动能定理动量守恒能量守恒(答案)
高中物理动能与动能定理试题(有答案和解析)及解析
高中物理动能与动能定理试题(有答案和解析)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
大物习题答案第2章动量守恒定律与能量守恒定律
第2章 动量守恒定律与能量守恒定律一 基本要求1 理解冲量、动量等概念。
掌握动量定理及动量守恒定律,能运用它们解简单系统在平面内运动的力学问题。
2 理解功的概念,能计算变力做功的问题 。
3 理解保守力做功的特点和势能的概念,会计算重力、弹性力和万有引力做的功及对应的势能 。
4 理解动能定理、功能原理和机械能守恒定律,掌握运用守恒定律解问题 的思想和方法 。
二 基本概念 1 质点的动量、冲量质点的动量定义:m =p υ,p 为矢量,也是状态量。
质点的冲量定义 :21t t dt =⎰I F ,它也是矢量,是过程量。
2 冲力 在解决冲击、碰撞问题时,将两个物体在碰撞瞬间的相互作用力称为冲力,冲力作用时间短,量值变化也很大,所以很难确定每一时刻的冲力,常用平均冲力的冲量来代替变力的冲量 。
3内力和外力 对于质点系,其内部各个质点之间的相互作用力称为内力,质点系以外的其他物体对其中的任一质点的作用力称为外力。
4功 功率(1)功 力对质点所作的功为力在质点位移方向的分量与位移大小的乘积。
cos BBAAW dW d F dr θ==⋅=⎰⎰⎰F r(2) 功率 功随时间的变化率,反映的是做功的快慢。
dW P dt =cos d d P F dt dtυθ⋅==⋅=⋅=F r r F F υ5动能 质量为m 的物体,当它具有速度υ时,定义212m υ为质点在速度为υ时的动能,用k E 表示。
6保守力和非保守力 如果力F 对物体做的功只与物体初、末位置有关而与物体所经过的路径无关,我们把具有这种特点的力称为保守力,否则称为非保力。
保守力做功0ld ⋅=⎰F l ,非保守力作功 0ld ⋅≠⎰F l 。
重力、弹性力、万有引力均为保守力,而摩擦力、汽车的牵引力等都是非保守力。
7势能 系统某点的势能等于在保守力作用下将物体从该点沿任意路径移动到零势能点保守力做的功,用p E 表示。
8机械能,系统的动能和势能统称为机械能,用E 表示。
高考物理动能与动能定理试题(有答案和解析)
高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。
某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。
已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。
小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。
只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。
已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。
动量守恒定律计算专题答案解析讲解
动量守恒定律的综合应用1、质量为M长为L的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速度V。
射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。
动量守恒:mV o=Mv木+mVv 木=(mV)-mV)/M能量损失E=m(v。
)2/2-M((mV o-mV)/M) 2/22、如图所示,在竖直平面内,一质量为M的木制小球(可视为质点)悬挂于O点,悬线长为L. 一质量为m的子弹以水平速度V o射入木球且留在其中,子弹与木球的相互作用时间极短,可忽略不计.(1)求子弹和木球相互作用结束后的瞬间,它们共同速度的大小;(2)若子弹射入木球后,它们能在竖直平面内做圆周运动,v o应为多大?(1)由动量守恒mv o= (m+M v所以V=mv o (/m+M)(2)设小球在竖直平面内做圆周运动时,通过最高点的最小速度为V,根据牛顿第二定律有(m+M)g = (m+M)v‘ 2/L小球在竖直平面内做圆周运动的过程中机械能守恒,取小球做圆周运动的最低点所在水平面为零势能平面,所以(m+M)v2/2 = 2(m+M)gL+ (m+M)v‘ 2/2 解得v o=( m+M / m?5gL即v o>( m+M ) /m ?5gL3、如图所示,长为L、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的y庆」阻* I* * I力,当人从船头走到船尾的过程中,人相对地面的位移各是多少?设某时刻人对地的速度为v人,船对地的速度为V船,取人行进的方向为正方向,根据动量守恒定律有:m人v人-m船v船=0 即v船:v人=v人:m船.人的位移s人=V人t,船的位移s 船= V船t ,所以船的位移与人的位移也与它们的质量成反比,即s船:s人=口人:m船①由图中可以看出:s船+s 人=L②叫%由①②两式解得s人=「• 11 L, s船=匕一、L4、如图所示,在光滑的水平面上有两物体m和m2,其中m2静止,m以速度v 0向m2运动并发生碰撞,设碰撞中机械能的损失可忽略不计.求两物体的最终速度.并讨论以下种情况,m>>m时,m和m2的速度分别是多少?m=m时,m和m2的速度分别是多少?m<<m时,m和m2的速度分别是多少?m、m碰时动量守恒mv o=mv i+mv2---①弹性碰撞机械能守恒mv o2/2= m i V i2/2+ m 2V22/2-②由①②得:2mv o -m i v i2=mv22,即:v o+v i=v2 ------------------- ③由①③得:V i=(m i-m2)v o/(m i+m)—④v2=2mv o/(m i+m) ------- ⑤讨论:①m=m时,v i=0, V2=v o两球交换速度②m> m时,v i、V2与④⑤式相等vi> 0, V2> 0③m v m时,v i、V2与④⑤式相等v i< 0, V2> 0④m<< m时,v i=-v o、V2=0, m反弹,m不动⑤m>> m时,v i=v、V2~2 V2, m不受影响,m碰后飞出去.5、如图所示,一个质量为m的玩具青蛙,蹲在质量为M的小车的细杆上,小车放在光滑的水平桌面上.若车长为L ,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?解;(1)由物块与千弹一起恰能通过轨道最高点小1由牛顿第二定律得’(灯亠朋逗=口厂加二・22?物体与子弹组成的系统机械能守恒,由机械能守屯定谭得:\(M+m)七汁〔M+血)計2尺二2 (M+m)代入数据解得s ^-=6R/E;■(2〕系统动童守恒,以向右为正方向,由动量守恒定律得:JfiV=(爪+皿〕V-r代入数IS解得:v-600m/s;(3)由能量守恒定律得:1 , I °i E=-mv i-7 1K+m) v-t j代入数据解得;AE=17S2J;6、如图所示,ABC[是由两部分光滑轨道平滑连接在一起组成的,AB为水平轨道,BCD是半径为R的半圆弧轨道,质量为M的小物块,静止在AB轨道上,一颗质7为m子弹水平射入物块但未穿出,物块与子弹一起运动,恰能贴着轨道内侧通过最高点从D点飞出.取重力加速度g,求: 物块与子弹一起刚滑上圆弧轨道B点的速度;子弹击中物块前的速度;系统损失的机械能.解:m 由物块与千弹一起恰能通过轨道最高点D,由牛顿第二定律得:.2R物体与干弹组成的系统机械能守恒,宙机械能守恒定谭得=[CM+m)寸J+ 5+2 計西丄(M+m)代入数据解得:v- = 6m/£;(2〕系颈动童守恒■以向右为正方向,由动量守恒定律得:jnv= (M+m]代入数4S解得:v=600m/s;⑶由能量守恒定律得:1 ° 1 °A E=-mv i-7 IM+m) v=S!■jF代入数据解得:AE=17S2J;中, 为7、如图所示,木块A 和B 的质量分别为 m 和mi ,固定在轻质 弹簧的两端,静止于光滑的水平面上. 现给A 以向右的水平速度V o ,问在两物体相互作用的过程 什么时候弹性势能最大,其最大值 多少?求弹簧恢复原长时两物体的 度.解:木块 A 、B 相互作用过程中,速度相等时弹簧的弹性势能 最大,设共同速度的大小为 V .由动量守恒定律有 mv o = (m + m2) v ①木块A 、B 减少的动能转化为弹簧的弹性势能,有 1 2 1 2 一E 弹=—△ E k = 2耐0— 2(m + m )v②由①②式联立解得弹簧的弹性势能的最大值为:2mmv om+ m8、如图所示,在光滑的水平面上有一静止的光滑曲面滑块,质量为m2.现有一大小忽略不计的小球,质量为m i,以速度v 0冲向滑块,并进入滑块的光滑轨道,设轨道足够高.求小球在轨道上能上升的最大高度. 若m2=m,则两物体最后速度分别为多少?解:小球和滑块具有相同速度时,小球的上升高度最大,由①②式联立解得mv2 h—2 mi+ m g设共同速度的大小为V.由动量守恒定律有m1v0= (m l + n2) v 设小球在轨道上能上升的最大高度为h.由于水平面光滑,故小球和滑块组成的系统机械能守恒,以水平地面为零势能面,1 2 1 22m i v o= 2(m+ m) v + mgh9、如图所示,一大小可忽略不计、质量为m i的小物体放在质量为m2的长木板的左端,长木板放在光滑的水平面上. 现让m i 获得向右的速度V。
应用力学的“三大观点”解题
分类 力的瞬时
作用 力的空间 积累作用
力的时间 积累作用
对应规律 牛顿第二定律
动能定理 机械能守恒定律
动量定理
动量守恒定律
规律内容 物体的加速度大小与合外力成正比,与质量 成反比,方向与合外力的方向相同 外力对物体所做功的代数和等于物体动能的增量 在只有重力(弹簧弹力)做功的情况下,物体的机械 能的总量保持不变 物体所受合外力的冲量等于它的动量的增量 系统不受外力或所受外力之和为零时,系统的总动 量就保持不变.(在某个方向上系统所受外力之和 为零,系统在这个方向上的动量分量就保持不变)
令 h 表示 B 上升的高度,有 h=v′2g22④ 由以上各式并代入数据得 h=4.05 m⑤ 【答案】 4.05 m
动量、能量、牛顿运动定律、匀变速直线运动综合 例 4 如图的水平轨道中,AC 段的中点 B 的正上方有一探 测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止 在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作.已知 P1、P2 的质 量都为 m=1 kg,P 与 AC 间的动摩擦因数为 μ=0.1,AB 段长 L =4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的碰撞 为弹性碰撞.
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
【解析】 设物块受到水平冲量后速度为 v0.滑环固定时12 Mv02=MgL 得 v0= 2gL.
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。
为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。
【解析】 【详解】(1)玩具滑车到达D 点时,由牛顿第二定律:2DD v F mg m R-=解得2210=404=80N 10D D v F mg m R =++⨯;(2)若无传送带时,由平抛知识可知:D x v t =解得1s t =如果传送带保持不动,则当小车滑到最右端时,由动能定理:221122D mv mv mgL μ-=- 解得v =6m/s因为6m/s 2m/s v gR =>=,则小车从右端轮子最高点做平抛运动,则落水点距离传送带右端的水平距离:'6m x vt ==(3)①若传送带的速度v ≤6m/s ,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s ,落水点距离传送带右端的水平距离为6m ; ②若小车在传送带上一直加速,则到达右端时的速度满足'221122D mv mv mgL μ-= 解得'241m/s v =若传送带的速度241m/s v ≥,则小车在传送带上运动时一直加速,则到达右端的速度为241m/s ,落水点距离传送带右端的水平距离为241m x vt ==;③若传送带的速度10m/s≥v ≥6m/s ,则小车在传送带上运动时先减速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt=v m ;④若传送带的速度241m/s ≥v ≥10m/s ,则小车在传送带上运动时先加速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt =v m 。
动量守恒和动能定理
动量守恒和动能定理动量守恒和动能定理是物理学中两个重要的定理,通过它们可以更好地理解物体在运动过程中的行为和性质。
本文将详细介绍动量守恒和动能定理的原理、应用和实例,以便更好地理解这两个概念。
一、动量守恒动量守恒定律是指在一个封闭系统中,当外力不做功的情况下,系统的总动量保持不变。
这意味着在没有外力作用的情况下,系统中物体的总动量不会发生改变。
动量的定义为物体的质量乘以其速度。
根据动量守恒定律,如果物体之间没有外力作用,它们的总动量将保持不变。
这可以通过下面的公式来表示:m1*v1 + m2*v2 = m1*v1' + m2*v2'其中,m1和m2分别是两个物体的质量,v1和v2是它们的初始速度,v1'和v2'是它们的最终速度。
动量守恒定律可以应用于各种物理现象中,例如碰撞、爆炸和运动。
在碰撞中,当两个物体互相作用时,它们的总动量保持不变,即动量的初始值等于动量的最终值。
二、动能定理动能定理是指物体的动能变化等于施加在其上的净外力所做的功。
它描述了物体在力的作用下,其动能的变化情况。
动能的定义为物体的质量乘以其速度的平方的一半。
根据动能定理,动能的变化可以通过下面的公式来表示:ΔKE = W其中,ΔKE表示动能的变化,W表示在物体上所做的净外力的功。
动能定理说明了力是物体动能的源头,当力对物体进行功时,物体的动能会发生变化。
例如,当一个力推动一个物体移动时,力对该物体所做的功将导致物体的动能增加。
三、应用和实例动量守恒和动能定理在物理学中有广泛的应用。
它们可以帮助我们分析和解释各种物理现象的行为。
例如,当两个物体发生碰撞时,根据动量守恒定律,我们可以计算出它们的最终速度。
另外,动能定理可以帮助我们计算物体受到的外力的功,进而推导出它们的动能变化情况。
在实际生活中,动量守恒和动能定理也有很多应用。
例如,在车辆碰撞事故中,可以利用动量守恒定律来分析撞击的情况,从而判断事故的严重程度。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。
质量m1=0.40kg的物块A从斜槽上端距水平木板高度h=0. 80m处下滑,并与放在水平木板左端的质量m2=0.20kg的物块B相碰,相碰后物块B滑行x=4.0m到木板的C点停止运动,物块A滑到木板的D点停止运动。
已知物块B与木板间的动摩擦因数=0.20,重力加速度g=10m/s2,求:(1) 物块A沿斜槽滑下与物块B碰撞前瞬间的速度大小;(2) 滑动摩擦力对物块B做的功;(3) 物块A与物块B碰撞过程中损失的机械能。
【答案】(1)v0=4.0m/s(2)W=-1.6J(3)E=0.80J【解析】试题分析:①设物块A滑到斜面底端与物块B碰撞前时的速度大小为v0,根据机械能守恒定律有m1gh=12m12v (1分)v02gh,解得:v0=4.0 m/s(1分)②设物块B受到的滑动摩擦力为f,摩擦力做功为W,则f=μm2g(1分)W=-μm2gx解得:W=-1.6 J(1分)③设物块A与物块B碰撞后的速度为v1,物块B受到碰撞后的速度为v,碰撞损失的机械能为E,根据动能定理有-μm2gx=0-12m2v2解得:v=4.0 m/s(1分)根据动量守恒定律m1v0=m1v1+m2v(1分)解得:v1=2.0 m/s(1分)能量守恒12m12v=12m121v+12m2v2+E(1分)解得:E=0.80 J(1分)考点:考查了机械能守恒,动量守恒定律2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
第13章动能定理习题答案
第13章 动能定理13-1 圆盘的半径r = 0.5 m ,可绕水平轴O 转动。
在绕过圆盘的绳上吊有两物块A 、B ,质量分别为m A = 3 kg ,m B = 2 kg 。
绳与盘之间无相对滑动。
在圆盘上作用一力偶,力偶矩按ϕ4=M 的规律变化(M 以m N ⋅计,ϕ以rad 计)。
试求由π20==ϕϕ到时,力偶M 与物块A 、B 重力所作的功之总和。
解:作功力M ,m A g ,m B gJ1105.0π28.91π8π2)(π8π2)(d 40π222=⨯⨯⨯+=⋅-+=⋅-+=⎰rg m m r g m m W B A B A ϕϕ13-3 图示坦克的履带质量为m ,两个车轮的质量均为m 1。
车轮被看成均质圆盘,半径为R ,两车轮间的距离为R π。
设坦克前进速度为v ,试计算此质点系的动能。
解:系统的动能为履带动能和车轮动能之和。
将履带分为四部分,如图所示。
履带动能: IV III II I 221T T T T v m T i i +++=∑=履由于v v v 2,0IV 1==,且由于每部分履带长度均为R π,因此222IV IV IV 2I I I IV III II I 2)2(421210214v m v m v m T v m T m m m m m =⨯======== II 、III 段可合并看作一滚环,其质量为2m ,转动惯量为22R m J =,质心速度为v ,角速度为Rv=ω则2222222222III II 2202221421221mv v mv m T vm R v R m mv J v m T T =++==⋅⋅+=+⋅=+履ω 轮动能 21222121123221222v m R v R m v m T T =⎥⎦⎤⎢⎣⎡⋅⋅+==轮轮 则系统动能 21223v m mv T T T +=+=轮履13-5 自动弹射器如图放置,弹簧在未受力时的长度为200 mm ,恰好等于筒长。
专题四能量守恒与动量守恒
专题四动量守恒与能量守恒1、在光滑的水平面上,质量为m i的小球A以速率v°向右运动。
在小球A的前方0点处有一质量为m2的小球B处于静止状态,如图所示。
小球A与小球B 发生正碰后小球A与小球B均向右运动;小球B被Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5P0。
假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,求(1)A、B两小球的质量之比。
(AB弹性碰撞)(2)若0Q=L,且m1远大于m2则AB第二次相碰的位置距0点的距离2、光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V°=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图所示。
B与C碰撞后二者粘在一起运动,在以后的运动中,求弹簧的弹性势能最大值。
(B、C完全非弹性碰撞)A WWWW<B c3、如图所示,光滑水平面上有带有1/4光滑圆弧轨道的滑块,其质量为2m, —质量为m的小球以速度V。
沿水平面滑上轨道,并恰能到达轨道最高点,(V。
、重力加速度g均为已知量)求:(某一方向上的动量守恒)①小球在轨道最高点时滑块的速度。
②圆弧轨道半径R4、如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与AB成9角时,圆环移动的距离是多少?(某一方向上的动量守恒、人船模型)5、抛出的手雷在距水平地面20m时达到最高点,此时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它们落地距离.(忽略空气阻力、重力加速度g取10m/s F)(内力远大于外力近似守恒)6、(2014全国9分)如图,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8m, A球在B球的正上方。
动量守恒动能定理能量守恒
动量守恒定律、机械能守恒定律、能量守恒定律1.命题趋势本专题涉及的内容是动力学内容的继续和深化,其中的动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。
近年采用综合考试后,试卷难度有所下降,因此动量和能量考题的难度也有一定下降。
要更加关注有关基本概念的题、定性分析现象的题和联系实际、联系现代科技的题。
试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。
试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。
2.知识概要冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对位移的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,对此,要像熟悉力和运动的关系一样熟悉。
在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。
能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。
应用动量定理和动能定理时,研究对象可以是单个物体,也可以是多个物体组成的系统,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。
因此,在用它们解题时,首先应选好研究对象和研究过程。
对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。
选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。
临界状态往往应作为研究过程的开始或结束状态。
2.要能视情况对研究过程进行恰当的理想化处理。
3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。
4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。
高中物理动力学中的动量及动量守恒问题(含答案)
动力学中的问题1:(2016北京卷)动量定理可以表示为△p=F△t,其中动量p 和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△p x、△p y;b.分析说明小球对木板的作用力的方向.解:a、把小球入射速度分解为v x=v sinθ,v y=﹣v cosθ,把小球反弹速度分解为v x′=v sinθ,v y′=v cosθ,则△p x=m(v x′﹣v x) =0,△p y=m ( v y′﹣v y) =2mv cosθ,方向沿y轴正方向,b、对小球分析,根据△p=F△t得:tpF xx∆∆=,tpF yy∆∆=,则tpFF yy∆∆==,方向沿y轴正向,根据牛顿第三定律,小球对木板的作用力的方向沿y轴负方向.答:a.分别求出碰撞前后x、y方向小球的动量变化△p x为0,△p y 大小为2mv cosθ,方向沿y轴正方向;b.小球对木板的作用力的方向沿y轴负方向.2:如图所示,质量为M=2kg的长木板B静止放在光滑水平地面上,质量为m=4kg的小物块A以水平速度v0=6m/s从左端冲上长木板B,并且恰好没有掉下。
已知A、B之间的动摩擦因素为μ=0.2。
求这一过程中:121. A 、B 各自做什么样的运动? 加速度分别为多少?方向如何? 解:A 做匀减速直线运动,B 做匀加速直线运动, ∵ A 、B 之间的摩擦力 μmg f =∴ A 加速度为 21===μg m fa m/s 2 方向向左 B 加速度为 42===Mmg M f a μ m/s 2 方向向右 2. A 滑到B 的右端时速度为多少?∵ A 从左端冲上长木板B ,并且恰好没有掉下,则有 共速: t a t a v v 210=-=解得:1=t s 4=v m/s 3. 物块A 的动能减少了多少?∵ 7221200==mv E kA J 32212==mv E kA J故:40-=∆kA E J “-”表示减少4. 木板B 的动能增加了多少?∵ 00=kB E J16212==Mv E kB J 故:16=∆B k E J (增加) 5. 系统的机械能减少了多少? 24-=∆+∆=∆=∆kB kA k E E E E J6. A 、B 的位移各是多少?木板的长度是多少?A 的位移:522462221202=⨯--=--=a v v x A m (向右)B 的位移:24242222=⨯==a v x B m (向右)木板的长度:3=∆=x L m 7. 系统产生了多少热量?系统产生的热量=系统的机械能减少 故:24=∆-=E Q J38. 当A 的速度为5 m/s 时,长木板的速度为多大?此时A 到木板左端的距离d 为多少?设时间t 1时间后,5=A v m/s ,则有 12110t a v t a v v B A =-=解得:5.0=t s 4=B v m/s A 位移:25.221202=--=∆a vv x A A m B 位移:5.0212==∆a v x BB mA 到木板左端的距离d :d 75.1=∆-∆=B A x x m9. 水平地面是光滑的,A 、B 的作用力可以看作系统的内力,则系统的哪个物理量守恒?机械能是不是守恒?利用 守恒定律重解以上问题。
动能定理,动量守恒,能量守恒
考点5 动能与动能定理考点5.1 动能与动能定理表达式1. 动能(1)定义:物体由于运动而具有的能量 (2)表达式:E k =12mv 2(3)对动能的理解:①标量:只有正值;②状态量;③与速度的大小有关,与速度方向无关. 2. 动能定理(1).内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化量. (2).表达式:W =12mv 22-12mv 21=E k2-E k1. (3).理解:动能定理公式中等号表明了合外力做功(即总功)与物体动能的变化具有等量代换关系.合外力做功是引起物体动能变化的原因.1.(多选)质量为1 kg 的物体以某一初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的图线如下图所示,g 取10 m/s 2,则以下说法中正确的是( )A . 物体与水平面间的动摩擦因数是0.5B . 物体与水平面间的动摩擦因数是0.25C . 物体滑行的总时间为4 sD . 物体滑行的总时间为2.5 s2. 有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图7-7-9所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A . 木块所受的合力为零B . 因木块所受的力都不对其做功,所以合力做的功为零C . 重力和摩擦力做的功代数和为零D . 重力和摩擦力的合力为零3. (多选)太阳能汽车是靠太阳能来驱动的汽车.当太阳光照射到汽车上方的光电板时,光电板中产生的电流经电动机带动汽车前进.设汽车在平直的公路上由静止开始匀加速行驶,经过时间t ,速度为v 时功率达到额定功率,并保持不变.之后汽车又继续前进了距离s ,达到最大速度v max .设汽车质量为m ,运动过程中所受阻力恒为f ,则下列说法正确的是( ). A . 汽车的额定功率为fv maxB . 汽车匀加速运动过程中,克服阻力做功为fvtC . 汽车从静止开始到速度达到最大值的过程中,牵引力所做的功为12mv 2max -12mv 2D . 汽车从静止开始到速度达到最大值的过程中,合力所做的功为12mv 2max4. (多选)在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图5所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )A.F ∶F f =1∶3B.W 1∶W 2=1∶1C.F ∶F f =4∶1D.W 1∶W 2=1∶3考点5.2 运用动能定理求解变力的功1.动能定理求变力做功的优势教科书中动能定理虽然是根据牛顿定律通过特例推导出来的,但牛顿运动定律无法取代动能定理,尤其是解决变力做功问题.1. 如图所示,木板长为l ,木板的A 端放一质量为m 的小物体,物体与板间的动摩擦因数为μ.开始时木板水平,在绕O 点缓慢转过一个小角度θ的过程中,若物体始终保持与板相对静止.对于这个过程中各力做功的情况,下列说法中正确的是( )A . 摩擦力对物体所做的功为mgl sin θ(1-cos θ)B . 弹力对物体所做的功为mgl sin θcos θC . 木板对物体所做的功为mgl sin θD . 合力对物体所做的功为mgl cos θ2. 如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR考点5.3 阻力做功与重力做功在动能定理应用中的比较在动能定理应用列方程时经常会涉及到重力做功与摩擦力做功(或阻力做功)。
专题(29)专题五 力学三大观点的综合应用(解析版)
2021年高考物理一轮复习必热考点整合回扣练专题(29)专题五力学三大观点的综合应用(解析版)知识点一力的三个作用效果与五个规律知识点二常见的力学模型及其结论命题热点 动力学、动量和能量观点在力学中的应用 力学三大观点的综合应用 选择力学三大观点的一般原则1、在光滑的水平面上有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【答案】B【解析】由图象知a 球以一初速度向原来静止的b 球运动,碰后a 球反弹且速度大小小于其初速度大小,根据动量守恒定律,a 球的质量小于b 球的质量。
2、如图所示,质量为M 的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m 的物体,某时刻给物体一个水平向右的初速度v 0,那么在物体与盒子前后壁多次往复碰撞后( )A .两者的速度均为零B .两者的速度总不会相等C .盒子的最终速度为mv 0M ,方向水平向右D .盒子的最终速度为mv 0M +m ,方向水平向右【答案】D【解析】由于盒子内表面不光滑,在多次碰后物体与盒相对静止,由动量守恒得:mv 0=(M +m )v ′,解得:v ′=mv 0M +m,故D 正确。
3、(多选)A 、B 两球沿同一条直线运动,如图所示的x -t 图象记录了它们碰撞前后的运动情况,其中a 、b 分别为A 、B 碰撞前的x -t 图象。
c 为碰撞后它们的x -t 图象。
若A 球质量为1 kg ,则B 球质量及碰后它们的速度大小为( )A .2 kg B.23kgC .4 m/sD .1 m/s【答案】BD【解析】由图象可知碰撞前二者都做匀速直线运动,v a =4-102 m/s =-3 m/s ,v b =4-02 m/s=2 m/s ,碰撞后二者连在一起做匀速直线运动,v c =2-44-2m/s =-1 m/s 。
动量守恒专题(含答案)
动量守恒定律1.质量为M 的物块静止在光滑水平桌面上,质量为m 的子弹以水平速度v 0射入物块后,以水平速度2v 0/3射出。
则物块的速度为 ,此过程中损失的机械能为2.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。
忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是3.如图所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s 。
A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s,求此时B 的速度大小和方向。
4.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并在空中做各种动作的运动项目.一个质量为60 kg的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0 m 高处.已知运动员与网接触的时间为1.2 s .若把这段时间内网对运动员的作用力当做恒力处理,求此力的大小.(g 取10 m/s 2)解析:法一:运动员刚接触网时速度的大小为v 1=2gh 1=2×10×3.2 m/s =8 m/s ,方向竖直向下.刚离开网时速度的大小为v 2=2gh 2=2×10×5 m/s =10 m/s ,方向竖直向上.运动员接触网的过程中,网的作用力为F ,规定竖直向上为正方向,根据动量定理得 (F -mg )t =m v 2-(-m v 1)F =m v 2+m v 1t+mg =60×10+60×81.2N +60×10 N =1.5×103 N ,方向竖直向上.法二:运动员从3.2 m 高处自由下落的时间为t 1= 2h 1g = 2×3.210s =0.8 s 运动员刚离开网弹回5.0 m 高处所用的时间为t 2= 2h 2g = 2×510s =1 s 整个过程中运动员始终受重力作用,仅在与网接触的t 3=1.2 s 时间内受到网对他向上的弹力F 的作用,对全过程应用动量定理得:F ·t 3-mg (t 1+t 2+t 3)=0F =(t 1+t 2+t 3)t 3mg =0.8+1+1.21.2×60×10 N =1.5×103 N ,方向竖直向上.答案:1.5×103 N5.光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【解析】 法一:把A 、B 、C 看成一个系统,整个过程中由动量守恒定律得m A v 0=(m A +m B +m C )vB 、C 碰撞过程中由动量守恒定律m B v B =(m B +m C )v联立解得v B =65v 0. 法二:设A 与B 碰撞后,A 的速度为v ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 到B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0. 6.质量为M =2 kg 的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg 的物体A (可视为质点),如图所示,一颗质量为m B =20 g 的子弹以600 m/s的水平速度射穿A 后,速度变为100 m/s ,最后物体A 仍在车上.若物体A 与小车间的动摩擦因数μ=0.5,取g =10 m/s 2,求(1)平板车最后的速度是多大?(2)平板车的长度至少为多少?解析:(1)从子弹射入A 到A 与车相对静止的过程中,子弹、A 与车系统动量守恒,则m B v 0=m B v ′+(m A +M )v解得v =m B (v 0-v ′)m A +M =0.02×(600-100)2+2m/s =2.5 m/s.(2)子弹射穿A 的过程中,子弹与A 系统动量守恒,由动量守恒定律有m B v 0=m B v ′+m A v A 得v A =m B (v 0-v ′)m A =0.02×(600-100)2m/s =5 m/s 由能量守恒得μm A gL =12m A v 2A -12(m A +M )v 2 代入数据解得:L =1.25 m.7、如图所示,光滑水平面上静止着A 、B 两个滑块,A 上固定一轻杠,杠用轻绳在竖直方向悬挂一个光滑的球C ,球C 紧靠轻杆但与轻杆不粘连,对A 施加水平向右的瞬时冲量I=6N.S ,使A 、C 由静止开始运动,A 向右滑动与静止在水平面上的B 相碰,A 、B 在极短时间内便粘在一起运动,此后运动过程中,绳子摆动均未超过水平位置,已知A 、B 、C 的质量均为m=1kg,取g=10m/s 2 ,求:1)A 、B 碰撞结束瞬间A 的速度;28.如图,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连. 将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体. 现A 以初速υ0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起. 以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离. 已知C 离开弹簧后的速度恰为υ0. 求弹簧释放的势能.9.在粗糙的水平桌面上有两个静止的木块A 和B,两者相距为d 。
第二章2 动量守恒和能量守恒--习题解答
3 10 N
3
求:(1)子弹在射入A的过程中,B受到A的作用力 的大小。(2)当子弹留在B中时,A和B的速度的大 小。
解:(1)以A、B为系统:
以B为对象:
f (mA mB )a AB
由题意得知:
f BA mB a B
a AB a B
联解上四方程得:
f 310 N
3
f BA
1 0
F kx
x x x
o k F m o x1 m k o F x2
A kxdx cos 1 kx2 2 1 kx12 2 2
x1
x2
弹性力做功,积分上下限应为弹簧伸长量。
10、C
A保 E p ; F保 .dl 0
l
(1)保守力作正功,系统内相应的势能减 小。(2)正确。(3)一对力做功等于其 中一个力的大小与相对位移的乘积。
(2) 当质点从(0,0)移动到(2,-3)时,此力所作的功为: 2 3 2 3 A F dr Fx dx F y dy 3dx 5dy 9J
mB 3 f 1.8 10 N m A mB
(2)动量定理:
ft (m A mB )v A
求解得到: v A 6m / s 动量守恒: mv0 mA v A (mB m)v B 求解得到:
v B 22m / s
P20-2:矿砂从传送带A落到另一传送带B,其速率 大小v1=4m/s,速度方向与竖直方向成30度角,而 传送带B与水平成15度角,其速度的大小v2=2m/s。 如果传送带的运送量恒定,设为qm=2000kg/h,求 矿砂作用在传送带B上的力的大小和方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点5 动能与动能定理考点5.1 动能与动能定理表达式1. 动能(1)定义:物体由于运动而具有的能量(2)表达式:E k =12mv 2 (3)对动能的理解:①标量:只有正值;②状态量;③与速度的大小有关,与速度方向无关.2. 动能定理(1).内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化量.(2).表达式:W =12mv 22-12mv 21=E k2-E k1. (3).理解:动能定理公式中等号表明了合外力做功(即总功)与物体动能的变化具有等量代换关系.合外力做功是引起物体动能变化的原因.1.(多选)质量为1 kg 的物体以某一初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的图线如下图所示,g 取10 m/s 2,则以下说法中正确的是( )A . 物体与水平面间的动摩擦因数是0.5B . 物体与水平面间的动摩擦因数是0.25C . 物体滑行的总时间为4 sD . 物体滑行的总时间为2.5 s2. 有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图779所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A . 木块所受的合力为零B . 因木块所受的力都不对其做功,所以合力做的功为零C . 重力和摩擦力做的功代数和为零D . 重力和摩擦力的合力为零3. (多选)太阳能汽车是靠太阳能来驱动的汽车.当太阳光照射到汽车上方的光电板时,光电板中产生的电流经电动机带动汽车前进.设汽车在平直的公路上由静止开始匀加速行驶,经过时间t ,速度为v 时功率达到额定功率,并保持不变.之后汽车又继续前进了距离s ,达到最大速度v max .设汽车质量为m ,运动过程中所受阻力恒为f ,则下列说法正确的是( ).A . 汽车的额定功率为fv maxB . 汽车匀加速运动过程中,克服阻力做功为fvtC . 汽车从静止开始到速度达到最大值的过程中,牵引力所做的功为12mv 2max -12mv 2 D . 汽车从静止开始到速度达到最大值的过程中,合力所做的功为12mv 2max4. (多选)在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图5所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )A.F∶F f=1∶3B.W1∶W2=1∶1C.F∶F f=4∶1D.W1∶W2=1∶3考点5.2 运用动能定理求解变力的功1.动能定理求变力做功的优势教科书中动能定理虽然是根据牛顿定律通过特例推导出来的,但牛顿运动定律无法取代动能定理,尤其是解决变力做功问题.1. 如图所示,木板长为l ,木板的A 端放一质量为m 的小物体,物体与板间的动摩擦因数为μ.开始时木板水平,在绕O 点缓慢转过一个小角度θ的过程中,若物体始终保持与板相对静止.对于这个过程中各力做功的情况,下列说法中正确的是( )A . 摩擦力对物体所做的功为mgl sin θ(1-cos θ)B . 弹力对物体所做的功为mgl sin θcos θC . 木板对物体所做的功为mgl sin θD . 合力对物体所做的功为mgl cos θ2. 如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR 3. 如图所示,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A.14mgRB.13mgRC.12mgRD.π4mgR 4. 质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如下图所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )A.14mgRB.13mgRC.12mgR D .mgR考点5.3 阻力做功与重力做功在动能定理应用中的比较在动能定理应用列方程时经常会涉及到重力做功与摩擦力做功(或阻力做功)。
在表达式上,这两者有本质区别:重力属于保守力,做功多少与路径无关,只与初末位置有关,表达式为W G =mgh ;摩擦力属于非保守力,做功与路径有关,常用表达式为W f =fS ,其中S 为路程。
1. 如图所示,将质量为m 的小球以速度v 0由地面竖直向上抛出.小球落回地面时,其速度大小为34v 0.设小球在运动过程中所受空气阻力的大小不变,则空气阻力的大小等于( )A.34mgB.316mgC.716mgD.725mg 2. 小球质量为m ,在高于地面h 处以速度v 竖直上抛,空气阻力为f (f <mg ).设小球与地面碰撞中不损失机械能.则从抛出直至小球静止的过程中,小球通过的总路程为( )A .mgh +mv 22fB .mgh +mv 2f C.2mgh +mv 22f D.gh +v 2mf3. 如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A. W =12mgR ,质点恰好可以到达Q 点 B. W >12mgR ,质点不能到达Q 点 C. W =12mgR ,质点到达Q 点后,继续上升一段距离 D. W <12mgR ,质点到达Q 点后,继续上升一段距离 4. 如下图,MNP 为竖直面内一固定轨道,其圆弧段MN 与水平段NP 相切于N ,P 端固定一竖直挡板.M 相对于N 的高度为h ,NP 长度为s .一物块自M 端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞后停止在水平轨道上某处.若在MN 段的摩擦可忽略不计,物块与NP 段轨道间的滑动摩擦因数为μ,求物块停止的地方与N 点距离的可能值.5. 从离地面H 高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k (k <1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?6.如图是阿毛同学的漫画中出现的装置,描述了一个“吃货”用来做“糖炒栗子”的“萌”事儿:将板栗在地面小平台上以一定的初速经两个四分之一圆弧衔接而成的轨道,从最高点P飞出进入炒锅内,利用来回运动使其均匀受热.我们用质量为m的小滑块代替栗子,借这套装置来研究一些物理问题.设大小两个四分之一圆弧半径为2R 和R,小平台和圆弧均光滑.将过锅底的纵截面看作是两个斜面AB、CD和一段光滑圆弧组成.斜面动摩擦因数均为0.25,而且不随温度变化.两斜面倾角均为θ=37°,AB=CD=2R,A、D等高,D端固定一小挡板,碰撞不损失机械能.滑块的运动始终在包括锅底最低点的竖直平面内,重力加速度为g.(1)如果滑块恰好能经P点飞出,为了使滑块恰好沿AB斜面进入锅内,应调节锅底支架高度使斜面的A、D点离地高为多少?(2)接(1)问,求滑块在锅内斜面上走过的总路程.(3)对滑块的不同初速度,求其通过最高点P和小圆弧最低点Q时受压力之差的最小值.考点5.4 用动能定理解决多过程问题动能定理解多过程问题的优势:动能定理只关注运动中合力做功及初末态的动能,不用考虑多过程的细节(如加速度、时间),为解决力与位移的问题带来了方便.【例题】如图所示,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直,质量为m 的小球从A 点左上方距A 点高为h 的斜面上方P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度为g ,取R =509h ,sin37°=0.6,cos37°=0.8,不计空气阻力,求:(1)小球被抛出时的速度v 0;(2)小球从C 到D 过程中摩擦力做的功W f1. 如图所示,一薄木板斜搁在高度一定的平台和水平地板上,其顶端与平台相平,末端置于地板的P 处,并与地板平滑连接.将一可看成质点的滑块自木板顶端无初速度释放,沿木板下滑,接着在地板上滑动,最终停在Q 处.滑块和木板及地板之间的动摩擦因数相同.现将木板截短一半,仍按上述方式搁在该平台和水平地板上,再次将滑块自木板顶端无初速度释放(设滑块在木板和地面接触处平滑过渡),则滑块最终将停在( )A.P 处B.P 、Q 之间C.Q 处D.Q 的右侧2.(多选)质量为1 kg的物体静止在水平粗糙的地面上,在一水平外力F的作用下运动,如图甲所示,外力F和物体克服摩擦力F f做的功W与物体位移x的关系如图乙所示,重力加速度g取10 m/s2.下列分析正确的是( )A.物体与地面之间的动摩擦因数为0.2B.物体运动的最大位移为13 mC.物体在前3 m运动过程中的加速度为3 m/s2D.x=9 m时,物体的速度为3 2 m/s3.如图,一轨道由光滑竖直的1/4圆弧AB、粗糙水平面BC及光滑斜面CE组成,BC与CE在C点由极小光滑圆弧相切连接,斜面与水平面的夹角θ=30°.一小物块从A 点正上方高h=0.2 m处P点自由下落,正好沿A点切线进入轨道,已知小物块质量m=1 kg,圆弧半径R=0.05 m,BC长s=0.1 m,小物块过C点后经过时间t1=0.3 s第一次到达图中的D点,又经t2=0.2 s第二次到达D点.取g=10 m/s2.求:(1)小物块第一次到达圆弧轨道B点的瞬间,受到轨道弹力N的大小?(2)小物块与水平面BC间的动摩擦因数μ=?(3)小物块最终停止的位置?4. 如图所示为某种弹射小球的游戏装置,水平面上固定一轻质弹簧及长度可调节的竖直管AB .细管下端接有一小段长度不计的圆滑弯管,上端B 与四分之一圆弧弯管BC 相接,每次弹射前,推动小球将弹簧压缩到同一位置后锁定.解除锁定,小球即被弹簧弹出,水平射进细管A 端,再沿管ABC 从C 端水平射出.已知弯管BC 的半径R =0.40 m ,小球的质量为m =0.1 kg ,当调节竖直细管AB 的长度L 至L 0=0.80 m 时,发现小球恰好能过管口C 端.不计小球运动过程中的机械能损失,g =10m/s 2 (1) 求每次弹射时弹簧对小球所做的功W ;(2) 若L 可调节,L 取多大时,小球落至水平面的位置离直管AB 水平距离最远? (3) 若其他条件不变只把小球质量变为12m ,求小球到达C 时管壁对其作用力F 的大小和方向。