【精品】PPT课件 第九讲 回归分析(续)32页PPT
合集下载
《回归分析专题》PPT课件

改进阶段
{预测带
} 置信带
C.I. = 置信区间 (95%置信度表示所有数据的平均值都位于此带内) P.I. = 预测区间 (95%置信度表示单个数据点位于此带内)
编辑ppt
19
SIXSSIIGXMASIMIPGLEMMEANT
会话窗口中的信息与早期生成的信息相同……
改进阶段
无法否定Ho: 接受Ha:
。
编辑ppt
20
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
课堂练习:
您相信我们的家电所占据的展示厅面积的大小会影响销售量。您已经收集了过去12个月内 ,多个零售点销售量与总的占地面积方面的数据。现在,您希望分析这些数据,看占地面 积是否确实与年销售量存在某种关系。
在Minitab输入以下数据:
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
编辑ppt
1
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
目的: 介绍作为实证模型建立方法的回归分析,以模拟具有连续响应变量“ Y” 的过程。 (定义:‘实证’-基于观测值或事实)
目标:
• 确定何时使用回归,以及为什么使用。
改进阶段
附录
编辑ppt
23
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
回归术语
r: R-Sq:
R-Sq(Adj): 估计值的 标准误差 回归均方 (MS回归) F-比率:
p-值:
多重回归的相关系数(r)。越接近+/-1,模型拟合越好。‘ 0’表示无线性关系。
相关系数的平方(R2)。R2的值越接近100%,说明可能存在关系,由模型解释的 变差的百分比越高。
回归分析 ppt课件

8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
10
回归分析
2.方差分析: 方差分析反映了模型整体的显著性,一般将模型的检验
19
回归分析
曲线回归分析只适用于模型只有一个自变量且可以化为 线性形式的情形,并且只有11种固定曲线函数可供选择,而 实际问题更为复杂,使用曲线回归分析便无法做出准确的分 析,这时候就需用到非线性回归分析。它是一种功能更强大 的处理非线性问题的方法,可以使用用户自定义任意形式的 函数,从而更加准确地描述变量之间的关系。
回归分析
1
回归分析
•寻求有关联(相关)的变量之间的关系,是指 通过提供变量之间的数学表达式来定量描述变 量间相关关系的数学过程。
•主要内容:
1.从一组样本数据出发,确定这些变量间的定量关系式; 2.对这些关系式的可信度进行各种统计检验 3.从影响某一变量的诸多变量中,判断哪些变量的影响显著, 哪些不显著 4.利用求得的关系式进行预测和控制
观察结果3,模型中的常数项是3.601,t值为24.205,显著性为 0.000;通货膨胀的系数是0.157, t值为2.315,显著性为0.049。所 12以,两个结果都是显著的。
回归分析
结论:
一元线性回归方程: y=a+bx
写出最终模型的表达式为: R(失业率)=3.601+0.157*I(通货膨胀率) 这意味着通货膨胀率每增加一点,失业率就增加 0.157点;
P值(Sig)与0.05作比较,如果小于0.05,即为显著。
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
10
回归分析
2.方差分析: 方差分析反映了模型整体的显著性,一般将模型的检验
19
回归分析
曲线回归分析只适用于模型只有一个自变量且可以化为 线性形式的情形,并且只有11种固定曲线函数可供选择,而 实际问题更为复杂,使用曲线回归分析便无法做出准确的分 析,这时候就需用到非线性回归分析。它是一种功能更强大 的处理非线性问题的方法,可以使用用户自定义任意形式的 函数,从而更加准确地描述变量之间的关系。
回归分析
1
回归分析
•寻求有关联(相关)的变量之间的关系,是指 通过提供变量之间的数学表达式来定量描述变 量间相关关系的数学过程。
•主要内容:
1.从一组样本数据出发,确定这些变量间的定量关系式; 2.对这些关系式的可信度进行各种统计检验 3.从影响某一变量的诸多变量中,判断哪些变量的影响显著, 哪些不显著 4.利用求得的关系式进行预测和控制
观察结果3,模型中的常数项是3.601,t值为24.205,显著性为 0.000;通货膨胀的系数是0.157, t值为2.315,显著性为0.049。所 12以,两个结果都是显著的。
回归分析
结论:
一元线性回归方程: y=a+bx
写出最终模型的表达式为: R(失业率)=3.601+0.157*I(通货膨胀率) 这意味着通货膨胀率每增加一点,失业率就增加 0.157点;
P值(Sig)与0.05作比较,如果小于0.05,即为显著。
回归分析法(PPT)

第五章
5.1 回归分析概述
回归分析法
5.2 一元线性回归分析法
5.3 多元线性回归分析法
5.4 非线性回归分析法
9/4/2018
1
信息分析方法与应用
第五章 学习目标
回归分析法
掌握一元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握多元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握非线性回归分析法的各种回归模型、参数估计、 回归检验及在实际中的应用 了解回归、回归分析的定义,回归变量之间的关系, 回归分析的类型 理解回归分析发的应用步骤
9/4/2018
33
信息分析方法与应用
5.4 非线性回归分析法
④据此,可以在对2009年~2018年的经济预测基 础上预测出相应的商品流通费用水平如表5–9。
9/4/2018
34
信ቤተ መጻሕፍቲ ባይዱ分析方法与应用
5.5 回归分析软件
(1)SPSS软件 SPSS 的基本功能包括数据管理、统计分析、 图表分析、输出管理等等。SPSS统计分析过程包 括描述性统计、均值比较、一般线性模型、相关 分析回归分析、对数线性模型、聚类分析、数据 简化、生存分析、时间序列分析、多重响应等几 大类,每类中又分好几个统计过程,比如回归分 析中又分线性回归分析、曲线估计、Logistic 回归、 Probit回归、加权估计、两阶段最小二乘法、非线 性回归等多个统计过程,而且每个过程中又允许 用户选择不同的方法及参数。
5.2.3回归检验 3.F检验
F检验的一般步骤如下:①计算F值;②对于给定的显
著水平a,查自由度为1,n-2的F分布的临界值表,得临界 F 值: ;③比较T值与 值的大小,如果 则认为线性回归显著,一元回归模型成立,否则认为线性 回归不显著,一元回归模型不成立。
5.1 回归分析概述
回归分析法
5.2 一元线性回归分析法
5.3 多元线性回归分析法
5.4 非线性回归分析法
9/4/2018
1
信息分析方法与应用
第五章 学习目标
回归分析法
掌握一元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握多元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握非线性回归分析法的各种回归模型、参数估计、 回归检验及在实际中的应用 了解回归、回归分析的定义,回归变量之间的关系, 回归分析的类型 理解回归分析发的应用步骤
9/4/2018
33
信息分析方法与应用
5.4 非线性回归分析法
④据此,可以在对2009年~2018年的经济预测基 础上预测出相应的商品流通费用水平如表5–9。
9/4/2018
34
信ቤተ መጻሕፍቲ ባይዱ分析方法与应用
5.5 回归分析软件
(1)SPSS软件 SPSS 的基本功能包括数据管理、统计分析、 图表分析、输出管理等等。SPSS统计分析过程包 括描述性统计、均值比较、一般线性模型、相关 分析回归分析、对数线性模型、聚类分析、数据 简化、生存分析、时间序列分析、多重响应等几 大类,每类中又分好几个统计过程,比如回归分 析中又分线性回归分析、曲线估计、Logistic 回归、 Probit回归、加权估计、两阶段最小二乘法、非线 性回归等多个统计过程,而且每个过程中又允许 用户选择不同的方法及参数。
5.2.3回归检验 3.F检验
F检验的一般步骤如下:①计算F值;②对于给定的显
著水平a,查自由度为1,n-2的F分布的临界值表,得临界 F 值: ;③比较T值与 值的大小,如果 则认为线性回归显著,一元回归模型成立,否则认为线性 回归不显著,一元回归模型不成立。
回归分析学习课件PPT课件

03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
第九章 相关与回归分析 《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852
回归分析法PPT课件

现代应用
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。
第九章(二)回归分析1PPT课件

nanxbny
nxa(
n i1
xi2
)b
n i1
xi
yi
其中
x1 n
ni1
xi,y1nin1
yi,
返回
n nx
D
nx
xi2 n(
n
xi2nx2)n (xi x)2 0
i1
所以方程组有解,解得
aˆ
bˆ
y
bˆ x l xy
l xx
其中
n
回归直线经过散点几何中心
lxx (xi x)2 i1
总体方差 2 的一个无偏估计量是:
n
n
S2n 12 (yi ˆyi )2n 12 ei2
i1
i1
用S2代替2,得到 aˆ , bˆ 方差的无偏估计量分别是:
Sa ˆ2S2(n 1lxx2x),Sb ˆ2lS x2x
它们的算术平方根分别称为a,b的估计标准误差。
4. a和b的区间估计
置信水平为1 的区间估计是:
可得到: yi ~N(abix ,2)
如果给出a和b的估计量分别为aˆ ,bˆ ,则经验回归方程为:
ˆyi aˆ bˆxi
一般地,
ei yi ˆyi 称为残差,
残差 e i 可视为扰动 i 的“估计量”。
返回
第2节 回归系数的最小二乘估计
设对y及x做n次观测得数据(xi ,yi) (i=1,2,…,n ).
pt
2.5 2.0 1.5 1.0 0.5 0
qt
1 3 5 7 9 11
这是一个确定性关系: qt 114pt
返回
若x、y之间的关系是随机的,例如
pt
qt
概率
0
《回归分析方法》课件

线性回归模型的评估与优化
评估指标:R平方值、调整R平方值、F统计量、P值等 优化方法:逐步回归、岭回归、LASSO回归、弹性网络回归等 交叉验证:K折交叉验证、留一法交叉验证等 模型选择:AIC、BIC等模型选择方法来自01逻辑回归分析
逻辑回归分析的定义
逻辑回归是一种统计方法,用于预测二分类因变量 逻辑回归使用逻辑函数(logistic function)来估计概率 逻辑回归的目标是找到最佳的参数,使得模型能够准确预测因变量 逻辑回归广泛应用于医学、金融、市场营销等领域
逻辑回归模型的应用场景
预测客户是 否会购买产 品
预测客户是 否会违约
预测客户是 否会流失
预测客户是 否会响应营 销活动
预测客户是 否会购买保 险
预测客户是 否会进行投 资
01
多项式回归分析
多项式回归分析的定义
多项式回归分析是一种统计方法,用于建立因变量与多个自变量之 间的关系模型。 多项式回归分析通过使用多项式函数来拟合数据,从而得到更精确 的预测结果。 多项式回归分析的优点是可以处理非线性关系,并且可以处理多个 自变量之间的关系。
求解结果:得到模型的参 数值,用于预测和评估模
型的性能
套索回归模型的应用场景
预测股票价格 预测房价 预测汇率 预测商品价格
Ppt
感谢观看
汇报人:PPT
岭回归模型的参数求解
岭回归模型: 一种线性回归 模型,通过在 损失函数中加 入一个L2正 则项来防止过
拟合
参数求解方法: 梯度下降法、 牛顿法、拟牛
顿法等
梯度下降法: 通过迭代求解 参数,每次迭 代都沿着梯度 下降的方向更
新参数
牛顿法:通过 求解Hessian 矩阵的逆矩阵 来更新参数, 收敛速度快, 但计算复杂度
九章节回归分析续-PPT精品

Q n 2
求解方程组可得
x1b 1ˆy1u12 nQ 2aˆ
x2b 1ˆy2u12 nQ 2aˆ 当 bˆ 0时,x的控制区间为(x1,x2);而当bˆ 0 时,x的控制区间为 (x2 , x1)。 显然要实现上述
这种情形常用的是二次多项式。
注 (1) 线性化的过程使得有关的显著性检验
无法进行, 但仍可根据原始数据计算
n
Q(yi y)2
i1
n ( yi ~yi )2
及
R
1
i 1 n
, 仍称其为拟合优度。
( yi y)2
i 1
(2) 可以根据剩余标 Q/n (准 2)和 差拟
优度R的值来评判拟合的好坏。
z T ( A ( X T X ) 1 X T ) A T ( X ( X T X ) 1 ) z z T (A T A (X T X ) 1 )z
即 z T A T z A z T ( X T X ) 1 zfa o z l r R p l 1 .
这样有ATA (X TX ) 1, 即 V(a Ar ) yV(a ˆ)r.
E (u )cb.v
3. 指数曲线 E(y)aebx
令 u ln y ,c ln a ,则可线性化为 E (u)cb.x
b
4. 倒指数曲线 E(y)aex 令 u ln y ,v ln x ,c ln a ,v 1, 则可线性化为
x E (u )cb.v
5. 对数曲线 E (y ) a b ln x
选择参数 使上式达到最小。Q()对求导后
可得
Q2XTY2XTX
令 Q 0 , 有 XTXXTY
此方程称为正规方程,由于 XTX可逆,所以
回归分析(精选优秀)PPT

时,因变量 y平均变化的量。
15
16
17
三、估计回归方程
估计回归方程(Estimated regression equation) 就是用样本统计量作为参数的估 计值所建立的回归方程。
yˆ b0 b1x (12.4)
yˆ :y 的估计值
b 0 : 0 的估计值
b1 : 1 的估计值
18
19
两个变量之间的关系大约呈一条直
线的简单回归分析称为简单线性回归分
析(Simple linear regression analysis)。
5
一、从一个实际问题入手
用回归分析可以预测运行一条商业航空 线的成本吗?
如果可以,那么哪些变量与这一成本有 关呢?
6
飞机型号
飞行距离 乘客数量
行李或货物重量
残差平方的总和称为误差平方和 (Sum of squares of error,SSE)。
SSEyi y ˆi2 (12.13)
回归分析中,待估计的变量称为因变 量(Dependent variables),用y表示;用来 估计因变量的变量称为自变量 (Independent variables),用x表示。
4
第一节 简单线性回归模型
只涉及两个变量(一个自变量和一 个因变量)之间关系的回归分析称为简
单回归分析(Simple regression analysis)。
飞机运行成本
天气状况
……
7
为了减少自变量个数,我们做如下假定: 飞机类别——波音737飞机 飞行距离——500公里 航线——可比,而且在每年的相同季节 在这种条件下,可以用乘客数来预测飞行
的成本吗?
8
表12-1是每年相同季节波音737飞机在 12条500公里的不同航线不同乘客数时的飞 行成本。我们用这些数据以乘客数作为自 变量构造模型来预测成本。
15
16
17
三、估计回归方程
估计回归方程(Estimated regression equation) 就是用样本统计量作为参数的估 计值所建立的回归方程。
yˆ b0 b1x (12.4)
yˆ :y 的估计值
b 0 : 0 的估计值
b1 : 1 的估计值
18
19
两个变量之间的关系大约呈一条直
线的简单回归分析称为简单线性回归分
析(Simple linear regression analysis)。
5
一、从一个实际问题入手
用回归分析可以预测运行一条商业航空 线的成本吗?
如果可以,那么哪些变量与这一成本有 关呢?
6
飞机型号
飞行距离 乘客数量
行李或货物重量
残差平方的总和称为误差平方和 (Sum of squares of error,SSE)。
SSEyi y ˆi2 (12.13)
回归分析中,待估计的变量称为因变 量(Dependent variables),用y表示;用来 估计因变量的变量称为自变量 (Independent variables),用x表示。
4
第一节 简单线性回归模型
只涉及两个变量(一个自变量和一 个因变量)之间关系的回归分析称为简
单回归分析(Simple regression analysis)。
飞机运行成本
天气状况
……
7
为了减少自变量个数,我们做如下假定: 飞机类别——波音737飞机 飞行距离——500公里 航线——可比,而且在每年的相同季节 在这种条件下,可以用乘客数来预测飞行
的成本吗?
8
表12-1是每年相同季节波音737飞机在 12条500公里的不同航线不同乘客数时的飞 行成本。我们用这些数据以乘客数作为自 变量构造模型来预测成本。