级上册《3.2一元一次方程——合并同类项与移项》第1课时.方程是应用广泛的数学工具,生活中,很多问题借助于方程来解决.一元一次方程是最简单的方程,也是所有代数方程的基础.二元一次方程组(七年级下)和一元二次方程(九年级上)都是将其化归为一元一次方程来解决.因此它在义务教育阶段的数学课程中占重要地位。
而本节课用合并同类项解一元一次方程是解一元一次方程的基本步骤之一,为后面解一元一次方程奠定基础.在解方程的过程中,渗透转化的数学思想。
经历用方程解决实际问题,体会方程的应用价值.二、目标及目标解析1.目标:(1)掌握利用合并同类项解一元一次方程.(2)应用一元一次方程解决实际问题.2.目标解析:目标(1)是通过观察、类比、自主探究出利用合并同类项解一元一次方程的方法,渗透转化的数学思想,培养学生归纳、概括的能力.目标(2)是进一步让学生感受并尝试多角度解决问题的方法,初步体会方程的应用价值.通过学生之间相互交流,培养他们的合作意识.三、教学问题诊断分析在之前,学生已经学习了合并同类项和利用等式的性质解方程,这两个知识点综合到一起,就是本节用合并同类项解一元一次方程,故学生容易掌握.但学生在小学阶段习惯于列算式解决实际问题,用方程的思想来解决问题比较陌生,因此是本节的难点.由上确定本节课的重、难点如下:教学重点:1 合并同类项解一元一次方程.2列方程解决实际问题的思想方法.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。
使学生逐步建立列方程解决实际问题的思想方法.四、教学支持条件分析利用多媒体展示教学的部分环节,如创设情境等,支持课堂教学.五、教学方法:引导发现法,合作学习与自主探究相结合.教学流程:六、教学过程:(一) 创设情境,提出问题活动一练习: 1将下列各式合并同类项(1)5x —2x=_____(2)-x+23 x+21x =______ 2一个正方形的周长为24cm ,问:边长是多少?【设计意图】:由练习1复习合并同类项,为进一步学习利用合并同类项解一元一次方程做铺垫.利用练习2引出用方程解决问题,为问题1做准备.播放2015年阅兵视频【设计意图】:对学生进行爱国主义教育,同时借助阅兵式中,空中梯队、文艺表演方队、群众游行方队之间的数量间的关系,编写应用题,引入新知.(二)自主探索,获取新知问题1 阅兵式中,空中梯队的个数是文艺表演方队个数的2倍,而群众游行方队的个数是空中梯队个数的3倍。
3[1].2解一元一次方程(一)——合并同类项教案设计与反思
14.3.2公式法——利用平方差公式进行分解因式教学目标:(一)知识与技能:1.理解因式分解的概念和意义2.认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
(二)过程与方法:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
(三)情感态度和价值观:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
教学重点:因式分解的概念教学难点:理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
教学过程:一、复习回顾1下列式子从左向右的变形是因式分解的是()A B C D()()4222-=-+xxxbabbabbbaab2)3(23222+-=+-)11(22+=+aaaa)41(422ababbaab-=-2二、引入新课,计算提出问题,探索分析你能把多项式 和 因式分解吗? 学生解决问题: 引导学生思考平方差公式特点 三、例题讲解例:下列多项式能用平方差公式因式分解的是( )A B C D例题1 对下列各式因式分解例题 2 用平方差公式对下列各式因式分解:c ab b a 22159)1(-解:用提取公因式法因式分23234812)2(st st t s-+42-x 22b a --23b a -22b a +-22b a +________492=-n ________910022=-y x ________92=-a 23536xy x -22)()(q x p x --+224Y x +-14-x 223)2(25)2(5)4(m n x n m x ---()()________22=-+x x ()()________55=-+y y 252-y四、课堂练习,反馈调控把下列多项式分解因式五、拓广探索你能把下列多项式分解因式六、课堂小结,知识梳理 这节课你学会了什么?平方差公式的特点: 等号左边: 等号右边:分解因式要注意以下几点:七、作业必做题: 课本P117 (1,2)P119 复习巩固的(2) 选做题: 课本P120 (11)八、板书设计224b a +-222916b x a -224)2(z y x -+)()(22a b b b a a -+-ab b a -344y x -第十四章14.3.2 公式法(一)——利用平方差公式进行因式分解天铁一中王艳艳。
人教版七年级数学上册教案:第3章 一元一次方程 解一元一次方程(一)——合并同类项与移项(2课时)
3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项一、基本目标【知识与技能】1.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.2.学会探索实际问题中的数量关系,正确地求解一元一次方程.【过程与方法】经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力.【情感态度与价值观】初步体会一元一次方程的应用价值,感受数学文化.培养学生乐于思考,不怕困难的精神.二、重难点目标【教学重点】会解“ax+bx=c”类型的一元一次方程.【教学难点】分析实际问题中的数量关系,会列方程并能正确求解.环节1自学提纲,生成问题【5 min阅读】阅读教材P86~P87的内容,完成下面练习.【3 min反馈】1.教材第87页“思考”:通过合并同类项可以化简方程,把方程化为ax=b(a、b为常数且a≠0)的形式,从而求出方程的解.2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变.3.解形如ax+bx=c的一元一次方程先合并,再将系数化为1.4.列方程步骤:(1)设未知数;(2)找相等关系;(3)列方程.环节2合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)3x -20x =-34;(2)y 3+y 4=1-112. 【互动探索】(引发学生思考)利用合并同类项的方法求解.【解答】(1)合并同类项,得-17x =-34.系数化为1,得x =2.(2)合并同类项,得7y 12=1112. 系数化为1,得y =117. 【互动总结】(学生总结,老师点评)用合并同类项法解一元一次方程的步骤:(1)合并同类项,即把方程中含有未知数的项合并,常数项合并,把方程化为ax =b (a ≠0)的形式;(2)系数化为1,即根据等式的性质2,将形如ax =b (a ≠0)的方程两边都除以一次项系数,化成x =b a(a ≠0)的形式,即得方程的解为x =b a.系数化为1时注意:(1)利用等式的性质2,方程的两边同时除以未知项的系数,把系数化为1;(2)不要颠倒分子、分母的位置.【例2】有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1701,这三个数各是多少?【解答】见教材第87页例2活动2 巩固练习(学生独学)1.下列各式的变形错误的是( C )A .由7x -6x =1,得x =1B .由3x -4x =10,得-x =10C .由x -2x +4x =15,得x =15D .由-7y +y =6,得-6y =62.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( A )A .2B .-2 C.27 D .-272.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.3.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?解:设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x-1)人.根据题意,得x+2x-1=200.解得x=67.则2x-1=133.即到怀集和德庆旅游的人数分别是67人,133人.活动3拓展延伸(学生对学)【例3】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数字之和为342.(1)小彬拿到哪3张卡片?(2)小彬能否拿到相邻的3张卡片,使得这3张卡片上的数的和为86?如果能拿到,请求出这3张卡片上的数各是多少;如果不能拿到,请说明理由.【互动探索】(1)根据题意可以求得相邻的三个数;(2)先判断这三个数字的和能否是86,然后说明理由即可.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6,则有x-6+x+x+6=342.解得x=114.所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y+6,则有y-6+y+y+6=86.解得y≈28.67,显然不符合题意,说明上述假设不成立.故小彬不能拿到相邻的3张卡片,使得这3张卡片上的数的和为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,可设中间的一张卡片分别为x,那么另外两张卡片为x-6和x+6.然后根据每一问中的具体等量关系列出方程即可.环节3课堂小结,当堂达标(学生总结,老师点评)1.合并同类项法则:把同类项的系数相加,字母的指数不变.利用合并同类项法则可使方程转化为ax=b的形式.2.利用一元一次方程解应用题,当问题中有多个未知数时,可设其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程求解.请完成本课对应训练!第2课时移项一、基本目标【知识与技能】1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.【过程与方法】通过解形如ax+b=cx+d的方程,使学生感受化归的思想方法.【情感态度与价值观】1.培养学生积极思考,勇于探索的精神.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值.二、重难点目标【教学重点】会解“ax+b=cx+d”类型的一元一次方程.【教学难点】分析实际问题中的相等关系,列出方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P90的内容,完成下面练习.【3 min反馈】1.教材第88页思考:先移项,将方程变为3x-4x=-25-20的形式;再合并同类项,得-x=-45;最后将系数化为1,得x=45.2.把等式一边的某项变号后移到另一边,叫做移项.3.移项的根据是等式的性质1.4.教材第89页思考:通过移项,可以把含有未知数的项与常数项分别移到等号的两边,通过合并同类项,使方程化为ax=b(a、b为常数且a≠0)的形式,再化系数为1,即可求出方程的解.5.解方程20-3x=5时,移项后正确的是(B)A.-3x=5+20B.20-5=3xC.3x=5-20D.-3x=-5-20环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x -2018=82-5x ;(2)-2x +3.5=3x -8.【互动探索】(引发学生思考)解简单的一元一次方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x +5x =82+2018.合并同类项,得6x =2100.系数化为1,得x =350.(2)移项,得-2x -3x =-8-3.5.合并同类项,得-5x =-11.5.系数化为1,得x =2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.【例2】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比在2∶5,两种工艺的废水排量各是多少?【解答】见教材第90页例4【教师点拨】列方程解决应用题的关键是找出题中的等量关系.本题的等量关系:旧工艺废水排量-200 t =新工艺废水排量+100 t.活动2 巩固练习(学生独学)1.解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)5=5-3x ;(4)x -2x =1-23x ;(5)x -3x -1.2=4.8-5x .解:(1)x =52. (2)x =1.(3)x =0.(4)x =-3.(5)x =2.2.把若干块糖果分给若干个小朋友,若每人分3块,则多12块;若每人分5块,则少10块.则一共有多少个小朋友?多少块糖?解:设一共有x 个小朋友.根据题意,得5x -10=3x +12.移项,得5x -3x =12+10.合并同类项,得2x =22.系数化为1,得x =11.所以共有糖5x -10=45(块).即一共有11个小朋友,糖45块.3.一个三位数,十位上的数字比个位上的数字多1,且是百位上的数字的4倍,百位上的数字与个位上的数字之和比十位上的数字大1,求这个三位数.解:设十位上的数字为x .根据题意,得x -1+x 4=x +1. 移项,得x +x 4-x =1+1. 合并同类项,得x 4=2. 系数化为1,得x =8.所以个位上的数字为x -1=8-1=7,百位上的数字是x 4=84=2,则这个三位数是287. 活动3 拓展延伸(学生对学)【例3】某中学组织七年级的同学去游玩,原计划租用45座客车(不包括司机)若干辆,但有15人没有座位,如果租用同样数量的60座客车(不包括司机),则多出一辆且其余客车恰好坐满.则七年级有多少人?原计划租用45座客车多少辆?【互动探索】本题中的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此可列方程组求出45座客车辆数,进而可求出七年级的学生人数.【解答】解:设原计划租用45座客车x辆,则七年级有(45x+15)人.根据题意,得45x+15=60x-60.移项,得45x-60x=-60-15.合并同类项,得-15x=-75.系数化为1,得x=5.当x=5时,45x+15=45×5+15=240.即七年级有240人,原计划租用45座客车5辆.【互动总结】(学生总结,老师点评)列方程解应用题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验(不在解题过程中体现)→写出答案.环节3课堂小结,当堂达标(学生总结,老师点评)1.移项:移项是解方程的重要变形,一般把含有未知数的各项移到同一边(通常移到左边),而把常数项移到另一边(通常移到右边),不管是从左边到右边,还是从右边到左边,注意移项要变号.2.题目中含有比的应用题在设未知数时,一般根据比去设,如果题目告诉的比是a∶b,一般设为ax、bx两部分,如果比是a∶b∶c,一般设为ax、bx、cx三部分,然后找出题目中的等量关系列出方程,并解答.请完成本课对应训练!。
3.2.1解一元一次方程(一)-合并同类项课件
思考:怎样解 这个方程呢?
“总量=分量的和”是一个基本的相等关系.
x 2 x 4 x 140
合并同类项
分析:解方程,就是把 方程变形,变为 x = a (a为常数)的形式.
7 x 140
系数化为1
x 20
想一想:
解方程中“合并同类项”起了什 么作用?
使方程变得简单,更接近x
= a的形式
答: Ⅰ型1500台,Ⅱ型3000台,Ⅲ型21000台。
约公元825年,中亚细亚 数学家阿尔—花拉子米写 了一本代数书,重点论述 怎样解方程。这本书的拉 丁译本为《对消与还原》。 “对消”与“还原”是什 么意思呢?
3.2解一元一次方程
-------合并同类项
温习
合并同类项 (1) x 5 x 3
(3) y 5 y 2 y
(2)-3x 7 x
问题1: 某校三年共购买计算机140台,去年购买数量 是前年的2倍,今年购买数量又是去年的2倍,前 年这个学校购买了多少台计算机? 设前年购买x台。可以表示出:去年购买计算 机 2 x 台,今年购买计算机 4 x 台。 你能找出问题中的相等关系吗?
前年购买量+去年购买量+今年购买量=140台
x+2x+4x=140
例1:解方程 解:
3x 2x 8x 7
合并, 得 3x 7
7 系数化1, 得x 3
小试牛刀 2
1 3 x x 7 2 2
解:合并同类项,得
你一定会! 系数化为1,得
3x 9 x3
(2)合并同类项,得 2x 7 系数化为1,得
系数化为1,得
y 5
试一试:
洗衣厂今年计划生产洗衣机25500台,其中Ⅰ型,Ⅱ型,Ⅲ 型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划 各生产多少台?
2解一元一次方程(一)——合并同类项-一等奖创新教学设计
2解一元一次方程(一)——合并同类项-一等奖创新教学设计3.2 解一元一次方程(一)教学目标知识与技能:理解合并同类项法则,会用合并同类项法则解一元一次方程,并在此基础上探究一元一次方程的一般解法。
过程与方法:通过探索合并同类项法则的过程,培养学生观察、思考、归纳的能力,积累数学探究活动经验。
情感、态度与价值观:通过探究合并同类项法则,并进一步探究一元一次一般解法的过程,感受数学活动充满创造性,激发学生学习数学的兴趣。
教学重点难点重点:合并同类项法则的探究及应用。
难点:合并同类项法则的理解和灵活运用。
教学过程一、情景导入公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,•重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。
(1)如何根据实际问题列一元一次方程?(2)如何解一元一次方程?二、探究新知问题1:某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?分析:年份前年去年今年总数购买数量x台2x台4x台140相等关系前年购买数量+去年购买数量+今年购买数量=140思考:1、在解方程时运用了我们以前学过的哪个知识?2、在解方程中合并同类项起到了什么作用?总结:1、实际问题转化为方程问题。
2、“合并”是一种恒等变形,它使方程变得简单,更接近x=a 的形式。
合并应注意:①只有同类项才能合并。
②合并时系数的合并,字母及字母指数不变。
③如果系数相加后为0,则结果为0。
师生合作共同解决问题例题:P87例1解方程(1)2x-2.5x=6-8 (2) 7x-2.5x+3x-1.5x=-15×4-6×3(运用了合并同类项)例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243,……,其中某三个相邻数的和是-1701,这三个数各是多少?解略三、巩固练习:1、某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。
解一元一次方程(一)——合并同类项与移项 优秀教案设计
解一元一次方程(一)——合并同类项和移项【课时安排】2课时【第一课时】【教学目标】1.知识目标:会利用合并同类项解一元一次方程。
2.能力目标:探究并掌握利用合并同类项解一元一次方程。
3.情感、态度与价值观目标:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学重难点】教学重点:探究并掌握利用合并同类项解一元一次方程。
教学难点:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学过程】一、引入新课。
(一)预习任务。
(1)解一元一次方程时,把含有未知数的项合并,把常数项也合并。
(2)解一元一次方程时,第一步:合并同类项,得;第二步系数2251x x +=⨯+113=x 化为1,得。
311=x (二)预习自测。
(1)下列各组中,两项不能合并的是( )A .与b 3b-B .与y 6-x3C .与a 21-a D .与23-100知识点:同类项的概念。
解题过程:解:A .与所含字母相同,并且相同字母的指数也相同的为同类项。
所b 3b -以可以合并;B .与所含字母不同,所以不是同类项,不能进行合并;C .与y 6-x 3a 21-a 所含字母相同,并且相同字母的指数也相同的为同类项,所以可以合并;D .与所有23-100的常数项也叫同类项,所以可以合并;因此选择B .思路点拨:所含字母相同,并且相同字母的指数也相同的项称为同类项,所有的常数项也叫同类项。
答案:B(2)方程两边合并后的结果是?16210+=-x x 知识点:合并同类项解一元一次方程。
解题过程:解:合并同类项,得:;系数化为1,得:。
78=x 87=x 思路点拨:解一元一次方程时,同类项有两类,即未知数的一次项和常数项,合并同类项是一种恒等变形,它使方程变得简单,更接近的形式。
a x =答案:87=x (3)方程的解是( )21022=++x x x A .20=x B .40=x C .60=x D .80=x 考点:合并同类项解一元一次方程。
第三章 一元一次方程—合并同类项
3.2 解一元一次方程——合并同类项一、教学目标(一)知识与技能1、经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效模型。
2、学会合并同类项,会解“ax+bx=c”类型的一元一次方程。
(二)过程与方法1、通过观察、思考、类比、自主探究、交流与反思等教学活动,培养学生出利用合并同类项解一元一次方程的方法,渗透转化的数学思想,使学生学会学习。
2、通过知识梳理培养学生归纳、概括的能力,表达能力和逻辑思维能力,并学会用方程解决实际问题,体会方程是刻画显示世界的有效教学模型。
(三)情感、态度与价值观初步体会生活处处有数学,体会方程的应用价值,感受数学文化之艺术。
通过学生之间相互交流,培养他们的合作意识。
二、教学重难点重点:会用合并同类项解一元一次方程,建立方程解决实际问题的思想方法。
难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。
使学生逐步建立列方程解决实际问题的思想方法.。
三、教学方法:引导发现法,合作学习与自主探究相结合四、教学过程(一)温故知新,储备知识1、合并同类项:(1)3x -5x = ________;(2)-3x + 7x = ________;(3)y + 5y- 2y =________;2、用等式的性质解方程填空(1)若2x=4,根据________,则x = ________(2)若-3x=8,根据________,则x = ____【设计意图】由练习1复习合并同类项,为进一步学习利用合并同类项解一元一次方程做铺垫和知识储备,由抢答引入,能够更好的激发学生学习兴趣,调动学生学习的积极性让学生能够主动地参与到数学学习中。
利用练习2引出求方程的解时,要把系数化为1,并且引入如何利用等式的性质解复杂的一元一次方程。
(二)引入探究,激趣促思数字游戏同学们每人写下十以内的一个幸运数字,然后计算出本身与它的2倍,与它4倍的和。
将你的结果写在卡片上,举给老师看,老师就能说出你的幸运数。
3-2-1 一元一次方程的解法(一)合并同类项(教学设计)-(人教版)
3.2.1 一元一次方程的解法(一)合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章一元一次方程3.2.1 一元一次方程的解法(一)合并同类项,内容包括:运用合并同类项解形如ax+bx=c类型的一元一次方程.2.内容解析方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位,在小学阶段已经对方程进行了初步的研究,但尚未形成方程的概念,更未研究各类方程的解法,所以解方程既是本章的重点也是今后学习其它方程、不等式及函数的重要基础和基本技能.本节课的教学内容是《解一元一次方程》的第1课时用“合并同类项”法解方程,是以后系统学习“移项”、“去括号”和“去分母”法解一元一次方程中的重要基础,因此本节课具有承上启下的作用.基于以上分析,确定本节课的教学重点为:学会运用合并同类项解形如ax+bx=c类型的一元一次方程.二、目标和目标解析1.目标(1)学会运用合并同类项解形如ax+bx=c类型的一元一次方程,进一步体会方程中的“化归”思想.(2)能够根据题意找出实际问题中的相等关系,列出方程求解.2.目标解析会用合并同类项法解一些简单的一元一次方程;经历根据具体实际问题中的数量关系列方程的过程,体会方程是刻画现实世界数量关系的有效数学模型,培养学生应用方程解决问题的能力;通过将实际问题抽象成数学问题的过程,培养学生的应用意识和转化的数学思想;通过具体情境的探索、交流等数学活动,培养学生的团队合作意识和积极参与、勤于思考的习惯.三、教学问题诊断分析七年级学生的理解能力和思维特征要求我的数学课堂要生动、有趣高效,因此我将整节课以观察、思考、讨论贯穿于整个教学环节之中采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、勤动脑、善钻研”的研讨式学习方法.教学中积极为学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,培养学生解决问题的能力.基于以上学情分析,确定本节课的教学难点为:会列一元一次方程解决实际问题.四、教学过程设计(一)复习回顾1.含有相同的_____,并且相同字母的_____也相同的项,叫做同类项;2.合并同类项时,把各同类项的_____相加减,字母和字母的指数_____.用合并同类项进行化简:(1)3x -5x=________; (2)-3x+7x=________;(3)y+5y -2y=________; (4)=-+y y y 23231_______. (二)情境引入约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程. 这本书的拉丁译本取名为《对消与还原》.对消与还原推动了古代数学的进步,为人们解方程问题提供了简便的方法.其实不管是对消与还原,还是合并同类项与移项,其目的都是为了化简方程.(三)自学导航问题1:某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?设前年购买了x 台.可以表示出:去年购买计算机_____台,今年购买计算机_____台.你能找出问题中的相等关系吗?前年购买量+去年购买量+今年购买量=140台x+2x+4x=140思考:怎样解这个方程呢?下面的框图表示了解这个方程的流程:思考:上面解方程中“合并同类项”起了什么作用?解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.(四)考点解析例1.解下列方程:(1)6x -2x=28; (2)15x+25x=-1; (3)x -12x -14x=-5+8-6; (4)2x+1.5x -6.5x=9×2-4×3.(1)解:合并同类项,得4x=28.系数化为1,得x=7.(2)解:合并同类项,得35x=-1. 系数化为1,得x=-53.(3)解:合并同类项,得14x=-3. 系数化为1,得x=-12.(4)解:合并同类项,得-3x=6.系数化为1,得x=-2.【迁移应用】1.下列合并同类项不正确的是( )A.由5x -2x=9,得3x=9B.由12x+32x=7,得2x=7C.由-3x+0.5x=10,得-2.5x=10D.由3x -4x=-20-25,得x=-452.关于x 的方程4x -3m=2的解是x=m ,则m 的值是_______.3.解下列方程:(1)-2x+x 2=9; (2)23x -65x=-43; (3)x+0.75x=7.5-2.25.(1)解:合并同类项,得-32x=9. 系数化为1,得x=-6.(2)解:合并同类项,得-815x=-43. 系数化为1,得x=52. (3)解:合并同类项,得1.75x=5.25.系数化为1,得x=3.例 2.按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻的数的和是-720,求这四个数中最大的数与最小的数的差.解:根据题意,可设这四个相邻的数分别为x ,-2x ,4x ,-8x ,则x -2x+4x -8x=-720,即-5x=-720,解得x=144.所以-2x=-288,4x=576,-8x=-1152.所以最大的数为576,最小的数为-1152.所以576-(-1152)=1728.答:这四个数中最大的数与最小的数的差为1728.【迁移应用】1.一个两位数,个位上的数是十位上的数的3倍,它们的和是12,那么这个两位数是_________.2.【古代数学问题】中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一天和第六天共走了( )A.102里B.126里C.192里D.198里3.有一列数,按一定规律排列成13,-1,3,-9,27,-81,…,若其中某三个相邻数的和是-567,求这三个数中的第一个数.解:设这三个数中的第一个数为x ,则另外两个数分别为-3x ,9x.依题意,得x -3x+9x=-567,解得x=-81.答:这三个数中的第一个数是-81.例3.(1)2x -1与3x+1的和为10,求x 的值;(2)规定|a b c d |=ad -bc ,当|x 2−x 12|时,求x 的值. 解:(1)根据题意,得2x -1+3x+1=10.合并同类项,得5x=10.系数化为1,得x=2.(2)根据题意,得x 2×2-(-x)×1=32,即x+x=32. 合并同类项,得2x=32. 系数化为1,得x=34. 【迁移应用】1.若4x 比9x 的值小10,则x 的值为( )A.1B.2C.-2D.32.规定一种新运算:a * b=ab+a+b.若3*x -3=24,求x 的值.解:根据题意,得3x+3+x -3=24.合并同类项,得4x=24.系数化为1,得x=6.例4.某学校计划购买一批篮球和排球,已知篮球和排球的单价之比为4:3,单价之和为84元,则篮球和排球的单价分别为多少元?解:设篮球和排球的单价分别为4x 元和3x 元.根据题意,得4x+3x=84,解得x=12.所以4x=48,3x=36.答:篮球的单价为48元,排球的单价为36元.【迁移应用】某种中成药需要用到甘草、党参、苏叶三种材料,其中甘草、党参、苏叶三种材料的质量之比为1:2:4.若生产210kg这种中成药,则需要用到甘草、党参、苏叶的质量分别是多少千克?解:设需要用到甘草、党参、苏叶的质量分别是xkg,2xkg,4xkg.根据题意,得x+2x+4x=210.解得x=30.所以2x=60,4x=120.答:需要用到甘草、党参、苏叶的质量分别是30kg,60kg,120kg.(五)小结梳理解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a,b是常数,“合并”的依据是逆用分配律.五、教学反思。
3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册
3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。
3.2.1合并同类项与移项(课时2)
解: (5) x =-2; (6) t =20; (7) x =-4; (8) x =2.
课后作业
练习册49页7题、50页5题 做在作业上
——
思学 考习 ,知 再识 思要 爱考善 因。于 斯思 坦考
,
Байду номын сангаас
2.解方程步骤 ①移项 ②合并同类项 ③系数化为1
移项要变号
等式的性质1 乘法分配律 等式的性质2
作业分析
作业中一些错误: ①运算问题:合并同类项时系数加错,定号算 数问题大,分数表示除法时分子分母颠倒 ②移项问题:移项不变号,没移动的项乱变号 ③书写不规范:不写解,-1X的错误写法 养成检验好习惯,看解是否正确
B. 由6x-3=x+4,得3-6x=4+x
C. 由8-x=x-5,得-x-x=-5-8
D. 由x+9=3x-1,得3x-x=-1+9
3.如果2x与x-3的值互为相反数,那么x等于( B )
A.-1 B.1
C.-3
D.3
4.某中学七年级(5)班共有学生56人,该班男生的人 数是女生人数的2倍少1人.设该班有女生有x人,可列 方程为__2_x_-1__+_x_=_5_6___. 解得女生有 19 人.
5. 已知 2m-3=3n+1,则 2m-3n = 4 .
6. 如果
与
互为相反数,则m的值 为
1 12
.
7. 当x =_-__2__时,式子 2x-1 的值比式子 5x+6 的值小1.
解下列方程: (1) -2x + x =6;
(2) 6m-3m-4m =-3;
(3) 3y+2y =-2+6.
当堂练习
1. 下列方程合并同类项正确的是
3.2.1解一元一次方程-合并同类项教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2.1解一元一次方程-合并同类项”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决几个相同物品数量相加的问题?”(如:我有2个苹果,又买了3个苹果,一共有多少个苹果)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。
4.在探究、合作、交流过程中,发展学生的自主学习、团队合作和表达能力;
5.培养学生严谨、细致的数学态度,激发数学学习兴趣,树立自信心。
三、教学难点与重点
1.教学重点
(1)一元一次方程的概念:理解一元一次方程的定义及一般形式,明确方程中的未知数、常数和系数。
(举例:x + 3 = 7,其中x为未知数,3和7为常数,1为系数)
在讲解重点和难点时,我尽量用简洁明了的语言进行解释,并通过举例来帮助学生理解。但从课堂反馈来看,可能还需要进一步简化语言,让学生更容易消化吸收。同时,对于难点的讲解,我可以尝试用不同的方法进行阐述,以便学生们能够从多个角度理解问题。
最后,我觉得在课堂总结环节,可以让学生们自己来总结今天的学习内容,这样既能检验他们对知识点的掌握程度,也能提高他们的表达能力和自信心。此外,针对学生们在课堂上提出的疑问,我将在课后进行总结,并在下一次课上进行解答,确保他们能够真正掌握这些知识点。
3.2.1解一元一次方程-合并同类项教案
一、教学内容
本节课选自教材第三章第二节第一部分“3.2.1解一元一次方程-合并同类项”。教学内容主要包括以下两个方面:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.1解一元一次方程——合并同类项
[教学内容]
七年级上册第88-89页
[教学目标]
知识与技能:会利用合并同类项解一元一次方程。
过程与方法:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
情感态度与价值观:培养学生合作探究的意识。
[重点难点]
重点:利用合并同类项解一元一次方程。
难点:列一元一次方程解决实际问题。
[教法学法] 自主探索、合作交流、指导探究
[教学准备] 小黑板
[授课类型] 新授课
[课时安排] 1课时
[教学过程]
一、问题导入
约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《时消与还原》。
“对消”与“还原”是什么意思?我们先讨论下面的问题,然后再回答这个问题。
二、探索合并同类项解一元一次方程
问题1 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍。
前年这个学校购买了多少台计算机?
设前年购买计算机x台。
那么去年购买计算机多少台?今年购买计算机多少台?
去年购买计算机2x台,今年购买计算机4x台。
问题中的相等关系是什么?
前年购买量+去年购买量+今年购买量=140台
依题意,可得方程
x+2x+4x=140
这个方程怎么解呢?我们知道,解方程的最终结果是要化为x=a的形式,为此可以作怎样的变形?
把左边合并同类项。
可得
7x=140
系数化为1,得x=20
所以前年这个学校购买了20台计算机。
注意:本题蕴含着一个基本的等量关系,即总量=各部分量的和。
思考:上面解方程中“合并同类项”起了什么作用?
它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。
三、例题
例1 解方程7x-2.5x+3x-1.5x=-15×4-6×3
解:合并同类项,得6x=-78
系数化1,得x=-13
注意:如果方程中有同类项,一定要合并同类项。
四、课堂练习
课本89页练习。
补充题:
足球表面是由若干黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
五、课堂小结
1、合并同类项解一元一次方程。
通过合并同类项把方程化为ax=b(a≠0,a、b是常数)的形式。
从而简化方程。
2、列一元一次方程解实际问题。
(1)找等量关系是关键,也是难点;
(2)注意抓住基本等量关系:总量=各部分量的和。
六、布置作业:
第93页1;3(1)、(2);4;5。
六、板书设计:
解一元一次方程——合并同类项
一、问题导入
二、探索合并同类项解一元一次方程。