最新七年级上数学综合练习题.
初一数学上册综合算式专项练习题混合运算练习
初一数学上册综合算式专项练习题混合运算练习混合运算是初中数学中重要的一部分,旨在加强学生对基本运算的综合应用能力。
下面是初一数学上册综合算式专项练习题,帮助学生进一步巩固和提高混合运算技巧。
一、计算题1. 计算:(12+7)×3-15÷32. 计算:18-(3×4-8)÷(2+1)3. 计算:30-3×(2+8÷4)4. 计算:20-10÷(4-2)×35. 计算:(3+4×2)÷(5-1)6. 计算:(18-3×2)÷(4+1)7. 计算:(7×3-21)÷(2+1)8. 计算:(12-6)×4÷29. 计算:(5-3×2)÷((4-2)×3)10. 计算:(16-4×5)÷(3-1)二、解答题1. 甲乙两个人共有36元,甲比乙多拿了3元,他们两个人各自拿了多少钱?2. 某书店有一种图书售价30元,如果买3本可以打8折,那么买3本需要多少钱?3. 甲的年龄是乙的2倍加3,乙的年龄比甲小3岁,他们两个人的年龄之和是多少?4. 某地气温为零下5摄氏度,半小时后气温下降5摄氏度,那么半小时后的气温是多少摄氏度?5. 甲乙两个数的和是45,乙丙两个数的和是38,甲丙两个数的和是53,求甲、乙、丙三个数各是多少?三、应用题1. 小明共有210元,他用其中的一半买了一本书,然后用剩下的钱买了一个文具盒,文具盒比书贵50元,问小明买书花了多少钱?2. 甲乙两地相距180公里,甲地有一辆汽车向乙地开去,速度是每小时60公里。
同时,乙地有一辆汽车向甲地开去,速度是每小时70公里。
请问从他们同时开车到相遇需要多长时间?3. 甲乙两个人同时从A地出发,相隔120公里的B地是他们交汇的地方。
甲的速度是每小时40公里,乙的速度是每小时60公里。
人教版初中数学七年级(上)期末综合练习(2)及答案
人教版初中数学7年级(上)期末综合练习(二)一.选择题(共8小题)1.有理数a ,b 在数轴上的位置如图所示, 则下列各式:①0a b +>;②0a b ->;③||b a >;④0ab <. 一定成立的是( )A .①②③B .③④C .②③④D .①③④2.下列各组数中, 互为相反数的一组是( )A .32-与3(2)-B .2(2)--与22-C .23-与2(3)-D .3|2|-与3|2|3.如果2x <-,那么|1|1||x -+等于( )A .2x --B .2x +C .xD .x -4.下列两项中,属于同类项的是( )A .26与2xB .4ab 与4abcC .20.2x y 与20.2xyD .nm 和mn - 5.某商店经销一批衬衣,每件进价为a 元,零售价比进价高%m ,后因市场变化,该商把零售价调整为原来零售价的%n 出售.那么调整后每件衬衣的零售价是( )A .(%)(%)a l m l n +-元B .%(1%)am n -元C .(%)%a l m n +元D .(%%)a l m n +元 6.若方程53ax x =+的解为5x =,则a 的值是( )A .14B .4C .16D .807.将一个正方体的表面沿某些棱剪开, 展成的平面图形可以是下图中的( )A .B .C .D .8.钟表上 12 时 15 分钟时, 时针与分针的夹角为( )A .90︒B .82.5︒C .67.5︒D .60︒二.填空题(共10小题)9.2009-的相反数是 . 10.x 是实数, 那么|1||1||5|x x x -++++的最小值是 .11.一个数的倒数是8-,那么这个数是 .12.若26m n a b ++与42a b 是同类项,m n -= .13.代数式223a 的系数是 . 14.已知:25x y +=,347x y +=,则26x y += .15.代数式4a 可表示的实际意义是 .16.“节能减排, 低碳经济”是我国未来发展的方向, 某汽车生产商生产有大、 中、 小三种排量的轿车, 正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召, 满足大众的消费需求准备将小排量轿车的生产量提高, 受其产量结构调整的影响, 大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加 %.17.如图, 立方体的每个面上都写有一个自然数, 并且相对两个面所写出二数之和相等, 若 10 的对面写的是质数a , 12 的对面写的是质数b , 15 的对面写的是质数c ,则222a b c ab ac bc ++---= .18.如图所示, 已知4CB cm =,8DB cm =,且点D 是AC 的中点, 则AC = cm .三.解答题(共6小题)19. (1)295(6)(4)(8)-+⨯---÷- (2)432134()(2)[(2)(2)]213⨯-+-÷---. 20.如图所示是一个数表,现用一个矩形在数表中任意框出4个数,则(1)a 、c 的关系是: ; (2)当32a b c d +++=时,a = .21.已知m 满足的条件为:代数式5123m m --的值与代数式72m -的值的和等于5;||||a b n a b =+,试求mn 的值.22.在一条东西走向的马路旁, 有青少年宫、 学校、 商场、 医院四家公共场所, 已知青少年宫在学校东300m 处, 商场在学校西200m 处, 医院在学校东500m 处, 若将马路近似地看作一条直线, 以学校为原点, 向东方向为正方向, 用 1 个单位长度表示100m .(1) 在数轴上表示出四家公共场所的位置;(2) 列式计算青少年宫与商场之间的距离 .23.如图, 已知线段AB ,延长AB 到C ,使12BC AB =,D 为AC 的中点,3DC cm =,求BD 的长 .24.保护环境,市政府计划在连接A 、B 两居民区的公路北侧1500米处修建一座污水处理厂,设计时要求该污水处理厂到A 、B 两居民区的距离相等.(1)若要以1:50000的比例尺画设计图,求污水处理厂到公路的图上距离;(2)在图中画出污水处理厂的位置P .(要求:用尺规作图,并写出已知和求作)参考答案与试题解析一.选择题(共8小题)【解答】解: 由数轴可得,0a >,0b <,||||b a >,故可得:0a b ->,||b a >,0ab <;即②③④正确 .故选:C .【解答】解:A 、328-=-,3(2)-,8=-,32∴-与3(2)-相等, 故本选项错误; B 、2(2)4--=-,224-=-,2(2)∴--与22-相等, 故本选项错误;C 、239-=-,2(3)9-=,23∴-与2(3)-互为相反数, 故本选项正确;D 、3|2|8-=,3|2|8=,3|2|∴-与3|2|相等, 故本选项错误 .故选:C .【解答】解:2x <-|1|1|||11|2x x x ∴-+=++=--,故选:A .【解答】解:A 、26与2x 字母不同不是同类项;B 、4ab 与4abc 字母不同不是同类项;C 、20.2x y 与20.2xy 字母的指数不同不是同类项;D 、nm 和mn -是同类项.故选:D .【解答】解:每件进价为a 元,零售价比进价高%m ,∴零售价为:(1%)a m +元,要零售价调整为原来零售价的%n 出售.∴调整后每件衬衣的零售价是:(1%)%a m n +元.故选:C .【解答】解:将5x =代入方程得:520a =解得:4a =.故选:B .【解答】解: 由四棱柱四个侧面和上下两个底面的特征可知,A 、只有 5 个面, 不是正方体的展开图, 不符合题意;出现了田字格, 故不能;B 、D 、出现了田字格, 故不是正方体的展开图, 不符合题意;C 、可以拼成一个正方体, 符合题意 .故选:C .【解答】解:时针在钟面上每分钟转0.5︒,分针每分钟转6︒,∴钟表上 12 时 15 分钟时, 时针与分针的夹角可以看成时针转过 12 时0.5157.5︒⨯=︒,分针在数字 3 上 .钟表 12 个数字, 每相邻两个数字之间的夹角为30︒,12∴时 15 分钟时分针与时针的夹角907.582.5︒-︒=︒.故选:B .二.填空题(共10小题)【解答】解:2009-的相反数是2009.【解答】答: 当1x =时,|1||1||5|8x x x -++++=,当1x =-时,|1||1||5|6x x x -++++=,当5x =-时,|1||1||5|10x x x -++++=.所以当1x =-时,|1||1||5|x x x -++++取最小值 6 .故答案为: 6 .【解答】解:18()18-⨯-=, ∴这个数是18-. 故答案为:18-. 【解答】解:26m n a b ++与42a b 是同类项,24m ∴+=,62n +=,2m ∴=,4n =-,2(4)6m n ∴-=--=.故答案为 6 .【解答】解: 由题意可得223a 的系数是23. 故答案为23.【解答】解: 将已知两等式联立得:25347x y x y +=⎧⎨+=⎩, 解得:13515x y ⎧=⎪⎪⎨⎪=-⎪⎩, 则1312626455x y +=⨯-⨯=.故答案为: 4【解答】解:答案不唯一.如:每支钢笔4元,买了a 支钢笔所需的钱数,或正方形的边长为a ,它的周长是4a .【解答】解: 设小排量轿车生产量应比正常情况增加的百分数为x ,汽车原总量为a . 则可得方程:30%(1)70%90%(17.5%)a x a a ++⨯=+,化简得:0.30.30.70.910.075x ++⨯=+,解得48.3%x ≈.故填 48.3 .【解答】解: 根据相对的两个面的数字和相等, 得101215a b c +=+=+,则2a b -=,5a c -=,3b c -=. 则原式222()()()192a b b c a c -+-+-==.故答案为 19 .【解答】解:4CB cm =,8DB cm =,844CD DB CB cm ∴=-=-=, D 是AC 的中点,2248AC CD cm ∴==⨯=.故答案为: 8 .三.解答题(共6小题)【解答】解: (1) 原式95(6)16(8)=-+⨯--÷-9302=--+37=-;(2) 原式134()16[84]213=⨯-+÷-- 216(12)=-+÷-423=-- 103=-. 【解答】解:(1)当a 为4时,9c =,5c a ∴-=,即5a c =-, 当9a =时,14c =,5c a ∴-=,即5a c =-,a ∴、c 的关系是:5a c =-;(2)设a x =,则1b x =+,5c x =+,6d x =+,32a b c d +++=,15632x x x x ∴++++++=,解得5x =,5a ∴=.【解答】解:根据题意,5172532m m m ---+=, 去分母得,122(51)3(7)30m m m --+-=,去括号得,1210221330m m m -++-=,移项得,1210330221m m m --=--,合并同类项得,7m -=,系数化为1得,7m =-,a 、b 同号时,112n =+=或1(1)2n =-+-=-,a 、b 异号时,0n =,所以,当7m =-、2n =时,(7)214mn =-⨯=-,当7m =-,2n =-时,(7)(2)14mn =-⨯-=,当7m =-,0n =时,(7)00mn =-⨯=,综上所述,mn 的值为14-或14或0.【解答】解: (1) 如图所示: 点A 表示商场, 点C 表示青少年宫, 点D 表示医院, 原点表示学校;(2) 依题意得青少年宫与商场之间的距离为300(200)500()m --=. 答: 青少年宫与商场之间的距离为500m .【解答】解:D 为AC 的中点,3DC cm =,26AC DC cm ∴==, 12BC AB =, 123BC AC cm ∴==, 1BD CD BC cm ∴=-=.【解答】解:(1)比例尺为1:50000实际距离为1500米 ∴图上距离为150000500003cm ÷=;(2)已知:直线L 到AB 的距离为1500米,设计图比例尺为1:50000在L 上求作点P ,使P 到A 、B 的距离相等.作法:找到AB 的中点,过中点作AB 的垂线,交L 于点P , 则P 点为所求.。
七年级上册数学综合训练题一
七年级上册数学综合训练题一一、选择题(每小题3分,共30分)1. 下列各组中的两项是同类项的是 ( )A .ab 与 abcB .35-与3x -C .y x 25与 x y 23D .xy 2-与.yx 5-2. 下列运算中,正确的是 ( )A . c b a c b a 25)2(5-+=+-B . c b a c b a 25)2(5+-=+-C . c b a c b a 25)2(5++=+-D . c b a c b a 25)2(5--=+-3. )]([c b a ---去括号应得 ( )A . c b a -+-B . c b a +--C . c b a ---D . c b a ++-4. 不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )A . )()23(22a b ab b a +-+++B . )()23(22a b ab b a -----+C . )()23(22a b ab b a --+-+D . )()23(22a b ab b a --+++5. 多项式8x 2-3x +5与多项式3x 3+2mx 2-5x +7相加后,不含二次项,则m 的值是( )A . 2B .-4C . -2D .-86. 式子||||||a b ab a b ab ++的所有的可能的值有( ) A . 2 个 B . 3 个 C . 4 个 D . 无数个7. 如果m 是大于1的有理数,那么m 一定小于它的( )A .相反数B .倒数C .绝对值D .平方8. 已知-m +2n =5,那么5(m -2n )2+6n -3m -60的值为( )A .80B . 10C .210D .409. 在数轴上,点x 表示到原点距离小于5的那些点,那么│x +5│+│x -5│等于(• )A . 10B . -2xC . -10D . 2x10. 若x =-2π,化简│x +1│-│x +2│+│x +3│-│x +4│+…-│x +10│得( ) A . 2x +7 B . 2x -7 C . -2x -7 D . -2x +7 二、填空题(每小题3分,共30分) 11. 单项式2512R π-的系数是_____,次数是______. 12. 多项式2532+-x x 是______次_____项式,常数项是_______. 13. 若m y x 35和219y xn +-是同类项,则m =_____,n =_______. 14. 把多项式723322---y x y x xy 按x 升幂排列是_______________________________.15. 代数式2x +3y 的值是-4,则3+6x +9y 的值是__________.16. 当k =______时,多项式22x -7kxy +23y +7xy +5y 中不含xy 项.17. 要使多项式mx 3-2x 2+3x -4x 3+5x 2-nx 不含三次项及一次项,则m 2-2mn +n 2的值为__________.18. 式子||||m n m n +的最大值与最小值的平方和是_________. 19. 若|1|a b ++与2(1)a b -+互为相反数,则321a b +-的值为_______.20. 当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是________. 三、解答题(每小题5分,共10分) 21.(1) 2222(2)3(2)4(32)ab a a ab a ab --+--- ;(2) {}235324[3(2)(4)(1)]7-⨯-+⨯-⨯---÷-- ;(3) |12006-12005|+|12007-12006|-|12007-12005|.22. 先化简后求值:(1)()()222234,1,1x y xy x y xy x y x y +---==-其中(2)5x -{2y -3x +[5x -2(y -2x )+3y ]},其中x =11,26y -=-.(3)已知332227,6a b a b ab +=-=-,求代数式332232()(3)2()b a a b ab b a b -+---的值.23. 表示数a 、b 、c 、d 的点在数轴上的位置如图,化简│b -c │-│a -2c │-│d +b │+│d │.24.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值.25. 若多项式622+-+y mx x 与x nx 322-15-+y 的差的值与x 所取的值无关.试求多项式)341(2312222n m n m ---的值.26. 已知式子||||||a b ab a b ab ++的最大值为p ,最小值为q ,求代数式669p -q 2的值.27. 图中显示的填数“魔方”只填了一部分,将下列9个数: 14,12,1,2,4,8,•16,•32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值.64x3228.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b a ,b 的形式,求20062007a b +的值.29.某中学组织初一同学春游,如果租用45座的客车,则有15个人没有座位;如果租用同数量的60座的客车,则除多出一辆外,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算?租几辆车?30.一名落水小孩抱着木头在河中漂流,在A 处遇到逆水而上的快艇和轮船,因雾大而未被发现,1小时快艇和轮船获悉此事,随即掉头追救,求快艇和轮船从获悉到追及小孩各需多少时间?31.一个三位数,十位上的数比个位上的数大4,个位上的数比百位上的数小2,若将此三位数的个位与百位对调,所得的新数与原数之比为7:4,求原来的三位数?。
初一数学上册综合算式专项练习题整式乘法混合运算
初一数学上册综合算式专项练习题整式乘法混合运算练习题1:将多项式 (2x^2 - 3xy + 4y^2)(3x - 2y) 进行整式乘法运算。
解答:(2x^2 - 3xy + 4y^2)(3x - 2y) 可以展开为:2x^2 * 3x + 2x^2 * (-2y) - 3xy * 3x - 3xy * (-2y) + 4y^2 * 3x + 4y^2 * (-2y)。
根据整式乘法法则和指数幂的乘法法则,上述式子可以化简为:6x^3 - 4x^2y - 9x^2y + 6xy^2 + 12xy^2 - 8y^3。
练习题2:计算下列整式的值:3x^2y^3 - 2xy^3,当 x = 4,y = -2 时。
解答:将 x 替换为 4,y 替换为 -2,得到:3(4)^2(-2)^3 - 2(4)(-2)^3。
根据指数幂的乘法法则,上述式子可以化简为:3(16)(-8) - 2(4)(-8)。
继续化简,得到:-384 - (-64)。
最终结果为:-384 + 64 = -320。
练习题3:将整式 5x - 2xy + 4y - 3x^2 + 6xy 进行合并同类项的运算。
解答:整式 5x - 2xy + 4y - 3x^2 + 6xy 的各项中,存在相同的字母,并且字母的指数也相同,可以合并为同类项。
将同类项合并,得到:(5x - 3x^2) + (-2xy + 6xy) + 4y。
再进行进一步的合并运算,得到:-3x^2 + 5x + 4xy + 4y。
练习题4:将整式 (2x^2 - 3xy + 4)(3 - x) 进行整式乘法运算。
解答:(2x^2 - 3xy + 4)(3 - x) 可以展开为:2x^2 * 3 + 2x^2 * (-x) - 3xy * 3 - 3xy * (-x) + 4 * 3 + 4 * (-x)。
根据整式乘法法则和指数幂的乘法法则,上述式子可以化简为:6x^2 - 2x^3 - 9xy + 3x^2y + 12 - 4x。
初一数学上册综合算式专项练习题混合运算
初一数学上册综合算式专项练习题混合运算混合运算是初中数学中的重要内容,它要求我们在一个算式中运用多种基本运算符号进行计算。
掌握混合运算的方法和技巧对于解答数学题目和提高计算能力都至关重要。
本文将为大家介绍一些初一数学上册综合算式专项练习题,帮助大家熟悉混合运算的题型和解题方法。
1. 求解下列算式的值:(1)8 + 5 - 2 × 3(2)12 ÷ (3 + 1) × 2(3)7 + 3 × 4 ÷ 2(4)15 - (4 × 2 - 3)(5)(6 - 2) × 5 ÷ 2 + 1在求解这些算式的过程中,我们需要注意运算顺序。
首先计算括号中的内容,然后按照从左到右的顺序进行乘法、除法、加法和减法的运算。
通过列竖式的方式,可以更清晰地展现每个运算步骤,避免计算错误。
2. 完成下列方程式:(1)3 × ? + 2 = 11(2)7 - ? ÷ 2 = 3(3)6 ÷ ? + 5 = 9解这些方程式需要应用到混合运算的基本概念。
首先,需要找出一个未知数,并根据已知条件列出方程式。
然后,通过逆运算的方式求解未知数的值。
在解题过程中,要注意运算符号的优先级和计算的顺序。
3. 按要求补充算式中的数字:(1)12 + ? = 18(2)? × 4 = 36(3)5 × ? + 6 = 31通过补充数字的练习,可以帮助我们巩固混合运算的基本概念,培养我们的计算能力和逻辑思维能力。
在解决这类问题时,我们需要根据已知条件推理出未知数的值,然后将其代入算式进行计算。
4. 解决下列实际问题:(1)小明买了一箱苹果,每箱有25个。
如果他将其中的4个苹果分给小红,还剩下多少个苹果?(2)一辆汽车以每小时60公里的速度行驶,行驶4小时后,汽车行驶的总路程是多少公里?(3)一件衣服原价80元,打5折后的价格是多少?通过解决实际问题的练习,我们可以将混合运算与日常生活相结合,加深对混合运算的理解和应用能力。
2024版七年级上册数学易错题综合练习
2024版七年级上册数学易错题综合练习专业课试题部分一、选择题(每题2分,共30分)1. 一个三位数的十位和百位数字相同,且都不为零,个位数字比十位数字大2,这个三位数是()A. 255B. 266C. 247D. 2332. 下列各数中,最小的是()A. |3|B. |3|C. 3^2D. (3)^23. 已知a+b=5,ab=3,则a^2+b^2的值为()A. 7B. 16C. 23D. 324. 下列各式中,正确的是()A. |a|=aB. |a|=aC. |a|=±aD. |a|≥a5. 有理数a、b在数轴上的对应点如图所示,则()A. |a|>|b|B. |a|<|b|C. a<bD. a>b二、判断题(每题2分,共30分)6. 互为相反数的两个数的和为0。
()7. 两个负数相乘,积一定是正数。
()8. 任何两个有理数都可以比较大小。
()9. |3|=3。
()10. 2^3和3^2相等。
()三、填空题(每题2分,共30分)11. 若|a|=5,则a=______。
12. 若a+b=7,ab=3,则a=______,b=______。
13. 已知a、b互为相反数,且|a|=3,则a=______,b=______。
14. 若2x3=7,则x=______。
15. 若x^2=16,则x=______。
四、简答题(每题6分,共30分)16. 请简要说明有理数的乘法法则。
17. 请举例说明相反数的概念。
18. 请解释绝对值的意义。
19. 请简述解一元一次方程的基本步骤。
20. 请举例说明如何用数轴比较两个有理数的大小。
五、应用题(每题10分,共50分)21. 某数的2倍与3的差是7,求这个数。
22. 已知一个数的平方是25,求这个数的相反数。
23. 一个数的3倍减去5等于这个数的2倍加上3,求这个数。
24. 甲、乙两人年龄之和为35岁,甲的年龄是乙的2倍,求甲、乙两人的年龄。
人教版七年级数学(上)全册综合测试试卷
20.解:(1)5x﹣2=7x+8 5x﹣7x=8+2, ﹣2x=10, x=﹣5;
5/9
(2)12(2﹣3x)=4x+4, 24﹣36x=4x+4, ﹣36x﹣4x=4﹣24, ﹣40x=﹣20, x=0.5; (3) =x+1,
3﹣x=2(x+1), 3﹣x=2x+2, ﹣x﹣2x=2﹣3, ﹣3x=﹣1, x= ;
.
18.在同一条数轴上,点 B 表示的数是﹣8,点 C 表示的数是 16,若点 B 以每秒 6 个单位
长度的速度向右匀速运动,同时点 C 以每秒 2 个单位长度的速度向左匀速运动,当运动
秒时,BC=8 个单位长度.
三.解答题(本大题包括 7 小题,共 56 分)
19.(6 分)计算:
(1)[2 +( + ﹣ )×24]÷(﹣5).
(2)0.5+7 ×(﹣ )﹣(﹣2)3÷(﹣2)4.
20.(8 分)解方程: (1)5x﹣2=7x+8 (2)12(2﹣3x)=4x+4
2/9
(3) =x+1
(4)
﹣
=1
21.(8 分)先化简,再求值:5m2﹣[2mn﹣3( mn+2)+4m2],其中 m=﹣2,n= .
22.(8 分)如图(1)所示,∠AOB、∠COD 都是直角.
A.M 与 Q
B.N 与 P
3.对于下列四个式子:① ;②
C.M 与 P
D.N 与 Q
;③ ;④ .其中不是整式的是( )
A.①
B.②
C.③
D.④
4.同步卫星在赤道上空大约 36000000 米处.将 36000000 用科学记数法表示应为( )
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
七年级数学(上)有理数混合运算100题(含答案)
七年级数学(上)有理数混合运算100题(含答案)1. 计算:(3) + 5 2答案:02. 计算:(4 7) × (2)答案:63. 计算:4 ÷ 2 + 3答案:14. 计算:5 (3) + 2答案:105. 计算:3 × (2) 4答案:26. 计算:7 ÷ (1) + 6答案:17. 计算:4 + 8 ÷ (2)答案:88. 计算:(5) × (3) + 2答案:179. 计算:9 6 ÷ 3答案:710. 计算:2 × (4) + 5答案:1311. 解决这个问题:如果你有8个苹果,然后又得到了6个,你现在有多少苹果?答案:2个苹果12. 小华做数学题,先减去了10,然后又加上了15,请计算小华的最终结果。
答案:513. 一个数加上3后再乘以2,结果是多少?如果这个数是5。
答案:414. 小明将4分成两个相同的部分,然后将每个部分都加上5,的结果是多少?答案:6答案:116. 小红有一堆糖果,如果她每天吃掉4颗,5天后她还剩下多少糖果?如果她一开始有25颗糖果。
答案:5颗糖果17. 一个数乘以2后再减去8,结果是12,这个数是多少?答案:218. 如果一个数的两倍减去4等于8,那么这个数是多少?答案:619. 计算下列表达式的值:(3) × (2) 5 + 7 ÷ (1)答案:120. 小李的分数先减去了10分,然后又增加了20分,他的最终分数是多少?如果他的原始分数是50分。
答案:60分(继续进行下一部分的题目,确保每个题目都有其独特性,帮助同学们从不同角度理解和掌握有理数的混合运算。
)21. 假设你的温度计显示温度下降了5度,然后又上升了3度,最终温度相比初始温度变化了多少?答案:下降了2度22. 如果你原本有20元,然后花了7元买了一个笔记本,接着又找到了3元,你现在有多少元?答案:16元23. 一个学生在考试中得到了3分,然后又因为表现好被加回了5分,他的最终得分是多少?答案:2分24. 一个数减去它自己的两倍,结果是多少?如果这个数是7。
初一数学上册综合算式专项练习题整数乘法混合运算
初一数学上册综合算式专项练习题整数乘法混合运算初一数学上册综合算式专项练习题:整数乘法混合运算在初中数学学习中,综合算式是非常重要的一部分,它要求我们运用所学的知识和方法,灵活地解决各种数学问题。
而整数乘法混合运算则是综合算式中的一种常见类型,需要我们运用整数的乘法性质解决问题。
本文将为大家提供一些关于初一数学上册综合算式中整数乘法混合运算的专项练习题,希望能够帮助大家更好地掌握这一知识点。
题目一:计算并化简(-3) × (-4) × (-5) × 2解析:根据整数乘法的性质,两个负数相乘得到正数,而一个负数和一个正数相乘得到负数。
因此,我们可以先将负数和负数相乘得到正数,再将正数和正数相乘得到正数。
答案为:(-3) × (-4) = 12,12 × (-5) = -60,-60 × 2 = -120。
题目二:计算并化简(-2) × (-3) × 4 × 5解析:根据整数乘法的性质,两个负数相乘得到正数,而一个负数和一个正数相乘得到负数。
因此,我们可以先将负数和负数相乘得到正数,再将正数和正数相乘得到正数。
答案为:(-2) × (-3) = 6,6 × 4 = 24,24 × 5 = 120。
题目三:计算并化简(-5) × 3 × (-2) × (-1)解析:根据整数乘法的性质,两个负数相乘得到正数,而一个负数和一个正数相乘得到负数。
因此,我们可以先将负数和负数相乘得到正数,再将正数和正数相乘得到正数。
答案为:(-5) × 3 = -15,-15 × (-2) = 30,30 × (-1) = -30。
题目四:计算并化简(-4) × 3 × (-2) × 2解析:根据整数乘法的性质,两个负数相乘得到正数,而一个负数和一个正数相乘得到负数。
人教版2024新版七年级数学上册第二章《综合练:有理数的乘方》测试题及答案
数学试题 第1页(共6页) 数学试题 第2页(共6页)人教版2024新版七年级数学上册《第2章 综合练:有理数的乘方》测试题及答案(满分:100分 时间:60分钟)一、 选择题(每题3分,共30分) 1.23的结果等于( )A.9B.-9C.5D.6 2.下列语句中出现的数,是近似数的是( ) A.七(2)班有40人 B.一星期有7天 C.一本书共有180页 D.小华的身高为1.6m3.用四舍五入法将130 542精确到千位,正确的是( ) A.131 000 B.0.131×610 C.1.31×510 D.13.1×4104.在-(-5),2(5)--,-|-5|,3(5)-中,正数有( ) A.1个 B.2个 C.3个 D.4个5.某自动控制器的芯片,可植入2 020 000 000粒晶体管,这个数2 020 000 000用科学记数法可表示为( )A.0.202×1010B.2.02×910C.20.2×810D.2.02×810 6.下列各组的两个数中,运算后结果相等的是( ) A.223(3)--与 B.3553与 C.337(7)--与D.333344⎛⎫--⎪⎝⎭与7.一个数的平方等于它本身,这个数是( ) A.1 B.0 C.0或1 D.1或-18.与算式333222++的运算结果相等的是( ) A.32 B.92 C.3×32 D.3×69.数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头毛驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A.42 B.49 C.67 D.7710.观察下列等式:01271,77,749===, 347343,72401==,5716807,,=根据其中的规律可得01220197777++++的结果的个位数字是( )A.0B.1C.7D.8 二、填空题(每题3分,共24分)11.计算:23122⎛⎫⨯= ⎪⎝⎭________. 12.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149 600 000千米,用科学记数法表示1个天文单位是_________千米.13.4.24 970≈__________(精确到百分位);近似数6.34万精确到_________位.14.把下列用科学记数法表示的数的原数填在横线上: (1)62.1610⨯=__________; (2)37.12310-⨯=__________. 15.已知2(4)|2|0a b ++-=,则b a 的值是_______. 16.已知,a b互为相反数且a≠0,,c d互为倒数,则202320222022()()a a b cd b ⎛⎫+-+-= ⎪⎝⎭________.数学试题 第3页(共6页) 数学试题 第4页(共6页)17.2323113,(2),,32⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭的大小顺序是_____>_____>_____>______.18.阅读材料:若b a N =,则log a b N =,称b 为以a 为底N 的对数,例如328=,则322log log 238==.根据材料填空:3log 9=________. 三、解答题(共46分)19.(6分)按括号里的要求,对下列各数取近似数:(1)0.83284(精确到千分位);(2)2346.46m (精确到1m ); (3)28.3万亿(精确到万亿位).20.(7分)小明和小刚测量同一根木棒,小明测得长是0.80m ,小刚测得长是0.8m ,问两人测量的结果是否相同?为什么?21.(16分)计算:(1)322(3)(2)+-⨯-;(2)23320221129(1)23⎛⎫⎛⎫-÷-+⨯--- ⎪⎪⎝⎭⎝⎭; (3)2332122(3)22(2)433⎛⎫⎛⎫-÷⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭; (4)43212333(3)(5)335⎡⎤⎛⎫÷-⨯-⨯--- ⎪⎢⎥⎝⎭⎣⎦.22.(8分)已知2|1|4,(2)4x y +=+=,求x y +的值.23.(9分)观察下列三行数: -3,9,-27,81,-243,…① 1,13,-23,85,-239,…② 1,-3,9,-27,81,…③(1)第①行数是按什么规律排列的?(2)第②行数、第③行数与第①行数有什么关系?(3)第②行、第③行中第6个数之和与第①行中第6个数之差是多少?参考答案一、1.答案:A 2.答案:D 3.答案:C 4.答案:A 5.答案:B 6.答案:C 7.答案:C 8.答案:C 9.答案:C 10.答案:A解析:因为01234571,77,7497343,72401,716807,,======,所以个位数字4个数一循环, 所以(2019+1)÷4=505, 又因为1+7+9+3=20, 所以01220197777++++的结果的个位数字是0.11.答案:2 12.答案:1.496×810 13.答案:4.25;百数学试题 第5页(共6页) 数学试题 第6页(共6页)14.答案:(1)2 160 000(2)-7 123 15.答案:16 16.答案:217.答案:233211;;(2);332⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭18.答案:2三、19.答案:见解析 解析:(1)0.832 84≈0.833. (2)2 346.46m≈2 346m. (3)28.3万亿≈28万亿. 20.答案:见解析解析:不同.小明测得0.80m ,精确到百分位.小刚测得0.8m ,精确到十分位.因为两人测量结果精确度不同,所以两人测量结果不一样. 21.答案:见解析解析:(1)原式=8+(-3)×4 =8-12 =-4.(2)原式=11891427⎛⎫-÷+⨯-- ⎪⎝⎭ =13213⎛⎫-+-- ⎪⎝⎭=1333-.(3)原式=942 2784493⎛⎫-÷⨯++⨯- ⎪⎝⎭=4812893⎛⎫-⨯++- ⎪⎝⎭=168833⎛⎫-++- ⎪⎝⎭=0.(4)原式=410333(27)25325⎡⎤⎛⎫⨯-⨯-⨯-- ⎪⎢⎥⎝⎭⎣⎦ =81+81-25 =137.22.答案:见解析解析:因为2|1|4,(2)4x y +=+=,所以x +1=4或x +1=-4,y +2=2或y +2=-2, 所以x =3或x =-5,y =0或y =-4. 当x =3,y =0时,x y +=3+0=3; 当x =3,y =-4时,x y +=3-4=-1; 当x =-5,y =0时,x y +=-5+0=-5; 当x =-5,y =-4时,x y +=-5-4=-9. 综上所述x y +的值为3或-1或-5或-9. 23.答案:见解析解析:(1)第①行数是按23,(3)--,345(3),(3),(3)---排列的.(2)第②行数是第①行对应数加4得到的, 第③行数是第①行对应数乘13-得到的.(3)第①行、第②行、第③行的第6个数分别为66(3),(3)4--+,61(3)()3-⨯-,故所求结果为6661(3)4(3)()(3)2393-++-⨯---=-.。
七年级上混合运算100题
七年级上混合运算100题题目。
1. 2 + 3×(-4)解析:先计算乘法:3×(-4)= -12,再计算加法:2 + (-12) = -102. (-5)×(-2) + 4÷(-2)解析:先计算乘法和除法:(-5)×(-2) = 10,4÷(-2) = -2,最后计算加法:10 + (-2) = 83. 18 - 6÷(-2)×(-(1)/(3))解析:先计算除法:6÷(-2) = -3,再计算乘法:-3×(-(1)/(3)) = 1,最后计算减法:18 - 1 = 174. (-2)^3 + (-3)×[(-4)^2 + 2]解析:先计算指数运算:(-2)^3 = -8,(-4)^2 = 16,然后计算乘法:(-3)×(16 + 2) = (-3)×18 = -54,最后计算加法:-8 + (-54) = -625. 3 - 50÷2^2×(1)/(10) + 1解析:先计算指数运算:2^2 = 4,然后计算除法和乘法:50÷4×(1)/(10) =(5)/(2),最后计算加减法:3 - (5)/(2) + 1 = (1)/(2) + 1 = (3)/(2)6. (-1)^10×2 + (-2)^3÷4解析:先计算指数运算:(-1)^10 = 1,(-2)^3 = -8,然后计算乘法和除法:1×2 = 2,-8÷4 = -2,最后计算加法:2 + (-2) = 07. (1)/(2)×(-2) + (1)/(6)×(-6)解析:先计算乘法:(1)/(2)×(-2) = -1,(1)/(6)×(-6) = -1,最后计算加法:-1 + (-1) = -28. (-4)×(-(5)/(7))÷(-(4)/(7)) - (-(1)/(2))^2解析:先计算乘法和除法:(-4)×(-(5)/(7))÷(-(4)/(7)) = (20)/(7)×(-(7)/(4)) = -5,(-(1)/(2))^2 = (1)/(4),最后计算减法:-5 - (1)/(4) = -(21)/(4)9. (-5)^2 - 3×(-(1)/(3))^2解析:先计算指数运算:(-5)^2 = 25,(-(1)/(3))^2 = (1)/(9),然后计算乘法:3×(1)/(9) = (1)/(3),最后计算减法:25 - (1)/(3) = (74)/(3)10. 2×(-3)^3 - 4×(-3) + 15解析:先计算指数运算:(-3)^3 = -27,然后计算乘法:2×(-27) = -54,4×(-3) = -12,最后计算加减法:-54 + 12 + 15 = -2711. (-(3)/(4) + (1)/(6) - (3)/(8))×(-24)解析:利用乘法分配律展开计算:(-(3)/(4))×(-24) + (1)/(6)×(-24) - (3)/(8)×(-24) = 18 - 4 + 9 = 2312. -1^4 - (1 - 0.5)×(1)/(3)×[2 - (-3)^2]解析:先计算指数运算:-1^4 = -1,(-3)^2 = 9,然后计算括号内的运算:2 - 9 = -7,再计算乘法:(1 - 0.5)×(1)/(3)×(-7) = (1)/(2)×(1)/(3)×(-7) = -(7)/(6),最后计算减法:-1 - (-(7)/(6)) = -(6)/(6) + (7)/(6) = (1)/(6)13. (-2)^2×5 - (-2)^3÷4解析:先计算指数运算:(-2)^2 = 4,(-2)^3 = -8,然后计算乘法和除法:4×5 = 20,-8÷4 = -2,最后计算加减法:20 - (-2) = 2214. -10 + 8÷(-2)^2 - (-4)×(-3)解析:先计算指数运算:(-2)^2 = 4,然后计算除法和乘法:8÷4 = 2,(-4)×(-3) = 12,最后计算加减法:-10 + 2 - 12 = -2015. 4×(-3)^2 - 5×(-3) + 6解析:先计算指数运算:(-3)^2 = 9,然后计算乘法:4×9 = 36,5×(-3) = -15,最后计算加减法:36 + 15 + 6 = 5716. (-(1)/(2))^3×(-8) + (-(3)/(4))×(-2)^2解析:先计算指数运算:(-(1)/(2))^3 = -(1)/(8),(-2)^2 = 4,然后计算乘法:-(1)/(8)×(-8) = 1,(-(3)/(4))×4 = -3,最后计算加法:1 + (-3) = -217. -2^2 + (-2)^3×5 - 0.28÷(-2)^2解析:先计算指数运算:-2^2 = -4,(-2)^3 = -8,(-2)^2 = 4,然后计算乘法和除法:-8×5 = -40,0.28÷4 = 0.07,最后计算加减法:-4 + (-40) - 0.07 = -44.0718. (-3)^2×[(-(2)/(3)) + (-(5)/(9))]解析:先计算指数运算:(-3)^2 = 9,然后计算括号内的运算:(-(2)/(3)) + (-(5)/(9)) = -(11)/(9),最后计算乘法:9×(-(11)/(9)) = -1119. 1 - 2 + 3 - 4 + 5 - 6 + ·s + 99 - 100解析:将相邻两个数分为一组,每组的计算结果为-1,一共有50组,所以结果为-5020. (-1)^2020 + (-1)^2021解析:因为(-1)^偶数次幂=1,(-1)^奇数次幂=-1,所以(-1)^2020 = 1,(-1)^2021 = -1,则1 + (-1) = 0。
七年级数学(上)有理数的混合运算练习题40道(带答案)
七年级数学(上)有理数的混合运算练习题40道(带答案)嘿,同学们,今天咱们来聊聊数学这门神奇的学科。
说到数学,尤其是七年级的数学,那可是我们人生中第一次接触到有理数的混合运算。
今天,我就给大家带来了40道有理数混合运算的练习题,还有答案哦!准备好了吗?咱们就开始吧!1. 3 + 5 2 = ?2. 7 4 + 2 × 3 = ?3. 6 ÷ 2 + 3 × (2) = ?4. 8 (3) + 4 ÷ 2 = ?5. (5) × (2) + 3 1 = ?(答案:1. 0,2. 8,3. 7,4. 9,5. 7)怎么样,这些题目简单吗?其实,有理数的混合运算并没有那么难,关键是要掌握好运算顺序。
下面,我们再来挑战一些稍微有点难度的题目。
6. 2 × (3) + 4 (2) ÷ 2 = ?7. (1) × (4) 5 + 2 ÷ (2) = ?8. 6 (3) × 2 + 5 ÷ (1) = ?9. (2) ÷ 3 + 4 × (1) 5 = ?10. 7 3 × (2) + (4) ÷ 2 = ?(答案:6. 3,7. 3,8. 3,9. 7,10. 8)同学们,看到这里,你们是不是觉得有点头绪了呢?其实,数学就像一场游戏,只要我们用心去玩,就能找到其中的乐趣。
下面,我们再来挑战一些更有难度的题目。
11. (3) × (2) + 4 ÷ 2 5 = ?12. 6 (3) × 2 + (4) ÷ (1) = ?13. 7 × (1) + 4 (2) ÷ 2 = ?14. (2) × (3) + 5 4 ÷ 2 = ?15. 6 3 × (2) + (4) ÷ (1) = ?(答案:11. 4,12. 10,13. 7,14. 5,15. 10)怎么样,这些题目是不是有点意思了?其实,数学的世界是无穷无尽的,只要我们勇于挑战,就能发现其中的奥秘。
北师大版数学七年级上册综合训练100题-含答案
北师大版数学七年级上册综合训练100题含答案(题型:单选、多选、填空、解答题)一、单选题1.在数轴上,表示不小于2-且小于2之间的整数的点有( ) A .3个B .4个C .5个D .无数个2.如图长方体的展开图,不可能是( ).A .B .C .D .3.如图所示的图形为四位同学画的数轴,其中正确的是( ) A . B . C .D .4.如果2x 2y 3与x 2y n+1是同类项,那么n 的值是( ) A .1B .2C .3D .45.下列运算正确的是( ) A .2232x x -= B .2235a a a += C .22ab a b -=D .222242x y yx x y -=-6.下列调查中,适合采用全面调查(普查)方式的是( ) A .了解某班同学“立定跳远”的成绩 B .了解全国中学生的心理健康状况C .了解外地游客对我市旅游景点“磁器口”的满意程度D .了解端午节期间重庆市场上的粽子质量情况7.把(8)(3)(5)(7)-++---+写成省略括号的代数和形式是( ). A .8357-+--B .8357--+-C .8357-+++D .8357-++-8.下列各式,运算正确的是( ) A .2(a ﹣1)=2a ﹣1 B .a 2+a 2=2a 2C .2a 3﹣3a 3=a 3D .a+a 2=a 39.用一个平面去截一个正方体,下列选项中画有阴影的部分是截面,哪个画法是错误的( ) A .B .C .D .10.已知233m m --的值为2,那么代数式2203026m m -+的值是( ) A . 2000B . 2010C .2020D . 203011.如图,数轴的单位长度为1,如果,P R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T12.已知232m x y +与21n x y +-是同类项,则m n -的值为( ) A .1-B .1C .2-D .213.3≤m ≤5,化简|m ﹣5|+|2m ﹣6|的结果是( ) A .m ﹣1B .1﹣mC .3m ﹣11D .11﹣3m14.如图所示,该几何体的左视图是( )A .AB .BC .CD .D15.下列计算正确的是( ) A .326=B .2416-=-C .990--=D .523-+=16.如图,圆圈表示负数集、整数集和正数集,其中有甲、乙、丙三个部分,这三部分的数的个数为( )A .甲、丙两部分有无数个,乙部分只有一个是0B .甲、乙、丙三部分都有无数个C .甲、乙、丙三部分都只有一个D .甲只有一个,乙、丙两部分有无数个17.计算()()2000201911---等于( ).A .2B .1-C .0D .2-18.将方程x-53-x =1去分母得 ( ) A .3x-2x +10=1 B .3x-2x-10=1 C .3x-(x-5)=3 D .3x-2x +10=619.若()1240a a x -+-=是关于x 的一元一次方程,则a =( )A .2-B .2C .0D .2或2-20.如图是一无盖长方体盒子的展开图(重叠部分不计),则该无盖长方体的容积为( )A .4B .3C .8D .1221.如图是一个迷你数独,图中实线划分的区域是一个宫,共有4个宫,每一宫又被虚线分为四个小格.根据图中已经给的提示数字,在其他的空格上填入-1、-2、-3、-4的数字.使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次.则图中点A 的位置所填的数字为 ( )A .-1B .-2C .-3D .-422.下列每对数中,相等的一对是( )A .()21--和21B .31--和()31--C .()31-和-31D .()41-和41-23.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元24.如图,在不完整的数轴上有A ,B 两点,它们所表示的两个有理数互为相反数,则关于原点位置的描述正确的是( )A .在点A 的左侧B .与线段AB 的中点重合C .在点B 的右侧D .与点A 或点B 重合25.如图,在这个数运算程序中,若开始输入的正整数n 为奇数,都计算3n +1;若n 为偶数,都除以2.若n =21时,经过1次上述运算输出的数是64;经过2次上述运算输出的数是32;经过3次上述运算输出的数是16;…;经过2022次上述运算输出的数是( ).A .1B .2C .3D .426.下列各式中,成立的是( ) A .235x x x +=B .23x x x +=C .224a a a +=D .235x y xy +=27.下列各方程,变形正确的是( ) A .13x-=化为13x B .1[(2)]x x x ---=化为31x =-C .1123--=x x 化为3221x x -+= D .34152x x -+-=化为2(3)5(4)10x x --+= 28.某年级进行数学竞赛,在第二环节的10道题中,答对1题得10分,答错一题扣5分,不答不得分,二班实际得分15-分,则下列选项正确的是( )A .答对1题,答错5题,不答4题B .答对2题,答错5题,不答3题C .答对2题,答错5题,不答3题D .答对4题,答错5题,不答1题29.已知有理数a 在数轴上的位置如图,则|1|a a +-的值为( )A .1B .21a -C .1-D .2a二、多选题30.若OC 是∠AOB 内部的一条射线,则下列式子中,能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC =∠BOC B .∠AOB =2∠BOC C .∠AOC =12∠AOBD .∠AOC +∠BOC =∠AOB31.下面各式中去括号错误的是( ) A .3(1)31x x +=+ B .(1)1x x -+=-+ C .6()6x a x a +-=+-D .1(2)21x x --=-+32.下列计算正确的是( ) A .()()15217-+-=- B .()()523-++=-C .()8 2.520⨯-=D .()664.5109510⨯÷=⨯33.下列说法:其中不正确的是( ) A .一个有理数不是整数就是分数; B .绝对值等于本身的数只有0;C .如果AB BC =,则点B 是线段AC 的中点;D .一个角的两边越长,角度越大 34.下列说法正确的是()A .14174万这个数用科学记数法表示(精确到百万位)为1.42×108B .88.9万亿用科学记数法表示为8.89×1013C .数据1.002×1011可以表示为10020亿D .数据0.50精确到百分位35.如图,两根木条的长度分别为7cm 和12cm ,在它们的中点处各打一个小孔M ,N (木条的厚度,宽度及小孔大小均忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN 为( )A .19cmB .9.5cmC .5cmD .2.5cm36.下列结论正确的是( ) A .abc 的系数是1 B .1﹣3x 2﹣x 中二次项系数是1C .﹣ab 3c 的次数是5D .4223x y -的次数是637.有下列说法,其中错误的说法有( )A .多项式﹣3x 2+x ﹣1的系数是﹣3,它是三次二项式;B .单项式﹣243x y和﹣23π2a b 的系数分别是﹣4和﹣23;C .23x x+是二次多项式;D .2a +13π与3π+12a 都是整式,38.关于单项式25π3x y-,下列说法中正确的是( )A .系数是53- B .次数是4 C .系数是5π3-D .次数是339.下列说法中,正确的有( ) A .两个非负有理数的和不小于每个加数B .两个有理数的差不大于被减数C .互为相反数的两个数,它们的平方相等D .多个有理数相乘,当负因数有奇数个时积为负40.某商场7-11月的商品销售总额为400万元,图∠表示的是该商场今年7-11月的各月销售情况,图∠变式的是服装部各月销售额占商场当月销售总额的百分比情况,观察图∠,∠,下列说法中正确的是( )A .10月份商场销售总额为70万元B .10月份商品服装部的销售额是11.2万元C .10月份商场服装部的销售总额比9月份增加了D .11月份商场服装部的销售总额比10月份减少了 41.下列式子的运算正确的是( ) A .(a ﹣b )﹣(b ﹣2a )=3a -2b B .(b +a ﹣c )+(a ﹣b )=2a +3b C .﹣(﹣b +a )﹣(b ﹣a )=0 D .(a ﹣b +c )﹣(a +b ﹣c )=﹣2b +2c42.如果OC 是∠AOB 的平分线,则下列结论正确的是( ) A .∠AOC =∠BOC B .∠AOC =12∠AOB C .∠AOB =2∠BOCD .∠AOB =∠AOC43.(多选)下列说法正确的是( ) A .﹣a 一定是负数B .在数轴上离原点越远的数就越大C .一个数比它的相反数大,这个数是正数D .一个数的绝对值等于它本身,这个数是非负数44.有理数在数轴上的位置如图所示,则下列各式中正确的是( )(多选)A .0a b +<B .0a b -<C .0ab >D .b a >45.用一个平面截下列几何体:∠圆锥;∠圆柱;∠三棱柱;∠四棱柱.若所得截面是三角形,则该几何体可能是( ) A .∠B .∠C .∠D .∠46.如图,表中给出的是2021年3月的月历,任意用“H ”型框选中7个数(如阴影部分所示),则这7个数的和可能是( )A .63B .91C .154D .16847.如图,在同一平面内,90AOB COD ∠=∠=︒,COE BOE ∠=∠,点F 为OE 反向延长线上一点(图中所有角均指小于180°的角).下列结论正确的是( ).A .AOE DOE ∠=∠B .180AOD COB ∠+∠=︒C .90COB AOD ∠-∠=︒D .180COE BOF ∠+∠=︒48.下列各数中,非正数的数是( ) A .(2)--B .|7|--C .201910-⨯D .3()1--49.如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2021次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2021次移动中,跳棋停留过的顶点有( )A .AB .C C .ED .G三、填空题50.设[x ]表示不大于x 的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为_____. 51.已知,a 、b 、c 在数轴上的位置如图.(1)用“<”号将a 、b 、c 、﹣a 、﹣b 、﹣c 连接起来: . (2)化简:|a +1|﹣|c ﹣b |﹣|b ﹣1|.52.比较大小:1-3___0;1-2____1-3;05.+______-153.如图,数轴上的点A 表示的数是3-,将点A 向右移动5个单位长度,此时点A 表示的数是______·54.有若干个数,第一个数记为a 1,第二个记为a 2,第三个记为a 3,…,第n 个记为a n ,若 a 1= —12,从第二个数起,每个数都等于“1与它前面的数的差的倒数”,试计算a 2=______,a 2011=_______ .55.在数-3,-2,4,5中任取三个数相乘,所得的积中最大的是_____,最小的积是_____. 56.计算:①3352'2154'+=________;②18.18=________________'________″.57.李明与王伟在玩一种计算的游戏,计算的规则是a bad bc c d=-.李明计算352312571=⨯-⨯=-,现在轮到王伟计算2365--,请你帮忙算一算,得______.58.一个菜地共占地(6m +2n )亩,其中(3m +6n )亩种植白菜,种植黄瓜的地是种植白菜的地的13,剩下的地种植时令蔬菜,则种植时令蔬菜的地有_________亩.59.在有理数3,0,1-,3-中,任意取两个数相乘,积的最小值是______. 60.已知,021=,122=,224=,328=,24的个位数字是6,25的个位数字是2,……,则20212的个位数字是____________. 61.若x 、y 互为倒数,则()2022xy -=______.62.计算:8(16)÷-=__________,26(15)---=___________. 63.用代数式表示:(1)f 的11倍再加上2可以表示为_________________;(2)一个数a 的18与这个数的和可以表示为_________________;(3)一个教室有2扇门和4扇窗户,n 个这样的教室有_________________扇门和_________________扇窗户;(4)产量由kg m 增长15%后,达到_________________kg .64.银川市某一天的最高气温是10∠,最低气温是6-∠,那么这一天的最高气温比最低气温高________∠.65.下列图形中,能折成棱柱的有___________个.66.点O A B C,,,在数轴的位置如图所示,其中点A B,到原点O的距离相等,点A C,之间的距离为3.若点C表示的数为x,则点B所表示的数为___________(用含x的代数式表示).67.将两个边长为2cm的正方体拼成一个长方体,表面积减少了__cm2.68.若﹣2amb4与5a3b2+n可以合并成一项,则mn=_____.69.把1~9这九个数填入33⨯方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则y x-的值为______.70.观察下列一组数:32、1、710、917、1126…,它们是按一定规律排列的那么这组数的第n个数是_______.(n为正整数)71.135-的相反数是_______,倒数是_______,绝对值是_______.72.2020年春节,在党和政府的领导下,我国进行了一场抗击“新型冠状病毒感染的肺炎疫情”的战斗.为了控制疫情的蔓延,黄冈稳健卫生材料厂接到上级下达赶制一批加工防病毒口罩的任务,原计划每天完成1.2万只,为使口罩早日到达防疫第一线,实际每天比原计划多加工0.4万只,结果提前4天完成任务.则该厂原计划_____天完成任务,这批防病毒口罩共_____万只.73.(5)8(7)(0.25)-⨯⨯-⨯-74.如图所示的运算程序中,若开始输入x值为36,我们发现第1次输出的结果为18,第2次输出的结果为9,则第3次输出的结果为____;第2022次输出的结果为____.75.如果盈利200元记作+200,那么亏损500元记作______元76.已知关于x的一元一次方程12002x+a=2x+b(a,b为常数)的解为x=2,那么关于y的一元一次方程12002y+a=2y+b+200112的解y=__.77.若a是不为1的有理数,我们把1﹣1a 称为a的差倒数,设a1=﹣13,若a2是a1的差倒数,a3是a2的差倒数,a4是a3是差倒数,…,依此类推,a2018的值是_____.四、解答题78.数轴上有A、B、C三个点对应的数分别是-22、-10、10.动点P从A出发,以每秒3个单位的速度向点C方向移动,设移动时间为t秒,点Q从B点出发,以每秒1个单位的速度向右运动,P点到达C点后,再立即按原速返回点A.(1)点P到达点B时t=秒,点Q向右运动的过程所表示的数为,点P返回的过程中所表示的数为;(2)当t为何值时,P、Q两点之间的距离为4.79.计算:(1)(-5)2-(-7)+(-16)+(-1)4(2)5×(-2)+6-4÷12(3)2×(-24)×(-0.25)×1 12(4)32÷(-2)2+6×11 6-80.解方程:(1)52318x x+=-;(2)2111 23x x+--=.81.计算:2111()()4()332-÷--⨯- 82.请画出无盖正方体的展开图,能画几种画几种.83.周末,小亮一家三口乘轿车去看望爷爷、奶奶和外公、外婆.早上从家里出发,向南走了2千米到超市买东西,然后继续向南走了5千米到爷爷家.下午从爷爷家出发向北走了16千米到达外公家,傍晚返回自己家中.(1)若以小亮家为原点,向南为正方向,用1个单位长度表示2千米,请画出数轴,并将超市、爷爷家、外公家的位置在数轴上分别用A ,B ,C 表示出来;(2)外公家与超市间的距离为多少千米?(3)若轿车每千米耗油0.1升,求小亮一家从早上出发到傍晚返回家中轿车所行路程的耗油量.84.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求m 2+a +b +(-cd )3的值.85.把图中的几何图形与它们相应的名称连接起来.86.幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m ,n 的值分别是多少?87.根据下列题意设未知数列方程.(1)从60cm 长的木条上截去2段同样长的木棒,还剩下10cm 长的短木条,截下的每段长为多少厘米?(2)小红对小敏说:“我是6月份出生的,我的年龄的2倍加上10天,正好是我出生的那个月的总天数,你猜我有几岁?”(3)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍?(4)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?88.我校为了了解图书漂流的开展情况,随机抽取部分学生进行了问卷调查,选项A :阅读漂流图书3本及以上;选项B :阅读漂流图书2本;选项C :阅读漂流图书1本;选项D :没有阅读漂流图书,只能从中选择一个选项进行回答.收集整理问卷调查的情况,把结果绘制成如下不完整的统计图:(1)此次抽样调查了_______名学生;(2)补全条形统计图;(3)扇形统计图C 选项圆心角的度数是_______;(4)该校有2000名学生,估计全校阅读过漂流图书的学生约有多少名?89.已知A=x 2+x ,B=x 2-3x .(1)计算:A-B 和A+B .(2)先化简,再求值:3(A-2B )-2(2A -2B ),其中x=-12. 90.如图,点E 为∠O 的直径AB 上一个动点,点C 、D 在下半圆AB 上(不含A 、B 两点),且∠CED=∠OED=60°,连OC 、OD(1)求证:∠C=∠D ;(2)若∠O 的半径为r ,请直接写出CE+ED 的变化范围.91.已知a 、b 、c 在数轴上的位置如图:(1)a c -__________0,a b + ___________0,c b -__________0 (请用“>”,“<”填空)(2)化简:a c abc b --+--.92.我们知道x 的几何意义是在数轴上x 对应的点与原点的距离,即0x x =-,也就是说,x 表示在数轴上数x 与数0对应点之间的距离.同样的,若数轴上两点A ,B 在数轴上对应的点分别为a ,b ,则点A ,B 之间的距离可以表示为AB a b .阅读上面材料,回答问题.(1)数轴上表示2和7-两点之间的距离是________;若35x -=,则x =________.(2)若数轴上点A ,B 和C 在数轴上对应的数分别为3,7和1,点P 为数轴上一动点,其在数轴上对应的数为x .∠当x 的取值范围为____________时,PA PB +有最小值为____________;此时,PA PB PC +-的最大值是____________,最小值是____________.∠设点Р以每秒一个单位长度的速度从A 点出发向左运动,到达点C 后以原来的速度向相反的方向运动.设点Р的运动时间为t 秒,问是否存在点P ,使得13PA PC =若存在,请求出t 的值;若不存在,请说明理由.93.如图,将一个边长为1的正方形纸片分割成7个部分,部分∠的面积是边长为1的正方形纸片面积的一半,部分∠的面积是部分∠面积的一半,部分∠的面积是部分∠面积的一半,…依次类推.(1)阴影部分的面积是_____; (2)受此启发,试求202111112482+++•••+的值. 94.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD .(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.∠求两点第一次相遇时,与点B 的距离;∠设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值) 95.如图,点C 是线段AB 上的一点,延长线段 AB 到点D ,使BD=CB .(1)请依题意补全图形;(2)若AD=7,AC=3,求线段DB 的长.96.已知代数式22262351x ax y bx x y +-+-+--的值与x 的取值无关,求代数式3222112339a b a b --+的值 97.已知a 是最大的负整数,b 是-5的相反数,c=3--,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)求a 、b 、c 的值;(2)P 、Q 同时出发,求运动几秒后,点P 可以追上点Q ?(3)在(2)的条件下,P 、Q 出发的同时,动点M 从点C 出发沿数轴正方向运动,速度为每秒6个单位长度,点M 追上点Q 后立即返回沿数轴负方向运动,追上后点M 再运动几秒,M 到Q 的距离等于M 到P 距离的两倍?参考答案:1.B【分析】根据有理数大小比较求解即可.--,共4个.【详解】解:在数轴上,表示不小于2-且小于2之间的整数的点有2,1,0,1故选:B【点睛】此题考查了有理数大小比较与数轴,能正确表示数轴上的点是解答本题的关键.2.D【分析】结合长方体的面与面之间的连接判断即可;【详解】解:A.选项正确,不符合题意;B.选项正确,不符合题意;C.选项正确,不符合题意;D.组合后缺少上表面,选项错误,符合题意;故选:D【点睛】本题考查了长方体的展开图,掌握长方体的立体特征是解题关键.3.D【分析】由数轴的定义进行判断,即可得到答案.【详解】解:根据数轴的定义,A中缺少原点和单位长度;错误;B中单位长度不统一,错误;C中没有正方向,错误;D中数轴正确;故选:D.【点睛】本题考查了数轴的定义,解题的关键是掌握数轴的定义进行解题.4.B【分析】根据同类项是字母相同且相同字母的指数也相同,可得n的值.【详解】所含字母相同,并且相同字母的次数也分别相同的项叫做同类项,因此有n+1=3,解得n=2.故选B.5.D【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【详解】解:A、222-,故本选项不合题意;x x x3=2B、2+3=5a a a,故本选项不合题意;-不是同类项,所以不能合并,故本选项不合题意;C、2ab与2aD、222x y yx x y-=-,故本选项符合题意;242故选:D.【点睛】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.6.A【详解】试题解析:A、了解某班同学“立定跳远”的成绩,适合普查,故A正确;B、了解全国中学生的心理健康状况,调查范围广,适合抽样调查,故B错误;C、了解外地游客对我市旅游景点“磁器口”的满意程度,无法普查,故C错误;D、了解端午节期间重庆市场上的粽子质量情况,调查具有破坏性,适合抽样调查,故D 错误;故选A.考点:全面调查与抽样调查.7.D【分析】直接利用减法法则化简,进而得出答案.-++---+=-++-.【详解】(8)(3)(5)(7)8357故选D.【点睛】此题主要考查了有理数的减法法则,正确去括号是解题关键.8.B【分析】直接利用合并同类项法则以及去括号法则分别化简得出答案.【详解】解:A、2(a-1)=2a-2,故此选项错误;B、a2+a2=2a2,此选项正确;C、2a3-3a3=﹣a3,故此选项错误;D、a+a2=a+a2,故此选项错误.故选:B【点睛】此题主要考查了合并同类项,正确把握运算法则是解题关键.9.A【详解】分析:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.详解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此A是错误的,故选A.点睛:本题考查几何体的截面,关键要理解面与面相交得到线.应该熟记正方体的各种截取情况.10.C【分析】根据已知求出m2-3m=5,把所求的代数式化成含有m2-3m的形式,代入求出即可.【详解】解:∠m2-3m-3=2,∠m2-3m=5.∠2030-2m2+6m=2030-2(m2-3m)=2030-10=2020故选C.【点睛】本题考查了求代数式的值,关键是如何把已知条件代入所求的代数式,思路是:求出m2+m的值,把m2+m当作一个整体进行代入.11.D【分析】由于点,P R表示的数是互为相反数,数轴的单位长度为1,根据相反数的定义确定出PR的中点O为原点,易得点P表示的数为1-,R点表示的数为1,则点Q表示的数为4,T点表示的数为5,然后求出各数的平方即可确定正确答案.【详解】解:如图,解:∠点P,R表示的数是互为相反数,数轴的单位长度为1,∠线段PR的中点O为原点,∠点P表示的数为1-,R点表示的数为1,∠点Q 表示的数为4,T 点表示的数为5,∠()211-=,211=,2416=,25=25,∠表示的数的平方值最大的点是T .故选:D .【点睛】本题考查了数轴:数轴的三要素(原点、单位长度和正方向);数轴上左边的点表示的数比右边点表示的数大,也考查了有理数的乘方与相反数,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.12.A【分析】把所含字母相同且相同字母的指数也相同的几个单项式叫做同类项,由同类项的概念即可求得结果.【详解】232m x y +与21n x y +-是同类项, 2321m n ∴+=+,222m n ∴-=-,即1m n -=-;故选:A .【点睛】本题考查了同类项的概念,求代数式的值,关键是理解同类项的概念. 13.A【分析】利用绝对值的意义得到|m -5|+|2m -6|=-(m -5)+2m -6,然后去括号后合并即可.【详解】由3≤m ≤5,得m ﹣5≤0,2m ﹣6≥0,∠|m ﹣5|+|2m ﹣6|=﹣(m ﹣5)+2m ﹣6=﹣m +5+2m ﹣6=m ﹣1.故选:A .【点睛】本题考查了整式的加减:整式的加减实质上就是合并同类项.也考查了绝对值. 14.B【详解】试题解析:从左边看分成两列,左边一列有3个小正方形,右边有1个小正方形,故选B .考点:简单组合体的三视图.15.B【分析】将各选项的结果计算出来,然后进一步判断即可.【详解】A :328=,故选项错误;B :2416-=-,故选项正确;C :9918--=-,故选项错误;D :523-+=-,故选项错误;故选:B.【点睛】本题主要考查了有理数的加减运算以及乘方运算,熟练掌握相关运算法则是解题关键.16.A【分析】根据有理数的分类,即正有理数、0、负有理数,解答即可.【详解】A 、甲、丙两部分有无数个,乙部分只有一个0,原说法正确,故A 选项符合题意;B 、乙部分只有一个0,原说法错误,故B 选项不符合题意;C 、甲、丙两部分有无数个,原说法错误,故C 选项不符合题意;D 、甲、丙两部分有无数个,乙部分只有一个0,原说法错误,故D 选项不符合题意; 故选:A .【点睛】本题考查了有理数,熟练掌握有理数的分类是解题的关键.17.A【分析】根据有理数的乘方法则,进行运算即可.【详解】解:原式=()11--=11+=2故选:A .【点睛】此题主要考查了实数运算,有理数的乘方法则,解题关键是正确运用法则计算. 18.C【分析】由于方程中含有一个分母3,方程两边同时乘以3即可去分母.【详解】解:方程两边同时乘以3,得3x-(x-5)=3.故选:C.【点睛】本题主要考查去分母,解题的关键是确定分式方程的公分母.19.B【分析】根据一元一次方程的定义,只含有一个未知数,x 的次数为1,系数不为0,解之即可.【详解】解:()1240a a x -+-=是关于x 的一元一次方程,1120a a ⎧-=∴⎨+≠⎩, 解得:2a =,故选:B .【点睛】此题考查了一元一次方程的定义和解法,解题的关键是掌握一元一次方程的定义.20.C【详解】试题分析:根据图示可得长方体的长为4,宽为2,高为1,则V=4×2×1=8. 考点:长方体的展开图形.21.A【分析】根据题意“使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次”,结合题目图形进行分析即可得到答案.【详解】因为“使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次”,且第一列存在-2和-4,所以A 可能为-1或者-3;又因为第二行存在-3,结合题意“使-1、-2、-3、-4每个数字在每一行、每一列和每一宫中都只出现一次”,可得A 不等于-3,A 等于-1,故选择A.【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握迷你数独的规则. 22.C【分析】利用绝对值的性质以及乘方的性质逐个判断即可.【详解】A. ()211--=-, 211=,不相等; B. 311--=-,()311--=,不相等;C. ()311-=-, 311-=-,相等;D. ()411-=,411-=-,不相等;故选C【点睛】本题考查有理数的绝对值以及乘方,熟练掌握绝对值的性质以及奇次方、偶次方的特点是解题关键.23.D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.24.B【分析】利用相反数的等于可得到点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等,从而可确定原点的位置.【详解】解:∠A ,B 两点所表示的两个有理数互为相反数,∠点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等,∠原点为线段AB 的中点.故选B .【点睛】本题考查了数轴上点的特点,牢记数轴上的点的分布规律是解答本题的关键. 25.B【分析】分别求出部分输出结果,发现第1次输出结果到第4次输出结果只出现一次,从第5次输出结果开始,每3次结果循环一次,则经过2022次上述运算输出的数与第6次输出的结果相同,由此可求解.【详解】解:当n =21时,经过1次运算输出的数是64,经过2次运算输出的数是32,经过3次运算输出的数是16,经过4次运算输出的数是8,经过5次运算输出的数是4,经过6次运算输出的数是2,经过7次运算输出的数是1,经过8次运算输出的数是4,经过9次运算输出的数是2,……∠第1次输出结果到第4次输出结果只出现一次,从第5次输出结果开始,每3次结果循环一次,∠(2022﹣4)÷3=672……2,∠经过2022次上述运算输出的数与第6次输出的结果相同,故选:B .【点睛】本题考查数字的变化规律,通过运算找到输出结果的循环规律是解题的关键. 26.B【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行各选项的判断即可.【详解】解:A 、2x 与3x 不是同类项,不能合并,故本选项错误;B 、2x+x=3x ,故本选项正确;C 、a 2+a 2=2a 2,故本选项错误;D 、2x 与3y 不是同类项,不能合并,故本选项错误.故选:B .【点睛】本题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.27.D【详解】试题解析:A 、-3x =1化为x=-3,故此选项错误; B 、1-[x-(2-x )]=x 化为3x=-3,故此选项错误;。
初一数学上册综合试题及答案
初一数学上册综合试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算下列表达式的结果:\(3x - 2x = \)A. \(x\)B. \(2x\)C. \(-x\)D. \(5x\)答案:A4. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 25答案:C5. 下列哪个选项是方程 \(x + 3 = 7\) 的解?A. \(x = 4\)B. \(x = 3\)C. \(x = 2\)D. \(x = 1\)答案:A6. 下列哪个选项是不等式 \(2x - 5 > 3\) 的解?A. \(x = 4\)B. \(x = 2\)C. \(x = 1\)D. \(x = 0\)答案:A7. 计算下列表达式的结果:\((-3) \times (-2) = \)A. 6B. -6C. 3D. -3答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个选项是不等式 \(x - 2 \leq 4\) 的解?A. \(x = 6\)B. \(x = 2\)C. \(x = 1\)D. \(x = 0\)答案:A10. 计算下列表达式的结果:\(\frac{3}{4} + \frac{2}{3} = \)A. \(\frac{17}{12}\)B. \(\frac{11}{12}\)C. \(\frac{13}{12}\)D. \(\frac{15}{12}\)答案:A二、填空题(每题3分,共30分)1. 如果 \(a = 2b\),那么 \(b = \frac{a}{2}\)。
答案:\(\frac{a}{2}\)2. 一个数的立方是8,那么这个数是2。
答案:23. 一个数的平方根是3,那么这个数是9。
七年级上册数学乘法的综合应用练习题一
七年级上册数学乘法的综合应用练习题一
本文档提供了七年级上册数学乘法的综合应用练题一,旨在帮助学生巩固和练数学乘法的应用。
题目一
1. 小明买了3个苹果,每个苹果的价格是2元,他支付了多少钱?
题目二
2. 假设1辆自行车的价格是2000元,小红想买5辆相同的自行车,她需要支付多少钱?
题目三
3. 一个矩形的长是6cm,宽是4cm,求其面积。
题目四
4. 小明的爷爷今年60岁,他的儿子今年35岁,小明今年10岁,如果每一代人的年龄相差25岁,那么小明的爷爷是在哪一年出生的?
题目五
5. 汽车的里程表上显示的数字是5879km,小明每天开车上学,每天行驶的距离是3km,他开车上学需要多少天才能够把里程表的
数字变为8000km?
题目六
6. 如果一支铅笔的长度是15cm,小明把一根铅笔切成3段,
每段长度相等,每段的长度是多少?
题目七
7. 一块土地的面积是120平方米,如果把它划分成4个相等的
小块,每个小块的面积是多少平方米?
题目八
8. 小明用了一个小时去公园,他总共走了6千米的路程,他的
平均速度是多少千米/小时?
题目九
9. 手机店的一部手机原价2000元,现在打7折出售,需要支付多少钱?
题目十
10. 小明去超市买了5个苹果和3个橘子,每个苹果的价格是2元,每个橘子的价格是3元,他支付了多少钱?
以上是七年级上册数学乘法的综合应用练题一。
希望这些题目能够帮助同学们巩固和练数学乘法的应用。
祝你学有所成!。
七年级数学上册综合算式专项练习题整数运算
七年级数学上册综合算式专项练习题整数运算整数运算是七年级数学上册的重点内容之一。
在综合算式专项练习中,我们将学习如何进行整数的加法、减法、乘法和除法运算。
一、整数加法运算整数加法运算是指将两个整数进行相加的操作。
在进行整数加法运算时,我们需要考虑两个整数的正负关系。
1. 同号相加当两个整数同为正数或同为负数时,我们将它们的绝对值相加,并保持它们的符号不变。
例如:2 +3 = 5(-2) + (-3) = -52. 异号相加当两个整数一个为正数,一个为负数时,我们将它们的绝对值相减,并取绝对值较大的整数的符号。
例如:2 + (-3) = -1(-2) + 3 = 1二、整数减法运算整数减法运算是指将两个整数进行相减的操作。
在进行整数减法运算时,我们需要将减法转化为加法,并使用加法的规则来计算。
1. 减法转化为加法对于整数减法运算,我们可以通过添加减数的相反数,将减法转化为加法。
即 a - b = a + (-b)。
例如:3 - 2 = 3 + (-2) = 1(-3) - (-2) = (-3) + 2 = -12. 同号相减当两个整数同为正数或同为负数时,我们将它们的绝对值相减,并保持它们的符号不变。
例如:3 - 2 = 1(-3) - (-2) = -13. 异号相减当两个整数一个为正数,一个为负数时,我们将它们的绝对值相加,并取绝对值较大的整数的符号。
例如:2 - (-3) = 2 +3 = 5(-2) - 3 = (-2) + (-3) = -5三、整数乘法运算整数乘法运算是指将两个整数进行相乘的操作。
在进行整数乘法运算时,我们需要考虑两个整数的正负关系。
1. 同号相乘当两个整数同为正数或同为负数时,它们的乘积为正数。
例如:2 ×3 = 6(-2) × (-3) = 62. 异号相乘当两个整数一个为正数,一个为负数时,它们的乘积为负数。
例如:2 × (-3) = -6(-2) × 3 = -6四、整数除法运算整数除法运算是指将一个整数除以另一个整数的操作。
七年级数学上册综合算式专项练习题带括号的乘除运算
七年级数学上册综合算式专项练习题带括号的乘除运算乘除运算是数学中的基础概念,是我们在解决实际问题以及进行数学计算时经常会用到的操作。
在七年级数学上册综合算式中,涉及到了带有括号的乘除运算,本篇文章将重点介绍这一部分的专项练习题。
通过练习这些题目,可以帮助同学们更好地掌握带有括号的乘除运算规则,提高数学运算能力。
题目一:计算带有括号的乘除运算1. (2+5)×3÷2解析:首先,根据小括号内的运算法则,求得括号内的结果为7;然后按照从左向右的顺序进行乘法和除法的计算,即7×3÷2。
计算得到的结果为21÷2=10.5。
因此,(2+5)×3÷2=10.5。
2. (4×3)÷(2+4)解析:同样地,先计算括号内的运算,4×3=12,2+4=6。
然后进行除法的计算,12÷6=2。
因此,(4×3)÷(2+4)=2。
题目二:综合运算1. (2+3×4)÷5+1解析:先计算乘法,3×4=12;再进行加法和除法,2+12=14,14÷5=2.8;最后进行加法,2.8+1=3.8。
因此,(2+3×4)÷5+1=3.8。
2. 3+4×(7-2×3)解析:首先,根据小括号内的运算法则,先计算2×3=6,7-6=1。
然后进行乘法和加法的计算,4×1=4,3+4=7。
因此,3+4×(7-2×3)=7。
题目三:多层括号运算1. ((1+2)×(3-1))÷(2+4)解析:先计算小括号内的运算,1+2=3,3-1=2,2×2=4;然后进行大括号内的运算,2+4=6。
最后进行除法,4÷6=0.67。
因此,((1+2)×(3-1))÷(2+4)=0.67。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学 1 综合练习题(一)2 一、填空题(每小题3分,共24分)3 1.计算:(-2.5)×231= 。
4 2. 已知x=2是方程mx -5=10+m 的解,则m = 。
5 3. 在多项式7x 2y -4y 2-5 -x +x 2y +3x -10中,同类项共有 对。
6 4. 数轴上点A 表示 2,从A 出发,沿数轴移动4个单位长度到达点B ,则点B 7表示的数是________。
8 5. 写出系数为-3,只含有a 、b 、c 三个字母,而且次数是5的一个单项式 。
9 6. 如图,将长方形纸条折成如图所示形状,BC 为折痕,若∠DBA=70°,则∠10 ABC= 。
11 12 13 14 15 7. 如图所示,已知∠BOD=2∠AOB ,OC 平分∠AOD ,∠BOC=25°,则16∠AOB= 。
17 8. 如图所示,边长为a cm 的正方形剪去一个长、宽分别为3cm 和2cm 的长18 方形,那么剩余部分的面积可表示为 cm 2。
19二、单项选择题(每小题3分,共24分) 20 9. 在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社21会广泛赞誉.将22 1 460 000 000用科学记数法表示为23 ( ) 24 A .146×107 B .1.46×107 C .1.46×10925D .1.46×1010 26 10.小红同学在一个正方体盒子的每个面都写上一个字,分别是“我”、“喜”、“欢”、27“数”、“学”、28 “课”,其平面展开图如图所示,那么在该正方体盒子中,和“我”相对的面上29 的字是 ( )30 A. 喜 B. 课 31C. 数D. 学323334 七年级数学试卷 第1页 (共8页)3511. 下列说法正确..的是36 ( ) 37 A. 射线就是直线 B. 连接两点间的线段,叫做这两点的距离 38 C.两条射线组成的图形叫做角 D. 经过两点有一条直线,并且只有一条39直线40 12.若单项式223x y-的系数是m ,次数是n ,则mn 的值为41 ( ) 42 A.2- B.6- C.4- D.43-4313. 如果方程0)12(2=+++c bx x a 表示关于字母x 的一元一次方程,则必有44DCB AABDC 第7题第6题O32第8题图4我喜欢数学课( ) 45 A.c b a ,0,21≠=为任意数 B.0,0,21=≠≠c b a46C.0,0,21≠≠-=c b aD.c b a ,0,21≠-=为任意数47 14. 一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖48出这件商品,那么老板在销售这件商品的过程中的盈亏情况为 49 ( ) 50 A .盈利16元 B .亏损24元 C .亏损8元 D .不盈不亏5115. 下列说法错误..的是 52 ( ) 53 A. 0是绝对值最小的有理数 B. 如果x 的相反数是-5, 那么x=5 54 C. 若|x|=|-4|, 那么x= -4 D. 任何非零有理数的平方都大于05516. 由几个大小相同的小正方体组成的立体图形从上面看如图所示,则这个56 立体图形应是下图中57 的58 ( )59606162 63 6465 三、解答题(17、20每小题6分,18、19每小题5分,共22分)66 17.计算:(1)2×(-3)+18×321)31(-. (2)67-12-[132)43(]6)12(73-⨯÷-+. 68 69 70717273七年级数学试卷 第2页 (共8页)7418.解方程:2213269---=+--x x x x . 7576 77 78 79 80818283 8485868788 8990 19.先化简再求值: 2(x 3-2y 2)-(x -2y )-(x -3y 2+2x 3),其中x=-3,91 y=-2.92 93 从上面看 A B C D94 95 96 97 98 99 100 101102 103 104 105 106 107七年级数学试卷 第3页 (共8页) 108 20. 线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB109 到D,110 使AD=3cm,点E是AD中点,点F是CD的中点,求EF的长度.111 112 113 114 115116117 118 119 120 121 122123 124125 四、解答题(每小题7分,共14分) 126 21. 一项工作甲单独完成要9天,乙单独完成要12天,丙单独完成要15天,若127甲、丙先做3天 128 后,甲因故离开由乙接替甲的工作,问还要多少天才能完成这项工作的65? 129130131 132 133 134135136137138139 140 141 142 143 144 七年级数学试卷 第4页 (共8页)14522. 如图,一副三角尺的两个直角顶点重合在一起。
146 (1)比较∠EAM 与∠FAN 的大小,并说明理由; 147 (2)∠EAN 与∠MAF 的和是多少度?为什么?148 149150 151 MFN152153154155156157158五、解答题(每小题8分,共16分)15923.用棋子按下面的方式摆出正方形,观察各图形的规律:160161162163164165166(1)(2)(3)167①按图示规律填写下表:168②按照这种方式摆下去,摆第25个正方形需要多少个棋子?169170171③按照这种方式摆下去,第n个正方形需要多少个棋子?172 173174175七年级数学试卷第5页(共8页)17624. 在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品177售价13%的财政178补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共179得到财政补180贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.试求:181(1)A型洗衣机和B型洗衣机的售价各是多少元?182(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?183184185186187188189190191192193194195196197198199 200 201 202 203 204 205 206 207 208 七年级数学试卷 第6页 (共8页)209六、解答题(每小题10分,共20分) 210 25. (1)如图所示, 已知∠AOB=90°, ∠BOC=30°,OP 平分∠AOC,OQ 平分∠BOC. 211求∠POQ 的212 度数; 213 (2)若(1)中∠AOB=α,其他条件不变,求∠POQ 的度数;214 (3)若(1)中∠BOC=β(β为锐角),其他条件不变,求∠POQ 的度数; 215 (4)从(1) 、(2) 、(3)的结果中能看216 出什么规律?217 218 219220221222223224 225 226 227 228 229 230 231 232233234 235236 237238 239 七年级数学试卷 第7页 (共8页)240 26.东风织布厂现有工人130人,为获取更高的利润,厂方与外商签订了制衣合241同,已知每 242 人每天能织布20米或制衣4件,每件衣服用料1.5米,若直接销售布每米可获243利2元, 244 制成衣服后销售,每件衣服可获利30元,每名工人一天只能做一项工作,且不245计其它因246 素,设安排了x 名工人制衣,那么:247(1)一天制衣所获得的利润是 元;(用x 表示) 248(2)一天中剩余布所获得的利润是 元;(用x 表示)249(3)要使一天所获得的利润为10640元,应安排多少名工人制衣?250251(4)若要使每天织出的布正好制衣,又应如何安排工人?这时每天可获利多少252元?253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285七年级数学试卷第8页(共8页)。