北师大版八年级数学下《认识分式》第2课时教案2
数学北师大版八年级下册5.1认识分式 第2课时教学设计
5.1认识分式 第2课时教学设计 教学目标知识与技能1.能正确理解和运用分式的基本性质.2.能解决一些与分式有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.4.增强学生的代数推理能力与应用意识.过程与方法通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 情感态度与价值观通过运用分式的基本性质对分式进行变形,获得分式变形的基本方法,体验学习的乐趣. 重点、难点【重点】 理解分式的基本性质,会进行分式的化简.【难点】 灵活应用分式的基本性质将分式变形.教学准备【教师准备】 预设学生学习过程中容易出错的地方.【学生准备】 复习分数的基本性质.教学过程新课导入:2163 的依据是什么? 这个问题同学们会很快说出答案,依据就是分数的基本性质,那么分式是否具有和分数一样的性质呢?[设计意图] 提示学生运用类比的思想进行本课时的学习,为学生提供本课时学习方法方面的指导.新知构建一、分式的基本性质[过渡语] 下面我们来看看分式是否具有与分数类似的性质.请看下面的问题.(1)填空:==;==.(2)你认为a a 2与21相等吗?m n 2n 与mn 呢? 学生独立思考第(1)题,根据分数的基本性质,的分子分母同乘4,可得,的分子分母同时除以2,可得,小组讨论类比第(1)题解决第(2)题.类比分数的基本性质,你能猜想出分式的基本性质吗?学生尝试归纳,相互补充,总结得出分式的基本性质.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:这一性质可以用式子表示为:=,=(m ≠0).教师强调:a,b,m 均为整式,m ≠0.引导学生分析分数的基本性质与分式的基本性质的区别:在分数的基本性质中,“数”是一个具体的、唯一的确定值,在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.[设计意图] 一方面提高学生对分式的基本性质的认识,另一方面通过师生归纳,进一步加深对分式基本性质的理解.二、例题讲解[过渡语] 利用分式的基本性质只是改变分式的形式,不改变分式的值.请看下面的例题. (教材例2)下列等式的右边是怎样从左边得到的?(1)=(y ≠0); (2)=.处理方式:引导学生观察等式的左边和右边各发生了什么变化,讨论解题思路.〔解析〕 (1)的分母2x 乘y 才能化为2xy,为保证分式的值不变,根据分式的基本性质,分子b 也要乘y,才能得到.(2)的分子ax 除以x 得到a,所以分母bx 也需要除以x 得到b.在这里,由于已知,所以x≠0.解:(1)因为y≠0,所以==.(2)因为x≠0,所以==.(教材例3)化简下列分式:(1);(2).处理方式:引导学生观察分式的分子和分母是否有公因式,利用分式的基本性质,对分式进行化简.〔解析〕(1)的分子和分母均有因式ab,所以根据分式的基本性质,可以同时除以ab,则分式可化为ac.(2)对于分式,先对分子和分母进行因式分解,x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,发现分子分母有公因式x-1,由分式的基本性质可化简.解:(1)==ac.(2)==.总结:像上面的例3,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.[知识拓展] 1.从已知的两个分子或分母的比较中,找到分式变形的依据,再运用分式的基本性质求未知,是解决这类题的方法.2.应用分式的基本性质对分式进行变形需要注意的问题:(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘或除以的必须是同一个整式;(3)所乘或除以的整式的值应该不等于零.三、做一做化简下列分式:(1);(2).〔解析〕根据分式的基本性质进行化简.解:(1)==.(2)==.四、议一议在化简时,小颖和小明出现了分歧,小颖认为=,而小明认为==,你对他们两人的做法有何看法?与同伴交流.解:在小明的化简结果中,分子和分母已没有公因式,这样的分式称为最简分式.小明的做法正确.[知识拓展]化简分式时,通常要使结果成为最简分式或整式.约分是应用分式的基本性质把分式的分子、分母同时除以同一个整式,使分式的值不变,所以要找准分子和分母的公因式,约分的结果要是最简分式或整式.[设计意图]通过做一做和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正.五、想一想(1)与有什么关系?(2),与-有什么关系?解:(1)的分子分母都乘-1与相等.(2)同样的道理,与-相等.与-相等.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.[设计意图]通过想一想的设计,让学生掌握分式的符号法则.检测反馈1.若将分式(a,b均为正数)中的字母a,b的值分别扩大为原来的2倍,则分式的值()A.扩大为原来的2倍B.缩小为原来的C.不改变D.缩小为原来的解析:此分式中的字母分别扩大为原来的2倍,则分式的分子扩大为原来的2倍,分式的分母扩大为原来的4倍,所以分式的值缩小为原来的.故选B.2.填写下列等式中未知的分子或分母.(1)=;(2)=;(3)=(b≠0).解析:(1)先观察分子,等式左边分式的分子是x+y,而等式右边分式的分子为x2-y2,由于(x+y)·(x-y)=x2-y2,即将等式左边分式的分子乘x-y可得到等式右边分式的分子,因而等式左边分式的分母也要乘x-y,所以应填(x-y)2.(2)先观察分母,等式左边分式的分母为(a-c)(a-b)(b-c),等式右边分式的分母为a-c,根据分式的基本性质,应将等式左边分式的分子、分母同时除以(a-b)·(b-c),因为(b-a)(c-b)÷[(a-b)(b-c)]=1,所以应填1.(3)先观察分母,等式左边分式的分母为a,等式右边分式的分母为ab,根据分式的基本性质,应将等式左边分式的分子、分母同时乘b,因此应填b2-ab.答案:(1)(x-y)2(2)1(3)b2-ab3.下列从左到右的变形是否正确?(1)=; (2)=;(3)=; (4)=.解析:此类题主要考查分式的基本性质.对于,条件中隐含a≠0,分子、分母同时乘a,可得=成立,因此(1)正确;分子、分母同时加上c,只有当c=0时成立,其余条件下不一定成立,因此(2)错误;当c=0时,=不成立,因此(3)错误;在=中,隐含c≠0,分子、分母同时除以c,式子成立,因此(4)正确.解:(1)(4)正确,(2)(3)不正确.4.不改变分式的值,将式子的分子与分母的系数化为整数.解析:利用分式的基本性质,分子与分母同时乘6即可.解:==.5.不改变分式的值,使下列分式的分子、分母都不含负号.(1); (2)-.解析:根据分式的符号法则,(1)可同时改变分子和分式本身的符号;(2)可同时改变分式本身和分母的符号.解:(1)=-.(2)-=.课堂小结1.分式的基本性质:=,=(m≠0).(1)分式的基本性质的作用:分式进行变形的依据.(2)在运用分式的基本性质时,必须注意分式的分子分母同时乘或除以的是同一个整式,且不为0.(3)分式的基本性质的研究方法:从分数类比到分式,从特殊到一般.2.分子和分母已没有公因式的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式.3.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.布置作业【必做题】教材第112页随堂练习的1,2题.【选做题】教材第113页习题5.2的3,4题.教学反思成功之处从相等分数的变形依据:分数的基本性质作为复习引入,类比到相等分式的变形依据,归纳概括出分式的基本性质.对分数的基本性质和分式的基本性质做了对比研究,实现了从“数”到“式”的提升.找公因式是分式约分的关键,设计一些找公因式的练习作为铺垫,这样学生可能对分式的约分掌握得更好.不足之处在让学生小组讨论之前应给学生一定的时间独立思考,不要让一些思维活跃的同学的回答代替了其他学生的思考,从而掩盖了其他学生的疑问和错误.教师应对学生的讨论给予引导,对学习有困难的学生给予及时的帮助,使小组合作学习更具实效性.再教设计在分式的约分教学中,要及时发现学生的错误,并当作错误例题进行全班范围的分析,找出原因,让其他学生也认识到这种错误,不能只是改正答案.。
《认识分式》第2课时示范公开课教案【八年级数学下册北师大版】
《认识分式》教学设计第2课时教学目标1 .让学生初步掌握分式的基本性质.2 .掌握分式约分方法,熟练进行约分.3.了解什么是最简分式,能将分式化为最简分式.4.通过研究解决问题的过程,培养学生合作交流意识与探究精神,形成勤奋学习的良好习惯.二、教学重难点重点:掌握分式的基本性质.难点:掌握分式约分方法,熟练进行约分.三、教学用具电脑、多媒体、课件四、教学过程设计你认为分式2a a 与12相等吗?2n mn 与nm呢?类比分数的基本性质,你能猜想分式有什么性质吗? 【归纳】分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变. 式子表示:b b m =a a m ⋅⋅,÷÷b b m =a a m(m ≠0),其中a ,b ,m 是整式.教师活动:强调1. 分子,分母同乘(除以)同一个数式. 2.乘(除以)对象为非零整式. 做一做:教师活动:给出分析(解决分式的恒等变形有关的题目,一般从分子或分母的已知部分入手,先观察等号两边的分子(或分母)发生了怎样的变化,再通过对分母(或分子)作相同的变形求解). 填空:(1)2()a b ab a b=-;(2)22()x xy x y x ++=; (3)2()()x y x yx y =++-;(4)22()()m n m n m n m n=≠+--. 分析:解决分式的恒等变形有关的题目,一般从分子或分母的已知部分入手,先观察等号两边的分子(或分母)发生了怎样的变化,再通过对分母(或分子)作相同的变形求解. 预设答案:回顾:教师活动:引领学生们复习分数的约分,并与学生一起得出问题答案,且详细过程展示在PPT 上. 给下列分数约分.分数的约分:把一个分数的分子、分母同时除以公因数,分数的值保持不变,这个过程叫做分数的约分.根据分式的基本性质填空.【思考】教师活动:安排俩人一组讨论,并请同学展示讨论结果,强调要找分子、分母的公因式. 思考:联想分数的约分,根据分式的基本性质,你能想出如何对下列分式进行约分吗?3xxy 22336x xy x + 答案:3x xy 2=x xyx ⋅⋅2=x x x x x y ÷⋅⋅÷2=x y 22336x xy x +()=323x y x x x ⋅+⋅()=33233x x x x y x x ⋅+⋅÷÷=2x y x +【归纳】教师活动:给出结论,并分别给出例子,强调要找到分子、分母的公因式.把一个分式的分子与分母的公因式约去,这种变形叫做分式的约分. 举例:3x xy 2=x x yx ⋅⋅2=x x x x x y ÷⋅⋅÷2=x y 22336x xy x +()=323x y x x x ⋅+⋅()=33233x x x x y x x ⋅+⋅÷÷=2x y x +一起探究:在对分式2520xyx y进行约分时,小颖和小明出现了分歧.谁做得对呢?预设答案:小颖的分式化简完后,分式的分子和分母还存在公因式x ,小明的分式化简完之后,分子和分母不存在公因式. 归纳 最简分式:分子与分母没有公因式的分式,叫做最简分式. 教师活动:判断分式哪些不是最简分式.2x y , 2x y x +, 22x y x y ++, 22a a b b --, 2.2x x x- 不是最简分式的是:22a ab b --,2.2xx x- 【归纳】分式的约分的一般方法:(1)若分式的分子、分母都是单项式,就直接约去分子、分母的公因式,即分子、分母系数的最大公约数和分子、分母中的相同字母的最低次幂的乘积,使所得结果成为最简分式或者整式. (2)若分式的分子或分母含有多项式,应先分解的取值范围,因此在确定分式中字母的范围时,不能进行约分.举例:2336x xyx+中x 的取值范围是_____.错误解法:2336x xx+ ()1=233x x x ⋅+⋅ 1=2x +. x 为任意实数.正确解法:2336x xx+中6x ≠0,即x ≠0.(2)分式的约分,一般要约去分子和分母的所有的公因式,使所得结果成为最简分式或者整式. 举例:3x x 2=x xx⋅ 2=x (整式) 22336x xy x+ ()=323x y x x x ⋅+⋅ =2x y x + (最简分式)【想一想】 (1)x y --与xy有什么关系? (2)x y -,x y -与x y-有什么关系? 例如:不改变分式的值,使下列分式的分子分母都不含“–”号. (1)37a b --; (2) 3y x-; (3) 25mn -.【归纳】 分式的符号法则分式的分子、分母与分式本身这三处的正负号,同时改变两处,分式的值不变. 式子表示:22b b ---【典型例题】 【例1】下列等式的右边是怎样从左边得到的? (1)()02 2by b x y xy =≠;(2) ax bx ab=.解:(1)因为0y ≠,所以222b b byx x yy x y ==; (2)因为0x ≠,所以÷÷bx ax a bx b x a ==. 分析:在式子(2)中,因为左边的分式中,分母包含了x ,因此隐含了0x ≠这一条件,需要注意.【例2】化简下列分式: (1)2a bc ab ;(2)22121x x x --+.【随堂练习】。
北师大版八年级下册数学《认识分式》分式与分式方程教学说课(第2课时)
活动探究
问题2:化简下列分式:
1
a2bc ab
解:a2bc ab
= ab ac ab
=ac
2
x2 -1 x2 -2x+1
解: x2 -1 x2 -2x+1
= x+1 x-1 x-12
= x+1 x-1
约分:把分式的分子和分母的公因式约去,这种变形叫做约分.
活动探究
探究点三 问题1:在约分时,小颖和小明出现了分歧.你对他们两人的做法有什么看法?
的值( B )
A.扩大两倍
B.不变
C.缩小两倍
D.缩小四倍
4.若把分式
xy x y
中的x 和y 都扩大3倍,那么分
式
A
的A.值扩( 大3).倍 B.扩大9倍
C.扩大4倍 D.不变
5.下列各分式,哪些是最简分式?哪些不是最简分式?
1
m2 2m 1 m2
1
;
2
a b
b2 a4
;
3
x2
y2
y2
;
4
分析:约分时,分子或分母若是多项式,能分解
则必须先进行因式分解.再找出分子和分母的
公因式进行约分.
解:(2)x2
x2
9 6x
9
(x
3)(x (x 3)2
3)
x 3. x3
做一做
约分:(1)a2bc ; ab
解:(1)a2bc ab ac ac.
ab
ab
(2) x2 1 . x2 2x 1
分数的分子与分母同时乘以(或除以)一个 不等于零的数,分数的值不变.
讲授新课
✓ 典例精讲 ✓ 归纳总结
讲授新 课分式的基本性质
北师大版八年级数学下册第五章分式与分式方程5.1认识分式第2课时分式的基本性质及约分(教案)
难点举例:对于分式$\frac{4x^2 + 4x}{2x^2 + 2x}$,学生应先分解为$\frac{4x(x + 1)}{2x(x + 1)}$,然后约去公因式$(x + 1)$和$2$,得到最简分式$\frac{2}{1}$。
2.教学难点
(1)分式基本性质的深度理解:学生需要理解为什么分式的分子、分母同乘(或除以)一个不等于0的整式,分式的值不变。这个性质背后的数学原理需要通过实例和图形进行直观演示,帮助学生深入理解。
难点举例:解释当分式$\frac{2x}{3y}$的分子分母同时乘以不同的整式(如2x和3y)时,分式的值仍然保持不变的原因。
(2)识别并约去复杂的公因式:在分式的约分过程中,学生可能会遇到难以识别的复杂公因式,尤其是当分子分母包含多项式时。教师需要指导学生如何分解多项式,找出公因式。
难点举例:面对分式$\frac{3x^3 - 6x^2}{9x^2 - 6x}$,学生需要学会先将分子和分母分解为$3x^2(x - 2)$和$3x(3x - 2)$,再约去公因式$3x$。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本性质、约分的技巧及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
5.1 认识分式(第2课时)北师大版数学八年级下册教案
5.1认识分式(第2课时 分式的基本性质)教学目标1.类比分数的基本性质,得到分式的基本性质.2.会运用分式的基本性质进行约分,知道分式的定义,会将分式化到最简.教学重点难点重点:理解分式的基本性质,会进行分式的化简.难点:灵活应用分式的基本性质将分式变形.教学过程新课导入【问题】1.48=12=36吗?你的判断依据是什么?从左到右依次是怎样变化来的?谁是最简的分数?2.类比分数,你认为分式12a 与12相等吗?由此,你能推想出分式的基本性质吗?探究新知【总结】(小组讨论,老师引导)分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.【总结】(学生回答,老师点拨)含有分母,且分母中含有字母.【思考】(激发学生兴趣)你能用式子表示出分式的基本性质吗?找出你认为关键的字词,把你的理解说给同位听.这一性质可以用式子表示为:b a =,b a =(m ≠0).【探究】例1:下列等式的右边是怎样从左边得到的?(1)=(y ≠0); (2)=.解:(1)因为y ≠0,所以==.(2)因为x ≠0,所以==.【思考】(学生回答,老师点拨)在第(2)小题中为什么说x ≠0呢?因为x =0原分式无意义.【练习】(学生独立完成)1.下列变形正确的是() A. B.C. D.2.填空:=.【例2】(小组讨论,老师指导)化简下列各式:(1); (2).解:(1)==ac.(2)==.【探究】(合作探究,解决问题)结合例2和分数的约分,你能说说什么是分式的约分吗?根据分式的基本性质,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.注意:约分的关键是确定分子与分母的公因式.【活动】(学生独立完成)约分:(1); (2)-32a3b2c 24a2b3d.解:(1)公因式为abc,所以=a.(2)公因式为8a2b2,所以-=-.【探究】(小组讨论)在化简时,小明和小颖就出现了分歧:你对他们两人的做法有何看法?与同伴交流.小明的结果中分子和分母没有了公因式,比较合适.【总结】当分式的分子和分母没有公因式时,这样的分式称为最简分式.注意:化简分式时,通常要使结果成为最简分式或整式.【探究】(小组讨论,探究结论)(1)与有什么关系?与有什么关系?(2)与-有什么关系?与-有什么关系?【总结】分式的分子、分母及分式的本身,任意改变其中的两个符号,分式的值不变;若只改变其中的一个或三个全变号,则分式的值变成原分式值的相反数.这也成为分式的符号法则。
新北师大版八年级下册数学 《认识分式(2)》教案
第五章 分式与分式方程1.认识分式(二)一、学生知识状况分析学生的技能基础:学生在上节课了解了分式的概念,在小学学过分数的基本性质,所以可类比分数的基本性质来学习分式的基本性质,在上节课已初步掌握了类比的学习方法,在前几章中还学习了分解因式,这些都为本节课的学习奠定基础.学生活动经验基础:在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.二、教学任务分析本节课的学习任务是让学生掌握分式的基本性质和分式的约分,这也是本节课的重点。
在学习分式的基本性质时,可类比分数的基本性质来学习,要引导学生用类比的方法,通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力。
本节课的教学目标为:1.理解分式的基本性质并能利用性质进行分式的约分;2.通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力;3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.三、教学过程分析本节课设计了五个环节:知识准备——情景引入——例题讲解——课堂反馈——课堂小结。
第一环节 知识准备活动内容:复习分数的基本性质. 问题:2163 的依据是什么? 活动目的:通过分数的约分复习分数的基本性质,通过类比来学习分式的基本性质. 注意事项:学生对于分数的基本性质掌握较好,基本能说出分数的分子分母同时乘以或除以同一个不为零的数,分数的值不变。
第二环节 情景引入活动内容:通过对上题的回答,来回答本题,寻求两者之间的联系.与同伴讨论交流,从而归纳出分式的基本性质.问题:你认为分式a a 63与21相等吗?m n m 2与mn 呢? 活动目的:让学生通过观察,类比,推理出分式的基本性质,并让学生明白类比的理由是字母可以表示任何数.注意事项:通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.第三环节 例题讲解活动内容:例1、下列等式的右边是怎样从左边得到的?(1))0(22≠=y xyby x b (2)b a bx ax = 例2、化简下列分式:(1)ab c ab 2 (2)12122+--x x x 活动目的:通过例1加深学生对分式的基本性质的理解和应用.例2让学生了解把一个分式的分子和分母的公因式约去,这种变形称为分式的约分,分子和分母已没有公因式,这样的分式称为最简分式.引导学生找出他们的公因式,并学会利用分式的基本性质进行约分,使结果为最简分式或整式.注意事项:有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式.有些学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底. 实际教学例1 下列等式的右边是怎样从左边得到的?(1))0(22≠=y xyby x b (2)b a bx ax = 第四环节 课堂反馈活动内容做一做1.填空(1)()()()y x y x y x x +-=-________2 (2)()_______1422=-+y y 2.化简(1)yx xy 2205 (2))()(b a b b a a ++ 议一议 在y x xy 2205时,米仓和阿呆出现了分歧,米仓认为y x xy 2205=2205x x ,而阿呆认为y x xy 2205=xxy x xy 41545=∙,你对他们的做法有何看法?与同伴交流. 活动目的:通过做一做,和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正.注意事项:在教学中让学生将约分的步骤分为这样几步,首先将找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式.最后看看结果是否为最简分式或整式. 第五环节 课堂小结活动内容和目的:通过问题的形式让学生自己总结出这节课的主要内容,谈谈在学习过程中有哪些困难和新发现.1、这节课你有哪些收获?注意事项:在小结时学生能总结出本节课的重点是分式的基本性质,利用它可将分式化简,教师还可引导学生归纳出分式约分的步骤一是确定分子和分母的公因式,二是利用分式的基本性质,将分子和分母的整体都除以公因式。
八年级数学下册51认识分式第2课时学案北师大版
认识分式课题:第五章分式与分式方程第1节认识分式(第2课时)学习目标1、熟练掌握分式的基本性质和最简分式的概念。
2、利用分式的基本性质对分式进行恒等变形。
3、了解分式约分的步骤和依据,掌握分式约分的方法。
重点1、分式的基本性质2、利用分式的基本性质约分,将一个分式化简为最简分式。
难点利用分式的基本性质对分式进行约分。
教学流程学校年级组二备教师课前备课自主学习,尝试解决一、预习析知:1、分数的基本性质:分数的分子与分母都,分数的值不变。
表示为:mambab••=,)0(≠÷÷=mmambab2、分式基本性质:(1)2163=的依据是什么?答:(2)你认为2aa21与相等吗?mnn2与mn呢?为什么?解:因为0≠a,aa⨯⨯=2121= 。
所以2aa21与(填“相等”或“不相等”)。
因为0≠n,=÷÷=nmnnnmnn22。
所以mnn2与mn(填“相等”或“不相等”)。
(3)分式的基本性质:分式的和都同时乘以(或除以)同.一个不等于零的整式.........,分式的值不变。
用字母表示为:,mambab••=,mambab÷÷=(m是整式,且m≠0)。
3.叫做约分.4.叫做最简分式.5、想一想:(1).yx--与yx有什么关系?(2).yx-,yx-与yx-有什么关系?二、预习检测:1、填空:()aba =1, ()162=a a , ()bc ab =, ()y x xyxy x +=+2。
2.下列等式不正确的是( )A.x x y y-=- B. x x y y -=- C.x x y y -=- D. x x y y -=-- 3.根据分式的基本性质,分式a ab --可变形为( ) A .a a b -- B .a a b+ C .-a a b - D .a a b+ 4.下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y-- 合作学习,信息交流 三、探究提升: 1、化简下列各式:(1)532164xyz yz x - (2)x x x 3222+ (3)96922++-x x x (4)y x y xy x 33612622-+- 2、不改变分式的值,使下列分式的分子与分母都不含负号:(1)a b 2- (2)dabc -- (3)q p 43-- 3、化简下列各式:(1)11--a a (2)44--+m m (3)2224x x x -- (4)2)2(2m m m -- (5)xy y x --3)(2 4、化简求值:1222+--m m m m ,其中m=3。
北师大版 八年级下册第五章分式与分式方程5.1认识分式(第2课时)教案设计
5.1 认识分式(第2课时 分式的基本性质)教学目标1.类比分数的基本性质,得到分式的基本性质.2.会运用分式的基本性质进行约分,知道分式的定义,会将分式化到最简. 教学重点理解分式的基本性质,会进行分式的化简.教学难点灵活应用分式的基本性质将分式变形.课时安排1课时教学过程新课导入【问题】1.48=12=36吗?你的判断依据是什么?从左到右依次是怎样变化来的?谁是最简的分数?2.类比分数,你认为分式12a 与12相等吗?由此,你能推想出分式的基本性质吗?探究新知【总结】(小组讨论,老师引导)分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.【总结】(学生回答,老师点拨)含有分母,且分母中含有字母.【思考】(激发学生兴趣)你能用式子表示出分式的基本性质吗?找出你认为关键的字词,把你的理解说给同位听.这一性质可以用式子表示为:b a =b m a m ·· ,b a =b m a m÷÷(m ≠0). 【探究】例1:下列等式的右边是怎样从左边得到的?(1)2b x =2by xy (y ≠0); (2)ax bx =a b .解:(1)因为y ≠0,所以2b x =2b y x y ·· =2by xy . (2)因为x ≠0,所以ax bx =ax x bx x÷÷=a b . 【思考】(学生回答,老师点拨)在第(2)小题中为什么说x ≠0呢? 因为x =0原分式无意义.【练习】(学生独立完成) 1.下列变形正确的是( ) A.22x x y y +=+ B.33a ab b -=- C.(2)(2)x x x y y y -=- D.22(0)a a b a b ab=≠2.填空:2x x y -=()()()x y x y -+. 【例2】(小组讨论,老师指导)化简下列各式:(1)2a bc ab; (2)22121x x x --+ . 解:(1)2a bc ab =ab ac ab· =ac. (2)22121x x x --+=2(1)(1)(1)x x x +--=11x x +-. 【探究】(合作探究,解决问题)结合例2和分数的约分,你能说说什么是分式的约分吗?根据分式的基本性质,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.注意:约分的关键是确定分子与分母的公因式.【活动】(学生独立完成)约分: (1)2a bc abc ; (2)-32a 3b 2c 24a 2b 3d .解:(1)公因式为abc ,所以2a bc abc=a . (2)公因式为8a 2b 2,所以- 32233224a b c a b d =-43ac bd . 【探究】(小组讨论)在化简2520xy x y时,小明和小颖就出现了分歧:你对他们两人的做法有何看法?与同伴交流.小明的结果中分子和分母没有了公因式,比较合适.【总结】当分式的分子和分母没有公因式时,这样的分式称为最简分式. 注意:化简分式时,通常要使结果成为最简分式或整式.【探究】(小组讨论,探究结论)(1)x y -与x y -有什么关系?x y --与x y有什么关系? (2)x y -与-x y 有什么关系?x y -与-x y 有什么关系? 【总结】分式的分子、分母及分式的本身,任意改变其中的两个符号,分式的值不变;若只改变其中的一个或三个全变号,则分式的值变成原分式值的相反数.这也成为分式的符号法则。
认识分式 第二课时(教案)
北师大版数学八年级下册5.1.2认识分式教学设计同伴交流。
分式a a 2与21相等,在分式a a 2中,a ≠0,所以a a 2=a a a a ÷÷2=21;分式mn n 2与m n 也是相等的。
在分式mn n 2中,n ≠0,所以mn n 2=n mn n n ÷÷2=m n。
例2 下列等式的右边是怎样从左边得到的?(1)x b 2=xy by 2(y ≠0);(2)bx ax =b a小结:应用分式的基本性质时,一定要确定分式在有意义的情况下才能应用.应用时要注意是否符合两个“同”:一是要同时作“乘法”或“除法”运算;二是“乘(或除以)”的对象必须是同一个不等于0的整式.例3 化简下列各式:(1)ab bc a 2;(2)12122+--x x x 。
活动探究二:观察与思考,回答下面的问题。
(小组讨论,3min )1、约分的依据是什么?2、当分子、分母是多项式时,约分时应先怎样?把一个分式的分子和分母的公因式约去,这种变形我们称为分式的约分。
约分的基本步骤:(1)若分子﹑分母都是单项式,则约简系数,并同学们可以注意到(1)中的分式,分子、分母都是单项式,把公有的因式分离出来,然后利用分式的基本性质,把公因式约去即可,这样的公因式如何分离出来呢?同学们可小组讨论。
利用分数的基本性质可以对分数进行化简。
利用分式的基本性质也可以对分式化简。
化简一个分数,首先找到分子、分母的最大公因数,然后利用分数的基本性质就可将分数化简。
让学生明白,约分过程中,有时还需运用分式的符号法则使最后结果形式简捷;约分的依据是分式的基本性质。
(1)y x xy 2205; [师]在刚才化简第(1)题中的分式时,一位同学这样做的议一议 在化简y x xy2205时,小颖是这样做的:y x xy 2205=2205x x;小明是这样做的:y x xy 2205=你对他们两人的做法有何看法?与同伴交流。
认识分式(2
“认识分式(2)”教学设计
设计者:深圳市红桂中学范怡静老师
一、学生学习情况分析
学生的知识基础:小学时学生已经学习分数的概念及利用分数的基本性质进行分数的化简等。
并且学生在第一课时已经学习了分式分基本概念,同时在第四章学习了如何因式分解,为化简复杂分式储备了必要知识。
学生的基本技能:学生能够辨认哪些代数式是分式,也能够较为熟练地进行分数的约分化简,能够对代数式进行正确的因式分解。
学生的基本活动经验:本课之前通过类比分数学习了分式的概念,同学们已经具备了一定的观察、归纳、类比、猜想的能力。
并且积累了一定的探究学习的经验,具有自主探究的能力。
二、教学任务分析
本节课的学习任务是让学生掌握分式的基本性质和分式的约分,这也是本节课的重点。
在学习分式的的基本性质时,可类比分数的基本性质来学习,要引导学生用类比的方法,通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力。
根据学习内容将本节课的教学目标定为一下四点:
1.利用类比分数的基本性质得到分式的基本性质,引导学生感受类比的数学思想方法;
2.理解分式的基本性质并能利用性质进行分式的约分;
3.通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力;
4.经历类比、归纳、应用的过程,积累探究代数方面性质的数学活动经验,培养学生的严谨思维。
三、,教学过程分析。
5.1 认识分式(第2课时)教案-北师大版数学八下
5.1 认识分式第2课时 分式的基本性质1.理解并掌握分式的基本性质和符号法则;(难点)2.理解分式的约分、通分的意义,明确分式约分的理论依据;(重点)3.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】利用分式的基本性质对分式进行变形)A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b 2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x.故选C. 方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ; (2)原式=-5y 7x 2; (3)原式=-a +2b 2a +b. 方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:约分及最简分式【类型一】判定分式是否为最简分式下列分式是最简分式的是( )A.2a 2+a abB.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xy x 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c=-a 25c ; (2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变. 2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
八年级数学下册《分式》教案北师大版
八年级数学下册《分式》教案北师大版一、教学目标:知识与技能:1. 理解分式的概念,掌握分式的基本性质和运算法则。
2. 能够进行分式的化简、运算和应用。
过程与方法:1. 通过具体例子,培养学生的观察、分析和解决问题的能力。
2. 运用小组合作、讨论等教学方法,提高学生的合作意识和沟通能力。
情感态度与价值观:1. 培养学生对数学学科的兴趣和自信心。
2. 培养学生的耐心和细心,提高学生解决问题的能力。
二、教学内容:第一课时:分式的概念与基本性质1. 引入分式的概念,讲解分式的组成部分:分子、分母和分数线。
2. 讲解分式的基本性质,如分式的正负性、分式的相等性等。
第二课时:分式的运算(一)1. 讲解分式的加减法运算规则,如通分、约分等。
2. 进行分式的加减法练习,让学生掌握运算方法。
第三课时:分式的运算(二)1. 讲解分式的乘除法运算规则,如交叉相乘、分解因式等。
2. 进行分式的乘除法练习,让学生掌握运算方法。
第四课时:分式的应用1. 通过实际问题,讲解分式的应用,如比例问题、浓度问题等。
2. 让学生进行分式应用的练习,提高学生解决问题的能力。
第五课时:分式的化简1. 讲解分式的化简方法,如分解因式、约分等。
2. 进行分式的化简练习,让学生掌握化简技巧。
三、教学重点与难点:重点:分式的概念、基本性质和运算法则。
难点:分式的化简和应用问题解决。
四、教学方法:采用问题驱动法、案例教学法和小组合作法。
通过具体例子引导学生观察、分析和解决问题,运用小组合作和讨论的方式,提高学生的合作意识和沟通能力。
五、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和理解程度。
2. 练习作业评价:对学生的练习作业进行批改,评价学生的掌握程度和应用能力。
3. 小组合作评价:评价学生在小组合作中的表现,如合作意识、沟通能力和解决问题的能力。
八年级数学下册《分式》教案北师大版六、教学内容:第六课时:分式的混合运算1. 讲解分式的混合运算规则,如先乘除后加减、同级运算从左到右进行等。
北师大版初中数学八年级下册5.1 认识分式(第2课时) 课件
5.1 认识分式/
想一想
(1)
3 与
5
3 有什么关系?那么
5
x y
与
x y
有什么关系?
(2)
3 , 3 与 3 有什么关系?
5 5
5
那么 x , x 与 x 有什么关系?
y y
y
结论 分式的分子、分母及分式的本身,任意改变其中的两个
符号,分式的值不变;若只改变其中的一个或三个全变号,则
分式的值变成原分式值的相反数.
3x 2y
式的值( A )
A.扩大为原来的5倍 C.不变
B.扩大为原来的10倍 D.缩小为原来的 1
5
巩固练习
5.1 认识分式/
变式训练
下列变形正确的是( D )
A.
x y
x2 y2
B.
a b
a3 b3
C. x x(x 2)
y y( y 2)
D.
a a2b
(a 0)
b ab2
探究新知
结论 分式的基本性质:
分式的分子与分母都乘(或除以)同一个不等于零
的整式,分式的值不变.
上述性质可以用式子表示为:
A A C , A A C(C 0). B BC B BC
其中A,B,C是整式. 想一想: 运用分式的基本性质应注意什么?
(1)“都” (2) “同一个” (3) “不为0”
探究新知
x2
2
D.
xa b yb a
x y
课堂检测
5.1 认识分式/
基础巩固题
2.已知
x y
3,则 x 2 x
y1
y =___5___.
1
3.分式 3 x 可变形为( D )
北师大版八年级下册《认识分式》教学设计
北师大版八年级下册《认识分式》教学设计北师大版八年级下册《认识分式》教学设计作为一位杰出的老师,通常会被要求编写教学设计,借助教学设计可以提高教学效率和教学质量。
那么你有了解过教学设计吗?下面是小编整理的北师大版八年级下册《认识分式》教学设计,仅供参考,大家一起来看看吧。
一、教材分析本节课是北师大版八年级下册第五章《分式与分式方程》的内容,共两课时。
本设计是第一课时。
本节课是分式的起始课,是学生学习了整式、因式分解基础上进行的的,是下一步学习分式的性质、分式的运算以及分式方程的前提,所以分式的概念及分式在什么条件下有意义是本节课的重点和难点。
因为分式与分数类似,所以为了突破重点和难点,采用了类比的学习方法,让学生学会自主探索,合作交流,老师的讲和学生的学相结合。
分式是表示现实世界中一类量的数学模型,为了让学生体会这一点,在课题引入时从实际生活情景出发,让学生经历用字母表示实际问题中数量关系的过程。
二、学情分析学生的知识技能基础:学生在小学学过分数,其实分式是分数的“代数化”,所以其性质与运算是完全类似的。
在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系。
学生的活动经验基础:在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想。
在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力。
三、教学任务本节共分2个课时,这是第1课时,主要内容是了解分式的定义以及分式有意义、无意义、值为零的条件。
本节课的具体教学目标为:知识与技能:1、能用分式表示具体情境中的数量关系,体会分式是刻画现实世界中一类量的数学模型,进一步发展符号意识。
2、了解分式的概念,明确分式和整式的区别;3、会求分式的值,理解分式有意义、无意义及值为零的条件。
过程与方法:本节课通过“观察——类比——合作交流——概括、归纳——辩证”的途径,培养学生观察、分析及理解问题的能力,发展学生的数学抽象、数学建模思维,获得正确的学习方式。
北师大初中数学八下《5.1.认识分式》word教案 (2)
《认识分式》第1课时教学目标(一)教学知识点1.在现实情境中进一步理解用字母表示数的意义,发展符号感.2.了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.3.掌握分式有意义的条件,认识事物间的联系与制约关系.(二)能力训练要求1.能从具体情境中抽象出数量关系和变化规律,经历对具体问题的探索过程,进一步培养符号感.2.培养学生认识特殊与一般的辩证关系.(三)情感与价值观要求通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.教学重难点教学重点:1.了解分式的形式BA (A 、B 是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.2.掌握分式基本性质的内容,并有意识地运用它化简分式.教学难点:1.分式的一个特点:分母含有字母;一个要求:字母的取值限制于使分母的值不能为零.2.分子分母进行约分.教学过程Ⅰ.创设问题情境,引入新课[师]我们先试着解答下面的问题:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成任务.原计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果原计划每月固沙造林x 公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;根据题意,可得方程____________.[生]根据题意,我认为这个问题的等量关系是:实际固沙造林所用的时间+4=原计划固沙造林所用的时间.(1)[生]这个问题的等量关系也可以是:原计划每月固沙造林的公顷数+30=实际每月固沙造林的公顷数.(2)[师]这两位同学真棒!在这个问题中,谁能告诉我涉及到哪些基本量呢?它们的关系是什么?[生]涉及到了三个基本量:工作量、工作效率、工作时间.工作量=工作效率×工作时间. [师]如果用第(1)个等量关系列方程,应如何设出未知数呢?[生]因为第(1)个等量关系是工作时间的关系,因此需用已知条件和未知数表示出工作时间.题中的工作量是已知的.因此需设出工作效率即原计划每月固沙造林x 公顷. 原计划完成一期工程需x2400个月, 实际完成一期工程需c302400-x 个月, 根据等量关系(1)可列出方程:302400-x +4=x 2400. [师]同学们可接着思考:如何用等量关系(2)设未知数,列方程呢?[生]因为等量关系(2)是工作效率之间的关系,根据题意,应设出工作时间.不妨设原计划x 个月完成一期工程,实际上完成一期工程用了(x -4)个月,那么原计划每月固沙造林的公顷数为x 2400公顷,实际每月固沙造林42400-x 公顷,根据题意可得方程42400302400-=+x x . [师]同学们观察我们列出的两个方程,有什么新的发现?[生]我们设出未知数后,用字母表示数的方法,列出几个代数式,表示出我们需要的基本量.如x 2400,42400-x ,302400+x .这些代数式和整式不同.我们虽然列出了方程,但分母中含有字母,要求出它的解,好像很不容易. [师]的确如此.像302400424002400--x x x ,,这样的代数式同整式有很大的不同,而且它是以分数的形式出现的,它们是不同于整式的一个很大的家族,我们把它们叫做分式.从现在开始我们就来研究分式,相信同学们只要去认真了解分式家族中每个成员的特性,不久的将来,一定会很迅速准确解出上面两个方程.Ⅱ.讲授新课1.通过实例理解分式的意义及分式与整式的区别.[师]下面我们再来看几个问题:做一做.(1)正n 边形的每个内角为__________度.(2)一箱苹果售价a 元,箱子与苹果的总质量为m kg ,箱子的质量为n kg ,则每千克苹果的售价是多少元?(3)有两块棉田,有一块x 公顷,收棉花m 千克,第二块y 公顷,收棉花n 千克,这两块棉田平均每公顷的棉产量是多少?(4)文林书店库存一批图书,其中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的库存全部售出时,其销售额为b 元.降价销售开始时,文林书店这种图书的库存量是多少?[生](1)n n ︒⋅-180)2(;(2)n m a -元; (3)y x ny mx ++千克;(4)xa b -册. [师]很好!我们再来看:议一议. 上面问题中出现了代数式x a b y x ny mx n m a n n x x x -++-︒⋅--+,,,,,,180)2(424003024002400,它们有什么共同特征?它们与整式有什么不同?(分组讨论后回答)[生]上面的几个代数式的共同特征:(1)它们都是由分子、分母与分数线构成;(2)分母中都含有字母.[生]它们与整式的不同点就在于它们的分母中都含有字母,而整式的分母中不含有字母.例如:4290y x x -,它们都含有分母,但分母中不含字母,所以它们是整式. [师]同学们能够结合前后知识理解上述代数式,很好!下面我们给出这种代数式即分式的概念:整式A 除以整式B ,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA 为分式,其中A 称为分式的分子,B 称为分式的分母.分式中,字母可以取任意实数吗?[生]不可以.因为分式中分母含有字母,而分母是除式,不能为零.字母的取值就受到制约即字母的取值不能使分母为零,否则,分式就会无意义.2.例题讲解.[师]下面我们接着来看:想一想.(1)下列各式中,哪些是整式?哪些是分式?5x -7,3x 2-1,123+-a b ,7)(p n m +,-5,1222-+-x y xy x ,72,cb +54. (2)①当a =1,2时,分别求分式aa 21+的值. ②当a 为何值时,分式aa 21+有意义? ③当a 为何值时,分式aa 21+的值为零? [生](1)中5x -7,3x 2-1,7)(p n m +,-5,72是整式;123+-a b ,1222-+-x y xy x , cb +54是分式. (2)解:①当a =1时,a a 21+=1211⨯+=1; 当a =2时,a a 21+=2212⨯+=43. ②当分母的值等于零时,分式没有意义,除此以外,分式都有意义.由分母2a =0,得a =0.所以,当a 取零以外的任何实数时,分式aa 21+有意义. ③分式的值为零,包含两层意思:首先分式有意义,其次,它的值为零.因此a 的取值有两个要求:⎩⎨⎧=+≠0102a a所以,当a =-1时,分母不为零,分子为零,分式a a 21+为零. Ⅲ.随堂练习巩固分式的概念,讨论分式有意义的条件限制.1.当x 取什么值时,下列分式有意义?(1)18-x ;(2)912-x ;(3)122+x Ⅳ.课时小结[师]通过今天的学习,同学们有何收获?(鼓励学生积极回答)[生]今天,我们认识了代数式里一个新的成员——分式.[生]我们从实例中发现了分式和整式的不同的地方:分式的分母中含有字母,整式的分母中不含字母,并且还由除式不能为零,即分母不能为零,明白了分式中的字母是有条件约束的,分式中的字母的取值必须保证分母不为零.[生]……Ⅴ.活动与探究已知x =215+,求531xx x ++的值 第2课时教学目标(一)教学知识点1.分式的基本性质.2.利用分式的基本性质对分式进行“等值”变形.3.了解分式约分的步骤和依据,掌握分式约分的方法.4.使学生了解最简分式的意义,能将分式化为最简分式.(二)能力训练要求1.能类比分数的基本性质,推测出分式的基本性质.2.培养学生加强事物之间的联系,提高数学运算能力.(三)情感与价值观要求通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣.教学重难点教学重点:1.分式的基本性质.2.利用分式的基本性质约分.3.将一个分式化简为最简分式.教学难点:分子、分母是多项式的约分.教学过程Ⅰ.复习分数的基本性质,推想分式的基本性质. [师]我们来看如何做不同分母的分数的加法:21+31. [生]21+31=3231⨯⨯+2321⨯⨯=63+62=65. [师]这里将异分母化为同分母,21=3231⨯⨯=63,31=2321⨯⨯=62.这是根据什么呢? [生]根据分数的基本性质:分数的分子与分母都乘以(或除以)同一个不等于零的数,分数的值不变.[师]很好!分式是一般化了的分数,我们是否可以推想分式也有分数的这一类似的性质呢? Ⅱ.新课讲解1.分式的基本性质(1)63=21的依据是什么? (2)你认为分式a a 2与21相等吗?mn n 2与m n 呢?与同伴交流. [生](1)将63的分子、分母同时除以它们的最大公约数3得到.即63=3633÷÷=21. 依据是分数的基本性质:分数的分子与分母同乘以(或除以)同一个不等于零的数,分数的值不变.(2)分式a a 2与21相等,在分式a a 2中,a ≠0,所以a a 2=a a a a ÷÷2=21; 分式mn n 2与m n 也是相等的.在分式mn n 2中,n ≠0,所以mn n 2=n mn n n ÷÷2=mn . [师]由此,你能推想出分式的基本性质吗?[生]分式是一般化了的分数,类比分数的基本性质,我们可推想出分式的基本性质: 分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.[师]在运用此性质时,应特别注意什么?[生]应特别强调分式的分子、分母都乘以(或除以)同一个不为零的整式中的“都”“同一个”“不为零”.[师]我们利用分数的基本性质可对一个分数进行等值变形.同样我们利用分式的基本性质也可以对分式进行等值变形.下面我们就来看一个例题.[例2]下列等式的右边是怎样从左边得到的?(1)x b 2=xy by 2(y ≠0);(2)bx ax =ba . [生]在(1)中,因为y ≠0,利用分式的基本性质,在x b 2的分子、分母中同乘以y ,即可得到右边,即xb 2=y x y b ⋅⋅2=xy by 2;[师]很好!在(1)中,题目告诉你y ≠0,因此我们可用分式的基本性质直接求得.可(2)中右边又是如何从左边得到的呢?[生]在(2)中,bx ax 可以分子、分母同除以x 得到,即bx ax =x bx x ax ÷÷=ba . [生]“x ”如果等于“0”,就不行. 在bx ax 中,x 不会为“0”,如果是“0”,bx ax 中分母就为“0”,分式bxax 将无意义,所以(2)中虽然没有直接告诉我们x ≠0,但要由bx ax 得到b a ,bx ax 必须有意义,即bx ≠0由此可得b ≠0且x ≠0.[师]这位同学分析得很精辟!2.分式的约分.[师]利用分数的基本性质可以对分数进行化简.利用分式的基本性质也可以对分式化简. 我们不妨先来回忆如何对分数化简.[生]化简一个分数,首先找到分子、分母的最大公约数,然后利用分数的基本性质就可将分数化简.例如123,3和12的最大公约数是3,所以123=31233÷÷=41. [师]我们不妨仿照分数的化简,来推想对分式化简.[例3]化简下列各式:(1)ab bc a 2;(2)12122+--x x x . [师]在分数化简中,我们约去了分子、分母的公约数,那么在分式化简中,我们应如何办? [生]约去分子、分母中的公因式.例如(1)中a 2bc 可分解为ac ·(ab ).分母中也含有因式ab ,因此利用分式的基本性质: ab bc a 2=)()(2ab ab ab bc a ÷÷=)()()(ab ab ab ab ac ÷÷⋅=ac . [师]我们可以注意到(1)中的分式,分子、分母都是单项式,把公有的因式分离出来,然后利用分式的基本性质,把公因式约去即可.这样的公因式如何分离出来呢?同学们可小组讨论.[生]如果分子、分母是单项式,公因式应取系数的最大公约数,相同的字母取它们中最低次幂.[师]回答得很好.可(2)中的分式,分子、分母都是多项式,又如何化简?[生]通过对分子、分母因式分解,找到它们的公因式.[师]这个主意很好.现在同学们自己动手把第(2)题试着完成一下.[生]解:(2)12122+--x x x =2)1()1)(1(-+-x x x =11-+x x . [生]老师,我明白了,遇到分子、分母是多项式的分式,应先将它们分解因式,然后约去公有的因式.[师]在例3中,ab bc a 2=ac ,即分子、分母同时约去了整式ab ;12122+--x x x =11-+x x ,即分子、分母同时约去了整式x -1.把一个分式的分子和分母的公因式约去,这种变形我们称为分式的约分.下面我们亲自动手,再来化简几个分式.做一做化简下列分式:(1)yx xy 2205;(2))()(b a b b a a ++. [生]解:(1)y x xy 2205=)5()4(5xy x xy ⋅=x41; (2))()(b a b b a a ++=ba . [师]在刚才化简第(1)题中的分式时,一位同学这样做的:议一议. 在化简y x xy 2205时,小颖是这样做的:y x xy 2205=2205xx 你对上述做法有何看法?与同伴交流. [生]我认为小颖的做法中,2205x x 中还有公因式5x ,没有化简完,也就是说没有化成最简结果. [师]很好!y x xy 2205如果化简成x41,说明化简的结果中已没有公因式,这种分式称为最简分式.因此,我们通常使结果成为最简分式或者整式.Ⅲ.巩固、提高1.填空:(1)y x x -2=))(()(y x y x +-;(2))(1422=-+y y 2.化简下列分式:(1)2332912yx y x ;(2)3)(y x y x --. Ⅳ.课时小结[师]通过今天的学习,同学们有何收获?(鼓励学生积极回答)[生]数学知识之间是有内在联系的,利用分数的基本性质就可推想出分式的基本性质. [生]分式的约分和化简可联系分数的约分和化简.[生]化简分式时,结果一定要求最简.Ⅴ.活动与探究实数a 、b 满足ab =1,记M =a +11+b +11,N =a a +1+bb +1,比较M 、N 的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《认识分式》第2课时教案
一、学生知识状况分析
学生的技能基础:学生在上节课了解了分式的概念,在小学学过分数的基本性质,所以可类比分数的基本性质来学习分式的基本性质,在上节课已初步掌握了类比的学习方法,在前几章中还学习了分解因式,这些都为本节课的学习奠定基础.
学生活动经验基础:在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.
二、教学任务分析
本节课的学习任务是让学生掌握分式的基本性质和分式的约分,这也是本节课的重点。
在学习分式的的基本性质时,可类比分数的基本性质来学习,要引导学生用类比的方法,通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力。
本节课的教学目标为:
1.理解分式的基本性质并能利用性质进行分式的约分;
2.通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力;
3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.
三、教学过程分析
本节课设计了六个环节:知识准备——情景引入——例题讲解——课堂反馈——课堂小结。
第一环节 知识准备
活动内容:
复习分数的基本性质. 问题:2
163 的依据是什么? 活动目的:
通过分数的约分复习分数的基本性质,通过类比来学习分式的基本性质. 注意事项:
学生对于分数的基本性质掌握较好,基本能说出分数的分子分母同时乘以或除以同一个不为
零的数,分数的值不变。
第二环节 情景引入
活动内容:
通过对上题的回答,来回答本题,寻求两者之间的联系.与同伴讨论交流,从而归纳出分式的基本性质.
问题:你认为分式a a 63与2
1相等吗?mn m 2与m n 呢? 活动目的:
让学生通过观察,类比,推理出分式的基本性质,并让学生明白类比的理由是字母可以表示任何数.
注意事项:
通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.
第三环节 例题讲解
活动内容:
例1、下列等式的右边是怎样从左边得到的?
(1))0(22≠=y xy by x b (2)b
a bx ax = 例2、化简下列分式:
(1)ab c ab 2 (2)1
2122+--x x x 活动目的:
通过例1加深学生对分式的基本性质的理解和应用.例2让学生了解把一个分式的分子和分母的公因式约去,这种变形称为分式的约分,分子和分母已没有公因式,这样的分式称为最简分式.引导学生找出他们的公因式,并学会利用分式的基本性质进行约分,使结果为最简分式或整式.
注意事项:
有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式.有些学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底.
实际教学例1 下列等式的右边是怎样从左边得到的?
(1)
)0(22≠=y xy by x b (2)b
a bx ax =
第四环节 课堂反馈
活动内容
做一做
1.填空 (1)()()()
y x y x y x x +-=-________2 (2)()_______1422=-+y y 2.化简
(1)y
x xy 2205 (2))()(b a b b a a ++ 议一议 在y x xy 2205时,米仓和阿呆出现了分歧,米仓认为y x xy 2205=2205x
x ,而阿呆认为y
x xy 2205=x xy x xy 41545=•,你对他们的做法有何看法?与同伴交流. 活动目的:
通过做一做,和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正. 注意事项:
在教学中让学生将约分的步骤分为这样几步,首先将找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式.最后看看结果是否为最简分式或整式.
第五环节 课堂小结
活动内容和目的:
通过问题的形式让学生自己总结出这节课的主要内容,谈谈在学习过程中有哪些困难和新发现.
1、这节课你有哪些收获?
注意事项:
在小结时学生能总结出本节课的重点是分式的基本性质,利用它可将分式化简,教师还可引导学生归纳出分式约分的步骤一是确定分子和分母的公因式,二是利用分式的基本性质,将分子和分母的整体都除以公因式。
类比的学习方法是学习新知识时常用的方法,让学生熟悉和初步掌握这种方法。
四、教学反思
1.在分式的约分教学中,要及时发现学生的错误,并当作错误例题进行全班范围的分析,找出原因,让其他学生也认识到这种错误,不能只是改正答案.
2.在让学生小组讨论之前应给学生一定的时间独立思考,不要让一些思维活跃的同学的回答代替了其他学生的思考,从而掩盖了其他学生的疑问和错误.教师应对学生的讨论给予引导,对学习困难的学生给予及时的帮助,是小组合作学习更具实效性.
3.找公因式是约分的关键,应设计一些找公因式的练习,作为铺垫,这样学生可能对约分掌握得更好.。