第六章平行四边形重点

合集下载

北师大版八年级下册数学第六章平行四边形全章教案

北师大版八年级下册数学第六章平行四边形全章教案
2.教学难点
-平行四边形性质的推理:对于初学者来说,理解平行四边形性质背后的推理过程可能存在困难,如对角相等、对角线互相平分等。
-特殊平行四边形的判定:学生可能难以区分矩形、菱形、正方形之间的判定条件,特别是它们之间的关系。
-面积公式的运用:学生在运用面积公式进行计算时,可能会对公式的选择和应用场景产生混淆。
-实际问题的解决:将数学知识应用于实际问题时,学生可能难以找到合适的数学模型,从而无法解决问题。
举例:针对难点内容,教师可以通过以下方法帮助学生突破:
-设计具有启发性的问题,引导学生通过观察、猜想、验证等方式,探索平行四边形的性质。
-使用多媒体教学资源,如动画、图片等,直观地展示特殊平行四边形的判定方法和性质。
3.平行四边形的面积
-平行四边形面积公式
-矩形、菱形、正方形面积公式的推导与应用
4.实际应用
-利用平行四边形的性质解决实际问题
-在实际情境中识别和应用特殊平行四边形
5.探究活动
-探索平行四边形的性质
-体验特殊平行四边形的特征与应用
本章内容旨在帮助学生掌握平行四边形的性质与判定,理解特殊平行四边形之间的关系,并能运用相关知识解决实际问题。通过探究活动,培养学生的观察、分析、推理能力和团队合作精神。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。

八年级数学下册第六章《平行四边形》PPT课件(共181张ppt)

八年级数学下册第六章《平行四边形》PPT课件(共181张ppt)
1 1 OE OA, OF OC , 2 2
D E A O F B
C
OE OF .
BEO DFO ( SAS) .
Q BOE DOF ,
BE DF .
课堂小结
平行四 边形
对角线 的性质
对角线互相平分
第六章 平行四边形
6.2 平行四边形的判定
第1课时 利用四边形边的关系判定 平行四边形
思考:不添加辅助线,你能否直接 运用平行四边形 的定义,证明其对角相等? 证明:∵AB∥DC ∠ABC+∠BCD=180° AD∥BC ∴∠BAD+∠ABC=180° ∴∠BCD=∠BAD 同理 ∠ABC=∠ADC A B C D
知识要点
A B 几何语言 ∵ 四边形ABCD是平行四边形, ∴ AD∥BC ,AB∥DC. C
4.已知点A(3,0)、B(-1,0)、C(0,2),以 A、B、C为顶点画平行四边形,你能求出第四个顶点 D吗?
2 -1
O
2 3 2 -1
O
-1
O
3
3
课堂小结
定义
两组对边分别平行的四边 形是平行四边形 中心对称图形,两条对 角线的交点是它的对称 中心 对边平行, 对边相等, 对角相等
平行四 边形
对称性
性质
第六章 平行四边形
6.1 平行四边形的性质
第2课时 平行四边形对角线的性质
学习目标 1.探索并掌握平行四边形对角线性质;(重点) 2.灵活运用平行四边形的性质进行推理和计算.
导入新课
分 享 蛋 糕 的 故 事
视频中的小朋友所说的那块蛋糕是最大的吗? 为什么?
讲授新课
一 平行四边形的对角线的性质 我们知道平行四边形的边角这两个基本要素的性 质,那么平行四边形的对角线又具有怎样的性质呢? 如图,在□ABCD中,连 接AC,BD,并设它们相交于点O. 猜一猜

6.2平行四边形的判定(教案)

6.2平行四边形的判定(教案)
难点解析:如何引导学生观察图形,发现可能存在的平行关系,从而应用相应的判定定理。
(3)综合运用多个判定定理解决问题:在复杂的几何问题中,学生可能需要综合运用多个判定定理才能解决问题。
难点解析:针对具体的几何问题,如何指导学生选择合适的判定定理,形成严密的逻辑推理过程。
(4)逆向思维的运用:在解决某些问题时,学生需要运用逆向思维,从已知结论出发,反推是否符合平行四边形的判定条件。
a.两组对边分别平行的四边形是平行四边形。
b.一组对边平行且相等的四边形是平行四边形。
c.两组对边分别相等的四边形是平行四边形。
d.对角线互相平分的四边形是平行四边形。
举例:解释定理a时,可通过具体的图形展示,如四边形ABCD中,AB//CD且AD//BC,则证明ABCD是平行四边形。
(3)应用判定定理解决实际问题:将判定定理应用于解决实际问题,如计算平行四边形的面积、周长等。
三、教学难点与重点
1.教学重点
(1)掌握平行四边形的定义:理解两对边分别平行的四边形称为平行四边形,这是学CD中,如果AB//CD且AD//BC,则四边形ABCD为平行四边形。
(2)平行四边形的判定定理:熟练掌握并运用以下四个判定定理判断给定图形是否为平行四边形。
难点解析:如何引导学生从已知结论反向思考,例如在已知四边形ABCD为平行四边形时,如何利用这个条件解决相关问题。
在教学过程中,教师需要针对这些重点和难点内容进行详细讲解和引导,确保学生能够透彻理解并掌握平行四边形的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行四边形的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过判断图形是否为平行四边形的情况?”比如,在设计海报或建筑图纸时,我们常常需要确定四边形是否为平行四边形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形判定的奥秘。

平行四边形的边和角的关系

平行四边形的边和角的关系

第六章平行四边形1 平行四边形的性质第1课时平行四边形的边角特征【知识与技能】探索并掌握平行四边形的性质,并能简单应用.【过程与方法】经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯.【情感态度】在探索活动过程中发展学生的探究意识.【教学重点】平行四边形性质的探索.【教学难点】平行四边形性质的理解.一.情景导入,初步认知出示与平行四边形有关的图片,让学生观察.问题:图中哪些图形我们没有学习过,这些图形是什么图形?(热爱家乡的教育)【教学说明】通过观察图片,引出本节课的内容.(安全教育)教育学生不要到河里游泳,上下楼梯靠右走二.思考探究,获取新知探究1:平行四边形的有关概念.教师设置:将三角板放地上,借机进行德育教育,五城同创知识(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出某位同学拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征.【教学说明】通过学生动手实践,引出平行四边形的概念.【归纳结论】两组对边分别平行的四边形,叫做平行四边形,平行四边形ABCD记做□ABCD;平行四边形的不相邻的两个顶点连成的线段叫做它的对角线.探究2:平行四边形的对称性.平行四边形是轴对称图形吗?是中心对称图形吗?如果是,你能找出他的对称中心.对称轴吗?并验证你的结论.【归纳结论】平行四边形是中心对称图形,两条对角线的交点是它的对称中心.探究3: 平行四边形的性质.如图(1),四边形ABCD是平行四边形.求证:AB=CD,BC=DA.【教学说明】学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质.【归纳结论】平行四边形的对边.对角相等.三.运用新知,深化理解1.2.3见幻灯片【教学说明】通过练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移.旋转等再一次认识平行四边形的本质特征.四.师生互动,课堂小结(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价.(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?(3)本节学习到了什么(知识上、方法上)?布置作业:教材“习题6.1”中第2、3、4题.本节教材直观感知活动较多,由学生的心理及年龄特点决定,学生有一定的逻辑思考能力及说理能力,因此从理性角度分析平行四边形的性质特点是非常需要的.学生在“运用新知,深化理解”环节中,要引导有条理的叙述及数学语言的表达.。

6.1 平行四边形的性质 课件(共29张PPT)数学北师大版八年级下册

6.1 平行四边形的性质 课件(共29张PPT)数学北师大版八年级下册

感悟新知
解题秘方:紧扣平行四边形边的性质进行解答 .
知2-练
解:∵平行四边形的对边相等, ∴ CD=AB=5 cm, AD=BC=4 cm. ∴ ▱ ABCD 的周长 =AB+BC+CD+AD=5+4+5+4=18(cm) .
感悟新知
知2-练
2-1. [ 中考·湘潭 ] 在▱ ABCD 中(如图),连接AC,已知 ∠ BAC =40 °, ∠ ACB = 80 °,则∠ BCD = ( C)
解:S 四边形 ABFE=S 四边形 FCDE. 理由如下: ∵四边形 ABCD 是平行四边形, ∴ OA=OC, AD ∥ BC. ∴∠ 1= ∠ 2. 又∵∠ 3= ∠ 4, ∴△ AOE ≌△ COF(ASA). ∴ S △ AOE=S △ COF.
知3-练
感悟新知
又由 ▱ ABCD 得
知3-练
感悟新知
例4 如图 6-1-8,在▱ ABCD 中,对角线 AC, BD 相
知3-练
交于点 O,过点 O 作直线 EF,分别交 AD, BC 于点 E, F. 判断四边形 ABFE 的面积与四边形 FCDE 的面 积有何关系,试说明理由 .
感悟新知
解题秘方:紧扣平行四边形的对角线性质、全等 三角形的性质进行解答 .
知2-讲
特别提醒
1. 2.
从 从• 边角• 看看• ::平平行行四四边边形形的的对对角边相平等行、且邻相角等互. 补 注• 意•:•要根据推理证明的需要,合理选用平
.
行四边形的性质 .
感悟新知
知2-练
例2 [母题教材P137随堂练习T1] 如图 6-1-4,在 ABCD 中, AB=5 cm, BC=4 cm,则▱ ABCD 的周长为__1_8___cm.

第六章 平行四边形全章教案

第六章  平行四边形全章教案

第六章平行四边形1. 平行四边形的性质(一)教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.探索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学方法:探索归纳法三、教学过程设计本节课分5个环节:第一环节:实践探索,直观感知第二环节:探索归纳,交流合作第三环节:推理论证,感悟升华第四环节:应用巩固,深化提高第五环节:评价反思,概括总结第一环节:实践探索,直观感知1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。

教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。

2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。

效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

第二环节探索归纳、合作交流小组活动三:内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢?活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

第六章 平行四边形(1~3)

第六章 平行四边形(1~3)

火太阳教育教学资源第六章 平行四边形(一)平行四边形性质一、基本知识点:1、平行四边形的概念;2、性质:(1)平行四边形对边平行且相等;(2)对角相等;(3)对角线互相平分;(4)中心对称。

二、知识巩固与拓展 (1)、小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边长为8m ,其他三条边各长多少? (2)、 ABCD 中,∠A+∠B=110°,则∠D= 度。

(3)、平行四边形的周长为50cm ,两邻边之比为2︰3,则两邻边分别等于: (4)、 ABCD 中,∠A ︰∠B ︰∠C ︰∠D 的值可以是( )A.1︰2︰3︰4B.3︰4︰4︰3C.3︰3︰4︰4D.3︰4︰3︰4 (5)、 ABCD 的周长为40cm ,△ABC 的周长为27cm,AC 的长为(6)、如图6.1ABCD 中,对角线AC 与BD 相较于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的的同一个平面内,若点B 的落点记为M ,求DM 长。

(7)如图6.2,在ABCD 中,对角线AC 、BD 交于O ,EF 经过O 点,交DC 于E ,交AB于F 。

求证:OE=OF(8)如图6.3,在ABCD 中,DE ⊥AB,BF ⊥CD,垂足分别为E,F ,求证:AE=CF(9)如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE.(10)如图,在□ABCD 中,M 、N 是对角线BD 上的两点,BN=DM ,请判断AM 与CN 有怎样的数量关系,并说明理由.它们的位置关系如何呢?NMDCB A(11)在□ABCD 中,一个角的平分线把一条边分为3cm 和4cm 两部分,则这个平行四边形的周长等于 cm 。

(12).在□ABCD 中,AC 、BD 交于点O ,已知AB =8cm ,BC =6cm ,△AOB 的周长是18cm ,那么△AOD 的周长是_____________.(13). □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________.(14). □ABCD 的周长为60cm ,对角线交于点O ,△BOC 的周长比△AOB 的周长小8cm ,则AB =______cm ,BC =_______cm .(15). □ABCD 中,E 、F 在AC 上,四边形DEBF 是平行四边形.求证:AE=CF .FE D CBA(16)已知:如下图,□ ABCD 的对角AC ,BD 交与点O. E ,F 分别是OA 、OC 的中点。

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

平行四边形及其性质【学习目的】1.理解平行四边形的概念,掌握平行四边形的性质定理和断定定理.2.能初步运用平行四边形的性质进展推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 理解平行四边形的不稳定性及其实际应用.4. 掌握两个推论:“夹在两条平行线间的平行线段相等〞。

“夹在两条平行线间的垂线段相等〞.【要点梳理】知识点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD〞,读作“平行四边形ABCD〞.要点诠释:平行四边形的根本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 知识点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:〔1〕平行四边形的性质定理中边的性质可以证明两边平行或者两边相等;角的性质可以证明两角相等或者两角互补;对角线的性质可以证明线段的相等关系或者倍半关系.〔2〕由于平行四边形的性质内容较多,在使用时根据需要进展选择.〔3〕利用对角线互相平分可解决对角线或者边的取值范围的问题,在解答时应联络三角形三边的不等关系来解决.知识点三、平行线的性质定理1.两条平行线间的间隔:〔1〕定义:两条平行线中,一条直线上的任意一点到另一条直线的间隔,叫做这两条平行线间的间隔 .注:间隔是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.【典型例题】类型一、平行四边形的性质1.如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即〔AO+OB+AB〕-〔BO+OC+BC〕=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.举一反三:【变式】如图:在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC =4.求AE:EF:FB的值.【答案】解:∵ ABCD是平行四边形,所以AB∥CD,∠ECD=∠CEB∵CE为∠DCB的角平分线,∴∠ECD=∠ECB,∴∠ECB=∠CEB,∴BC=BE∵BC=4,所以BE=4∵AB=6,F为AB的中点,所以BF=3∴EF=BE-BF=1,AE=AB-BE=2∴AE:EF:FB=2:1:3.2.平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,假如△CDM的周长是40cm,求平行四边形ABCD的周长.【思路点拨】由四边形ABCD是平行四边形,即可得AB=CD,AD=BC,OA=OC,又由OM⊥AC,根据垂直平分线的性质,即可得AM=CM,又由△CDM的周长是40cm,即可求得平行四边形ABCD 的周长.【答案与解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵OM⊥AC,∴AM=CM,∵△CDM的周长是40,即:DM+CM+CD=DM+AM+CD=AD+CD=40,∴平行四边形ABCD的周长为:2〔AD+CD〕=2×40=80〔cm〕.∴平行四边形ABCD的周长为80cm.【总结升华】此题考察了平行四边形的性质与线段垂直平分线的性质.解题的关键是注意数形结合思想的应用.举一反三:【变式】如图,平行四边形ABCD的对角线AC.BD相交于点O,EF过点O且与AB.CD分别相交于点E.F,连接EC.〔1〕求证:OE=OF;〔2〕假设EF⊥AC,△BEC的周长是10,求平行四边形ABCD的周长.【答案】〔1〕证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△FDO和△EBO中∵OD OBFOD EOFDO EBBO ⎧⎪=⎨⎪∠=∠∠∠⎩=∴△FDO≌△EBO〔AAS〕,∴OE=OF;〔2〕解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10∴BC+BE+CE=BC+AB=10,∴平行四边形ABCD的周长=2〔BC+AB〕=20.3.如图,口ABCD的周长为52cm,AB边的垂直平分线经过点D,垂足为E,口ABCD的周长比△ABD的周长多10cm.∠BDE=35°.〔1〕求∠C的度数;〔2〕求AB和AD的长.〔1〕由于DE是AB边的垂直平分线,得到∠ADE=∠BDE=35°,于是推出∠A═55°,【思路点拨】根据平行四边形的性质得到∠C=55°;〔2〕由DE是AB边的垂直平分线,得到DA=DB,根据平行四边形的性质得到AD=BC,AB=DC,由于口ABCD的周长为52,于是得到AB+AD=26,根据口ABCD的周长比△ABD的周长多10,得到BD=16,AD=16〔cm〕,于是求出结论.【答案与解析】解:〔1〕∵DE是AB边的垂直平分线,∴∠ADE=∠BDE=35°,∴∠A=90°﹣∠ADE=55°,∵口ABCD,∴∠C=∠A=55°;〔2〕∵DE是AB边的垂直平分线,∴DA=DB,∵四边形ABCD是平行四边形,∴AD=BC,AB=DC,∵口ABCD的周长为52,∴AB+AD=26,∵口ABCD的周长比△ABD的周长多10,∴52﹣〔AB+AD+BD〕=10,∴BD=16,∴AD=16〔cm〕,∴AB=26﹣16=10〔cm〕.【总结升华】此题主要考察了线段垂直平分线的性质,平行四边形的性质,能综合应用这两个性质是解题的关键.4.如图1,P为Rt△ABC所在平面内任一点〔不在直线AC上〕,∠ACB=90°,M为AB 的中点.操作:以PA.PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.〔1〕请你猜测与线段DE有关的三个结论,并证明你的猜测;〔2〕假设将“Rt△ABC〞改为“任意△ABC〞,其他条件不变,利用图2操作,并写出与线段DE有关的结论〔直接写答案〕.【思路点拨】〔1〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可;〔2〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可.【答案与解析】DE∥BC,DE=BC,DE⊥AC,证明:连接BE,∵M为AB中点,∴AM=MB,在△PMA和△EMB中∵===PM MEPMA EMB AM BM∠∠⎧⎪⎨⎪⎩,∴△PMA≌△EMB〔SAS〕,∴PA=BE,∠MPA=∠MEB,∴PA∥BE.∵四边形PADC是平行四边形,∴PA∥DC,PA=DC,∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形,∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.〔2〕解:DE∥BC,DE=BC.【总结升华】此题考察了平行四边形性质和断定,全等三角形的性质和断定,平行线的性质和断定的综合运用.举一反三:【变式】:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC于点P.〔1〕求证:∠ADE=∠CDF;〔2〕假如∠B=120°,求证:△DMN是等边三角形.【答案】证明:〔1〕∵四边形ABCD是平行四边形,∴∠DAB=∠C,DC∥AB,∵DE⊥AB于点E,DF⊥BC于点F,∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,∴∠ADE=∠CDF.〔2〕证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,∴∠DAP=∠BAP,∵DC∥AB,∴∠DPA=∠BAP,∴∠DAP=∠DPA,∴DA=DP,∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,∴△DAM≌△DPN,∴DM=DN,∵∠B=120°,∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,∴△DMN是等边三角形.类型二、平行线性质定理及其推论5.如图1,直线m∥n,点A.B在直线n上,点C.P在直线m上;〔1〕写出图1中面积相等的各对三角形:△CAB与△PAB.△BCP与△APC.△ACO与△BOP__________________;〔2〕如图①,A.B.C为三个顶点,点P在直线m上挪动到任一位置时,总有__________△PAB 与△ABC的面积相等;〔3〕如图②,一个五边形ABCDE,你能否过点E作一条直线交BC〔或者延长线〕于点M,使四边形ABME的面积等于五边形ABCDE的面积.【思路点拨】〔1〕找出图①中同底等高的三角形,这些三角形的面积相等;〔2〕因为两平行线间的间隔是相等的,所以点C.P到直线n间的间隔相等,也就是说△ABC 与△PAB的公一共边AB上的高相等,所以总有△PAB与△ABC的面积相等;〔3〕只要作一个三角形CEM与三角形CED的面积相等即可.【答案与解析】解:〔1〕∵m∥n,∴点C.P到直线n间的间隔与点A.B到直线m间的间隔相等;又∵同底等高的三角形的面积相等,∴图①中符合条件的三角形有:△CAB与△PAB.△BCP与△APC,△ACO与△BOP;〔2〕∵m∥n,∴点C.P到直线n间的间隔是相等的,∴△ABC与△PAB的公一共边AB上的高相等,∴总有△PAB与△ABC的面积相等;〔3〕连接EC,过点D作直线DM∥EC交BC延长线于点M,连接EM,线段EM所在的直线即为所求的直线.【总结升华】此题主要考察了三角形的面积及平行线的性质,利用平行线间的间隔相等得到同底等高的三角形是解题的关键.创作人:历恰面日期:2020年1月1日。

第6章平行四边形 题型解读6 多边形的内角和与外角和计算题型北师大版八年级数学下册

第6章平行四边形 题型解读6 多边形的内角和与外角和计算题型北师大版八年级数学下册

《平行四边形》题型解读6 多边形的内角和与外角和计算题型【知识梳理】1.多边形的内角和公式:(n-2)×180º;2.多边形的外角和会等于360º,它是个定值,与边数无关;3.正多边形的定义:每条边均相等,每个内角均相等的多边形是正多边形;【典型例题】例1.正十边形的每一个内角的度数为_______【解析】:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;例2.一个五边形的内角和为________【解析】:根据正多边形内角和公式:180°×(5﹣2)=540°,一个五边形的内角和是540度,例3.已知一个多边形的内角和是900º,则这个多边形是____边形。

【解析】依多边形内角和公式求解,即(n-2)×180º=900º,解得n=7,∴这个多边形是七边形。

例4. 已知一个多边形的每个内角均是108º,则这个多边形是____边形。

【解析】依平角定义及多边形外角和公式求解,由内角是108º可得它的外角是72º, 360º÷72º=5∴这个多边形是五边形。

例5.若正多边形的一个外角是60°,则该正多边形的内角和为______【解析】:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.例6. 已知一个多边形的内角和等于它的外角和的2倍,则这个多边形是____边形。

【解析】依多边形内角和公式及外角和公式求解,即(n-2)×180º=720º,解得n=6,∴这个多边形是六边形。

例7.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.【解析】:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.例8.一个正多边形的每个外角为60°,那么这个正多边形的内角和是 .【解析】:这个正多边形的边数为360°÷60°=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.例9.已知正n 边形的每一个内角为135°,则n= .【解析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多 边形的边数.多边形的外角是:180°﹣135°=45°,n=360°÷45°=8例10.若一个多边形的每个外角都等于30°,则这个多边形的边数为 .【解析】:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是360°÷30°=12,例11.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .【解析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.解:n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.例12.将一个多边形截去一个角后,形成另一个多边形,这个新的多边形内角和为720º,则原多边形的边数为____【解析】一个多边形截去一个角,存在三种情况:①减少一条边;②增加一条边;③边数不变,所以需分三种情况进行讨论.由多边形内角和公式可得:(n-2)×180º=720º,解得n=6,∴新多边形是六边形。

八年级数学下册第六章重点知识点归纳总结

八年级数学下册第六章重点知识点归纳总结

八年级数学下册第六章重点知识点归纳总结八年级数学下册第六章重点知识点归纳总结第六章平行四边形1.正确理解定义〔1〕定义:两组对边分别平行的四边形是平行四边形。

〔2〕表示方法:用“〞表示平行四边形,例如:平行四边形ABCD记作,读作“平行四边形ABCD〞.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.〔1〕角:平行四边形的邻角互补,对角相等;〔2〕边:平行四边形两组对边分别平行且相等;〔3〕对角线:平行四边形的对角线相互平分;〔4〕面积:①;②平行四边形的对角线将四边形分成4个面积相等的三角形.※3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线相互平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形4.※几种特别四边形的有关概念〔1〕矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的根底,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.〔2〕菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的根底,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.〔3〕正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特别的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.〔4〕梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.〔5〕等腰梯形:是一种特别的梯形,它是两腰相等的梯形,特别梯形还有直角梯形.※5.几种特别四边形的有关性质〔1〕矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线相互平分且相等;④对称性:轴对称图形〔对边中点连线所在直线,2条〕.〔2〕菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线相互垂直平分且每条对角线平分每组对角;④对称性:轴对称图形〔对角线所在直线,2条〕.〔3〕正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线相互垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形〔4条〕.〔4〕等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形〔上下底中点所在直线〕.※6.几种特别四边形的判定方法〔1〕矩形的判定:满足以下条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等〔2〕菱形的判定:满足以下条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线相互垂直的平行四边形;③四条边都相等.〔3〕正方形的判定:满足以下条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线相互垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;〔4〕等腰梯形的判定:满足以下条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特别四边形的常用说理方法与解题思路分析〔1〕识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.〔2〕识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线相互垂直.③说明四边形ABCD的四条相等.〔3〕识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线相互垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.〔4〕识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等..5.几种特别四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;假设菱形的两对角线的长分别为a,b,则S菱形=.③设正方形ABCD的一边长为a,则S正方形=a2;假设正方形的对角线的长为a,则S正方形=.④设梯形ABCD的上底为a,下底为b,高为h,则S梯形=。

初二数学下册必背知识点优秀6篇

初二数学下册必背知识点优秀6篇

初二数学下册必背知识点优秀6篇篇一:初二下册数学知识点归纳篇一第六章平行四边形1、平行四边形的性质①两组对边分别平行的四边形叫平行四边形②平行四边形不相邻的两个顶点连成的线段叫做它的对角线③平行四边形是中心对称图形,两条对角线的交点是它的对称中心④定理:平行四边形的对边,对角相等⑤平行四边形的对角线互相平分2、平行四边形的判断①定理:两组对边分别相等的四边形是平行四边形②定理:一组对边平行且相等的四边形是平行四边形③定理:对角线互相平分的四边形是平行四边形④如果两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,则这个距离称为平行线之间的距离3、三角形的中位线①连接三角形两边中点的线段叫做三角形的中位线②三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半4、多边形的内角和与外角和①定理:n边形的内角和等于(n-2)·180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在这个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和③定理:多边形的外角和都等于360°篇二:初二下册数学知识点篇二第二章一元一次不等式与一元一次不等式组1、不等关系2、不等式的基本性\\质①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变3、不等式的解集①能使不等式成立的未知数的值,叫做不等式的解②一个含有不等式所有的解,组成这个不等式的解集③求不等式解集的过程叫做解不等式4、一元一次不等式①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是15、一元一次不等式与一次函数6、一元一次不等式组①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组篇三:八年级下册数学知识点篇三1、分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

北师大版八年级数学下册第六章平行四边形同步串讲课件

北师大版八年级数学下册第六章平行四边形同步串讲课件

2. 3.
【例2】l1∥l2∥l3 , L1与l2之间的距离为2, l2 与l3之间的距离为3,若点A、B、C分别 在直线l1、l2、l3 上,且AC⊥BC, AC=BC,求AB的长。 l
1
A l2 l3 E C 如图作辅助线BE、AD证明△ADC≌△CEB--------D B
三. 总结 类别 性质 条件:∵ 四边形是平行四边形 两组对边分别平行 两组对边分别相等 一组对边平行且相等 两组对角分别相等 对角线互相平分 结论:∴ 对应边平行且相等 对角相等邻角互补 对角线互相平分
A
E
D
B
F
C
【典例4】□ABCD中,对角线AC、BD相交 于O点,经过O点的直线交AB于E点,交 CD于F点,求证:OE=OF
A D 0 F
E B
C
【典例5】 □ABCD中,F是BC的中点,连 接DF并延长,交AB的延长线于E点。 求证:AB=BE D
F A
C
B
E
第二单元:平行四边形的判定
A
∵OA=OB,OC=OD ∴四边形ABCD 是平行四边形。
【典例1】
在平行四边形ABCD中,周长为24cm, A AD-AB=4cm且 ∠A:∠B=3:1 , 1)求AB的长度 2)求∠C 的度数。
D
解: 1)∵AD+AB=12 AD-AB=4 2) ∵AD∥BC ∴ AB=4cm
B
C
∴ ∠A+ ∠B = 180° ∴ ∠A= 135° (∠B = 45°)
2. 3. 4.
5. 6. 7. 8.
【例1】如图AB∥GH∥CD,AD∥EF∥BC 则图中的平行四边形有( )
A. B. C. D. 7个 8个 9个 10个

第6章平行四边形 题型解读7 直角坐标系中的平行四边形-2020-2021学年北师大版八年级数学下册

第6章平行四边形 题型解读7 直角坐标系中的平行四边形-2020-2021学年北师大版八年级数学下册

《平行四边形》题型解读7 直角坐标系中的平行四边形【知识梳理】: 1.总体解题分析思路线:2.常见添辅助线方法:①过平行四边形顶点作坐标轴的垂线段,把点的坐标转化成线段长; ②连接对角线,利用中点坐标公式求解点的坐标;【典型例题】例1.已知如图,平行四边形ABCD 的边AB 在轴上,顶点D 在轴上,AD=4,AB=5,点A 的坐标为(-2,0),则 点B 的坐标为____________, 点C 的坐标为____________, 点D 的坐标为____________ 【解题过程】作CE ⊥x 轴,∵点A 的坐标为(-2,0),∴OA=2,∵四边形ABCD 是平行四边形,∴AD=BC=4,AB=CD=5,∴OB=3,∴BE=2,在Rt △OAD 中,由勾股定理可得OD=2√3,∵∠DAO=∠CBE,OA=BE=2,∠AOD=∠CEB=90º,∴△AOD ≌△BEC,∴CE=OB=2√3,∴B(3,0)、D(0,2√3)、C(5,2√3).例2.如图,在平面直角坐标系中,AB//OC ,A (0,12),B (a,12),C (b,0),且满足b =√a −21+√21−a +16. 动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒). (1)求B ,C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?请求出此时P ,Q 两点的坐标; (3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.【解题过程】(1)∵b =√a −21+√21−a +16,∴√a −21≥0,√21−a ≥0,∴a=21,∴b=16,∴B(21,12)、C(16,0); (2)如图1,由题可知:AP=2t,PB=21-2t ,OQ=t,QC=16-t ,∵当四边形PQCB 是平行四边形时,∴PB=QC ,即21-2t=16-t ,解得t=5,此时AP=10,OQ=5,∵AB//OC ,∴点B 、P 的纵坐标相同,∴P(10,12)、Q(5,0)。

北师版八年级下册数学第6章 平行四边形 第1课时 多边形的内角和

北师版八年级下册数学第6章 平行四边形 第1课时 多边形的内角和

感悟新知
例2 如图,在四边形ABCD中,∠A+∠C=180°. ∠B与∠D有怎样的关系?
知1-练
解:∵∠A+∠B+∠C+∠D =(4-2)×180°=360°, ∴∠B+∠D =360°-(∠A+∠C) =360°-180°=180°.
感悟新知
归纳
如果四边形一组对角互补,那么另一组 对角也互补.
线条数
0
分割出 的三角 形的个 1数
知1-讲
多边形的 内角和
1×180º
1
2
2×180º
2
3
3×180º
3
4
4×180º
……
n-3
……
……
n-2
(n-2)×180º
感悟新知
一般地,从n边形的一个顶点出发,可以作(n-3) 条对角线,它们将n边形分为(n-2)个三角形,n边形 的内角和等于180°×(n-2).
形的边数是( ) B
A.6B.12
C.16D.18
知2-练
感悟新知
3. 若一个正n边形的每个内角为144°,则这个正
n边形的所有对角线的条数是( ) C
A.7B.10
C.35D.70
知2-练
课堂小结
多边形的内角和
(1)正n边形的每个内角都相等,都等于
n
2
180 .
(2)n边形的内角和与边数有关,每增加一条边,n 内角
感悟新知
归纳
知2-讲
(1)已知多边形的内角和求边数n的方法:根据多边形 内角和公式列方程:(n-2)×180°=内角和,解 方程求出n,即得多边形的边数;
(2)已知正多边形每个内角的度数k求边数n的方法:根据 多边形内角和公式列方程:(n-2)×180°=kn,解方 程求出n,即得多边形的边数.

人教版小学五年级上册第六章 平行四边形的周长知识点及习题

人教版小学五年级上册第六章  平行四边形的周长知识点及习题

人教版小学五年级上册第六章平行四边
形的周长知识点及习题
人教版小学五年级上册第六章平行四边形的周长知识点及题
知识点概述
平行四边形是指具有两两相对的边平行的四边形。

在本章中,我们将研究关于平行四边形的周长计算方法。

计算周长的公式
平行四边形的周长可以通过将所有边长相加得到。

公式如下:周长 = 边长₁ + 边长₂ + 边长₃ + 边长₄
题一
计算以下平行四边形的周长:
1. 边长₁ = 5 cm, 边长₂ = 8 cm, 边长₃ = 5 cm, 边长₄ = 8 cm
2. 边长₁ = 12 cm, 边长₂ = 6 cm, 边长₃ = 12 cm, 边长₄ = 6 cm
解答题一
1. 周长 = 5 cm + 8 cm + 5 cm + 8 cm = 26 cm
2. 周长 = 12 cm + 6 cm + 12 cm + 6 cm = 36 cm
题二
根据已知的周长计算平行四边形的边长:
1. 周长 = 32 cm, 边长₃ = 7 cm, 边长₄ = 7 cm
2. 周长 = 52 cm, 边长₂ = 16 cm, 边长₄ = 8 cm
解答题二
1. 边长₁ = 周长 - 边长₂ - 边长₃ - 边长₄
= 32 cm - 7 cm - 7 cm - 7 cm
= 11 cm
2. 边长₁ = 周长 - 边长₂ - 边长₃ - 边长₄
= 52 cm - 16 cm - 16 cm - 8 cm
= 12 cm
以上是关于人教版小学五年级上册第六章平行四边形的周长知识点及题的介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章平行四边形重点
一、知识点梳理:
1、平行四边形:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:(1)平行四边形的对边平行且相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分。

3、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;
(3)两组对边分别相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形。

4、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5、两条平行线间的距离处处相等。

二、典型例题:
例1、(1)不能判定一个四边形是平行四边形的条件是【】
A. 两组对边分别平行
B. 一组
对边平行,另一组对边相等
C. 一组对边平行且相等
D. 两组
对边分别相等
(2)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是【】
A.DF=BE B.AF=CE C.CF=AE D.CF∥AE
(3)如图,在平行四边形ABCD中,AB=3cm,BC=5cm,
对角线AC,BD相交于点O,则OA的取值范围是【】
A.2cm<OA<5cm B.2cm<OA<8cm
C.1cm<OA<4cm D.3cm<OA<8cm
(4)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.
【课堂练习1】
1、如图1, D,E,F分别在△ABC的三边BC,AC,AB上,且DE∥AB, DF∥AC, EF∥
BC,则图中共有_______________个平行四边形,分别是_______________________________________.
2、如图2,在ABCD中,AD=8,点E、F分别是BD、CD的中
点,则EF= .
图(1)图(2)(3)图(4)3、如图3,平行四边形ABCD中,E,F是对角线AC上的两点,连结BE,BF,DF,DE,添
加一个条件使四边形BEDF是平行四边形,则添加的条件是______________(添加一个即可).
4、如图4,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC
=2,CE=4,则四边形ACEB的周长为。

例2、如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.
【课堂练习2】
如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,
备选条件:AE=CF,BE=DF,∠AEB=∠CFD,
我选择添加的条件是:
(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,
并加以证明)
例3、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.
三、强化训练:
1、在ABCD中,如果EF∥AD,GH∥CD,EF与GH相
交与点O,那么图中的平行四边形一共有().
(A)4个(B)5个(C)8个(D)9个
2、在下面给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB=BC,AD=CDB.AB∥CD,AD=BC
C.AB∥CD,∠B=∠DD.∠A=∠B,∠C=∠D
3、下面给出的条件中,能判定一个四边形是平行四边形的是()
A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补
4、角形三条中位线的长分别为3、4、5,则此三角形的面积为().
(A)12 (B)24 (C)36 (D)48
5、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()(A)1:2:3:4 (B)3:4:4:3 (C)3:3:4:4 (D)3:4:3:4
6、能够判定一个四边形是平行四边形的条件是 ( )
A. 一组对角相等
B. 两条对角线互相平分
C. 两条对角线互相垂直
D. 一对邻角的和为180°
7、四边形ABCD中,AD∥BC,要判定ABCD是平行四边形,那么还需满足 ( )
A. ∠A+∠C=180°
B. ∠B+∠D=180°
C. ∠A+∠B=180°
D. ∠A+∠D=180°
8、如图,□ABCD中,对角线AC,BD相交于点O,将
△AOD平移至△BEC的位置,则图中与OA相等的其它
线段有().
(A)1条 (B)2条 (C) 3条 (D) 4条
9、如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:
AB=CE.
10、如图,点G、E、F分别在平行四边形ABCD的边AD、
DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连
接FP,EP.
求证:FP=EP.
11、(1) 如图,平行四边形ABCD中,AB=5cm, BC=3cm, ∠D与∠C的平分线分别交AB于F,E, 求AE, EF, BF的长?
(2) 上题中改变BC的长度,其他条件保持不变,能否使点E,F重合,点E,F重合时BC长多少?求AE,BE的长.。

相关文档
最新文档