集合1完整版PPT课件
合集下载
高中数学必修一集合 ppt课件
确?
“{}”本身具有“全体”的意思
常用集合的表示
R: 实数集 Q: 有理数集 Z: 整数集 N: 自然数集 N*:合与元素的关系
{{x11∈, ,A 22, ,二者35, ,必居531其}},一5} {x2∉,A 3,5,1}
∈ 属于
集合的分类
有限集 {1,2,3} 无限集 {1,2,3,…,+∞} 单元素集 {a} 空集 ø
思考
√ {(a,b)}是单元素集吗? √ {0},{},{ø}三者中哪些是空集? √ {全体实数}和{实数},哪一个写法正
讲师:
数 学
必修一 §1 集合(上)
什么是集合
集合:具有某种共同属 性的对象的全体
香蕉,苹果, 三角形1,大,2鸭四,梨边3,形4,,圆5 形
集合的性质
从属性:集合元素必具有 某种共同属性
确定性:集合中元素的 从属性要明确
{1,2,3,1,5}
互异性:集合中的元素 必须能判定彼此
规定:
集合中相同元素只写一 个代表
“{}”本身具有“全体”的意思
常用集合的表示
R: 实数集 Q: 有理数集 Z: 整数集 N: 自然数集 N*:合与元素的关系
{{x11∈, ,A 22, ,二者35, ,必居531其}},一5} {x2∉,A 3,5,1}
∈ 属于
集合的分类
有限集 {1,2,3} 无限集 {1,2,3,…,+∞} 单元素集 {a} 空集 ø
思考
√ {(a,b)}是单元素集吗? √ {0},{},{ø}三者中哪些是空集? √ {全体实数}和{实数},哪一个写法正
讲师:
数 学
必修一 §1 集合(上)
什么是集合
集合:具有某种共同属 性的对象的全体
香蕉,苹果, 三角形1,大,2鸭四,梨边3,形4,,圆5 形
集合的性质
从属性:集合元素必具有 某种共同属性
确定性:集合中元素的 从属性要明确
{1,2,3,1,5}
互异性:集合中的元素 必须能判定彼此
规定:
集合中相同元素只写一 个代表
人教版高中数学必修一课件:集合1(共16张PPT)
如果a是集合A中的元素,说a属于A, 记作a∈A
如果a不是集合A中的元素,说a不属于A,
记作a A (或a A)
例如: A={2,4,8,16}
4 A, 8A, 32A .
注意: 符号“∈”不可颠倒
思考
A={2,4}, B={{1,2},{2,3},
{2,4},{3,5}}, 问:A与B的关系如何?
补充练习: 1.课本P5练习2; 2.判断: (1)所有在N中的元素都在N*中; 错 (2)所有在N中的元素都在Z中; 对 (3)所有不在N*中的数都不在Z中; 错 (4)所有不在Q中的实数都在R中; 对
(5) 由既在R中又在N*中的数组成的集合中
一定包含数0;
错
(6) 不在N中的数不能使方程4x=8成立.
①数组 1,3,5,7.
数
②满足说3x明-2集>合x+中3的的全元体素实数可.以是数数,可
以 求③其是到角中平两的面边图元距形素离之,是和也确相可定等以的的点是!的人集,合但. 是点 要
④所有直角三角形.
形
⑤高一(1)班全体同学.
人
二、元素与集合的关系
元素与集合的关系有“属于∈”及 “不属于”(也可表示为 )两种.
能我们该如何来表示?
①数组 1,3,5,7.
能
②满足3x-2>x+3的全体实数. 能
③到角两边距离之和相等的点. 能
④所有直角三角形. ⑤高一(1)班全体同学. ⑥年龄很小的人
能 能 不能
集合元素的性质1:
确定性
集合中的元素必须是确定的, 也就是说,对于一个给定的集合, 其元素的意义是明确的.
例题2:下列各组所组成的集合中, 他的元素是什么?
对
3.集合{2a,a2+a}中,a应满足什么条?
如果a不是集合A中的元素,说a不属于A,
记作a A (或a A)
例如: A={2,4,8,16}
4 A, 8A, 32A .
注意: 符号“∈”不可颠倒
思考
A={2,4}, B={{1,2},{2,3},
{2,4},{3,5}}, 问:A与B的关系如何?
补充练习: 1.课本P5练习2; 2.判断: (1)所有在N中的元素都在N*中; 错 (2)所有在N中的元素都在Z中; 对 (3)所有不在N*中的数都不在Z中; 错 (4)所有不在Q中的实数都在R中; 对
(5) 由既在R中又在N*中的数组成的集合中
一定包含数0;
错
(6) 不在N中的数不能使方程4x=8成立.
①数组 1,3,5,7.
数
②满足说3x明-2集>合x+中3的的全元体素实数可.以是数数,可
以 求③其是到角中平两的面边图元距形素离之,是和也确相可定等以的的点是!的人集,合但. 是点 要
④所有直角三角形.
形
⑤高一(1)班全体同学.
人
二、元素与集合的关系
元素与集合的关系有“属于∈”及 “不属于”(也可表示为 )两种.
能我们该如何来表示?
①数组 1,3,5,7.
能
②满足3x-2>x+3的全体实数. 能
③到角两边距离之和相等的点. 能
④所有直角三角形. ⑤高一(1)班全体同学. ⑥年龄很小的人
能 能 不能
集合元素的性质1:
确定性
集合中的元素必须是确定的, 也就是说,对于一个给定的集合, 其元素的意义是明确的.
例题2:下列各组所组成的集合中, 他的元素是什么?
对
3.集合{2a,a2+a}中,a应满足什么条?
高中数学必修一1.1集合 PPT课件
记作: A B (或B A) 读作:A 含于 B(或 B 包含 A).
如果 A B,但存在 x∈B,且 xA,我们就说这两个集合有真包含关系,称集合 A 是集合
B 的真子集,记作 A B(或 B A). ②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.
问题3:与实数中的结论“若 a b, 且b a, 则a b
4.用适当的方法表示下列集合:
(1)方程组
2x 3x
- 3y 14, 2y 8 的解集;
(2)1000以内被3除余2的正整数所组成的集合;
(3)直角坐标平面上在第二象限内的点所组成的集合;
(4)所有正方形;
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.
解:
(1){(4,-2)}; (2){x|x=3k+2,k∈N且x<1000}; (3){(x,y)|x<0且y>0}; (4){正方形}; (5){(x,y)|x<-1或x>1}.
A={ 2 , 2 }.
(2)设大于 10 小于 20 的整数为 x,它满足条件 x∈Z,且 10<x<20,因此,用描述法表示为 B={x∈Z|10<x<20}.
大于 10 小于 20 的整数有 11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算 不叫集合的加法,而是叫做求集合的并集.集合 C 叫集合 A 与 B 的并集.记为 A∪B=C,读作 A 并 B.
(1)文字语言:所有属于集合 A 或属于集合 B 的元素所组成了集合 C. (2) 数学符号:C={x|x∈A,或 x∈B}. (3) Venn 图:
如果 A B,但存在 x∈B,且 xA,我们就说这两个集合有真包含关系,称集合 A 是集合
B 的真子集,记作 A B(或 B A). ②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.
问题3:与实数中的结论“若 a b, 且b a, 则a b
4.用适当的方法表示下列集合:
(1)方程组
2x 3x
- 3y 14, 2y 8 的解集;
(2)1000以内被3除余2的正整数所组成的集合;
(3)直角坐标平面上在第二象限内的点所组成的集合;
(4)所有正方形;
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.
解:
(1){(4,-2)}; (2){x|x=3k+2,k∈N且x<1000}; (3){(x,y)|x<0且y>0}; (4){正方形}; (5){(x,y)|x<-1或x>1}.
A={ 2 , 2 }.
(2)设大于 10 小于 20 的整数为 x,它满足条件 x∈Z,且 10<x<20,因此,用描述法表示为 B={x∈Z|10<x<20}.
大于 10 小于 20 的整数有 11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算 不叫集合的加法,而是叫做求集合的并集.集合 C 叫集合 A 与 B 的并集.记为 A∪B=C,读作 A 并 B.
(1)文字语言:所有属于集合 A 或属于集合 B 的元素所组成了集合 C. (2) 数学符号:C={x|x∈A,或 x∈B}. (3) Venn 图:
高一数学集合ppt课件.pptx
第一节 集合
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
人教版数学必修一:《集合》ppt教学课件
A∩B= {x|x∈A且x∈B}
读作“A交B”)
图形语言
课前探究学习
课堂讲练互动
活页规范训练
想一想:若集合 A 与 B 中至少有一个空集∅,则 A∩B=∅;反 之,若 A∩B=∅,则集合 A 与 B 中至少有一个空集吗? 提示 不是的,只要 A 与 B 无公共元素,则有 A∩B=∅.
课前探究学习
课堂讲练互动
课前探究学习
课堂讲练互动
活页规范训练
解 (1)如图所示,A∪B={-1,0,1,2,3,4,5}, A∩B={1,2,3}. (2)结合数轴(如图所示)得:
A∪B=R,A∩B={x|-5<x<-2}.
课前探究学习
课堂讲练互动
活页规范训练
规律方法 此类题目首先应看清集合中元素的范围,简化集合, 若是用列举法表示的数集,可以根据交集、并集的定义直接观 察或用 Venn 图表示出集合运算的结果;若是用描述法表示的数 集,可借助数轴分析写出结果,此时要注意当端点不在集合中 时,应用“空心点”表示.
课前探究学习
课堂讲练互动
活页规范训练
题型一 集合交、并的简单运算 【例 1】 求下列两个集合的并集和交集. (1)A={1,2,3,4,5},B={-1,0,1,2,3}; (2)A={x|x<-2},B={x|x>-5}. [思路探索] 借助于 Venn 图或结合数轴分析两个集合元素的分 布情况,有利于准确写出交集和并集.
课前探究学习
课堂讲练互动
活页规范训练
【变式 2】 已知集合 A={x|x≤1},B={x|x≥a},且 A∪B=R, 则实数 a 的取值范围是________. 解析 如图所示,
∵A∪B=R, ∴实数 a 必须在点 1 上或在 1 的左边,∴a≤1. 答案 a≤1
人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
数学《集合》 完整版课件PPT
二合一
3.已知集合 M={x|-3<x≤5},N={x|x<-5 或 x>4},则 M ∪N 等于( A )
A.{x|x<-5,或 x>-3} B.{x|-5<x<4} C.{x|-3<x<4} D.{x|x<-3,或 x>5}
第一章 §3 第4课时
第7页
BS·数学·必修1 45分钟作业与单元评估
第一章 §3 第4课时
第16页
BS·数学·必修1 45分钟作业与单元评估
二合一
10.若集合 A={2,4,x},B={2,x2},且 A∪B={2,4,x},
则 x= 0,1 或-2
.
解析:由已知得 B⊆A,∴x2=4 或 x2=x,∴x=0,1,±2.由元 素的互异性知 x≠2.∴x=0,1 或-2.
第一章 §3 第4课时
第11页
BS·数学·必修1 45分钟作业与单元评估
二合一
6.集合 A={a2,a+1,-1},B={2a-1,|a-2|,3a2+4},A∩B
={-1},则 a 的值是( D )
A.-1
B.0 或 1
C.2
D.0
解析:由 A∩B={-1},得-1∈B.因为|a-2|≥0,3a2+4>0, 所以 2a-1=-1,即 a=0,这时 A={0,1,-1},B={-1,2,4}, 则 A∩B={-1}成立.
第4页
BS·数学·必修1 45分钟作业与单元评估
二合一
——基础巩固——
一、选择题(本大题共 8 小题,每小题 5 分,共 40 分)
1.已知集合 M={-1,0,1},N={0,1,2},则 M∪N=( C )
A.{0,1}
高中数学必修一集合 PPT课件 图文
A、1 B、2 C、3 D、4
例题4:已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条
件A⊆C⊆B的集合C的个数为( ) A、1 B、2 C、3 D、4
例题5:若规定E={a1,a2,a3,…a10}的子集{ai1,ai2,…ain}为E的第K个子集,其中
K=2i1-1+2i2-1+…+2in-1,则 (1){a1,a3}是E的第_____个子集; (2)E的第211个子集为________
例题2:已知 A { x 集 |a x 1 合 0 }且 ,1 A ,求 a 的 实 . 值 数 例题3:设 y x 2 a b , x A { x |y x } { a } M , { a , b ) ( 求 } M ., 例题4:已知集A合 {xR|ax2 3x20,aR}.
第二节 集合间的基本关系 —考试题型及要点解析
1、判断两个集合之间的关系
解题要点:考察其中一个集合的所有元素是否全都在另一个集合; 考察其中一个集合是否为空集;
例题1:判断下列两个集合之间的关系:
(1) A={2,3,6},B={x| x是12的约数} ( 2) A={0,1},B={x|x2+y2=1,y∈N}
(1)若A中不含有任何元a的 素取 ,值 求范 . 围 (2)若A中只有一个元a素 的, 值求 ,并把这个出元来 .素写 (3)若A中至多有一个元a的 素取 ,值 求范 . 围
第二节 集合间的基本关系 —知识点总结
1、子集的三种语言
2、空集
(1)空集的概念:不含任何元素的集合,记作_∅__. (2)_空__集__是任何集合的子集, _空__集__是任何非空集合的 真子集.
高一数学必修一集合ppt课件
1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲 师资格考试,后即在该大学任讲师,1872年任副教授,1879年任教授。
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和
数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871
、1872年发表三篇关于三角级数的论文。在1872年的论文中提出了以基本序列
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。
康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。
康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。
2.用列举法表示下列集合:
(1)A=﹛x∈N︱1
6
x∈Z﹜
(2)
B=﹛1
6
x∈N
︱
x∈Z
﹜
ppt课件
15
3. 求集合{3 ,x , x2-2x}中,元素x应满足的条件。
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数a的值.
ppt课件
16
回顾交流
今天我们学习了哪些内容?
集合的含义
集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的 兴趣。康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较 完善的集合理论,为现代数学的发展打下了坚实的基础。
ppt课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用图表示就清楚了。
跳绳 杨明 陈东 刘红 李芳 王爱华 马超 丁旭 赵军 徐强 踢毽 刘红 于丽 周晓 杨明 朱小东 李芳 陶伟 卢强
跳绳的学生
踢毽的学生
跳绳的学生
踢毽的学生
杨明 陈东 刘红 李芳 王爱华 马超 丁旭 赵军 徐强
刘红 于丽 周晓 杨明 朱小东 李芳 陶伟 卢强
两项都参加的学生
想一想 可以怎样列式解答?
四、课堂小结
只参加 A、B都 只参加 A的人 参加的人 B的人 解题方法:
只参加A的人数+只参加B的人数+A、B都参加的人=总人数 参加A的人数+参加B的人数-A、B都参加的人=总人数
五、课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
方法 1 方法 2 方法 3 方法 4
5+3+6=14(人) 9+8-3=14(人) 8-3+9=14(人) 9-3+8=14(人)
三、巩固提高
把下面动物的序号填写在合适的圈里。
会游泳的
既会游泳又会飞的
会飞的
(1)既荣获“语文之星”又荣获“数学之星”的有( 5)人。 (2)上光荣榜的一共有(20)人。
数学广角——集合
集合
R·三年级上册
一、新课导入
两位爸爸和两个儿子一同去看电
影(每人都得买一张票),可是 她们只买了3张票,便顺利地进了
电影院。这是为什么?
爷爷
爸爸
儿子
二、探索新知
下面是三(1)班参加跳绳、踢毽比赛 的学生名单。
参加这两项比赛的共有多少人?
小组合作: 1.读一读,你得到了哪些信息? 2.思考:参加这两项比赛的共有多 少人? 3.说一说你的解题思路。