集合与逻辑用语练习题
高中数学必修一第一章集合与常用逻辑用语专项训练题(带答案)
高中数学必修一第一章集合与常用逻辑用语专项训练题单选题1、设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4答案:B分析:由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 求解二次不等式x 2−4≤0可得:A ={x|−2≤x ≤2},求解一次不等式2x +a ≤0可得:B ={x|x ≤−a 2}. 由于A ∩B ={x|−2≤x ≤1},故:−a 2=1,解得:a =−2. 故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2] 答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=( )A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.5、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.6、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A7、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.8、已知集合满足{1,2}⊆A⊆{1,2,3},则集合A可以是()A.{3}B.{1,3}C.{2,3}D.{1,2}答案:D分析:由题可得集合A可以是{1,2},{1,2,3}.∵{1,2}⊆A⊆{1,2,3},∴集合A可以是{1,2},{1,2,3}.故选:D.多选题9、下列存在量词命题中真命题是()A.∃x∈R,x≤0B.至少有一个整数,它既不是合数,也不是素数C.∃x∈{x|x是无理数},x2是无理数D.∃x0∈Z,1<5x0<3答案:ABC分析:结合例子,逐项判断即可得解.对于A,∃x=0∈R,使得x≤0,故A为真命题.对于B,整数1既不是合数,也不是素数,故B为真命题;对于C,若x=π,则x∈{x|x是无理数},x2是无理数,故C为真命题.对于D,∵1<5x0<3,∴15<x0<35,∴∃x0∈Z,1<5x0<3为假命题.故选:ABC.10、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.11、非空集合A具有下列性质:①若x,y∈A,则xy∈A;②若x,y∈A,则x+y∈A.下列选项正确的是()A.−1∉A B.20202021∉AC.若x,y∈A,则xy∈A D.若x,y∈A,则x−y∉A答案:AC分析:若−1∈A,利用条件可得当x=−1∈A,y=0∈A时,不满足xy∈A,可判断A,利用条件可得若x≠0且x∈A,进而得2020∈A,2021∈A,可判断B,利用题设可得若x,y∈A,则xy∈A,x−y=1∈A可判断CD.对于A,若−1∈A,则−1−1=1∈A,此时−1+1=0∈A,而当x=−1∈A,y=0∈A时,−1显然无意义,不满足xy∈A,所以−1∉A,故A正确;对于B,若x≠0且x∈A,则1=xx∈A,所以2=1+1∈A,3=2+1∈A,以此类推,得对任意的n∈N∗,有n∈A,所以2020∈A,2021∈A,所以20202021∈A,故B错误;对于C,若x,y∈A,则x≠0且y≠0,又1∈A,所以1y ∈A,所以xy=x1y=∈A,故C正确;对于D,取x=2,y=1,则x−y=1∈A,故D错误.故选:AC.填空题12、设集合A={1,2,a},B={2,3}.若B⊆A,则a=_______.答案:3分析:由题意可知集合B是集合A的子集,进而求出答案.由B⊆A知集合B是集合A的子集,所以3∈A⇒a=3,所以答案是:3.13、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k= 0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.14、设P为非空实数集满足:对任意给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P,则称P为幸运集.①集合P={−2,−1,0,1,2}为幸运集;②集合P={x|x=2n,n∈Z}为幸运集;③若集合P1、P2为幸运集,则P1∪P2为幸运集;④若集合P为幸运集,则一定有0∈P;其中正确结论的序号是________答案:②④解析:①取x=y=2判断;②设x=2k1∈P,y=2k2∈P判断;③举例P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}判断;④由x、y可以相同判断;①当x=y=2,x+y=4∉P,所以集合P不是幸运集,故错误;②设x=2k1∈P,y=2k2∈P,则x+y=2(k1+k2)∈A,x−y=2(k1−k2)∈A,xy=2k1⋅k2∈A,所以集合P是幸运集,故正确;③如集合P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}为幸运集,但P1∪P2不为幸运集,如x=2,y=3时,x+y=5∉P1∪P2,故错误;④因为集合P为幸运集,则x−y∈P,当x=y时,x−y=0,一定有0∈P,故正确;所以答案是:②④小提示:关键点点睛:读懂新定义的含义,结合“给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P”,灵活运用举例法.解答题15、已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3+√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.答案:(1)x1∈A,x2∈A(2)x1x2∈A,理由见解析分析:(1)将x1,x2化简,并判断是否可以化为m+√6n,m,n∈Q的形式即可判断关系.(2)由题设,令x1=m1+√6n1,x2=m2+√6n2,进而判断是否有x1x2=m+√6n,m,n∈Q的形式即可判断.(1)x1=−√6=0+√6×(−1)∈A,即m=0,n=−1符合;x2=√(√3−1)22+√(√3+1)22=√6=0+√6×1∈A,即m=0,n=1符合.(2)x1x2∈A.理由如下:由x1,x2∈A知:存在m1,m2,n1,n2∈Q,使得x1=m1+√6n1,x2=m2+√6n2,∴x1x2=(m1+√6n1)(m2+√6n2)=(m1m2+6n1n2)+√6(m1n2+m2n1),其中m1m2+6n1n2,m1n2+ m2n1∈Q,∴x1x2∈A.。
集合与常用逻辑用语》综合测试卷
集合与常用逻辑用语》综合测试卷1.选择题1.下列命题的否定是真命题的是()A。
有些实数的绝对值是正数B。
所有平行四边形都不是菱形C。
任意两个等边三角形都是相似的D。
3是方程的一个根答案:B2.已知R为实数集,集合A={x|x>1},B={x|x≥2},则(R-B)∩A=()A。
(1,2)B。
[1,2)C。
(-∞,1]D。
[2,+∞)答案:B3.已知集合A={-2,1,9,π},B={1,9},则A-B=()A。
{0,1,9}B。
{1,9}C。
{0,1,9,π}D。
{-2,0,1,9}答案:D4.以下四个命题既是特称命题又是真命题的是()A。
锐角三角形的内角是锐角或钝角B。
至少有一个实数x,使x2+x+1>0C。
两个无理数的和必是无理数D。
存在一个负数,使它的平方大于100答案:A5.“p是q的充要条件”是()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件答案:C6.已知全集U={x∈Z|0<x<6},集合A={3,4,5},则(U-C)∩A=()A。
{1,2}B。
{0,1,2}C。
{1,2,3}D。
{0,1,2,3}答案:B7.已知R是实数集,集合A={x|1<x<2},B={x|2<x<3},则阴影部分表示的集合是()A。
[0,1]B。
(0,1]C。
[0,1)D。
(0,1)答案:D8.设命题p:∀x∈R,x-4x+2m≥0(其中m为常数),则“m≥1”是“命题p为真命题”的()A。
充分不必要条件B。
必要不充分条件C。
充分且必要条件D。
既不充分也不必要条件答案:C9.若命题“存在x∈R,使得x/(4x+1)<1/4”是假命题,则实数m的取值范围是()A。
(-∞,-1)B。
(-∞,2)C。
[-1,1]D。
(-∞,0)答案:B10.已知集合A={x|x=x},B={1,m,2},若A⊆B,则实数m 的值为()A。
2B。
√2C。
高中数学第一章集合与常用逻辑用语考点专题训练(带答案)
高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)
《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。
集合与常用逻辑用语测试题及详解
集合与常用逻辑用语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·巢湖市质检)设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( )A .A ⊆B B .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}[答案] D(理)(2011·安徽百校联考)已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则集合M 与集合N 的关系是( )A .M =NB .M NC .N MD .M ∩N =∅[答案] C[解析] ∵a 、b ∈M 且a ≠b ,∴a =-1时,b =0或1,x =0或-1;a =0时,无论b 取何值,都有x =0;a =1时,b =-1或0,x =-1或0.综上知N ={0,-1},∴N M .2.(2011·合肥质检)“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件[答案] C[解析] a =1时,f (x )=lg(x +1)在(0,+∞)上单调递增;若f (x )=lg(ax +1)在(0,+∞)上单调递增,∵y =lg x 是增函数,∴y =ax +1在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧a >0a ×0+1>0,∴a >0,故选C. 3.(2011·福州期末)已知p :|x |<2;q :x 2-x -2<0,则綈p 是綈q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] ∵p :-2<x <2,∴綈p :x ≤-2或x ≥2; q :-1<x <2,∴綈q :x ≤-1或x ≥2, ∴綈p 是綈q 的充分不必要条件.4.(2011·福州期末)在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 如图,在△ABC 中,过C 作CD ⊥AB ,则|AD →|=|AC →|·cos ∠CAB ,|BD →|=|BC →|·cos ∠CBA ,AB →·AC →=BA →·BC →⇔|AB →|·|AC →|·cos ∠CAB =|BA →|·|BC →|·cos ∠CBA ⇔|AC →|·cos ∠CAB =|BC →|·cos ∠CBA ⇔|AD →|=|BD →|⇔|AC →|=|BC →|,故选C.5.(文)(2011·山东日照调研)设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若α∥β,l ⊂α,m ⊂β则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则α⊥β.则下列命题为真命题的是( )A .p 或qB .p 且qC .綈p 或qD .p 且綈q[答案] C[解析] p 为假命题,q 为假命题,故p 或q ,p 且q ,p 且綈q 均为假命题,选C. (理)(2011·辽宁省丹东四校联考)已知α、β、γ为互不重合的三个平面,命题p :若α⊥β,β⊥γ,则α∥γ;命题q :若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或綈q ”为假C .命题“p 或q ”为假D .命题“綈p 且綈q ”为假[答案] C[解析] 如图(1),正方体中,相邻三个面满足β⊥α,β⊥γ,但α⊥γ,故p 为假命题;如图(2),α∩β=l ,直线AB ,CD 是α内与l 平行且与l 距离相等的两条直线,则直线AB ,CD 上任意一点到平面β的距离都相等,三点A 、B 、C 不共线,且到平面β的距离相等,故命题q 为假命题,∴“p 或q ”为假命题.6.(2011·宁夏银川一中检测)下列结论错误的...是()A.命题“若p,则q”与命题“若綈q,则綈p”互为逆否命题B.命题p:∀x∈[0,1],e x≥1,命题q:∃x∈R,x2+x+1<0,则p∨q为真C.“若am2<bm2,则a<b”的逆命题为真命题D.若p∨q为假命题,则p、q均为假命题[答案] C[解析]根据四种命题的构成规律,选项A中的结论是正确的;选项B中的命题p是真命题,命题q是假命题,故p∨q为真命题,选项B中的结论正确;当m=0时,a<b⇒/ am2<bm2,故选项C中的结论不正确;选项D中的结论正确.7.(文)(2011·福州期末)已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N等于()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1或y=2} D.{y|y≥1}[答案] D[解析]由集合M、N的代表元素知M、N都是数集,排除A、B;又M={y|y≥1},N =R,∴选D.(理)(2011·陕西宝鸡质检)已知集合A={x|y=1-x2,x∈Z},B={y|y=x2+1,x∈A},则A∩B为()A.∅B.{1}C.[0,+∞) D.{(0,1)}[答案] B[解析]由1-x2≥0得,-1≤x≤1,∵x∈Z,∴A={-1,0,1},当x∈A时,y=x2+1∈{2,1},即B={1,2},∴A∩B={1}.8.(2011·天津河西区质检)命题p:∀x∈[0,+∞),(log32)x≤1,则()A.p是假命题,綈p:∃x0∈[0,+∞),(log32)x0>1B.p是假命题,綈p:∀x∈[0,+∞),(log32)x≥1C.p是真命题,綈p:∃x0∈[0,+∞),(log32)x0>1D.p是真命题,綈p:∀x∈[0,+∞),(log32)x≥1[答案] C[解析] ∵0<log 32<1,∴y =(log 32)x 在[0,+∞)上单调递减,∴0<y ≤1,∴p 是真命题;∀的否定为“∃”,“≤”的否定为“>”,故选C.9.(2010·广东湛江模拟)“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题是( ) A .若x =a 且x =b ,则x 2-(a +b )x +ab =0. B .若x =a 或x =b ,则x 2-(a +b )x +ab ≠0. C .若x =a 且x =b ,则x 2-(a +b )x +ab ≠0. D .若x =a 或x =b ,则x 2-(a +b )x +ab =0. [答案] D10.(2011·四川资阳市模拟)“cos θ<0且tan θ>0”是“θ为第三角限角”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件[答案] A[解析] ∵cos θ<0,∴θ为第二或三象限角或终边落在x 轴负半轴上,∵tan θ>0,∴θ为第一或三象限角,∴θ为第三象限角,故选A.11.(文)(2011·湖南长沙一中月考)设命题p :∀x ∈R ,|x |≥x ;q :∃x ∈R ,1x =0.则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 真q 真D .p 假q 假[答案] B[解析] ∵|x |≥x 对任意x ∈R 都成立,∴p 真,∵1x =0无解,∴不存在x ∈R ,使1x =0,∴q 假,故选B.(理)(2011·福建厦门市期末)下列命题中,假命题是( ) A .∀x ∈R,2x -1>0B .∃x ∈R ,sin x = 2C .∀x ∈R ,x 2-x +1>0D .∃x ∈N ,lg x =2[答案] B[解析] 对任意x ∈R ,总有|sin x |≤1,∴sin x =2无解,故选B.12.(2011·辽宁大连期末)已知全集U =R ,集合A ={x |x =2n ,n ∈N }与B ={x |x =2n ,n ∈N },则正确表示集合A 、B 关系的韦恩(Venn)图是( )[答案] A[解析] n =0时,20=1∈A ,但1∉B,2×0=0∈B ,但0∉A ,又当n =1时,2∈A 且2∈B ,故选A.[点评] 自然数集N 中含有元素0要特别注意,本题极易因忽视0∈N 导致错选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知命题甲:a +b ≠4,命题乙:a ≠1且b ≠3,则命题甲是命题乙的________条件. [答案] 既不充分也不必要[解析] 当a +b ≠4时,可选取a =1,b =5,故此时a ≠1且b ≠3不成立(∵a =1).同样,a ≠1且b ≠3时,可选取a =2,b =2,此时a +b =4,因此,甲是乙的既不充分也不必要条件.[点评] 也可通过逆否法判断非乙是非甲的什么条件. 14.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是______(写出所有正确命题的序号). [答案] ③④[解析] 显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线,而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故选项为③④.15.(文)函数f (x )=log a x -x +2(a >0且a ≠1)有且仅有两个零点的充要条件是________. [答案] a >1[解析] 若函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,即函数y =log a x 的图象与直线y =x -2有两个交点,结合图象易知,此时a >1;当a >1时,函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,∴函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点的充要条件是a >1.(理)(2010·济南模拟)设p :⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12,q :x 2+y 2>r 2(x ,y ∈R ,r >0),若p 是q的充分不必要条件,则r 的取值范围是________.[答案] ⎝⎛⎭⎫0,125 [解析] 设A ={(x ,y )|⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12},B ={(x ,y )|x 2+y 2>r 2,x ,y ∈R ,r >0},则集合A 表示的区域为图中阴影部分,集合B 表示以原点为圆心,以r 为半径的圆的外部,设原点到直线4x +3y -12=0的距离为d ,则d =|4×0+3×0-12|5=125,∵p 是q 的充分不必要条件,∴A B ,则0<r <125.16.(2011·河南豫南九校联考)下列正确结论的序号是________. ①命题∀x ∈R ,x 2+x +1>0的否定是:∃x ∈R ,x 2+x +1<0.②命题“若ab =0,则a =0,或b =0”的否命题是“若ab ≠0,则a ≠0且b ≠0”. ③已知线性回归方程是y ^=3+2x ,则当自变量的值为2时,因变量的精确值为7. ④若a ,b ∈[0,1],则不等式a 2+b 2<14成立的概率是π4.[答案] ②[解析] ∀x ∈R ,x 2+x +1>0的否定应为∃x ∈R ,x 2+x +1≤0,故①错;对于线性回归方程y ^=3+2x ,当x =2时,y 的估计值为7,故③错;对于0≤a ≤1,0≤b ≤1,满足a 2+b 2<14的概率为p =14×π×⎝⎛⎭⎫1221×1=π16,故④错,只有②正确. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(文)(2011·重庆南开中学期末)已知函数f (x )=x +1x -2的定义域是集合A ,函数g (x )=lg[x 2-(2a +1)x +a 2+a ]的定义域是集合B .(1)分别求集合A 、B ;(2)若A ∪B =B ,求实数a 的取值范围. [解析] (1)A ={x |x ≤-1或x >2} B ={x |x <a 或x >a +1}.(2)由A ∪B =B 得A ⊆B ,因此⎩⎪⎨⎪⎧a >-1a +1≤2所以-1<a ≤1,所以实数a 的取值范围是(-1,1]. (理)已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. [解析] 由6x +1-1≥0知,0<x +1≤6,∴-1<x ≤5,A ={x |-1<x ≤5}. (1)当m =3时,B ={x |-1<x <3} 则∁R B ={x |x ≤-1或x ≥3} ∴A ∩(∁R B )={x |3≤x ≤5}.(2)A ={x |-1<x ≤5},A ∩B ={x |-1<x <4}, ∴有-42+2·4+m =0,解得m =8. 此时B ={x |-2<x <4},符合题意.18.(本小题满分12分)(文)已知函数f (x )是R 上的增函数,a 、b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b ).”(1)写出其逆命题,判断其真假,并证明你的结论; (2)写出其逆否命题,判断其真假,并证明你的结论.[解析] (1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,真命题. 用反证法证明:设a +b <0,则a <-b ,b <-a , ∵f (x )是R 上的增函数, ∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设f (a )+f (b )≥f (-a )+f (-b )矛盾,所以逆命题为真. (2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ), 则a +b <0,为真命题.由于互为逆否命题同真假,故只需证原命题为真. ∵a +b ≥0,∴a ≥-b ,b ≥-a ,又∵f (x )在R 上是增函数, ∴f (a )≥f (-b ),f (b )≥f (-a ).∴f (a )+f (b )≥f (-a )+f (-b ),∴原命题真,故逆否命题为真.(理)(2011·厦门双十中学月考)在平面直角坐标系xOy 中,直线l 与抛物线y 2=2x 相交于A 、B 两点.(1)求证:“如果直线l 过点(3,0),那么OA →·OB →=3”是真命题.(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. [解析] (1)设l :x =ty +3,代入抛物线y 2=2x ,消去x 得y 2-2ty -6=0. 设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2t ,y 1·y 2=-6, OA →·OB →=x 1x 2+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2 =t 2y 1y 2+3t (y 1+y 2)+9+y 1y 2 =-6t 2+3t ·2t +9-6=3. ∴OA →·OB →=3,故为真命题.(2)(1)中命题的逆命题是:“若OA →·OB →=3,则直线l 过点(3,0)”它是假命题. 设l :x =ty +b ,代入抛物线y 2=2x ,消去x 得y 2-2ty -2b =0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1·y 2=-2b . ∵OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-2bt 2+bt ·2t +b 2-2b =b 2-2b , 令b 2-2b =3,得b =3或b =-1,此时直线l 过点(3,0)或(-1,0).故逆命题为假命题.19.(本小题满分12分)(文)(2011·华安、连城、永安、漳平龙海,泉港六校联考)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. [解析] A ={x |-1≤x ≤3} B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧ m -2=0m +2≥3,⎩⎪⎨⎪⎧m =2m ≥1,∴m =2. 故所求实数m 的值为2. (2)∁R B ={x |x <m -2或x >m +2} A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.因此实数m 的取值范围是m >5或m <-3.(理)(2011·山东潍坊模拟)已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a<0}.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. [解析] (1)当a =12时,A ={x |x -2x -52<0}={x |2<x <52},B ={x |x -94x -12<0}={x |12<x <94}.∴(∁U B )∩A ={x |x ≤12或x ≥94}∩{x |2<x <52}={x |94≤x <52}.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,得B ={x |a <x <a 2+2}, 当3a +1>2,即a >13时,A ={x |2<x <3a +1},⎩⎪⎨⎪⎧a ≤2a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,符合题意; 当3a +1<2,即a <13时,A ={x |3a +1<x <2}.⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得-12≤a <13;综上,a ∈[-12,3-52].20.(本小题满分12分)(2010·常德模拟)已知命题p :∀x ∈[1,2],x 2-a ≥0.命题q :∃x 0∈R ,使得x 20+(a -1)x 0+1<0.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.[解析] 由条件知,a ≤x 2对∀x ∈[1,2]成立,∴a ≤1;∵∃x 0∈R ,使x 20+(a -1)x 0+1<0成立,∴不等式x 2+(a -1)x +1<0有解,∴Δ=(a -1)2-4>0,∴a >3或a <-1; ∵p 或q 为真,p 且q 为假,∴p与q一真一假.①p真q假时,-1≤a≤1;②p假q真时,a>3.∴实数a的取值范围是a>3或-1≤a≤1.21.(本小题满分12分)(文)已知函数f(x)=x2-2x+5,若存在一个实数x0,使不等式f(x0)-m>0成立,求实数m的取值范围.[解析]不等式f(x0)-m>0可化为m<f(x0),若存在一个实数x0使不等式m<f(x0)成立,只需m<f(x)min.又∵f(x)=x2-2x+5=(x-1)2+4,∴f(x)min=4,∴m<4.故所求实数m的取值范围是(-∞,4).(理)(2011·雅安中学期末)设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax 成立,求实数a的取值范围.[解析]令g(x)=(x+1)ln(x+1)-ax,则g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=e a-1-1.(1)当a≤1时,对所有x>0,g′(x)>0.所以g(x)在[0,+∞)上是增函数.又g(0)=0,所以对x≥0,有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(2)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)上是减函数.又g(0)=0,所以对0<x<e a-1-1,有g(x)<g(0),即f(x)<ax.所以当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上所述a的取值范围是(-∞,1].22.(本小题满分12分)若规定E={a1,a2,…,a10}的子集{ai1,ai2,…,ai n}为E的第k个子集,其中k=2i1-1+2i2-1+…+2i n-1,则(1){a1,a3}是E的第几个子集?(2)求E的第211个子集.[解析](1)由k的定义可知k=21-1+23-1=5.因此{a1,a3}是E的第5个子集.(2)∵21-1=1,22-1=2,23-1=4,24-1=8,…k=211,且211=128+64+16+2+1,∴i1=1,i2=2,i3=5,i4=7,i5=8,故E的第211个子集是{a1,a2,a5,a7,a8}.高考总复习[点评]本题是新定义题型,构思新颖,视角独特,亮点明显,对考生在新情境下灵活运用所学知识分析,解决问题的能力要求较高,有较高的区分度.含详解答案。
高中数学必修一第一章集合与常用逻辑用语必练题总结(带答案)
高中数学必修一第一章集合与常用逻辑用语必练题总结单选题1、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D2、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:A.5B.10C.15D.20答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.3、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.4、命题“∀x<0,x2+ax−1≥0”的否定是()A.∃x≥0,x2+ax−1<0B.∃x≥0,x2+ax−1≥0C.∃x<0,x2+ax−1<0D.∃x<0,x2+ax−1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x<0,x2+ax−1≥0”的否定是“∃x<0,x2+ax−1<0”.故选:C5、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.6、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.7、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C8、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.多选题9、(多选题)下列各组中M,P表示不同集合的是()A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=x2+1,x∈R},P={x|x=t2+1,t∈R}D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}答案:ABD分析:选项A中,M和P的代表元素不同,是不同的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,解出集合M和P.选项D中,M和P的代表元素不同,是不同的集合.选项A中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,M={y|y=x2+1,x∈R}=[1,+∞),P={x|x=t2+1,t∈R}=[1,+∞),故M=P;选项D中,M是二次函数y=x2-1,x∈R的所有因变量组成的集合,而集合P是二次函数y=x2-1,x∈R图象上所有点组成的集合.故选ABD.10、已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={−1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={−1}D.A∩B的真子集个数是7答案:ACD分析:求出集合A,再由集合的基本运算以及真子集的概念即可求解.A={x|2x+1≥0,x∈Z}={x|x≥−1,x∈Z},B={−1,0,1,2},2A∩B={0,1,2},故A正确;A∪B={x|x≥−1,x∈Z},故B错误;,x∈Z},所以(∁U A)∩B={−1},故C正确;∁U A={x|x<−12由A∩B={0,1,2},则A∩B的真子集个数是23−1=7,故D正确.故选:ACD11、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.填空题12、请写出不等式a>b的一个充分不必要条件___________.答案:a>b+1 (答案不唯一)分析:根据充分不必要条件,找到一个能推出a>b,但是a>b推不出来的条件即可.因为a>b+1能推出a>b,但是a>b不能推出a>b+1,所以a>b+1是不等式a>b的一个充分不必要条件,所以答案是:a>b+1(答案不唯一)13、已知集合A={x|−2≤x≤7},B={x|m+1≤x≤2m−1},若B⊆A,则实数m的取值范围是____________.答案:(−∞,4]分析:分情况讨论:当B=∅或B≠∅,根据集合的包含关系即可求解.当B=∅时,有m+1≥2m−1,则m≤2;当B≠∅时,若B⊆A,如图,则{m+1≥−2, 2m−1≤7,m+1<2m−1,解得2<m≤4.综上,m的取值范围为(−∞,4].所以答案是:(−∞,4]14、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).解答题15、已知集合A={x|−1≤x≤2},B={y|y=ax+3,x∈A},C={y|y=2x+3a,x∈A},(1)若∀y 1∈B ,∀y 2∈C ,总有y 1≤y 2成立,求实数a 的取值范围;(2)若∀y 1∈B ,∃y 2∈C ,使得y 1≤y 2成立,求实数a 的取值范围; 答案:(1)a ≥5;(2)a ≥−14. 分析:(1)设y 1=ax +3,y 2=2x +3a ,由题设可得y 1max ≤y 2min ,建立不等式组,解之可得答案. (2)由题设可得y 1max ≤y 2max ,建立不等式组,解之可得答案.(1)设y 1=ax +3,y 2=2x +3a ,其中−1≤x ≤2, 由题设可得y 1max ≤y 2min ,即y 1max ≤3a −2,故{−a +3≤−2+3a 2a +3≤−2+3a , 解得a ≥5.(2)由题设可得y 1max ≤y 2max ,故{−a +3≤4+3a 2a +3≤4+3a ,解得a ≥−14.。
完整版)集合与常用逻辑用语测试题及详解
完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。
A。
A⊆BB。
A∩B={2}C。
A∪B={1,2,3,4,5}D。
A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。
显然,A不是B的子集,排除A选项。
XXX表示A和B的交集,即A和B中都出现的元素构成的集合。
根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。
A∪B表示A和B的并集,即A和B中所有元素构成的集合。
根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。
A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。
根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。
2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。
A。
M=NB。
MNC。
NMD。
M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。
因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。
3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。
A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
集合与常用逻辑用语练习测试题
第一练集合与常用逻辑用语一.强化题型考点对对练1.(集合的基本运算)已知集合{|1A x x =≤-或1}x ≥,集合{|01}B x x =<<,则()A.{}1A B ⋂=B.A B R ⋃=C.()(]0,1R C A B ⋂=D.()R A C B A ⋂=【答案】D2.(集合的基本运算)若集合{}02A x x =<<,且AB B =,则集合B 可能是() A.{}0 2, B.{}0 1, C.{}0 1 2,, D.{}1 【答案】D 【解析】由题意得,因为,所以选B.3.(集合的基本运算)设集合{}|2M x x =<,{}1,1N =-,则集合M C N 中整数的个数为()A.3B.2C.1D.0【答案】C 【解析】{}(){}|22,2,1,1M x x N =<=-=-,()()()2,11,11,2,M N ∴=--⋃-⋃∴ð集合M N ð中整数只有0,故个数为1,故选C.4.(集合间的关系)已知集合,若,则()A.0或1B.0或2C.1或2D.0或1或2【答案】C 【解析】或.故选C. 5.(充分条件和必要条件)设x R ∈,i 是虚数单位,则“3x =-”是“复数()()2231z x x x i =+-+-为纯虚数”的 A.充分不必要条B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】由3x =-,得()()222332330x x +-=-+⨯--=,1314x -=--=-.而由2230{ 10x x x +-=-≠,得3x =-.所以“3x =-”是“复数()()2231z x x x i =+-+-为纯数”的充要条件.故选C.6.(逻辑联结词)已知命题方程在上有解,命题,有恒成立,则下列命题为真命题的是() A. B. C. D. 【答案】B 【解析】由题意知假真,所以为真,故选B .7.(全称量词和存在量词)命题:“00x ∃>,使002()1x x a ->”,这个命题的否定是()A .0x ∀>,使2()1x x a ->B .0x ∀>,使2()1x x a -≤C .0x ∀≤,使2()1x x a -≤D .0x ∀≤,使2()1x x a ->【答案】B8.(全称量词和存在量词)命题“恒成立”是假命题,则实数的取值范围是(). A. B.或 C.或 D.或 【答案】B【解析】命题“ax 2﹣2ax+3>0恒成立”是假命题,即存在x ∈R ,使“ax 2﹣2ax+3≤0,当a=0时,不符合题意;当a <0时,符合题意;当a >0时,△=4a 2﹣12a ≥0?a ≥3,综上:实数a 的取值范围是:a <0或a ≥3.9.(逻辑联结词与充分条件和必要条件的结合)已知命题p ,q 是简单命题,则“p q ∨是真命题”是“p ⌝是假命题”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分有不必要条件【答案】B【解析】由p q ∨是真命题,可得p 真q 假或p 假q 真或p 真q 真;由p ⌝是假命题,知p 为真命题,则p q ∨是真命题,所以已知命题p ,q 是简单命题,则“p q ∨是真命题”是“p ⌝是假命题”的必要不充分条件,故选B .10.(集合运算与不等式、函数的结合)已知集合,,() A. B. C. D. 【答案】D 【解析】,所以,选D.11.(充要条件和解析几何的结合)已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C12.(充分条件和必要条件与数列的结合)在等差数列{}n a 中,12a =,公差为d ,则“4d =”是“125a a a ,,成等比数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由125a a a ,,成等比数列,得2111()(4)a d a a d +=+,即2(2)2(24)d d +=+,解得0d =或4d =,所以“4d =”是“125a a a ,,成等比数列”的充分不必要条件.13.(逻辑联结词与平面向量的结合)已知命题:p 存在向量,,a b 使得a b a b ⋅=⋅,命题:q 对任意的向量a 、b 、c ,若a b a c ⋅=⋅则b c =.则下列判断正确的是()A.命题p q ∨是假命题B.命题p q ∧是真命题C.命题()p q ∨⌝是假命题D.命题()p q ∧⌝是真命题【答案】D【解析】对于命题p ,当向量,a b 同向共线时成立,真命题;对于命题q ,若a 为零向量则命题不成立,为假命题;所以命题()p q ∧⌝是真命题,故选D.14.(命题综合判断)下列命题错误的是()A.对于命题2:,1p x R x x ∃∈++使得<0,则:P ⌝∀,x R ∈均有210.x x ++≥B.命题“若2320x x -+=,则1x =”的逆否命题为“若1,x ≠,则2320.x x -+≠”C.若p q Λ为假命题,则,p q 均为假命题D.“x>2”是“232x x -+>0”的充分不必要条件.【答案】C二.易错问题纠错练15.(忽视集合端点的取值而致错)设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值范围是()A .)1,(-∞B .]1,(-∞C .),1(+∞D .),1[+∞【答案】A【解析】由}1|{≥=x x A 有{}1U C A x x =<,而R B A C U = )(,所以1a <,故选A.【注意问题】充分借助数轴,端点取值要检验16.(“新定义”不理解致错)设,P Q 是两个集合,定义集合{|,}P Q x x P x Q -=∈∉为,P Q 的“差集”,已知2{|10}P x x =-<,{|21}Q x x =-<,那么Q P -等于()A.{|01}x x <<B.{|01}x x <≤C.{|12}x x ≤<D.{|23}x x ≤<【答案】D【解析】从而有,∵2{|10}P x x =-<,化简得:{|02}P x x =<<,而{|21}Q x x =-<,化简得:{|13}Q x x =<<.∵定义集合{|,}P Q x x P x Q -=∈∉,∴{|23}Q P x x -=≤<,故选D .【注意问题】要充分理解新定义和例子的内涵.三.新题好题好好练17.集合(){},|2350A x y x y =-+=,(){},|1A x y y x ==+,则A B ⋂等于()A.{}2,3B.{}2,3-C.(){}2,3 D.(){}2,3-【答案】C 18.设全集U =R ,2{|0}M x x x =-≤,{|N m =关于x 的方程22(1)(4)3m m m x --=无解},则图中阴影部分所表示的集合是( )A .{1,0,1,2}-B .{1,0,2}-C .{2,1,2}--D .{2,1,2}-【答案】C【解析】{|01}M x x =≤≤,{|01}U C M x x x =<>或,且{2,1,0,1,2}N =--.又图中阴影部分表示的集合为()U C M N ,则(){2,1,2}U C M N =--.19.已知集合{}()1,2,{,|,,}A B x y x A y A x y A ==∈∈-∈,则B 的子集共有()A.2个B.4个C.5个D.8个【答案】A【解析】(){}2,1B =,则子集为(){},2,1∅,共2个.故选A.20.已知角A 是ABC ∆的内角,则“1cos 2A =-”是“sin 2A =”的__________条件(填“充分不必要”、“必要不充分”、“充要条件”、“既不充分又不必要”之一).【答案】充分不必要21.已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________ 【答案】21,32⎡⎤-⎢⎥⎣⎦【解析】因为p 是q 的充分非必要条件,所以()(),13,-∞-⋃+∞是()(),312,m m -∞+⋃++∞的真子集,故311{ 23m m +≥-+≤解得:2-13m ≤≤,又因为312m m +≤+,所以12m ≤,综上可知21-32m ≤≤,故填21,32⎡⎤-⎢⎥⎣⎦.22.下列结论:①“1?a >是“a >的充要条件②存在1,0,a x >>使得log x a a x <; ③函数22tan 1tan x y x =-的最小正周期为2π;④任意的锐角三角形ABC 中,有sin cos B A >成立.其中所有正确结论的序号为______.【答案】①②④【解析】①当1a >时,2a a >成立,所以a >a >2a a >成立,即()10a a ->,所以1a >,故正确;②根据指数函数与对数函数关于y x =对称,可以知道,两个函数在直线上可以有两个交点,故存在1,0,a x >>使得log x a a x <,正确;③当0x =时,0y =,2x π=时,y 不存在,故周期不是2π,错误;④因为锐角三角形,所以2A B π+>,故2B A π>-且为锐角,所以sin sin cos 2B A A π⎛⎫>-= ⎪⎝⎭,故正确,所以填①②④。
《第一章集合与常用逻辑用语》章节训练习题
《第一章集合与常用逻辑用语》章节训练习题第1讲集合及其运算[基础题组练]1.设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)解析:选A.因为A={x|x2-5x+6>0}={x|x>3或x<2},B={x|x-1<0}={x|x<1},所以A∩B={x|x<1},故选A.2.设集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},则( ) A.M=N B.M⊆NC.N⊆M D.M∩N=∅解析:选B.因为集合M={x|x=2k+1,k∈Z}={奇数},N={x|x=k+2,k∈Z}={整数},所以M⊆N.故选B.3.已知集合A={x|x2-2x-3≤0},B={x|y=ln(2-x)},则A∩B=( ) A.(1,3) B.(1,3]C.[-1,2) D.(-1,2)解析:选C.A={x|x2-2x-3≤0}={x|(x+1)(x-3)≤0}={x|-1≤x≤3},B={x|y=ln(2-x)}={x|2-x>0}={x|x<2},则A∩B=[-1,2),故选C.4.设集合A={x∈Z|x2-3x-4<0},B={x|2x≥4},则A∩B=( )A.[2,4) B.{2,4}C.{3} D.{2,3}解析:选D.法一:由x2-3x-4<0得,-1<x<4,因为x∈Z,所以A={0,1,2,3},由2x≥4得x≥2,即B={x|x≥2},所以A∩B={2,3},故选D.法二:通过验证易知3∈A,3∈B,故排除选项A,B.同理可知2∈A,2∈B,排除选项C.故选D.5.已知集合M={x|x2=1},N={x|ax=1},若N⊆M,则实数a的取值集合为( )A.{1} B.{-1,1}C.{1,0} D.{-1,1,0}解析:选D.M={x|x2=1}={-1,1},当a=0时,N=∅,满足N⊆M,当a≠0时,因为N⊆M,所以1a=-1或1a=1,即a=-1或a=1.故选D.6.已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:选A.因为3x<1=30,所以x<0,所以B={x|x<0},所以A∩B={x|x <0},A∪B={x|x<1}.故选A.7.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁ZB)=( )A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}解析:选D.由题可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0},故选D.8.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是( )A.(-2,1) B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1] D.[0,1]解析:选C.因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.9.已知集合A={x|x-a≤0},B={1,2,3},若A∩B≠∅,则a的取值范围为( )A.(-∞,1] B.[1,+∞)C.(-∞,3] D.[3,+∞)解析:选B.法一:集合A={x|x≤a},集合B={1,2,3},若A∩B≠∅,则1,2,3这三个元素至少有一个在集合A中,若2或3在集合A中,则1一定在集合A中,因此只要保证1∈A即可,所以a≥1,故选B.法二:集合A={x|x≤a},B={1,2,3},a的值大于3时,满足A∩B≠∅,因此排除A,C.当a=1时,满足A∩B≠∅,排除D. 故选B.10.已知集合A ={1,3,a },B ={1,a 2-a +1},若B ⊆A ,则实数a =( ) A .-1 B .2C .-1或2D .1或-1或2解析:选C.因为B ⊆A ,所以必有a 2-a +1=3或a 2-a +1=a . ①若a 2-a +1=3,则a 2-a -2=0,解得a =-1或a =2. 当a =-1时,A ={1,3,-1},B ={1,3},满足条件; 当a =2时,A ={1,3,2},B ={1,3},满足条件.②若a 2-a +1=a ,则a 2-2a +1=0,解得a =1,此时集合A ={1,3,1},不满足集合中元素的互异性,所以a =1应舍去.综上,a =-1或2.故选C. 11.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =________.解析:由A ∩B ={2,-1},可得⎩⎨⎧b a =2,a -b =-1或⎩⎨⎧b a =-1,a -b =2.当⎩⎨⎧ba =2,a -b =-1时,⎩⎨⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎨⎧ba =-1,a -b =2时,⎩⎨⎧a =1,b =-1,此时不符合题意,舍去. 答案:{-1,2,3,5}12.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |18<2x <8,则A ∩B =________.解析:不等式18<2x <8的解为-3<x <3,所以B =(-3,3).若x ∈A ∩B ,则⎩⎨⎧x 2-2[x ]=3-3<x <3,所以[x ]只可能取值-3,-2,-1,0,1,2.若[x ]≤-2,则x 2=3+2[x ]<0,没有实数解;若[x ]=-1,则x 2=1,得x若[x]=0,则x2=3,没有符合条件的解;若[x]=1,则x2=5,没有符合条件的解;若[x]=2,则x2=7,有一个符合条件的解,x=7. 因此,A∩B={}-1,7.答案:{}-1,7[综合题组练]1.已知集合A={x|2x+1≤1},B={x|2x<1},则(∁R A)∩B=( )A.[-1,0) B.(-1,0) C.(-∞,0) D.(-∞,-1)解析:选A.由2x+1≤1,得2x+1-1≤0,x-1x+1≥0,解得x≥1或x<-1,即A=(-∞,-1)∪[1,+∞),则∁RA=[-1,1). 由2x<1,得x<0,即B=(-∞,0),所以(∁RA)∩B=[-1,0),故选A.2.已知集合P={y|y2-y-2>0},Q={x|x2+ax+b≤0}.若P∪Q=R,且P∩Q=(2,3],则a+b=( )A.-5 B.5C.-1 D.1解析:选A.P={y|y2-y-2>0}={y|y>2或y<-1}.由P∪Q=R及P∩Q =(2,3],得Q=[-1,3],所以-a=-1+3,b=-1×3,即a=-2,b=-3,a+b=-5,故选A.3.(创新型)在实数集R上定义运算*:x*y=x·(1-y).若关于x的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是( ) A.[0,2] B.[-2,-1)∪(-1,0] C.[0,1)∪(1,2] D.[-2,0]解析:选 D.依题意可得x(1-x+a)>0.因为其解集为{x|-1≤x≤1}的子集,所以当a≠-1时,0<1+a≤1或-1≤1+a<0,即-1<a≤0或-2≤a<-1.当a=-1时,x(1-x+a)>0的解集为空集,符合题意.所以-2≤a≤0.4.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =∅,则实数m 的取值范围是________.解析:因为A ∩B =∅,①若当2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若当2m <1-m ,即m <13时,需满足⎩⎨⎧m <13,1-m ≤1或⎩⎨⎧m <13,2m ≥3,解得0≤m <13或∅,即0≤m <13.综上,实数m 的取值范围是[0,+∞). 答案:[0,+∞)第2讲 命题及其关系、充分条件与必要条件[基础题组练]1.已知命题p :若x ≥a 2+b 2,则x ≥2ab ,则下列说法正确的是 ( ) A .命题p 的逆命题是“若x <a 2+b 2,则x <2ab ” B .命题p 的逆命题是“若x <2ab ,则x <a 2+b 2” C .命题p 的否命题是“若x <a 2+b 2,则x <2ab ” D .命题p 的否命题是“若x ≥a 2+b 2,则x <2ab ”解析:选C.命题p 的逆命题是“若x ≥2ab ,则x ≥a 2+b 2”,故A ,B 都错误;命题p 的否命题是“若x <a 2+b 2,则x <2ab ”,故C 正确,D 错误.2.“若x ,y ∈R ,x 2+y 2=0,则x ,y 全为0”的逆否命题是( ) A .若x ,y ∈R ,x ,y 全不为0,则x 2+y 2≠0 B .若x ,y ∈R ,x ,y 不全为0,则x 2+y 2=0 C .若x ,y ∈R ,x ,y 不全为0,则x 2+y 2≠0D.若x,y∈R,x,y全为0,则x2+y2≠0解析:选C.依题意得,原命题的题设为若x2+y2=0,结论为x,y全为零.逆否命题:若x,y不全为零,则x2+y2≠0,故选C.3.有下列几个命题:①“若a>b,则1a>1b”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是( )A.①B.①②C.②③D.①②③解析:选C.①原命题的否命题为“若a≤b,则1a≤1b”,假命题;②原命题的逆命题为“若x,y互为相反数,则x+y=0”,真命题;③原命题为真命题,故逆否命题为真命题.所以真命题的序号是②③.4.设A,B是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.由A∩B=A可得A⊆B,由A⊆B可得A∩B=A.所以“A∩B=A”是“A⊆B”的充要条件.故选C.5.“sin α=cos α”是“cos 2α=0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为cos 2α=cos2α-sin2α=0,所以sin α=±cos α,所以“sin α=cos α”是“cos 2α=0”的充分不必要条件.故选A.6.设平面向量a,b,c均为非零向量,则“a·(b-c)=0”是“b=c”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B.由b=c,得b-c=0,得a·(b-c)=0;反之不成立.故“a·(b-c)=0”是“b=c”的必要不充分条件.7.在△ABC中,“AB→·BC→>0”是“△ABC是钝角三角形”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.法一:设AB→与BC→的夹角为θ,因为AB→·BC→>0,即|AB→|·|BC→|cos θ>0,所以cos θ>0,θ<90°,又θ为△ABC内角B的补角,所以∠B>90°,△ABC是钝角三角形;当△ABC为钝角三角形时,∠B不一定是钝角.所以“AB→·BC→>0”是“△ABC是钝角三角形”的充分不必要条件,故选A.法二:由AB→·BC→>0,得BA→·BC→<0,即cos B<0,所以∠B>90°,△ABC是钝角三角形;当△ABC为钝角三角形时,∠B不一定是钝角.所以“AB→·BC→>0”是“△ABC是钝角三角形”的充分不必要条件,故选A.8.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C.法一:设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A,于是“x≠y”是“cos x≠cos y”的必要不充分条件.法二(等价转化法):因为x=y⇒cos x=cos y,而cos x=cos y⇒/x=y,所以“cos x=cos y”是“x=y”的必要不充分条件,即“x≠y”是“cos x≠cos y”的必要不充分条件.9.“a=0”是“函数f(x)=sin x-1x+a为奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.f(x)的定义域为{x|x≠0},关于原点对称,当a=0时,f(x)=sin x-1x,f(-x)=sin(-x)-1-x=-sin x+1x=-⎝⎛⎭⎪⎫sin x-1x=-f(x),故f(x)为奇函数;反之,当f (x )=sin x -1x+a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x+a =2a ,故a =0, 所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的充要条件,故选C.10.已知等差数列{a n }的前n 项和为S n ,则“S n 的最大值是S 8”是“⎩⎨⎧a 7+a 8+a 9>0a 7+a 10<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选 B.若S n 的最大值为S 8,则⎩⎨⎧a 8≥0a 9≤0;若⎩⎨⎧a 7+a 8+a 9>0a 7+a 10<0,则⎩⎨⎧a 7+a 8+a 9=3a 8>0a 7+a 10=a 8+a 9<0,所以⎩⎨⎧a 8>0a 9<0.所以“S n 的最大值是S 8”是“⎩⎨⎧a 7+a 8+a 9>0a 7+a 10<0”的必要不充分条件,故选B.11.使a >0,b >0成立的一个必要不充分条件是( ) A .a +b >0 B .a -b >0 C .ab >1D. ab>1解析:选A.因为a >0,b >0⇒a +b >0,反之不成立,而由a >0,b >0不能推出a -b >0,ab >1,ab>1,故选A.12.圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是( ) A .k ≤-22或k ≥2 2 B .k ≤-2 2 C .k ≥2D .k ≤-22或k >2解析:选B.若直线与圆有公共点,则圆心(0,0)到直线kx -y -3=0的距离d =|-3|k 2+1≤1,即k 2+1≥3,所以k 2+1≥9,即k 2≥8,所以k ≥22或k ≤-22,所以圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是k ≤-22,故选B.[综合题组练]1.(创新型) A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.则下列四个命题中为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格 B .若A ,B ,C 都及格,则及格分不低于70分 C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分解析:选C.根据原命题与它的逆否命题之间的关系知,命题p 的逆否命题是若A ,B ,C 至少有一人及格,则及格分不低于70分.故选C.2.若a ,b 都是正整数,则a +b >ab 成立的充要条件是( ) A .a =b =1 B .a ,b 至少有一个为1 C .a =b =2D .a >1且b >1解析:选B.因为a +b >ab ,所以(a -1)(b -1)<1.因为a ,b ∈N *,所以(a -1)(b -1)∈N ,所以(a -1)(b -1)=0,所以a =1或b =1.故选B.3.方程x 2-2x +a +1=0有一正一负两实根的充要条件是( ) A .a <0 B .a <-1 C .-1<a <0D .a >-1解析:选 B.因为方程x 2-2x +a +1=0有一正一负两实根,所以⎩⎨⎧Δ=4-4(a +1)>0,a +1<0,解得a <-1.故选B. 4.(应用型)若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎨⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故实数a 的取值范围是-3≤a ≤0. 答案:[-3,0]5.(应用型)已知命题p :x 2+2x -3>0;命题q :x >a ,且﹁q 的一个充分不必要条件是﹁p ,则a 的取值范围是________.解析:由x2+2x-3>0,得x<-3或x>1,由¬q的一个充分不必要条件是¬p,可知¬p是¬q的充分不必要条件,等价于q是p的充分不必要条件,故a≥1.答案:[1,+∞)3 第3讲简单的逻辑联结词、全称量词与存在量词[基础题组练]1.已知命题p:所有的指数函数都是单调函数,则﹁p为( )A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C.存在一个指数函数,它不是单调函数D.存在一个单调函数,它不是指数函数解析:选C.命题p:所有的指数函数都是单调函数,则﹁p:存在一个指数函数,它不是单调函数.2.已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;﹁p:∀x∈R,log2(3x+1)≤0B.p是假命题;﹁p:∀x∈R,log2(3x+1)>0C.p是真命题;﹁p:∀x∈R,log2(3x+1)≤0D.p是真命题;﹁p:∀x∈R,log2(3x+1)>0解析:选B.因为3x>0,所以3x+1>1,则log2(3x+1)>0,所以p是假命题,﹁p:∀x∈R,log2(3x+1)>0.故应选B.3.有四个关于三角函数的命题:P1:∃x∈R,sin x+cos x=2;P2:∃x∈R,sin 2x=sin x;P 3:∀x∈⎣⎢⎡⎦⎥⎤-π2,π2,1+cos 2x2=cos x;P4:∀x∈(0,π),sin x>cos x.其中真命题是( )A.P1,P4B.P2,P3C .P 3,P 4D .P 2,P 4解析:选B.因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以sin x +cos x 的最大值为2,可得不存在x ∈R ,使sin x +cos x =2成立,得命题P 1是假命题;因为存在x =k π(k ∈Z ),使sin 2x =sin x 成立,故命题P 2是真命题; 因为1+cos 2x2=cos 2x ,所以1+cos 2x 2=|cos x |,结合x ∈⎣⎢⎡⎦⎥⎤-π2,π2得cos x ≥0,由此可得1+cos 2x2=cos x ,得命题P 3是真命题; 因为当x =π4时,sin x =cos x =22,不满足sin x >cos x , 所以存在x ∈(0,π),使sin x >cos x 不成立,故命题P 4是假命题. 故选B.4.“p ∨q 为真”是“﹁p 为假”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.因为﹁p 为假,所以p 为真,所以“p ∨q 为真”,反之不成立,可能q 为真,p 为假,﹁p 为真.所以“p ∨q 为真”是“﹁p 为假”的必要不充分条件.故选B.5.已知命题p :若a >|b |,则a 2>b 2;命题q :若x 2=4,则x =2.下列说法正确的是( )A .“p ∨q ”为真命题B .“p ∧q ”为真命题C .“﹁p ”为真命题D .“﹁q ”为假命题解析:选A.由a >|b |≥0,得a 2>b 2,所以命题p 为真命题.因为x 2=4⇔x =±2,所以命题q 为假命题.所以“p ∨q ”为真命题,“p ∧q ”为假命题,“﹁p ”为假命题,“﹁q ”为真命题.综上所述,可知选A.6.已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,e x >x ,则( ) A .命题p ∨q 是假命题 B .命题p ∧q 是真命题 C .命题p ∧(﹁q )是真命题D .命题p ∨(﹁q )是假命题解析:选B.显然,当x =10时,x -2>lg x 成立,所以命题p 为真命题.设f (x )=e x -x ,则f ′(x )=e x -1,当x >0时,f ′(x )>0,当x <0时,f ′(x )<0,所以f (x )≥f (0)=1>0,所以∀x ∈R ,e x >x ,所以命题q 为真命题.故命题p ∧q 是真命题,故选B.7.设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R ,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( )A .p 为假命题B .﹁q 为真命题C .p ∨q 为真命题D .p ∧q 为假命题解析:选C.函数f (x )不是偶函数,仍然可∃x ,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎨⎧x 2(x ≥0),-x 2(x <0)在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C.8.已知函数f (x )=ax 2+x +a ,命题p :∃x 0∈R ,f (x 0)=0,若p 为假命题,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B.⎝ ⎛⎭⎪⎫-12,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞D.⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞解析:选C.因为命题p :∃x 0∈R ,f (x 0)=0是假命题,所以方程f (x )=0没有实数根,因为f (x )=ax 2+x +a ,所以方程ax 2+x +a =0没有实数根. 因为a =0时,x =0为方程ax 2+x +a =0的根,所以a ≠0,所以Δ=1-4a 2<0且a ≠0,所以a <-12或a >12,故选C.9.已知命题p :对任意x ∈R ,总有2x <3x ;q :“x >1”是“x >2”的充分不必要条件.下列命题为真命题的是( )A .p ∧qB .(﹁p )∧(﹁q )C .(﹁p )∧qD .p ∧(﹁q )解析:选B.由20=30知,p 为假命题;命题q :“x >1”不能推出“x >2”,但是“x >2”能推出“x >1”,所以“x >1”是“x >2”的必要不充分条件,故q 为假命题.所以(﹁p )∧(﹁q )为真命题.故选B.10.已知命题p :方程x 2-2ax -1=0有两个实数根;命题q :函数f (x )=x +4x的最小值为4.给出下列命题:①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨(﹁q ),则其中真命题的个数为( )A .1B .2C .3D .4解析:选C.由于Δ=4a 2+4>0,所以方程x 2-2ax -1=0有两个实数根,即命题p 是真命题;当x <0时,f (x )=x +4x的值为负值,故命题q 为假命题.所以p ∨q ,p ∧(﹁q ),(﹁p )∨ (﹁q )是真命题,故选C.11.有下列四个命题:(1)命题p :∀x ∈R ,x 2>0为真命题; (2)设p :x x +2>0,q :x 2+x -2>0,则p 是q 的充分不必要条件;(3)命题:若ab =0,则a =0或b =0,其否命题是假命题;(4)非零向量a 与b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为30°. 其中真命题有( ) A .3个 B .2个 C .1个D .0个解析:选C.对于(1),∀x ∈R ,x 2≥0,故(1)为假命题; 对于(2),设p :xx +2>0,q :x 2+x -2>0,可得p ∶x >0或x <-2;q :x>1或x <-2.由p 推不到q ,但由q 推得p ,则p 是q 的必要不充分条件,故(2)为假命题;对于(3),命题:若ab =0,则a =0或b =0,其否命题为:若ab ≠0,则a ≠0且b ≠0,其否命题是真命题,故(3)为假命题;对于(4),非零向量a 与b 满足|a |=|b |=|a -b |,可设OA →=a ,OB →=b ,OC →=a +b ,BA →=a -b ,可得△OAB 为等边三角形, 四边形OACB 为菱形,OC 平分∠AOB ,可得a 与a +b 的夹角为30°,故(4)为真命题.故选C.12.已知命题p :关于m 的不等式log 2m <1的解集为{m |m <2};命题q :函数f (x )=x 3+x 2-1有极值. 下列命题为真命题的是( )A .p ∧qB .p ∧(﹁q )C .(﹁p )∧qD .(綈p )∧(﹁q )解析:选C.由log 2 m <1,得0<m <2,故命题p 为假命题;f ′(x )=3x 2+2x ,令f ′(x )=0得x =-23或x =0,所以f (x )在⎝ ⎛⎭⎪⎫-∞,-23和(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-23,0上单调递减,故f (x )有极值,所以命题q 为真命题. 所以(﹁p )∧q 为真命题.[综合题组练]1.(创新型)在射击训练中,某战士射击了两次,设命题p 是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是( )A .(﹁p )∨(﹁q )为真命题B .p ∨(﹁q )为真命题C .(﹁p )∧(﹁q )为真命题D .p ∨q 为真命题解析:选A.命题p 是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题﹁p 是“第一次射击没击中目标”,命题﹁q 是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(﹁p )∨(﹁q )为真命题,故选A.2.给出下列四个命题: ①若x ∈A ∩B ,则x ∈A 或x ∈B ; ②∀x ∈(2,+∞),x 2>2x ;③若a ,b 是实数,则“a >b ”是“a 2>b 2”的充分不必要条件;④“∃x 0∈R ,x 20+2>3x 0”的否定是“∀x ∈R ,x 2+2≤3x ”.其中真命题的序号是________.解析:①若x ∈A ∩B ,则x ∈A 且x ∈B .所以①为假命题; ②当x =4时,x 2=2x ,所以②为假命题;③取a =0,b =-1,则a >b ,但a 2<b 2;取a =-2,b =-1,则a 2>b 2,但a <b ,故若a ,b 是实数,则“a >b ”是“a 2>b 2”的既不充分也不必要条件,所以③为假命题;④“∃x 0∈R ,x 20+2>3x 0”的否定是“∀x ∈R ,x 2+2≤3x ”,所以④为真命题. 答案:④3.(应用型)若∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立是假命题,则实数λ的取值范围是________.解析:因为∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立是假命题,所以∀x ∈⎣⎢⎡⎦⎥⎤12,2,使得2x 2-λx +1≥0恒成立是真命题,即∀x ∈⎣⎢⎡⎦⎥⎤12,2,使得λ≤2x +1x 恒成立是真命题,令f (x )=2x +1x ,则f ′(x )=2-1x 2,当x ∈⎣⎢⎡⎭⎪⎫12,22时,f ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤22,2时,f ′(x )>0,所以f (x )≥f ⎝ ⎛⎭⎪⎫22=22,则λ≤2 2.答案:(-∞,22]4.(应用型)已知命题p :∀x ∈R ,不等式ax 2+22x +1<0的解集为空集;命题q :f (x )=(2a -5)x 在R 上满足f ′(x )<0,若命题p ∧(綈q )是真命题,则实数a 的取值范围是________.解析:因为∀x ∈R ,不等式ax 2+22x +1<0的解集为空集,所以当a =0时,不满足题意;当a ≠0时,必须满足⎩⎨⎧a >0,Δ=(22)2-4a ≤0,解得a ≥2.由f (x )=(2a -5)x 在R 上满足f ′(x )<0,可得函数f (x )在R 上单调递减,则0<2a -5<1,解得52<a <3.若命题p ∧(綈q )是真命题,则p 为真命题,q 为假命题,所以⎩⎨⎧a ≥2,a ≤52或a ≥3,解得2≤a ≤52或a ≥3,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤2,52∪[3,+∞).答案:⎣⎢⎡⎦⎥⎤2,52∪[3,+∞)。
高中数学集合与常用逻辑用语专题训练100题(尾部含答案)
高中数学集合与常用逻辑用语专题训练100题(尾部含答案)学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知集合{}5,8A =,{}23100B x x x =--≤,则()R A B ⋂=( )A .{}5B .{}8C .{}2,5,8-D .{}2-2.设全集{}3,2,1,0,1,2,3U =---,集合{}1,0,1,2A =-,{}3,2,3B =-,则()UA B =( ) A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-3.已知,a b 都是实数,则“2211log log a b<”是“a b >”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .即不充分也不必要条件4.已知公差为d 的等差数列{an }的前n 项和为Sn ,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件5.已知集合{}1,2,3,4A =,{}2,4,5B =,则A B =( ) A .{}1B .{}2,4C .{}2,3,4D .{}1,2,3,4,56.已知集合{}1,0,1M =-,{}21N y y x ==-,则MN =( )A .0B .{}1,0-C .{}0,1D .{}1,0,1-7.已知集合{}3,2,1,0,1,2,3A =---,{}230B x x =-≤,则A B =( )A .{}1,0,1-B .{}0,1C .{}0,1,2D .1,0,1,28.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (其中AB BC =ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为l ,m ,n ,给出以下两个命题::p l m n =+,2:q m l n =⋅.则下列选项为真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝9.设a ∈R ,则“1a =”是“直线12x ay ++=与30x ay --=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知集合{}28xA x =<,集合{}B x x a =>,若A B =∅,则实数a 的取值范围为( ) A .(,2)-∞B .(2,)+∞C .(,3]-∞D .[3,)+∞11.已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( ) A .()(),12,-∞+∞ B .[)1,2 C .()1,2 D .[]1,212.设集合402x A xx ⎧⎫-=>⎨⎬+⎩⎭,{2B x x =≤或5}x ,则()R A B =( ) A .{}22x x -<< B .{}22x x -≤≤C .{|4x x ≤或5}x ≥D .{|2x x ≤或5}x ≥13.已知全集U =R ,集合{}216,{3}A x x B x x =<=>∣∣,则()UA B =( )A .()4,3-B .[)3,4C .(]4,3-D .()3,414.已知集合{}2280A x x x =-->,则A =R( )A .[]4,2-B .()4,2-C .()2,4-D .[]2,4-15.已知p :3x y +>,q :1x >且2y >,则q 是p 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件16.已知l ,m 是两条不同的直线,α,β为两个不同的平面,若l β∕∕,l m ∕∕,则“m α⊥”是“αβ⊥”的( )条件. A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要17.已知集合{}{}220,1,0,1,2,3A x x x B =--<=-,则A B 中的元素个数为( ) A .1B .2C .3D .418.已知直线1:30l ax y +-=,直线()2:2130l a x y a --+=,则“1a =-”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件19.已知集合{}{}2|230,|ln(21)0M x x x N x x =--<=->,则M ∩N =( )A .(1,32)B .(12,32)C .(-1,32)D .(-1,12)20.已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件21.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,522.若全集{1,2,3,4,5,6}U =,{1,4}M =,{2,3}P =,则集合()()U UM P =( ) A .{1,2,3,4,5,6}B .{2,3,5,6}C .{1,4,5,6}D .{5,6}23.已知集合[]5,4U =-,{}220A x x x =-≤,20x B x x +⎧⎫=≤⎨⎬⎩⎭,则()U A B ⋂=( ) A .∅ B .[]0,2 C .[)2,0-D .[]0,2-24.已知集合A ={}250x x x -≤,B ={}21,x x k k Z =-∈,则A B 中元素的个数为( ) A .2B .3C .4D .525.已知集合M ={1,2,3},{}240,N x x x a a M =-+=∈,若MN ≠∅,则a 的值为( ) A .1B .2C .3D .1或226.“22x ≠是”21x ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件27.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1B . {}1,0-C .{}0,1,2D .{}1,0,1-28.设集合{}N 4M x x =∈<,{}Z 326xN x =∈≤,则MN =( )A .{}1,2,3B .{}0,1C .{}1,2D .{}0,1,229.已知x ∈R ,则“2cos 1x >”是“03x π≤<”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件30.已知不等式组20100x y x y x -≥⎧⎪+-≤⎨⎪≥⎩,构成的平面区域为D .命题p :对()x y D ∀∈,,都有30x y -≥;命题q :(),x y D ∃∈,使得20x y ->.下列命题中,为真命题的是( ) A .()()p q ⌝∧⌝B .p q ∧C .()p q ⌝∧D .()p q ∧⌝31.已知命题:p x ∃,y R ∈,sin()sin sin x y x y +=+;命题:q x ∀,y R ∈,sin sin 1x y ⋅,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨32.设集合{}1,0,A n =-,{},,B x x a b a A b A ==⋅∈∈.若A B A =,则实数n 的值为( ) A .1-B .0C .1D .233.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则A B ⋃=( ) A .{}0,1B .{}1,2-C .[]1,2-D .()1,2-34.设集合{{},1,0,1A yy B ===-∣,则A B =( ) A .{}1B .{}0,1C .{}1,0-D .{}1,0,1-35.已知集合{}24M x x ==,N 为自然数集,则下列结论正确的是( )A .{}2M =B .2M ⊆C .2M -∈D .M N ⊆36.集合{}12,N A x x x =-≤≤∈,{}1B =,则A B =( ) A .{11x x -≤<或}12x <≤ B .{}1,0,2- C .{}0,2D .{}237.已知命题p :若直线与抛物线只有一个交点,则直线与抛物线相切.命题q :等轴则下列命题为真命题的是( ) A .p 且qB .p 或qC .()p ⌝或qD .p 且()q ⌝38.设命题p :n N ∀∈,33n n >,则命题p 的否定为( )A .n N ∃∈,33n n >B .n N ∃∉,33n n ≤C .n N ∃∈,33n n ≤D .n N ∀∉,33n n >39.“所有可以被5整除的整数,末位数字都是5”的否定是( ) A .所有可以被5整除的整数,末位数字都不是5 B .所有不可以被5整除的整数,末位数字不都是5C .存在可以被5整除的整数,末位数字不是5D .存在不可以被5整除的整数,末位数字是540.已知集合{}22(,)|(0,{(,)|S x y x y T x y y x =+===,则S T ⋃=( )A .{B .{(C .SD .T41.“A B =∅”是“A =∅或B =∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件42.已知集合{}14U x x =∈-<<N ,集合{0,1}A =,则UA ( )A .{0,2,3}B .{1,0,2,3}-C .{2,3}D .{2,3,4} 43.已知集合{}2540M x x x =-+<,{1,0,1,2,3}N =-,则MN =( )A .{2,3}B .{0,1,2}C .{1,2,3,4}D .∅44.已知命题:(0,)p x ∀∈+∞,sin 0x x ->;命题:q a ∀∈R ,()22()log a f x x +=在定义域上是增函数.则下列命题中的真命题是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨45.已知集合{}1,3,A m =,{B =,B A ⊆,则m =( ) A .9B .0或1C .0或9D .0或1或946.已知集合{}0,1,2,3A =,{}2B x x =∈>Z ,则A B ⋃=( ) A .NB .ZC .{}0,1,2,3D .()0,∞+47.已知命题:p 若sin sin x y >,则x y >;命题:R q a ∀∈,()()22log a f x x +=在定义域内是增函数.则下列命题中的真命题是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝D .()p q ⌝∨48.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件49.设全集U Z =,集合{}0,1A =,{}1,0,1,2B =-,则()U A B =( )A .ZB .{}1,2-C .{}0,1D .1,0,1,250.设P :3x <,q :13x ,则p 是q 成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件51.“sin cos αα=”是“π2π4k α=+,k ∈Z ”的( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要52.下列说法中正确的是( )A .已知随机变量X 服从二项分布14,3B ⎛⎫⎪⎝⎭.则()89E X =B .“A 与B 是互斥事件”是“A 与B 互为对立事件”的充分不必要条件C .已知随机变量X 的方差为()D X ,则()()2323D X D X -=- D .已知随机变量X 服从正态分布()24,N σ且()60.85P X ≤=,则()240.35P X <≤=53.已知命题:1p Q ∈,命题:q 函数()f x=1的定义域是[)1,+∞,则以下为真命题的是( ) A .p q ∧ B .p q ∨ C .p q ⌝∧D .p q ⌝∨54.“224x y +≥”是“2x ≥且2y ≥”的( )条件. A .必要不充分 B .充分不必要 C .充要D .既不充分也不必要55.“a b =”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 56.若集合11,,0,1,44A ⎧⎫=--⎨⎬⎩⎭,{}4xB y y ==,则A B =( )A .{}1,4B .{}0,1,4C .1,0,1,44⎧⎫-⎨⎬⎩⎭D .11,,0,1,44⎧⎫--⎨⎬⎩⎭57.已知集合{}2,3,4,5B =,{}2,1,4,5C =--,非空集合A 满足:A B ⊆,A C ⊆,则符合条件的集合A 的个数为( )A .3B .4C .7D .858.已知△ABC 的三个内角为A ,B ,C ,则“3A π<”是“sin A ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件59.已知集合{}4,5,6,8A =,{}3,5,7,8B =,则A B =( ) A .{}5,8B .5,6C .{}3,6,8D .{}3,4,5,6,7,860.“两个三角形相似”是“两个三角形三边成比例”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件61.集合{}1,0,1,2A =-,{}2log 2B x x =<,则A B =( ) A .{}1,2B .{}1,0,2-C .{}2D .{}1,0-62.l ,m 是两条不重合的直线,α,β是两个不重合的平面,若l α⊂,m β⊂,则“l //m ”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件63.已知全集2{|760}U x N x x =∈-+≤,A ={1,3,4},B ={2,4,6},则(UA )B =( ) A .{2,5}B .{2,6}C .{2,5,6}D .{2,4,5,6}64.设集合{}2120A x x x =+-≤,(){}0.5log 12B x x =->-,则A B =( )A .∅B .(]1,4C .(]1,3D .[]4,3-65.已知命题:R p x ∀∈,ln 10x x -+<,则p ⌝是( ) A .R x ∀∉,ln 10x x -+≥ B .R x ∀∈,ln 10x x -+≥ C .R x ∃∉,ln 10x x -+≥D .R x ∃∈,ln 10x x -+≥66.已知集合{R|2}A y y =∈>,{}R |ln B x y x =∈=,则R ()A B =( ) A .,2]-∞( B .[2,)+∞ C .(0,2]D .(0,2)67.已知集合{}13P x R x =∈≤≤,{}24Q x R x =∈≥,则()RPQ =( )A .[]2,3B .(]2,3-C .[)1,2D .[]1,268.已知集合{}|2,M y y xx ==-∈R ∣,1,7xN y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,则( ) A .M N B .N M ⊆ C .M N =RD .N RM69.已知命题:p x R ∀∈,cos 1x <;命题:q x R +∃∈,|ln |0x ≤,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨70.已知平面α,β,直线m ,αβ⊥,则“m α∥”是“m β⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件71.已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,集合A B =( ) A .∅B .1{|1,}2x x x <<∈R C .{|22,}x x x -<<∈RD .{|21,}x x x -<<∈R72.若集合201x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}220B x x x =--<,则()R A B =( ) A .[)1,2 B .(]1,1-C .()1,1-D .()1,273.集合{}12,A x x x N =-≤≤∈,{}1B =,则A B =( ) A .{}1112x x x -≤≤<≤或B .{}1,0,2-C .{}0,2D .{}2 74.已知集合{}21,Z M x x n n ==-∈,{}1,2,3,4,5N =,则M N =( )A .{}1,3,5B .{}1,2,3,4,5C .{}21,Z x x n n =-∈D .∅75.函数()3f x x x =+,则1a >-是()()120f a f a ++>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件76.已知集合{}2A x x =<,{}2,1,0,1,2B =--,则A B =( )A .{}0,1B .{}1,0,1-C .2,0,1,2D .1,0,1,277.“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件78.“2263x x +”是“||7x ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件 79.已知集合{}{}21,,(1)(6)0A y y k k Z B x x x ==-∈=--≤,则A B =( )A .{}135,, B .{}35, C .[]16,D .∅80.已知集合()(){}22,10M x y x y =++=,()(){},ln 2N x y y x ==+,则M N ⋃=( ) A .{}1,0-B .(){}1,0-C .MD .N81.已知集合{}210A x x =->,{}2|3180B x x x =--<,则A B =( )A .1,62⎛⎫ ⎪⎝⎭B .1,32⎛⎫ ⎪⎝⎭C .()3,6-D .()6,3-82.已知全集{1,0,1,3,4,5,6}U =-,集合{1,1}R =-,{4,5}Q =,则()UR Q ⋃=( ) A .{}1-B .{1,3}-C .{0,3,6}D .{1,0,3,6}-83.已知集合{}{}2|4,,|4A x x x Z B y y =<∈=>,则A B =( )A .()()4,22,4--B .{}3,3-C .()2,4D .{}3二、多选题84.若“260x x --<”是“4a x <<”的充分不必要条件,则实数a 的值可以是( ) A .3-B .2-C .1D .285.下列命题中,真命题有( ) A .“1x ≠”是“1x ≠”的必要不充分条件B .“若6x y +≥,则x ,y 中至少有一个大于3”的否命题C .0x ∃∈R ,0202xx <D .命题“0x ∃<,220x x --<”的否定是“00x ∀≥,20020x x --≥”86.已知a ∈R ,命题“0x ∃>,x a a -<”的否定是( ) A .0x ∀>,x a a -≥ B .0x ∃≤,x a a -< C .0x ∀>,2x a ≥或0x ≤D .0x ∃>,x a a -≥87.下列条件中,为“关于x 的不等式210mx mx -+>对x R ∀∈恒成立”的充分不必要条件的有( ) A .04m ≤< B .02m << C .14m <<D .16m -<<88.下列命题是真命题的是( ) A .所有的素数都是奇数B .有一个实数x ,使2230x x ++=C .命题“x R ∀∈,0x x +≥”的否定是“x R ∃∈,0x x +<”D .命题“x R ∃∈,20x +≤”的否定是“x R ∀∈,20x +>”89.已知幂函数()()41mf x m x =-,则下列选项中,能使得f af b 成立的一个充分不必要条件是( ) A .110ab<< B .22a b > C .ln ln a b > D .22a b >三、解答题90.如图,在 ABC 中,F 是BC 中点,直线l 分别交AB ,AF ,AC 于点D ,G ,E .如果AD =λAB ,AE =μAC ,λ,μ∈R . 求证:G 为 ABC 重心的充要条件是1λ+1μ=3.91.已知函数()()()313x xf x m m R -=--∈是定义域为R 的奇函数.(1)若集合(){}|0A x f x =≥,|0x m B x x m -⎧⎫=<⎨⎬+⎩⎭,求A B ; (2)设()()22332x xg x af x -=+-,且()g x 在[)1,+∞上的最小值为-7,求实数a 的值.92.设全集{2}U xx =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求UA ,()U AB ⋂,A B ,()UA B93.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.94.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .95.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围. 四、填空题96.命题“0x R x ∈∃,”的否定是___________. 97.若命题p :x ∀∈R ,2240ax x -+为真命题,则实数a 的取值范围为___________.98.写出一个能说明“若函数()f x 为奇函数,则()00f =”是假命题的函数:()f x =_________.99.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.100.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.参考答案:1.B 【解析】 【分析】求出集合B ,利用交集和补集的定义可求得结果. 【详解】因为{}{}2310025B x x x x x =--≤=-≤≤,则{R 2B x x =<-或}5x >,因此,(){}R 8A B ⋂=. 故选:B. 2.D 【解析】 【分析】 求出{}2,1,0,1UB =--即得解.【详解】 由题设,{}2,1,0,1UB =--,则(){}1,0,1U A B ⋂=-,故选:D. 3.C 【解析】 【分析】利用对数函数的单调性,结合充分性和必要性的讨论,即可判断和选择. 【详解】因为2log y x =在()0,+∞是单调增函数,又2211log log a b<, 故可得110a b<<,则0a b >>,故a b >,满足充分性; 若a b >,不妨取2,1a b =-=-,显然110,0a b <<,故2211log ,log a b没有意义, 故必要性不成立; 综上所述,“2211log log a b<”是“a b >”的充分不必要条件. 故选:C .【解析】 【分析】 将()112n n n S na d -=+,an =a 1+(n ﹣1)d 代入Sn ﹣nan <0,并化简,再结合n 的取值范围,即可求解. 【详解】解:()112n n n S na d -=+,an =a 1+(n ﹣1)d , 则Sn ﹣nan ()112n n na d -=+-na 1﹣n (n ﹣1)d ()12n n d -=-,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”,故d >0, 若d >0,则Sn ﹣nan ()12n n d -=-<0,对n >1,n ∈N *恒成立,故“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的充分必要条件. 故选:C . 5.B 【解析】 【分析】根据交集的知识确定正确答案. 【详解】依题意集合{}1,2,3,4A =,{}2,4,5B =,所以{}2,4A B =. 故选:B 6.D 【解析】 【分析】首先求集合N ,再求M N ⋂. 【详解】211y x =-≥-,即{}1N y y =≥-,{}1,0,1M =-,所以{}1,0,1M N ⋂=-. 故选:D【解析】 【分析】解出集合B ,利用交集的定义可求得结果. 【详解】因为{}{230B x x x x =-≤=≤,因此,{}1,0,1A B =-.故选:A. 8.A 【解析】 【分析】根据题意,求得,,l m n ,判断命题,p q 的真假,再结合逻辑连接词判断复合命题的真假即可. 【详解】根据题意可得圆弧BE ,EG ,GI 对应的半径分别为,,AB BC AB AB DG --, 也即,,2AB BC AB AB BC --, 则弧长,,l m n 分别为()(),,2222AB BC AB AB BC πππ--,则()()2222m n BC AB AB BC AB l πππ+=-+-==,故命题p 为真命题;()(22222222227448AB AB ln AB AB BC BC BC BC BC πππ⎛⎫=-⨯=⨯-=- ⎪⎝⎭,而(2222221748AB m BC BC BCππ⎛⎫=-=- ⎪⎝⎭,故2ln m =,命题q 为真命题. 则p q ∧为真命题,()p q ∧⌝,()p q ⌝∧,()()p q ⌝∧⌝均为假命题. 故选:A. 9.A 【解析】 【分析】利用直线垂直的判断条件可求1a =±,从而可得正确的选项. 【详解】直线12x ay ++=与30x ay --=垂直,则210,1a a -==±, ∈“1a =”是“直线12x ay ++=30x ay --=垂直”的充分不必要条件. 故选:A. 10.D 【解析】 【分析】先求出集合A ,B ,再由A B =∅求出实数a 的取值范围. 【详解】{}{}{}{}328223,x x A x x x x B x x a =<=<=<=>.又A B =∅,所以a 的取值范围为[3,)+∞. 故选:D 11.D 【解析】 【分析】利用元素与集合的关系求解. 【详解】 因为2A ∉,所以()()2220a a --≥, 解得12a ≤≤. 故选:D . 12.B 【解析】 【分析】求解分式不等式解得集合A ,再求补集和交集即可. 【详解】 因为402x x ->+,即()()420x x -+>,解得2x <-或4x >,故{|2A x x =<-或4}x >, 则A R{|24}x x =-≤≤,则()R A B ={|22}x x -≤≤.故选:B.13.C 【解析】 【分析】先化简集合A ,求得UB ,再去求()U A B ∩即可解决.【详解】因为{}216{44},{3}A xx x x B x x =<=-<<=>∣∣∣, 所以{}3UB x x =∣,则()(]4,3U A B ⋂=-.故选:C. 14.D 【解析】 【分析】根据不等式的解法,求得集合A ,结合补集的概念及运算,即可求解. 【详解】由不等式2280x x -->,可得(4)(2)0x x -+>,解得2x <-或4x >, 即集合{|2x x <-或4}x >,所以[]{|24}2,4A x x =-≤≤=-R.故选:D. 15.A 【解析】 【分析】直接按照充分条件必要条件的定义判断即可. 【详解】若1x >且2y >,则3x y +>,反之则不然,比如0,4x y ==,故q 是p 的充分不必要条件. 故选:A. 16.A 【解析】 【分析】根据空间中的平行关系与垂直关系,结合充分条件和必要条件的定义即可得出答案. 【详解】解:因为l β∕∕,l m ∕∕, 当m α⊥,则l α⊥,又因为l β∕∕,则在平面β内存在一条直线a 使得a α⊥,再根据面面垂直的判定定理可得αβ⊥,故“m α⊥”可以推出“αβ⊥”, 当αβ⊥时,m 与α平行相交都有可能,故“αβ⊥”不一定可以推出“m α⊥”, 所以“m α⊥”是“αβ⊥”的充分不必要条件. 故选:A. 17.B 【解析】 【分析】解不等式求得集合A ,由此求得A B ,由此确定正确答案. 【详解】因为{}{}{}22012,1,0,1,2,3A x x x x x B =--<=-<<=-,所以{0,1}A B =,则A B 的元素的个数为2. 故选:B 18.A 【解析】 【分析】由直线垂直得到a 的值,从而求出答案. 【详解】由12l l ⊥得:()2130a a --=,则1a =-或32a =,故1a =-是12l l ⊥的充分不必要条件,即A 选项正确. 故选:A 19.A 【解析】 【分析】解一元二次不等式求集合A ,解对数不等式求集合B ,再应用集合的交运算求M ∩N . 【详解】因为{}23|230|12M x x x x x ⎧⎫=--<=-<<⎨⎬⎩⎭,{}{}ln(21)01N x x x x =-=, 所以M N =(1,32).故选:A 20.C 【解析】 【分析】用定义法,分充分性和必要性两种情况分别求解. 【详解】 由40S >,得1514011a a a a q q q--=>--,因为1q >,所以510a a ->,即51a a >.故必要性满足; 1514411a a a a q S q q--==--.因为1q >,51a a >,所以40S >.故充分性满足. 所以“51a a >”是“40S >”的充要条件. 故选:C 21.B 【解析】 【分析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B. 22.D 【解析】 【分析】计算{}U 2,3,5,6M =,{}U1,4,5,6P =,再计算交集得到答案.【详解】{}U2,3,5,6M =,{}U 1,4,5,6P =,()(){}U U 5,6M P ⋂=.故选:D. 23.C【解析】 【分析】根据解一元二次不等式的方法、解分式不等式的方法,结合集合交集、补集的定义进行求解即可. 【详解】因为{}220[0,2]A x x x =-≤=,[]5,4U =-,所以()U [5,0)(2,4]A =-⋃,又因为[)202,0x B x x +⎧⎫=≤=-⎨⎬⎩⎭, 所以()U A B ⋂=[)2,0-, 故选:C 24.B 【解析】 【分析】解不等式求出{}05A x x =≤≤,从而得到不等式组,求出k 的值,进而得到A B 中的元素,求出答案. 【详解】由250x x -≤得:05x ≤≤,所以{}05A x x =≤≤,又{}21,B x x k k Z ==-∈,令0215k ≤-≤,解得:132k ≤≤,k Z ∈,当1k =时,1x =,当2k =时,3x =,当3k =时,5x =,故A B 中元素的个数为3. 故选:B 25.C 【解析】 【分析】逐一取a 的值为1,2,3进行验算可得. 【详解】当1a =时,由2410x x -+=,得2=x {22N =+,不满足题意;当2a =时,由2420x x -+=,得2x ={22N =+,不满足题意;当3a =时,由2430x x -+=,得1x =或3x =,即{1,3}N =,满足题意.26.B【解析】【分析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由22x ≠可得1x ≠;由21x ≠可得1x ≠±则由22x ≠不能得到21x ≠,但由21x ≠ 可得22x ≠故“22x ≠是”21x ≠的必要不充分条件.故选:B27.D【解析】【分析】通过解方程进行求解即可.【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =,所以{}1,0,1A =-,故选:D28.D【解析】【分析】先求出集合N ,再求两集合的交集【详解】由326x ≤,得33log 3log 26x ≤,即3log 26x ≤,所以{}3Z|log 26N x x =∈≤,因为{}N |4M x x =∈<所以MN ={}0,1,2,故选:D【解析】【分析】利用必要条件和充分条件的定义判断.【详解】因为x ∈R ,2cos 1x >, 所以1cos 2x >, 解得2233k x k ππππ-+<<+,所以x ∈R ,则“2cos 1x >”是“03x π≤<”的必要不充分条件,故选:B30.B【解析】【分析】 先画出不等式组所表示的平面区域,根据存在性和任意性的定义,结合复合命题的真假性质进行判断即可.【详解】不等式组表示的平面区域D 如图中阴影部分(包含边界)所示.根据不等式组表示的平面区域结合图形可知,命题p 为真命题,命题q 也为真命题,因此选项B 为真命题; 因此p ⌝为假命题,命题q ⌝也为假命题,所以选项ACD 为假命题,故选:B31.A【解析】【分析】先判断命题p ,命题q 的真假,再利用复合命题判断.【详解】 当0,2x y π==时,sin()sin sin x y x y +=+成立所以命题p 为真命题,则p ⌝是假命题;因为x ∀,y R ∈,所以sin 1,sin 1x y ≤,则sin sin 1x y ⋅,故命题q 为真命题,则q ⌝是假命题;所以p q ∧是真命题,p q ⌝∧是假命题, ()p q ∧⌝是假命题,()p q ⌝∨是假命题, 故选:A32.C【解析】【分析】依据集合元素互异性排除选项AB ;代入验证法去判断选项CD ,即可求得实数n 的值.【详解】依据集合元素互异性可知,0,1n n ≠≠-,排除选项AB ;当1n =时,{}1,0,1A =-,{}{},,110B x x a b a A b A ==⋅∈∈=-,,, 满足A B A =.选项C 判断正确;当2n =时,{}1,0,2A =-,{}{},,2,014B x x a b a A b A ==⋅∈∈=-,,, {}0A B A ⋂=≠.选项D 判断错误.故选:C33.C【解析】【分析】解一元二次不等式得集合B ,然后由并集定义计算.【详解】由题意{|12}B x x =-<<,所以{|12}A B x x ⋃=-≤≤.故选:C .34.B【解析】【分析】根据二次根式的定义求得集合A ,然后由交集定义计算.【详解】由已知{|0}A y y =≥,所以{0,1}A B =.故选:B .35.C【解析】【分析】由题设可得{2,2}M =-,结合集合与集合、元素与集合的关系判断各选项的正误即可.【详解】由题设,{2,2}M =-,而N 为自然数集,则2N -∉,2N ∈且2,2M -∈,所以,{}2M ≠⊂,故A 、B 、D 错误,C 正确. 故选:C36.C【解析】【分析】根据集合补集的定义即可求解.【详解】 解:因为{}{}12,N 0,1,2A x x x =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.37.C【解析】【分析】根据直线与抛物线的位置关系判断命题p 的真假,利用等轴双曲线的渐近线判断命题q 的真假,再根据含逻辑联结词命题真假的判断方法即可求解.【详解】若直线与抛物线的对称轴平行,则直线与抛物线只有一个交点,但是不算相切,故p 是假命题.因为等轴双曲线的实轴与虚轴相等,所以渐近线的斜率为±1,故q 为假命题.故p 且q 为假命题,p 或q 为假命题,()p ⌝或q 为真命题,p 且()q ⌝为假命题. 故选:C.38.C【解析】【分析】全称量词命题的否定为存在量词命题.【详解】全称量词命题的否定的方法是,全称改存在,否定结论.故命题p 的否定为n N ∃∈,33n n ≤.故选:C39.C【解析】【分析】根据全称量词命题的否定是特称量词命题即可求解.【详解】“所有可以被5整除的整数,末位数字都是5”的否定是:存在可以被5整除的整数,末位数字不是5.故选:C.40.D【解析】【分析】由集合S 的描述确定其点元素,并判断该点元素与集合T 的关系,应用并运算求S T .【详解】依题意,(){}S =,而()T ∈,所以S T T ⋃=.故选:D.41.B【解析】【分析】根据必要不充分条件的定义,前面推不出后面,后面推出前面,即可得到答案;【详解】若A B =∅,则A ,B 没有公共元素,A ,B 不一定是空集;若A =∅或B =∅,则A B =∅.故“A B =∅”是“A =∅或B =∅”的必要不充分条件.故选:B42.C【解析】【分析】直接求出U A .【详解】 因为集合{14}{0,1,2,3}U x x =∈-<<=N∣,集合{0,1}A =,所以{2,3}U A =. 故选:C.43.A【解析】【分析】根据一元二次不等式的解法求集合M ,运用集合间的运算直接求解.【详解】{}{}2|5+40|14M x x x x x =-<=<<,所以{}2,3M N =,故选:A .44.A【解析】【分析】根据命题,p q 的真假,可判断,p q ⌝⌝ 的真假,再根据 “或且非”命题真假的判断方法,可得答案.【详解】设sin ,0,1cos 0y x x x y x '=->=-≥ ,故sin ,0y x x x =->为增函数,则sin 0sin00x x ->-=,故命题:(0,)p x ∀∈+∞,sin 0x x ->为真命题,则p ⌝为假命题,因为2221a +≥> ,故命题:R q a ∀∈,()22()log a f x x +=在定义域上是增函数为真命题,q ⌝为假命题,所以p q ∧为真命题,p q ⌝∧为假命题,p q ∧⌝为假命题,p q ∨为真命题,则()p q ⌝∨为假命题,故选:A45.C【解析】【分析】根据B A ⊆3=m =,根据集合元素的互异性求得答案.【详解】由B A ⊆3=m =,3=时,9m = ,符合题意;m =时,0m =或1m =,但1m = 时,{}1,1B =不合题意,故m 的值为0或9,故选:C46.A【解析】【分析】直接利用并集的定义求解.【详解】解:因为集合{}0,1,2,3A =,{}2B x x =∈>Z ,所以A B ⋃=N .故选:A47.B【解析】【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项.【详解】对于命题p ,取0x =,53y π=,则sin 0sin x y =>=x y <,p 为假命题, 对于命题q ,R a ∀∈,222a +≥,则函数()()22log a f x x +=在定义域内为增函数,q 为真命题.所以,p q ∧、p q ∧⌝、()p q ⌝∨均为假命题,p q ⌝∧为真命题.故选:B.48.C【解析】【分析】根据充分,必要条件的定义判断即可.【详解】对于p ,如果x =1.5,则q 不能成立,如果11x -≤≤ ,则x 必然在[]1,2-- 区间内,因此p 为q 的必要不充分条件;故选:C.49.B【解析】【分析】根据集合交并补的运算规则运算即可.【详解】U A 就是整数中去掉0,1剩下的那些数,∈ (){}1,2U A B ⋂=-.故选:B.50.B【解析】【分析】由条件推结论可判断充分性,由结论推条件可判断必要性.由3x <不能推出13x ,例如2x =-,但13x 必有3x <,所以p :3x <是q :13x 的必要不充分条件.故选:B.51.B【解析】【分析】由sin cos αα=得ππ4k α=+,再根据必要条件,充分条件的定义判断即可. 【详解】解:当sin cos αα=时,ππ4k α=+,k ∈Z , 反之,当π2π4k α=+,k ∈Z 时,sin cos αα=, 所以“sin cos αα=”是“π2π4k α=+,k ∈Z ”的必要不充分条件. 故选:B52.D【解析】【分析】按照有关定义以及数学期望和方差的计算公式即可.【详解】对于A ,已知随机变量14,3X B ⎛⎫ ⎪⎝⎭,则()14433E X =⨯=,故A 错误; 对于B ,根据互斥事件和对立事件的定义,“A 与B 是互斥事件”并不能推出“A 与B 互为对立事件”,相反“A 与B 互为对立事件”必能推出“A 与B 是互斥事件”,故B 错误;对于C ,根据方差的计算公式,()()234D X D X -=,故C 错误;对于D ,根据正态分布的对称性,随机变量()24,X N σ,()60.85P X ≤=, 所以()20.15P X ≤=,所以()240.35P X <≤=,故选:D.53.B【解析】【分析】推导出命题p 是真命题,命题q 是假命题,从而p q ∧是假命题,p q ∨是真命题,p q ⌝∧是假命题,p q ⌝∨是假命题.【详解】因为命题:1p Q ∈是真命题, 因为函数()f x=的定义域为()1,+∞,所以命题:q 函数()f x =的定义域是[)1,+∞是假命题,所以在A 中,p q ∧是假命题,故A 错误;在B 中,p q ∨是真命题,故B 正确;在C 中,p q ⌝∧是假命题,故C 错误;在D 中,p q ⌝∨是假命题,故D 错误.故选:B .54.A【解析】【分析】根据给定条件,判断互逆关系的两个命题真假,再结合充分条件、必要条件的定义判断作答.【详解】因1,x y =224x y +≥成立,即“224x y +≥”不能推出“2x ≥且2y ≥”, 而当2x ≥且2y ≥时,22222284x y +≥+=≥,即“2x ≥且2y ≥”能推出“224x y +≥”, 所以“224x y +≥”是“2x ≥且2y ≥”的必要不充分条件.故选:A55.B【解析】【分析】利用充分条件、必要条件的定义结合向量相等与其模相等的意义直接判断作答.【详解】 当a b =时,因向量a ,b 的方向不一定相同,则a 与b 不一定相等,当a b =时,必有a b =, 所以“a b =”是“a b =”的必要不充分条件.故选:B56.A【解析】【分析】由交集的运算直接求解即可.【详解】因为()0,B =+∞,所以{}1,4A B ⋂=.故选:A57.A【解析】【分析】列举出满足条件的非空集合A ,可得结果.【详解】由题意可知,满足条件的非空集合A 有:{}4、{}5、{}4,5,共3个.故选:A.58.A【解析】【分析】结合三角函数的性质,利用充分性与必要性的定义,可得出答案.【详解】A 是△ABC 的三个内角,()0,πA ∴∈当sin A <时,由()0,πA ∈,可得π03A <<或2ππ3A <<,所以“3A π<”是“sin A <”的充分不必要条件. 故选:A59.A【解析】【分析】直接利用交集的定义求解.【详解】解:因为集合{}4,5,6,8A =,{}3,5,7,8B =,所以A B ={}5,8.故选:A60.C【解析】【分析】根据相似三角形的性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.61.A【解析】【分析】先根据对数的单调性求出集合B ,再求交集.【详解】由2log 2x <可得,04x <<,所以{}04B x x =<<又{}1012A =-,,,,{}12A B ⋂=,62.D【解析】【分析】根据给定条件,举例判断面面位置关系的命题,再结合充分条件、必要条件的定义判断作答.【详解】长方体1111ABCD A B C D -中,平面ABCD ,平面11ABB A 分别视为平面α,β,直线CD ,11A B 分别为直线l ,m ,显然有l //m ,而α与β相交,即l //m 不能推出//αβ;长方体1111ABCD A B C D -中,平面ABCD ,平面1111D C B A 分别视为平面α,β,直线CD ,11A D 分别为直线l ,m ,显然有//αβ,而l 与m 是异面直线,即//αβ不能推出l //m ,所以“l //m ”是“//αβ”的既不充分也不必要条件.故选:D63.D【解析】【分析】先化简全集,再根据集合的运算求解即可.【详解】2{|760}{1,2,3,4,5,6}U x N x x =∈-+≤=,则{2,5,6}U A =,所以(){2,4,5,6}U A B ⋃=.故选:D64.C【解析】分别化简集合A ,B ,再取交集即可.【详解】()(){}[]4304,3A x x x =+-≤=-, 由()20.50.5l 5og 12log 0-->-=x .,又函数0.5log y x =在定义域上单调递减, 得210.5410x x -⎧-<=⎨->⎩,解得:14x <<,即()(]1,51,3B A B =⇒⋂=, 故选:C.65.D【解析】【分析】由全称命题的否定可得出结论.【详解】命题p 为全称命题,该命题的否定为:p x ⌝∃∈R ,ln 10x x -+≥,故选:D.66.C【解析】【分析】求出函数ln y x =的定义域可得集合B ,再利用交集、补集的定义计算作答.【详解】因集合{R|2}A y y =∈>,则R (,2]A =-∞,函数ln y x =有意义,有0x >,则(0,)B =+∞,所以R ()(0,2]A B ⋂=.故选:C67.C【解析】【分析】先求解集合Q 中的不等式,结合集合的交集、补集运算,即得解【详解】由题意,2{|4}{|2Q x R x x x =∈≥=≥或2}x故{|22}R Q x x =-<<则(){|12}[1,2)R P Q x x =≤<=故选:C68.C【解析】【分析】根据绝对值的意义解出集合M ,根据指数函数的性质解出集合N ,结合集合之间的关系即可得出结果.【详解】 由20y x =-≤,得M={y |y ≤0}, 由1()07x y =>,得N ={y |y >0},所以{}0R N y y =≤, 所以R M N =故选:C .69.B【解析】【分析】先判定命题p 和q 的真假,再结合复合命题的真假判定方法,即可求解.【详解】当2,x k k Z π=∈,可得cos 1x =,所以命题“:p x R ∀∈,cos 1x <”为假命题,则p ⌝为真命题;当1x =时,可得|ln |0x =,所以命题“:q x R +∃∈,|ln |0x ≤”为真命题,q ⌝为假命题, 所以命题“p q ∧”,“p q ∧⌝”,“()p q ⌝∨”为假命题,“p q ⌝∧”为真命题.故选:B.70.D【解析】【分析】利用线面平行垂直的判定定理及性质定理判断即可.【详解】由题,若m α∥,则m 与平面β,可以平行,相交或者m 在平面内,故充分性不满足; 若m β⊥,则m 可以平行α,也可包含于α,故必要性不满足.故选:D71.B【解析】【分析】解不等式确定集合A ,然后由集合交集的定义计算.【详解】由已知{|01}A x x =<<,所以1{|1}2A B x x =<<. 故选:B .72.A【解析】【分析】分别求出集合A ,B ,根据集合的交集和补集运算得出答案.【详解】由201x x +≤-,则()()210x x +⋅-≤解得:21x .[)202,11x A x x ⎧⎫+∴=≤=-⎨⎬-⎩⎭,{}()2201,2B x x x =--<=-, R C A ={2x x <-或}1x ≥,()R C A B ⋂=[)1,2.故选:A.73.C【解析】【分析】根据集合补集的定义即可求解.【详解】解:因为{}{}12,0,1,2A x x x N =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.74.A【解析】【分析】根据集合M 的描述,判断集合N 中元素与集合M 的关系,再由集合的交运算求M N ⋂【详解】由题设,1,3,5M ∈,2,4M ∉,所以{1,3,5}MN =.故选:A75.B【解析】【分析】根据函数的奇偶性与单调性判断命题的充分必要性.【详解】由函数()3f x x x =+,则()()3f x x x f x -=--=-, 则函数()f x 为奇函数,且在R 上单调递增,又()()120f a f a ++>,得()()()122f a f a f a -+>=-,故12a a +>-,解得13a >-, 故1a >-是()()120f a f a ++>的必要不充分条件,故选:B.76.B【解析】【分析】先求出集合A ,再求两集的交集【详解】 由2x <,得22x -<<,所以{}22A x x =-<<,因为{}2,1,0,1,2B =--,所以A B ={}1,0,1-,故选:B77.B【解析】【分析】先表示出圆心和半径,利用圆心到直线的距离等于半径,结合充分必要条件的判断即可求解.【详解】()2211x y -+=,圆心()1,0,半径为1,由直线430x y m ++=与圆2220x y x +-=相切得1=,解得1m =或9-,故“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的必要不充分条件.故选:B.78.B【解析】【分析】求出2263x x +的解集,看和2263x x +的推出关系,即得答案.【详解】由2263x x +,得97x -,不能推出||7x ,由||7x ,得77x -,能推出97x -,故“2263x x +”是“||7x ”的必要不充分条件,故选:B79.A【解析】【分析】先写出集合B ,再按照交集运算.{}16B x x =≤≤,则A B ={}135,,.故选:A.80.D【解析】【分析】求得(){}1,0M =-,证明函数()ln 2y x =+过点()1,0-,可得M N ⊆,即可求出答案.【详解】解:()(){}(){}22,101,0M x y x y =++==-, 因为当1x =-时,()ln 2ln10x +==,所以函数()ln 2y x =+过点()1,0-,所以M N ⊆,所以M N N ⋃=.故选:D.81.A【解析】【分析】根据不等式的解法求得集合,A B ,再结合集合交集的运算,即可求解.【详解】 由集合{}12102A x x x x ⎧⎫=->=>⎨⎬⎩⎭, 又由不等式23180x x --<,即(3)(6)0x x +-<,解得36x -<<,即{}|36B x x =-<<, 所以11|6,622A B x x ⎧⎫⎛⎫⋂=<<=⎨⎬ ⎪⎩⎭⎝⎭. 故选:A.82.C【解析】利用集合的并集和补集运算求解.【详解】因为集合{1,1}R =-,{4,5}Q =,所以{}1,1,4,5R Q ⋃=-,因为全集{1,0,1,3,4,5,6}U =-,所以()U R Q ⋃={0,3,6},故选:C83.B【解析】【分析】由绝对值不等式及一元二次不等式的解法求出集合A 和B ,然后根据交集的定义即可求解.【详解】解:由题意,集合{}{}|44,3,2,1,0,1,2,3A x x x Z =-<<∈=---,{}{24|2B y y y y =>=<-或}2y >, 所以{}3,3A B ⋂=-,故选:B.84.AB【解析】【分析】先解出不等式260x x --<,再按照充分不必要条件求解.【详解】由260x x --<得23x -<<,因此,若“260x x --<”是“4a x <<”的充分不必要条件,则2a ≤-.故选:AB.85.AC【解析】【分析】直接推导可判断A ;写出否命题取值验证可判断B ;特值法可判断C ;根据存在量词命题的否定可判断D.【详解】对于A 选项,11x x =-⇒=,所以不是充分条件;又111x x x ≠⇒≠±⇒≠,所以是必要不充分条件,A 选项正确;对于B 选项,“若6x y +≥,则x ,y 中至少有一个大于3”的否命题为“若6x y +<,则x ,y 都不大于3”.取4,1x y ==,显然为假命题,故B 选项错误;对于C 选项,取01x =-可知C 选项正确;命题“0x ∃<,220x x --<”的否定是“0x ∀<,220x x --≥”,故D 不正确,故选:AC.86.AC【解析】【分析】根据特称命题的否定是全称命题可求解.【详解】 由x a a -≥,可得x a a -≥或x a a -≤-可得2x a ≥或0x ≤.故命题“0x ∃>,x a a -<”的否定是“0x ∀>,x a a -≥”或“0x ∀>,2x a ≥或0x ≤”. 故选:AC87.BC【解析】【分析】先解出不等式恒成立对应的m 的范围,再按照充分不必要条件的定义进行判断.【详解】若关于x 的不等式210mx mx -+>对x R ∀∈恒成立,则 ()2040m m m >⎧⎪⎨--<⎪⎩或0m =,解得04m ≤<, 所以A 选项为充要条件,D 选项为必要不充分条件,B 、C 选项为充分不必要条件. 故选:BC.88.CD。
集合与常用逻辑用语(含答案)
集合与常用逻辑用语一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤24.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.85.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A ∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18D.27二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有个元素.11.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B=.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B=.13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M 的所有子集是.14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=.三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W型数?16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.。
职高 第一章 集合与常用逻辑用语练习题
第一章 集合与常用逻辑用语一、单项选择题1.下列各对象不能构成集合的是( )A .绝对值等于本身的实数全体B .不小于2的实数全体C .与0非常接近的实数的全体D .偶数的全体2.给出下列关系式:①π∈Z ;② 3 ∈R ;③|-3|∉N ;④0.53∉Z.其中正确关系式的个数为( )A .1个B .2个C .3个D .4个3.集合{x ∈N|-1<x -3<1}的另一种表示方法为( )A .{1,2,3}B .{0,1,2,3}C .{2,3,4}D .{3}4.方程组⎩⎨⎧4x +3y =253x -4y =0 的解集为( )A .(4,3)B .{4,3}C .{(4,3)}D .{(3,4)}5.在下列表示正奇数的全体构成的集合中,正确的是()A .{x|x =2k -1,k ∈Z}B .{x|x =2k +1,k ∈Z}C .{x|x =2k -1,k ∈N +}D .{x|x =2k +1,k ∈N +}6.下列关系中正确的是( )A .∅={0}B .0⊆∅C .0∈∅D .0∈{0}7.在平面直角坐标系内,第四象限的点的集合可表示为( )A .{(x ,y)|x>0且y<0}B .{(x ,y)|x>0且y>0}C.{(x,y)|x<0且y>0} D.{(x,y)|x<0且y<0}8.已知P={菱形},T={正方形},M={平行四边形},则P,T,M 三者的关系是( )A.T⊆P⊆M B.M⊆T⊆P C.M⊆P⊆T D.P⊆T⊆M9.下列关系式正确的是( )A.0⊆{0,1} B.0∈{0} C.∅∈{0,1} D.{0}=∅10.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P 的子集共有( )A.2个B.4个C.6个D.8个11.若集合M={x|x≤5},且a=2,则下列关系式中正确的是( ) A.a⊆M B.a⊆/M C.{a}∈M D.{a}⊆M12.已知集合U={a,b,c,d,e},M={a,b,e},N={a,c,d},则∁U(M∩N)( )A.{a,c,d} B.{a,d,e}C.{b,c,d,e} D.{a,c,e}13.已知集合A={x|-4<x<6},B={x|-5<x≤5},则A∪B等于( )A.{x|-4<x≤5} B.{x|-4<x<6}C.{x|-5<x≤5} D.{x|-5<x<6}14.“a=0”是“ab=0”的( )A.充分不必要条件B.必要不充分条件15.“a<1”是“a<2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.“x2=y2”是“|x|=|y|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件>0”的 ( )17.“ab>0”是“baA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件,则甲是乙18.在△ABC中,命题甲:c2=a2+b2,命题乙:∠C=2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19.已知A={1,a},B={1,2,3},则“a=3”是A⊆B的( ) A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件20.设a,b是实数,则a2+b2≠0的充要条件是 ( )A.a≠0 B.b≠0C.a≠0且 b≠0 D.a≠0或 b≠021.设x∈R,则“|x-2|<1”是“x2+x-2>0”的( )A.充分不必要条件B.必要不充分条件22.下列语句是命题的是( )A.他长得好酷啊!B.x+1>0C.太阳从东方升起D.请您注意言行举止!23.已知p:a<0,q:a2>a,则¬p是¬q的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件24.设p,q是两个命题,并且﹁p∧q是真命题,则下列命题为真命题的是( )A.p∧q B.﹁p∧﹁qC.﹁(p∨q) D.﹁p∨﹁q25.设命题p:对∀x∈R,x2>0,则﹁p是( )A.∃x0∈R,使 x02<0 B.∃x0∈R,使 x02≤0C.∀x∈R,x2<0 D.∀x∈R,x2≤026.若“p∧q”是假命题,则( )A.p∨q是真命题B.﹁p 和﹁q都是真命题C.p和q 都是真命题D.﹁p∨﹁q是真命题27.若命题“p∨q”是真命题,命题“p∧q”是假命题,那么( ) A.p和q 都是假命题B.命题p和命题﹁q的真值不同C.p和q 都是真命题D.命题p 和命题﹁q的真值相同28.设命题p:至少有一个实数x0,使得x02+2x0+5≥0 ,则﹁p是( ) A.∃x0∈R,使得x02+2x0+5<0B.∃x0∈R,使得x02+2x0+5≥0C.∀x∈R,都有x2+2x+5<0D.∀x∈R,都有x2+2x+5≥0二、填空题29.用∈或∉填空.(1)7________Z; (2) 3 ________R;________Z; (4)5.87________ Q;(3)23(5)0________ N+.30.已知集合A={a-1,3a+2},则实数a满足的条件是________.31.集合{(x,y)|x+y=3,x∈N,y∈N}有______个真子集. 32.设全集U=R,若集合A={x|x<5},B={x|x≥0},则A∩B=__________,A∪∁U B=________.33.已知集合A={x|-3<x<1},B={x|x>a},且满足A⊆B,则a的取值范围是____________.34.已知集合A,B按照下面的方式规定新的运算:若A={1,2},B ={3,4},A×B={(1,3),(1,4),(2,3),(2,4)}B×A={(3,1),(4,1),(3,2),(4,2)}试根据上述运算规则,回答下列问题:C={a},D={2,3},求C×D =__________________.35.“a2≥4b”是“方程x2+ax+b=0有实数根”的_______条件.36.“x2-1=0”是“x-1=0”的______________条件.37.“ x>3”是“x>5”的______________条件.38.命题甲:|a|=a,命题乙:a>0,命题甲是命题乙的_______条件.39.若命题p:7≥2,则﹁p:______.40.已知下列三个命题:①3≤5;②5∈{-5,5},且5是方程x2=25的一个根;③2∈{1,3}或者2∈{x|x2-3x+2=0},其中真命题的序号是_________.三、解答题41.已知(1,2)∈{(x,y)|ax+by=1且bx+ay=1},求a,b的值.42.已知集合A={x|ax2+3x+2=0,a∈R},(1)若A是空集,求a的取值范围;(2)若A有1个元素,求a的取值范围;(3)若A有2个元素,求a的取值范围.43.设集合A={x|2x-8<0},集合B={x|0<x<6},全集U=R,求:(1)A∩B;(2)(∁U A)∪B.44.已知p:(x-m)2>3(x-m)是q:x2+3x-4<0的必要不充分条件,求实数m的取值范围.45.写出下列命题的非.(1)p:2+9=11;(2)q:∀x∈R,都有x2<0;(3)r:所有同学都通过了考试;(4)s:∃x0∈R,使得x0+3=0.(5)t:∃x0≥1,使得 x02+x0+1>0.。
高一数学集合与常用逻辑用语试题
高一数学集合与常用逻辑用语试题1.设集合,,则A∪B=()A.[0,2]B.[1,2]C.[0,4]D.[-1,4]【答案】D【解析】由并集的含义,所以选D;【考点】1.并集的含义;2.已知集合,则.【答案】【解析】,而,因此【考点】集合的交运算;3.已知集合A={0,1,4},B={2,4},则A∪B=()A.{4}B.{0,1,2,4}C.{0,1,2}D.{0,2,4}【答案】B【解析】由并集的定义易得,.故选B.【考点】并集运算.4.(本小题满分12分)已知集合,,.若,试确定实数的取值范围.【答案】【解析】根据题意,可得集合A、B,由交集的意义可得A∩B,分析可得,若(A∩B)∩C=C,则C是A∩B的子集,进而分C是空集与C不是空集两种情况讨论,对得到的a的范围求并集可得答案.试题解析:由题意,得,∵∴当,即当,则,解得∴的取值范围是【考点】集合关系中的参数取值问题【方法点睛】解决含参数问题的集合运算问题:(1)已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍;(2)当题目中有条件B⊆A时,不要忽略B=的情况.5.(本小题满分8分)已知集合,,若能使成立的所有实数的集合是,求集合.【答案】(-∞,4].【解析】(I)先利用,转化为.由空集是任何集合的子集,需要对集合B是否为空集分类讨论。
当时,集合B中没有元素,m+1≥2m-1,当时,在借助数轴比较端点值,求解,一定要保证.试题解析:由得当时, m+1≥2m-1,得m≤2.当时,,解得2<m≤4.综上,m的取值范围是(-∞,4].【考点】1、并集与子集的关系;2、解不等式.【易错点晴】本题主要考查的是,在已知集合A前提下.需要对集合B讨论,即当时,因为空集是任何集合的子集,学生特别容易忽略对空集的讨论,若学生没有讨论,则至多得2分,另外当时,可以借助数轴,找出参数的范围,尤其注意是否带上端点值,最后对和的结果进行综述.6.给出下列说法:①空集没有子集;②任何一个集合必有两个或两个以上的子集;③空集是任何一个集合的真子集;④若空集是集合A的真子集,则A一定不是空集。
《集合、常用逻辑用语》复习训练题
《集合、常用逻辑用语》复习训练题第1讲集合一、选择题1.已知集合A={1,2,3},B={2,3},则( )A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}解析由(x+1)(x-2)<0,得-1<x<2,又x∈Z,所以B={0,1},因此A∪B ={0,1,2,3}.答案 C3.已知集合A={x|lg x>0},B={x|x≤1},则( )A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案 B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( )A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C5.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B ={x |x 2-1<0}=(-1,1). 因此A ∪B =(-1,+∞). 答案 C6.已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( ) A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x∈A ,就称A 是伙伴关系集合,集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A.1 B.3 C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12,2,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,12,2.答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0}B.{x |x ≤1}C.{x |0≤x ≤1}D.{x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图. ∴∁U (A ∪B )={x |0<x <1}. 答案 D 二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析 ∵1∉{x |x 2-2x +a >0}, ∴1∈{x |x 2-2x +a ≤0},即1-2+a≤0,∴a≤1.答案(-∞,1]10.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=________. 解析由A={1,2,3},B={y|y=2x-1,x∈A},∴B={1,3,5},因此A∩B ={1,3}.答案{1,3}11.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B=________.解析由x(x+1)>0,得x<-1或x>0,∴B=(-∞,-1)∪(0,+∞),∴A-B=[-1,0).答案[-1,0)12.已知集合A={x|x2-2 016x-2 017≤0},B={x|x<m+1},若A⊆B,则实数m的取值范围是________.解析由x2-2 016x-2 017≤0,得A=[-1,2 017],又B={x|x<m+1},且A⊆B,所以m+1>2 017,则m>2 016.答案(2 016,+∞)13.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则(∁R S)∩T=( )A.[2,3]B.(-∞,-2)∪[3,+∞)C.(2,3)D.(0,+∞)解析易知S=(-∞,2]∪[3,+∞),∴∁R S=(2,3),S)∩T=(2,3).因此(∁R答案 C14. 集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是( )A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}解析易知A=(-1,2),B=(-∞,1),∴∁U B=[1,+∞),A∩(∁U B)=[1,2).因此阴影部分表示的集合为A∩(∁U B)={x|1≤x<2}.答案 B 15.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N |14≤2x≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________.解析 由14≤2x ≤16,x ∈N ,∴x =0,1,2,3,4,即A ={0,1,2,3,4}. 又x 2-3x >0,知B ={x |x >3或x <0}, ∴A ∩B ={4},即A ∩B 中只有一个元素. 答案 116.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0. 答案 0第2讲 命题及其关系、充分条件与必要条件一、选择题1.设m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A.若方程x 2+x -m =0有实根,则m >0 B.若方程x 2+x -m =0有实根,则m ≤0 C.若方程x 2+x -m =0没有实根,则m >0 D.若方程x 2+x -m =0没有实根,则m ≤0解析 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”. 答案 D2.“x=1”是“x2-2x+1=0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析m⊂α,m∥βα∥β,但m⊂α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.答案 B4. “a=0”是“函数f(x)=sin x-1x+a为奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析显然a=0时,f(x)=sin x-1x为奇函数;当f(x)为奇函数时,f(-x)+f(x)=0.又f(-x)+f(x)=sin(-x)-1-x+a+sin x-1x+a=0.因此2a=0,故a=0.所以“a=0”是“函数f(x)为奇函数”的充要条件.答案 C5.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”解析C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m≥-14,不能推出m>0.所以不是真命题.答案 C6.设x∈R,则“1<x<2”是“|x-2|<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由|x-2|<1,得1<x<3,所以1<x<2⇒1<x<3;但1<x<3⇒/ 1<x<2.所以“1<x<2”是“|x-2|<1”的充分不必要条件.答案 A7.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A8.已知a,b都是实数,那么“a>b”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由ln a>ln b⇒a>b>0⇒a>b,故必要性成立.当a=1,b=0时,满足a>b,但ln b无意义,所以ln a>ln b不成立,故充分性不成立.答案 B二、填空题9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案 210.“sin α=cos α”是“cos 2α=0”的________条件. 解析 cos 2α=0等价于cos 2α-sin 2α=0, 即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件. 答案 充分不必要11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N ,∴⎩⎨⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③13.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( ) A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析 如图作出p ,q 表示的区域,其中⊙M 及其内部为p 表示的区域,△ABC 及其内部(阴影部分)为q 表示的区域. 故p 是q 的必要不充分条件.答案 A14.已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由y =2x +m -1=0,得m =1-2x ,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B 15.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________. 解析A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴AB ,∴m +1>3,即m >2.答案 (2,+∞)16.下列四个结论中正确的是________(填序号).①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”;③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. 解析 ①中“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误. 对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”,故②正确.对于③,“若x=π4,则tan x=1”的逆命题为“若tan x=1,则x=π4”,其为假命题,故③错误.对于④,若f(x)是R上的奇函数,则f(-x)+f(x)=0,∵log32=1log23≠-log32,∴log32与log23不互为相反数,故④错误.答案②第3讲简单的逻辑联结词、全称量词与存在量词一、选择题1.已知命题p:所有指数函数都是单调函数,则綈p为( )A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C.存在一个指数函数,它不是单调函数D.存在一个单调函数,它不是指数函数解析命题p:所有指数函数都是单调函数,则綈p为:存在一个指数函数,它不是单调函数.答案 C2.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是( )A.p为真B.綈p为假C.p∧q为假D.p∧q为真解析p为假命题,q为假命题,∴p∧q为假.答案 C3.2016年巴西里约奥运会,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( )A.(綈p)∨(綈q)B.p∨(綈q)C.(綈p)∧(綈q)D.p∨q解析命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p)∨(綈q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q”的否定.答案 A4.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧(綈q)B.(綈p)∧qC.(綈p)∧(綈q)D.p∧q解析由题意知命题p是真命题,命题q是假命题,故綈p是假命题,綈q是真命题,由含有逻辑联结词的命题的真值表可知p∧(綈q)是真命题.答案 A5.下列命题中,真命题是( )A.∃x0∈R,e x0≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是ab=-1D.“a>1,b>1”是“ab>1”的充分条件解析因为y=e x>0,x∈R恒成立,所以A不正确. 因为当x=-5时,2-5<(-5)2,所以B不正确.“ab=-1”是“a+b=0”的充分不必要条件,C不正确.当a>1,b>1时,显然ab>1,D正确.答案 D6.命题p:∀x∈R,ax2+ax+1≥0,若綈p是真命题,则实数a的取值范围是( )A.(0,4]B.[0,4]C.(-∞,0]∪[4,+∞)D.(-∞,0)∪(4,+∞)解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0,所以命题綈p :∃x 0∈R ,ax 20+ax 0+1<0,则a <0或⎩⎨⎧a >0,Δ=a 2-4a >0,解得a <0或a >4. 答案 D7.已知命题p :∃α∈R ,cos(π-α)=cos α;命题q :∀x ∈R ,x 2+1>0.则下面结论正确的是( )A.p ∧q 是真命题B.p ∧q 是假命题C.綈p 是真命题D.綈q 是真命题解析 对于p :取α=π2,则cos(π-α)=cos α, 所以命题p 为真命题;对于命题q :∵x 2≥0,∴x 2+1>0,所以q 为真命题.由此可得p ∧q 是真命题. 答案 A8.已知命题p :∃x ∈R ,(m +1)(x 2+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为( )A.[2,+∞)B.(-∞,-2]∪(-1,+∞)C.(-∞,-2]∪[2,+∞)D.(-1,2] 解析 由命题p :∃x ∈R ,(m +1)(x 2+1)≤0可得m ≤-1;由命题q :∀x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,若命题p ,q 均为真命题,则此时-2<m ≤-1.因为p ∧q 为假命题,所以命题p ,q 中至少有一个为假命题,所以m ≤-2或m >-1.答案 B二、填空题9.命题“∃x 0∈⎝⎛⎭⎪⎫0,π2,tan x 0>sin x 0”的否定是________. 答案 ∀x ∈⎝⎛⎭⎪⎫0,π2,tan x ≤sin x10.若命题“∃x0∈R,使得x20+(a-1)x0+1<0”是真命题,则实数a的取值范围是________.解析∵“∃x0∈R,使得x20+(a-1)x0+1<0”是真命题,∴Δ=(a-1)2-4>0,即(a-1)2>4,∴a-1>2或a-1<-2,∴a>3或a<-1.答案(-∞,-1)∪(3,+∞)11.已知下列四个命题:①“若x2-x=0,则x=0或x=1”的逆否命题为“x≠0且x≠1,则x2-x≠0”②“x<1”是“x2-3x+2>0”的充分不必要条件③命题p:存在x0∈R,使得x20+x0+1<0,则綈p:任意x∈R,都有x2+x+1≥0④若p∧q为假命题,则p,q均为假命题其中真命题的是________(填序号).解析显然①③正确.②中,x2-3x+2>0⇔x>2或x<1.∴“x<1”是“x2-3x+2>0”的充分不必要条件,②正确.④中,若p∧q为假命题,则p,q至少有一个假命题,④错误.答案①②③12.已知命题p:“∀x∈[0,1],a≥e x”;命题q:“∃x0∈R,使得x20+4x0+a=0”.若命题“p∧q”是真命题,则实数a的取值范围是________.解析若命题“p∧q”是真命题,那么命题p,q都是真命题.由∀x∈[0,1],a≥e x,得a≥e;由∃x∈R,使x20+4x0+a=0,知Δ=16-4a≥0,得a≤4,因此e≤a≤4.答案[e,4]13.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x0∈R,∀n∈N*,使得n<x20解析改变量词,否定结论.∴綈p应为:∃x0∈R,∀n∈N*,使得n<x20. 答案 D14.已知命题p:∀x∈R,x+1x≥2;命题q:∃x0∈(0,+∞),x20>x30,则下列命题中为真命题的是( )A.(綈p)∧qB.p∧(綈q)C.(綈p)∧(綈q)D.p∧q解析对于p:当x=-1时,x+1x=-2,∴p为假命题.取x0∈(0,1),此时x2>x30,∴q为真命题.从而綈p为真命题,(綈p)∧q为真命题.答案 A15.下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;③“x>2”是“1x<12”的充分不必要条件;④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.解析①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a,b∈R,若a=3且b=3,则a+b=6”,此命题为真命题,所以原命题也是真命题,②错误;③1x<12,则1x-12=2-x2x<0,解得x<0或x>2,所以“x>2”是“1x<12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.答案①②16.已知命题p:∃x∈R,e x-mx=0,q:∀x∈R,x2-2mx+1≥0,若p∨(綈q)为假命题,则实数m的取值范围是________.解析若p∨(綈q)为假命题,则p假q真.由e x-mx=0得m=e xx,设f(x)=e xx,则f′(x)=e x·x-e xx2=(x-1)e xx2.当x>1时,f′(x)>0,此时函数单调递增;当0<x<1时,f′(x)<0,此时函数单调递减;当x<0时,f′(x)<0,此时函数单调递减.由f(x)的图象及单调性知当x=1时,f(x)=e xx取得极小值f(1)=e,所以函数f(x)=e xx的值域为(-∞,0)∪[e,+∞),所以若p是假命题,则0≤m<e;命题q为真命题时,有Δ=4m2-4≤0,则-1≤m≤1.所以当p∨(綈q)为假命题时,m的取值范围是[0,1]. 答案[0,1]。
集合与常用逻辑用语练习题(含答案)
集合与常用逻辑用语时间:45分钟分值:100分一、选择题(每小题6分,共计36分)1.已知集合A={-1,0,a},B={x|0<x<1},若A∩B≠Ø,则实数a的取值范围是()A.(-∞,0)B.(0,1)C.{1} D.(1,+∞)解析:由题意可知,a∈B,即0<a<1.答案:B2.设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q 等于()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}解析:由log2a=0,得a=1,从而b=0,P∪Q={3,0,1}.答案:B3.设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是()图1A.{1,3,5} B.{1,2,3,4,5}C.{7,9} D.{2,4}解析:图中阴影表示的集合是(∁U A)∩B={2,4}.答案:D4.关于x的函数f(x)=sin(φx+φ)有以下命题:①∀φ∈R,f(x+2π)=f(x);②∃φ∈R,f(x+1)=f(x);③∀φ∈R,f(x)都不是偶函数;④∃φ∈R,使f(x)是奇函数.其中假命题的序号是()A.①③B.①④C.②④D.②③解析:对于命题①,取φ=π时,f(x+2π)≠f(x),命题①错误;如取φ=2π,则f(x+1)=f(x),命题②正确;对于命题③,φ=0时,f(x)=f(-x),则命题③错误;如取φ=π,则f(x)=sin(πx+π)=-sin πx ,命题④正确.答案:A5.已知集合A ={x |a -2<x <a +2},B ={x |x ≤-2或x ≥4},则A ∩B =Ø的充要条件是( )A .0≤a ≤2B .-2<a <2C .0<a ≤2D .0<a <2解析:如果A ∩B =Ø,根据数轴有⎩⎪⎨⎪⎧a -2≥-2a +2≤4,解得0≤a ≤2.答案:A6.下列命题中,真命题的个数是( )①若“p 且q ”与“p 或q ”都是假命题,则“非p 且非q ”是真命题②x 2≠y 2⇔x ≠y 或x ≠-y③命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题是“若a +b 不是偶数,则a ,b 都不是偶数”④若关于x 的实系数不等式ax 2+bx +c ≤0的解集是Ø,则必有a >0且Δ≤0A .0个B .1个C .2个D .3个解析:①为真命题,∵“p 且q ”与“p 或q ”为假,∴p 假,q 假,∴非p 与非q 为真,故非p 且非q 为真,∴①为真命题.②为假命题,x 2≠y 2⇒x ≠y 或x ≠-y 虽然成立,但x ≠y 或x ≠-y ⇒/x 2≠y 2,所以此命题为假命题.③为假命题,因为“a ,b 都是偶数”的否定是“a ,b 不都是偶数”,故“a ,b 都是偶数,则a +b 是偶数”的逆否命题应是“若a +b 不是偶数,则a ,b 不都是偶数”.④为假命题,如a =b =0,c >0时满足ax 2+bx +c ≤0的解集是Ø,但不满足a >0,且Δ≤0.答案:B。
集合与常用逻辑用语测试题和答案
集合与常用逻辑用语测试题一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·新课标全国卷Ⅰ)已知集合A={x|x2-2x>0},,则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.(2014·昆明模拟)已知集合S={1,2},集合T={a},∅表示空集,如果S∪T=S,那么a的值构成的集合是( )A.∅B.{1}C.{2}D.{1,2}3.已知命题p:∃x0∈R,-3x0+3≤0,则下列说法正确的是( )A.p:∃x 0∈R,-3x0+3>0,且p为真命题B.p:∃x 0∈R,-3x0+3>0,且p为假命题C.p:∀x∈R,x2-3x+3>0,且p为真命题D.p:∀x∈R,x2-3x+3>0,且p为假命题4.(2013·辽宁高考)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.已知ab>0,若a>b,则<的否命题是( )A.已知ab≤0,若a≤b,则≥B.已知ab≤0,若a>b,则≥C.已知ab>0,若a≤b,则≥D.已知ab>0,若a>b,则≥6.(2014·西城模拟)已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6-a ∈A.则具有性质P的集合A的个数是( )A.8B.7C.6D.57.设a,b为实数,则“0<ab<1”是“b<”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2014·哈尔滨模拟)给定下列两个命题:①“p∨q”为真是“p”为假的必要不充分条件;②“∃x0∈R,使sinx0>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是( )A.①真②假B.①假②真C.①和②都为假D.①和②都为真9.(2013·山东高考)给定两个命题p,q,若p是q的必要而不充分条件,则p是q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.(2014·金华模拟)给出下列命题:(1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要不充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.其中真命题的个数是( )A.1B.2C.3D.411.已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知下列四个命题:①命题“若α=,则tanα=1”的逆否命题为假命题;②命题p:∀x∈R,sinx≤1,则p:∃x 0∈R,使sinx0>1;③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:“∃x 0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(p)∧q 为真命题.其中正确的个数是( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2014·银川模拟)若命题“∃x0∈R,+(a-3)x0+4<0”为假命题,则实数a的取值范围是.14.(2014·青岛模拟)已知A=,B={x|log2(x-2)<1},则A∪B= .15.(2014·玉溪模拟)已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是.16.已知下列四个结论:①命题“若p,则q”与命题“若q,则p”互为逆否命题;②命题p:∃x0∈[0,1],≥1,命题q:∃x0∈R,+x0+1<0,则p∨q为真;③若p∨q为假命题,则p,q均为假命题;④“若am2<bm2,则a<b”的逆命题为真命题.其中正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}.(1)若a=1,求A∩B.(2)若A∪B=R,求实数a的取值范围.18.(12分)已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.19.(12分)(2014·黄山模拟)已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.(1)当a=时,求(∁U B)∩A.(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.20.(12分)(2014·枣庄模拟)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.22.(12分)(能力挑战题)已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0,求p的取值范围.集合与常用逻辑用语测试题答案解析1.选B2.选D.3.选C.4.选B.5.选C.6.选B.7.选D.8.【选D9.选A.10.【解析】选B.若首项为负,则公比q>1时,数列为递减数列,a n+1<a n(n∈N*),当a n+1>a n(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=〒1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.11.【解析】选A 12.【解析】选B.①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定是特称命题知,②为真.③当函数为偶函数时,有φ=+kπ(k∈Z),所以为充要条件,所以③正确.④因为sinx+cosx=sin的最大值为<,所以命题p 为假命题,p为真,三角函数在定义域上不单调,所以q为假命题,所以(p)∧q为假命题,所以④错误.所以正确的个数为2,故选B..13.答案:[-1,7] 14.答案:{x|1<x<4} 15.答案:(1,2]16.【解析】根据四种命题的关系,结论①正确;②中命题p为真命题、q为假命题,故p∨q 是真命题,结论②正确;根据或命题的真假判断方法知结论③正确;④中命题的逆命题是“若a<b,则am2<bm2”,这个命题在m=0时不成立,结论④不正确.答案:①②③17.实数a的取值范围是(1,3).18. m的取值范围是(1,2]∪[3,+≦).19.∁U B=, (∁U B)∩A=.(2)由若q是p的必要条件知p⇒q,可知A⊆B.由a2+2>a知B={x|a<x<a2+2}.所以解得a≤-1或1≤a≤2.即a∈(-≦,-1]∪[1,2].20.实数x的取值范围是(2,3).(2)由x2-4ax+3a2<0,得(x-a)(x-3a)<0.①当a>0时,p:a<x<3a,由题意,得(2,3](a,3a),所以即1<a≤2;②当a<0时,p:3a<x<a,由题意,得(2,3](3a,a),所以无解.综上,可得a∈(1,2].21.【证明】充分性:当a=0时,方程为2x+1=0,其根为x=-,方程只有一负根.当a=1时,方程为x2+2x+1=0,其根为x=-1,方程只有一负根.当a<0时,Δ=4(1-a)>0,方程有两个不相等的根,且<0,方程有一正一负两个根.必要性:若方程ax2+2x+1=0有且只有一负根.当a=0时,符合条件.当a≠0时,方程ax2+2x+1=0有实根,则Δ=4-4a≥0,所以a≤1,当a=1时,方程有一负根x=-1.当a<1时,若方程有且只有一负根,则所以a<0.综上,方程ax2+2x+1=0有且只有一个负根的充要条件为a≤0或a=1.22.【解析】记p的取值范围是I,原题可作为命题:若p∈I,则函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0.若函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上对任意的x都有f(x)≤0,则p∈∁I. 由对任意的x都有f(x)≤0,结合图形知⇒⇒p≤-3或p≥,即∁I=,所以I=,故所求p的取值范围为.。
(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语典型例题
(每日一练)(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语典型例题单选题1、下列元素与集合的关系中,正确的是()∉RA.−1∈N B.0∉N∗C.√3∈Q D.25答案:B分析:由N,N∗,Q,R分别表示的数集,对选项逐一判断即可.−1不属于自然数,故A错误;0不属于正整数,故B正确;√3是无理数,不属于有理数集,故C错误;2属于实数,故D错误.5故选:B.2、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.3、设集合A={x|x≥2},B={x|−1<x<3},则A∩B=()A.{x|x≥2}B.{x|x<2}C.{x|2≤x<3}D.{x|−1≤x<2}答案:C分析:根据交集的定义求解即可由题,A∩B={x|2≤x<3}故选:C4、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.5、已知命题p:∃x∃N,e x<0(e为自然对数的底数),则命题p的否定是()A.∃x∃N,e x<0B.∃x∃N,e x>0C.∃x∃N,e x≥0D.∃x∃N,e x≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.6、已知A是由0,m,m2﹣3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可答案:B分析:由题意可知m=2或m2﹣3m+2=2,求出m再检验即可.∵2∈A,∴m=2 或m2﹣3m+2=2.当m=2时,m2﹣3m+2=4﹣6+2=0,不合题意,舍去;当m2﹣3m+2=2时,m=0或m=3,但m=0不合题意,舍去.综上可知,m=3.故选:B.7、已知集合A={x|x2−2x=0},则下列选项中说法不正确的是()A.∅⊆A B.−2∈A C.{0,2}⊆A D.A⊆{y|y<3}答案:B分析:根据元素与集合的关系判断选项B,根据集合与集合的关系判断选项A、C、D.由题意得,集合A={0,2}.所以−2∉A,B错误;由于空集是任何集合的子集,所以A正确;因为A={0,2},所以C、D中说法正确.故选:B.8、已知a、b、c、d∈R,则“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的()注:max{p,q}表示p 、q 之间的较大者.A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案:B分析:利用特殊值法、不等式的基本性质结合充分条件、必要条件的定义判断可得出结论.充分性:取a =d =1,b =c =−1,则max {a,b }+max {c,d }=max {1,−1}+max {−1,1}=1+1>0成立, 但max {a +c,b +d }=max {0,0}=0,充分性不成立;必要性:设max {a +c,b +d }=a +c ,则max {a,b }≥a ,max {c,d }≥c ,从而可得max {a,b }+max {c,d }≥a +c >0,必要性成立.因此,“max {a,b }+max {c,d }>0”是“max {a +c,b +d }>0”的必要不充分条件.故选:B.小提示:方法点睛:判断充分条件和必要条件,一般有以下几种方法:(1)定义法;(2)集合法;(3)转化法.9、设a,b ∈R ,A ={1,a},B ={−1,−b},若A ⊆B ,则a −b =( )A .−1B .−2C .2D .0答案:D分析:根据集合的包含关系,结合集合的性质求参数a 、b ,即可求a −b .由A ⊆B 知:A =B ,即{a =−1−b =1,得{a =−1b =−1, ∴a −b =0.10、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D多选题11、已知集合M={−2,3x2+3x−4,x2+x−4},若2∈M,则满足条件的实数x可能为()A.2B.−2C.−3D.1答案:AC解析:根据集合元素的互异性2∈M必有2=3x2+3x−4或2=x2+x−4,解出后根据元素的互异性进行验证即可.解:由题意得,2=3x2+3x−4或2=x2+x−4,若2=3x2+3x−4,即x2+x−2=0,∴x=−2或x=1,检验:当x=−2时,x2+x−4=−2,与元素互异性矛盾,舍去;当x=1时,x2+x−4=−2,与元素互异性矛盾,舍去.若2=x2+x−4,即x2+x−6=0,∴x=2或x=−3,经验证x=2或x=−3为满足条件的实数x.小提示:本题主要考查集合中元素的互异性,属于基础题.12、(多选)下列“若p,则q”形式的命题中,p是q的必要条件的有()A.若x,y是偶数,则x+y是偶数B.若a<2,则方程x2-2x+a=0有实根C.若四边形的对角线互相垂直,则这个四边形是菱形D.若ab=0,则a=0答案:BCD分析:根据必要条件的定义逐一判断即可.A:x+y是偶数不一定能推出x,y是偶数,因为x,y可以是奇数,不符合题意;B:当方程x2-2x+a=0有实根时,则有(−2)2−4a≥0⇒a≤1,显然能推出a<2,符合题意;C:因为菱形对角线互相垂直,所以由四边形是菱形能推出四边形的对角线互相垂直,符合题意;D:显然由a=0推出ab=0,所以符合题意,故选:BCD13、已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=∅B.A∩B=BC.A∪B=U D.(∁U B)∪A=A答案:CD分析:采用特值法,可设U={1,2,3,4},A={2,3,4},B={1,2},根据集合之间的基本关系,对选项A,B,C,D逐项进行检验,即可得到结果.令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C,D均正确.14、已知集合P,Q是全集U的两个非空子集,如果P∩Q=Q且P∪Q≠Q,那么下列说法中正确的有()A.∀∈P,有x∈Q B.∃∈P,使得x∉QC.∀∈Q,有x∈P D.∃∈Q,使得x∉P答案:BC分析:根据P∩Q=Q且P∪Q≠Q确定正确选项.由于P,Q是全集U的非空子集,P∩Q=Q且P∪Q≠Q,所以Q是P的真子集,所以∃∈P,使得x∉Q、∀∈Q,有x∈P,即BC选项正确.故选:BC15、已知p,q都是r的充分条件,s是r的必要条件,q是s的必要条件,则()A.p是q的既不充分也不必要条件B.p是s的充分条件C.r是q的必要不充分条件D.s是q的充要条件答案:BD解析:由已知可得p⇒r⇒s⇒q;q⇒r⇒s,然后逐一分析四个选项得答案.解:由已知得:p⇒r⇒s⇒q;q⇒r⇒s.∴p是q的充分条件;p是s的充分条件;r是q的充要条件;s是q的充要条件.∴正确的是B、D.故选:BD.小提示:本题主要考查充分条件与必要条件的概念,属于基础题.16、(多选)下列是“a<0,b<0”的必要条件的是()A.(a+1)2+(b+3)2=0B.a+b<0>0C.a−b<0D.ab答案:BD分析:由a<0,b<0判断各个选项是否成立可得.取a=−2,b=−4,得(a+1)2+(b+3)2=2≠0,故A不是“a<0,b<0”的必要条件;由a<0,b<0,得a+b<0,故B是“a<0,b<0”的必要条件;取a=−2,b=−4,得a−b=−2−(−4)=2>0,故C不是“a<0,b<0”的必要条件;>0,故D是“a<0,b<0”的必要条件.由a<0,b<0,得ab故选:BD.17、下列关系正确的是()A.0∉∅B.∅⊆{0}C.{∅}⊆{0}D.∅{∅}答案:ABD分析:利用元素与集合之间的关系,集合与集合之间的关系判断即可.由空集的定义知:0∉∅,A正确.∅⊆{0},B正确.{∅}⊄{0},C错误.∅{∅},D正确.故选:ABD.18、图中阴影部分用集合符号可以表示为()A.A∩(B∪C)B.A∪(B∩C)C.A∩∁U(B∩C)D.(A∩B)∪(A∩C)答案:AD分析:由图可知,阴影部分是集合B与集合C的并集,再由集合A求交集,或是集A与B的交集并上集合A与C的交集,从而可得答案解:由图可知,阴影部分是集合B与集合C的并集,再由集合A求交集,或是集A与B的交集并上集合A与C 的交集,所以阴影部分用集合符号可以表示为A∩(B∪C)或(A∩B)∪(A∩C),故选:AD19、对于集合A,B,定义A−B={x|x∈A,x∉B},A⊕B=(A−B)∪(B−A).设M={1,2,3,4,5,6},N= {4,5,6,7,8,9,10},则M⊕N中可能含有下列元素().A.5B.6C.7D.8答案:CD分析:根据所给定义求出M−N,N−M,即可求出M⊕N,从而判断即可;解:因为M={1,2,3,4,5,6},N={4,5,6,7,8,9,10},所以M−N={1,2,3},N−M={7,8,9,10},∴M⊕N=(M−N)∪(N−M)={1,2,3,7,8,9,10}.故选:CD20、若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是()A.(−∞,−5)B.(−3,−1]C.(3,+∞)D.[0,3]答案:AB解析:根据假命题的否定为真命题可知∀x∈M,x≤3,又∀x∈M,|x|>x,求出命题成立的条件,求交集即可知M满足的条件.∵∃x∈M,x>3为假命题,∴∀x∈M,x≤3为真命题,可得M⊆(−∞,3],又∀x∈M,|x|>x为真命题,可得M⊆(−∞,0),所以M⊆(−∞,0),故选:AB小提示:本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.填空题21、已知p:2≤x≤10,q:a−1<x<a+1,a∈R,且p是q成立的必要非充分条件,则实数a的取值范围是________.答案:[3,9]分析:根据题意可得(a−1,a+1)[2,10],即可建立不等关系求解. 因为p是q成立的必要非充分条件,所以(a−1,a+1)[2,10],所以{a−1≥2a+1≤10,解得3≤a≤9,所以实数a的取值范围是[3,9].所以答案是:[3,9].22、若命题“∀x∈(3,+∞),x>a”是真命题,则a的取值范围是__________.答案:(−∞,3]分析:根据不等式恒成立求解即可.对于任意x>3,x>a恒成立,即大于3的数恒大于a,∴a⩽3.所以答案是:(−∞,3].23、已知命题p:“∀x≥3,使得2x−1≥m”是真命题,则实数m的最大值是____. 答案:分析:根据任意性的定义,结合不等式的性质进行求解即可.当x≥3时,2x≥6⇒2x−1≥5,因为“∀x≥3,使得2x−1≥m”是真命题,所以m≤5.所以答案是:511。
高一数学集合与常用逻辑用语试题
高一数学集合与常用逻辑用语试题1.已知集合,集合,则集合()A.B.C.D.【答案】B【解析】两集合的公共元素组成的集合,所以【考点】集合的运算2.(12分)已知集合,集合,集合(1)求;(2)若,求实数的取值范围;【答案】(1);(2)【解析】(1)首先求集合和集合,再求两集合;(2)第一步,先解集合,第二步,根据,得,画数轴得到的取值范围.试题解析:解:(1),,(4分)(6分)(2)由,得,即.(12分)【考点】1.集合的运算;2.集合的关系;3.不等式的解法.3.若集合,则()A.B.C.D.【答案】C【解析】由题意,,,故选C。
【考点】集合的运算4.满足条件的集合M的个数为()A.6B.7C.8D.9【答案】B【解析】的非空子集有个,故选B.【考点】集合的关系(子集).5.设,则下列正确的是()A.B.C.D.【答案】C【解析】集合A表示的是奇数集,故选C.【考点】描述法表示集合及元素与集合的关系.6.设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}【答案】D【解析】由A∩B={2}可知集合A,B中都含有2,【考点】集合的交并运算7.已知集合()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5}D.{x|-1<x≤5}【答案】B【解析】集合的并集是由两集合所有的元素构成的集合,因此{x|-1≤x≤5}【考点】集合的并集8.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.【答案】12【解析】设有人既喜爱篮球也喜爱乒乓球,则,解得,所以喜爱篮球运动但不喜爱乒乓球运动的人数为.【考点】集合的运算.9.集合,若,则a+b= .【答案】3【解析】因为,所以,则b=2,所以a+b=3.【考点】交集运算.10.已知集合,集合,若,则实数的取值范围是.【答案】【解析】,由可得【考点】集合的交集运算(A∪B)=()11.(2012秋•白城期末)设集合U={1,2,3,4},A={1,2},B={2,3},则∁UA.{1,2,3} B.{4} C.{2} D.{1,4}【答案】B【解析】利用集合的并集和补集的定义求解.解:∵集合U={1,2,3,4},A={1,2},B={2,3},∴A∪B={1,2,3},C(A∪B)={4}.U故选:B.【考点】交、并、补集的混合运算.12.已知,求的值.【解析】试题分析:根据题意可得,即方程有两个相等实根为2,有韦达定理即可得a,b的值.试题解析:∴方程有两个相等实根为2【考点】1.集合间的关系;2.一元二次方程的根.13.已知函数的定义域为集合,集合,集合,是的真子集,求(1);(2)的值.【答案】(1);(2)1.【解析】(1)明确集合A,C的元素,由交集定义可得;(2)求出集合B,及,由真子集的定义可得的不等式,由是正整数可得结论.试题解析:(1)由题意,,∴.(2),,,∵,∴,又,∴,,∴.【考点】集合的运算,集合的包含关系.14.已知集合A={x|a≤x≤a+4},B={x|x2﹣x﹣6≤0}.B);(1)当a=0时,求A∩B,A∪(∁R(2)若A∪B=B,求实数a的取值范围.B)={x|x<﹣2或x≥0};(2)实数a的范围是{a|﹣【答案】(1)A∩B={x|0≤x≤3},A∪(∁R2≤a≤﹣1}.【解析】(1)求出B中不等式的解集确定出B,把a=0代入确定出A,找出A与B的交集,求出A与B补集的并集即可;(2)根据A与B的并集为B,得到A为B的子集,由A与B确定出a的范围即可.解:(1)由B中不等式变形得:(x﹣3)(x+2)≤0,解得:﹣2≤x≤3,即B={x|﹣2≤x≤3},∴∁B={x|x<﹣2或x>3},R把a=0代入得:A={x|0≤x≤4},B)={x|x<﹣2或x≥0};则A∩B={x|0≤x≤3},A∪(∁R(2)∵A∪B=B,∴A⊆B,则有,解得:﹣2≤a≤﹣1,则实数a的范围是{a|﹣2≤a≤﹣1}.【考点】交、并、补集的混合运算;集合的包含关系判断及应用.15.下列命题正确的是()A.“”是“”的必要不充分条件B.对于命题:,使得,则:,均有C.若为假命题,则,均为假命题D.命题“若,则”的否命题为“若,则”【答案】B【解析】对于A,即或,所以当时,,充分性成立,但当时,不一定成立,故A不正确;对于B,特称命题:,,它的否定:,,可得B正确;对于C,当为假命题时,,中至少有一个为假命题,所以,均为假命题不一定成立,故C不正确;对于D,原命题“若,则”的否命题为“若,则”,则命题“若,则”的否命题为“若,则”,故D不正确.【考点】常用逻辑用语.16.已知集合M={y|y=lgx,0<x<1},N={y|y=()x,x>1},则M∩N=()A.{y|y<0}B.{y|y<}C.{y|0<y<}D.∅【答案】D【解析】求出M中y的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.解:由M中y=lgx,0<x<1,得到y<0,即M=(﹣∞,0),由N中y=()x,x>1,得到0<y<1,即N=(0,1),则M∩N=∅,故选:D.【考点】交集及其运算.17.已知集合B={x|﹣3<x<2},C={y|y=x2+x﹣1,x∈B}(1)求B∩C,B∪C;(2)设函数的定义域为A,且B⊆(∁RA),求实数a的取值范围.【答案】(1),(﹣3,5)(2)[8,+∞)【解析】集合B={x|﹣3<x<2},由于x∈B,可得y=x2+x﹣1=﹣∈,可得C.(1)利用集合的运算性质可得:B∩C,B∪C.(2)函数的定义域为A=,可得∁R A=,利用B⊆(∁RA),即可得出.解:集合B={x|﹣3<x<2},∵x∈B,∴y=x2+x﹣1=﹣∈,∴C=.(1)∴B∩C=,B∪C=(﹣3,5).(2)函数的定义域为A=,∴∁RA=,∵B⊆(∁RA),∴2,解得a≥8.∴实数a的取值范围是[8,+∞).【考点】集合的包含关系判断及应用;并集及其运算;交集及其运算.18.已知集合M={(a,b)|a≤﹣1,且 0<b≤m},其中m∈R.若任意(a,b)∈M,均有alog2b﹣b﹣3a≥0,求实数m的最大值.【答案】2【解析】如图所示,由alog2b﹣b﹣3a≥0,化为:.由于≥﹣m,b≤m时,可得log2m≤3﹣m.结合图形即可得出.解:如图所示,由alog2b﹣b﹣3a≥0,化为:.∵≥﹣m,b≤m时,∴log2m≤3﹣m.当m=2时取等号,∴实数m的最大值为2.【考点】对数的运算性质.19.已知集合,,则()A.B.[0,1]C.[0,3]D.【答案】C【解析】因为由得:,又,所以,故选C.【考点】集合的交集运算.20.已知集合,且,求实数a的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与逻辑用语练习题
1.设集合U ={1,2,3,4,5},集合A ={1,2},则∁U A = ( )
A . {1,2}
B . {3,4,5}
C . {1,2,3,4,5}
D . ∅
2.已知命题p :∀x 1,x 2∈R ,(f(x 2)−f(x 1))(x 2−x 1)≥0,则¬p 是( )
A . ∃x 1,x 2∈R ,(f(x 2)−f(x 1))(x 2−x 1)≤0
B . ∀x 1,x 2∈R ,(f(x 2)−f(x 1))(x 2−x 1)≤0
C . ∃x 1,x 2∈R ,(f(x 2)−f(x 1))(x 2−x 1)<0
D . ∀x 1,x 2∈R ,(f(x 2)−f(x 1))(x 2−x 1)<0
3.已知集合M ={x ∈Z|–1≤x ≤1},N ={x |x 2=x },则M ∪N =
A . {–1}
B . {–1,1}
C . {0,1}
D . {–1,0,1}
4.设集合P ={1,2,3},Q ={x|2≤x ≤3},则下列结论正确的是( )
A . P ⊆Q
B . (P ∩Q)=P
C . (P ∩Q)⊆P
D . (P ∩Q)=Q
5.已知集合A ={0,1,2,3},B ={x |x >0},则A ∩B 等于
A . {0,1,2,3}
B . {1,2,3}
C . [0,+∞)
D . (0,+∞)
6.命题"∀x ∈R,x 3−3x ≤0"的否定为( )
A . “∀x ∈R,x 3−3x >0”
B . “∀x ∈R,x 3−3x ≥0”
C . “∃x 0∈R,x 03−3x 0>0”
D . “∃x 0∈R,x 03−3x 0<0”
7.已知全集U =R,集合A ={x|0<x −1<1},B ={x|2x 2−3x >0},则A ∩B 用区间可表示为( )
A . (0,32)
B . (1,32)
C . (32,2)
D . (−∞,0)∪(32,2)
8.已A . ∃x ∈R,2x +1≥0 B . ∃x ∈R,2x +1>0
C . ∀x ∈R,2x +1≥0
D . ∀x ∈R,2x +1>0
9.设集合A ={2,3,4,5},B ={x | x <3},则A ∩B =
A . {3}
B . {2}
C . {2,3}
D . {1,2,3}
10.已知全集{}0,1,2,3,4,5U =, {}2,4A =, {}0,1,2B =,则如图阴影部分表示的集合为( )
A . {}0,2
B . {}0,1,3
C . {}0,1,4
D . {}0,2,4
11.下列有关命题的说法正确的是( )
A . 命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”
B . “x =−1” 是“x 2−5x −6=0”的必要不充分条件
C . 命题“若x =y ,则sinx =siny ”的逆否命题为真命题
D . 命题“∃x ∈R 使得x 2+x +1<0”的否定是:“∀x ∈R 均有x 2+x +1>0”
二、解答题
12.已知全集U =R,A =[−1,3],B =[−2,2).
(1)求A ∩B,A ∪B ;
(2)求∁U (A ∩B ),∁U (A ∪B ).
13.设集合U =R ,集合A ={x|−2<x +1<3},B ={x|x −1>0}.
(1)求A ∩B ; (2)求A ∪B 及C U A
14.已知全集U ={1,2,3,4,5},其子集A ={1,3},B ={2,5},求: (1)∁U A .
(2)A ∩B .
(3)A ∪B .
(4)(∁U A)∪(∁U B).
15.写出命题“若2320x x -+≠,则1x ≠且2x ≠”的逆命题、否命题、逆否命题,并判断它们的真假.
三、填空题
16.已知全集U =R ,A ={−1,0,1,2},B ={x|x 2=x},则A ∩C U B =_________知特称命题p :∃x ∈R,2x +1≤0,则命题p 的否定是
参考答案
1.B
因为U={1,2,3,4,5,},集合A={1,2}
A={3,4,5}
所以∁
U
故选:B.
2.C
3.D
【详解】
集合M={x∈Z|–1≤x≤1}={–1,0,1},N={x|x2=x}={0,1},
则M∪N={–1,0,1}.故选D.
4.C
【解析】
试题分析:由题意,得,则(P∩Q)⊆P.
5.B
【详解】
∵A={0,1,2,3},B={x|x>0},∴A∩B={1,2,3}.故选B.
6.C
【详解】
因为全称命题的否定是特称命题,
所以,“∀x∈R,x3−3x≤0”的否定为“∃x0∈R,x03−3x0>0”.
7.C
集合A={x|0<x−1<1}={x|1<x<2},B={x|2x2−3x>0}={x|x< }
0或x>3
2
,2),答案选C。
所以A∩B=(3
2
8.D
【详解】
根据题意,p:∃x∈R,2x+1≤0,是特称命题;
结合特称命题的否定是全称命题,
其否定是∀x ∈R ,2x+1>0;
故选:D .
9.B
【详解】
∵A={2,4,5,6},B ={x | x <3}
∴A ∩B={2},
故选:B .
10.C
【解析】如图,阴影部分表示集合为(){}0,1,4A B C A B ⋃⋂=,故选C 。
11.C
【解析】
命题“若x 2=1,则x =1”的否命题为:“若x 2≠1,则x ≠1”,所以该选项错误; “x =−1” 是“x 2−5x −6=0”的充分不必要条件,所以该选项错误; 命题“若x =y ,则sinx =siny ”的逆否命题为真命题,因为原命题是真命题,所以该选
项正确;
命题“∃x ∈R 使得x 2+x +1<0”的否定是:“∀x ∈R 均有x 2+x +1≥0”,所以该选
项错误.
故答案为:C
12.
【详解】
(1)A ∩B =[-1,3]∩[-2,2)=[-1,2),
A ∪
B =[-1,3]∪[-2,2)=[-2,3];
(2)∁U (A ∩B )=(-∞,-1)∪[2,+∞),
∁U (A ∪B ) =(-∞,-2)∪(3,+∞).
13.(1)A ∩B ={x|1<x <2}
(2)∁U A ={x|x ≥2或x ≤−3}
【详解】
(1)由题意知A ={x|−3<x <2},B ={x|x >1} ∴A ∩B ={x|1<x <2}
(2)A ∪B ={x|x >−3},∁U A ={x|x ≥2或x ≤−3} 14.
【详解】
(1)∵U ={1,2,3,4,5},A ={1,3},
∴∁U A ={2,4,5}.
(2)∵A ={1,3},B ={2,5},
∴A ∩B =∅.
(3)∵ A ={1,3},B ={2,5},
∴A ∪B ={1,2,3,5}.
(4)由题意得∁U A ={2,4,5},∁U B ={1,3,4}, ∴(∁U A)∪(∁U B)={1,2,3,4,5}.
15.
试题解析:∵原命题是“若2320x x -+≠,则1x ≠且2x ≠”, ∴它的逆命题是:若1x ≠且2x ≠,则2320x x -+≠,是真命题; 否命题是:若2320x x -+=,则1x =或2x =,是真命题; 逆否命题是:若1x =或2x =,则2320x x -+=,是真命题. 16.
由题意得B ={x|x 2=x }={0,1},
∴C U B =(−∞,0)∪(0,1)∪(1,+∞),
∴A ∩C U B ={−1,2}.
故答案为{−1,2}.。