二元气液平衡相图的绘制
04 双液系的气-液平衡相图的绘制
实验四 双液系的气-液平衡相图的绘制一、目的要求1.用沸点仪测定大气压下乙醇—环己烷或异丙醇-环己烷双液系气-液平衡时气相与液相组成及平衡温度,绘制温度—组成图,确定恒沸混合物的组成及恒沸点的温度。
2.了解物化实验中光学方法的基本原理,学会阿贝折光仪的使用。
3.进一步理解分馏原理。
二、预习要求1.理解分馏原理,了解影响双液系气-液平衡的因素。
2.熟悉阿贝折光仪的使用方法,了解折射率与物系组成的关系。
3.掌握如何由实验数据绘制t x -相图的方法。
三、实验原理两种在常温时为液态的物质混合起来而组成的二组分体系称为双液系。
两种液体若能按任意比例互相溶解,称为完全互溶的双液系;若只能在一定比例范围内互相溶解,则称部分互双液系。
双液系的气液平衡相图t x -图可分为三类。
如图4.1。
图 4.1 二元系统t x -图这些图的纵轴是温度(沸点),横轴是代表液体B 的摩尔分数B x 。
在t x -图中有两条曲线:上面的曲线是气相线,表示在不同溶液的沸点时与溶液成平衡时的气相组成,下面的曲线表示液相线,代表平衡时液相的组成。
例如图4.1(a)中对应于温度t 1的气相点为y 1,液相点为1l ,这时的气相组成y 1点的横轴读数是g B x ,液相组成点1l 点的横轴读数为lB x 。
y 1l 1t 1g B x l B x A B t/℃(a )气液t/℃A B B x →(b )t/ ℃气液A B B (c )如果在恒压下将溶液蒸馏,当气液两相达平衡时,记下此时的沸点,并分别测定气相图。
(馏出物)与液相(蒸馏液)的组成,就能绘出此t x图4.1(b)上有个最低点,图4.1(c)上有个最高点,这些点称为恒沸点,其相应的溶液称为恒沸混合物,在此点蒸馏所得气相与液相组成相同。
四、仪器和药品1.仪器玻璃沸点仪一套;阿贝折光仪一台;WLS系列可调式恒流电源一台;SWJ型精密数字温度计一台;SYC超级恒温槽一台。
2.药品无水乙醇(AR)或异丙醇(AR);环己烷(AR)。
13 实验五 二元液体溶液的气—液平衡相图
实验五 二元液态混合物的气-液平衡相图【目的要求】1.实验测定并绘制环己烷-乙醇体系的沸点组成(T -x )图,确定其恒沸点及恒沸混合物的组成。
2.了解测量折光率的原理,掌握阿贝折光仪的使用方法。
【实验原理】两种液体能在任意浓度范围内完全相溶的体系称完全互溶的双液体系。
根据相律:f =K Φ+2式中:f 为体系的自由度;K 为体系中的组分数;Φ为体系中的相数;2是指压力和温度两个变量。
对于定压下的二组分液态混合物,相律可表示为:f =3-Φ。
在大气压力下,液体的蒸气压和外压相等时,平衡温度即为沸点。
对于完全互溶的双液体系,当气液两相平衡时Φ=2,f =1。
完全互溶的双液体系在定压下并没有固定的沸点,为一沸程,并且是和溶液的组成有关的,即T 是x 的函数。
完全互溶的双液体系,由于两种液体的蒸气压不同,溶液上方的气相组成和液相组成是不相同的,测定溶液的沸点和溶液在沸点时的气相和液相的组成,可绘制出溶液的气-液平衡相图,即溶液的沸点与组成关系图,T -x -y 图。
完全互溶的双液体系,T -x -y 图可分三类:如图5-1所示。
图5-1(1)是理想液态混合物和偏离拉乌尔定律较小的体系的T -x -y 相图;图5-1(2)是对拉乌尔定律有较大正偏差的体系;图5-1(3)是对拉乌尔定律有较大负偏差的体系。
在图5-1(2)和图5-1(3)中,由于偏离拉乌尔定律较大以致在T -x -y 图上分别出现了最低点和最高点,在最低点和最高点上,液态混合物的气相组成和液相组成相同,这种组成的液态混合物称为恒沸混合物,在最高点和最低点上时液态混合物的沸点称为恒沸点。
将一定组成的环已烷-乙醇混合物在特制的蒸馏器中进行蒸馏。
当温度保持不变时,即表示气、液两相己达平衡,记下沸点温度,并测定沸点时气相(冷凝液)和液相的组成,Fig.5-1 二组分完全互溶双液体系的T -x -y 相图(1)理想或近似理想的体系 (2)有最低恒沸点的体系 (3)有最高恒沸点的体系 Fig.5-1 Phase diagram for mixture of binary liquid(1)Ideal mixture (2)With minimum aezotropic point (3) With maximum aezotropic 液相Liquid 气相Gas T B x B (y B ) (3) M A B 液相Liquid气相Gas T A T B x B (y B ) T (1) AB 液相Liquid 气相Gas T A T B x B (y B ) (2) M A B T A图5-2 沸点仪示意图 1.温度计;2.接加热器;3.加液口;4.电热丝连接点;5.电热丝;6.分馏液;7.分馏液取样口 Fig.5-2 The sketch of ebulliometer 1.thermometer;2. connection pole;3. inlet orifice; 4. connection point of heater with wire;5.heater; 6. fractional liquid;7. sampling orifice即可得到一组T -x -y 数据。
物化实验 二组分体系气液平衡相图绘制
实验四二组分体系气液平衡相图一.实验目的1.了解液体沸点的测定方法。
2.掌握温度计的露茎校正方法。
3.掌握阿贝折光仪的原理及使用方法4.测定环己烷——乙醇二元系统气液平衡数据,给出沸点组成图。
二.实验原理常温下两液态物质混合构成的体系称为双液系。
若该双液系能按任意比例混合成为一相则称为完全互溶双液系。
若只能在一定比例范围内混合成为一相,其它比例范围内为两相则称部分互溶双液系。
环己烷——乙醇体系是完全互溶双液系。
液体的沸点是指液体的蒸气压和外压相等时的温度。
在一定外压下纯液体的沸点有确定值。
但是双液系沸点不仅与外压有关还随双液系的组成的改变而改变。
同时,在一般情况下双液系蒸馏时的气相组成和液相组成并不相同,因此原则上可通过反复蒸馏即精馏的方法分离双液系中的两液体。
但是当双液系具有恒沸点时,不能用单纯蒸馏的方法分离两液体。
如图4.1所示,本实验所用体系环己烷——乙醇的温度组成图是一个典型的具有最低恒沸点的相图。
若将组成在恒沸点处的体系蒸馏时气相组成和液相组成完全一样,因此在整个蒸馏过程中沸点也恒定不变,无法通过蒸馏的方法分离两组分。
恒沸点和恒沸混合物的组成还和外压有关,因此在不同外压条件下实验时所得双液系的相图也不尽相同,通常压力变化不大时恒沸点和恒沸混合物的组成的变化也不大,在未注明压力时一般均指外压为101.325kPa。
图4.1 具有最低恒沸点体系相图示意图本实验采用回流冷凝法测定环己烷——乙醇溶液在不同组成时的沸点。
由于液体沸腾时易发生过热现象,同时气相又易出现分馏效应,因此沸点的准确测定不易。
本实验所用的沸点仪如图 4.2所示,称为奥斯默沸点仪,它是一支带有回流冷凝管的长颈圆底烧瓶,加热用的电热丝直接浸在溶液中,这样可以减少溶液的过热现象和防止暴沸。
冷凝管的底部有一个小球泡用以收集冷凝下来的气相样品,由于分馏作用会使获得的气相样品的组成与气液平衡时的气相组成发生偏差,为此须在吹制沸点仪时尽量缩短小球泡与烧瓶间的距离以减少分馏作用。
双液系气液平衡相图-学生用
冷凝液蒸汽RP 物理化学实验环己烷—乙醇恒压气液平衡相图绘制一、实验目的 1、 测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制101325Pa 下的沸点-组成的相图。
2、 掌握阿贝折射仪的原理和使用方法。
3、 掌握水银温度计与大气压力计的校正与使用方法。
二、实验原理液体混合物中各组分在同一温度下具有不同的挥发能力。
因而,经过气液间相变达到平衡后,各组分在气、液两相中的浓度是不相同的。
根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。
为了得到预期的分离效果,设计精馏装置必须掌握精确的气液平衡数据,也就是平衡时的气、液两相的组成与温度、压力间的依赖关系。
大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各组分。
其中,恒压数据应用更广,测定方法也较简便。
恒压测定方法有多种,以循环法最普遍。
循环法原理的示意图见图1。
在沸腾器P 中盛有一定组成的二元溶液,在恒压下加热。
液体沸腾后,逸出的蒸汽经完全冷凝后流入收集器R 。
达一定数量后逸流,经回流管流回到P 。
由于气相中的组成与液相中不同,所以随着沸腾过程的进行,P 、R 两容器中的组成不断改变,直至达到平衡时,气、液两相的组成也保持恒定。
分别从R 、P 中取样进行分析,即得出平衡温度下气相和液相的组成。
图 1 循环法原理示意图 图 2 在最低恒沸点的二元气液平衡相图本实验测定的恒压下环己烷-乙醇二元气液平衡相图,如图2所示。
图中横坐标表示二元系的组成(以B 的摩尔分数表示),纵坐标为温度。
显然曲线的两个端点*A t 、*B t 即指在恒压下纯A 与纯B 的沸点。
若溶液原始的组成为0x ,当它沸腾达到汽液平衡的温度为1t 时,其平衡汽液相组成分别为1y 与1x 。
用不同组成的溶液进行测定,可得一系列t −x −y 数据,据此画出一张由液相线与气相线组成的完整相图。
图2的特点是当系统组成为e x 时,沸腾温度为e t ,平衡的气相组成与液相组成相同。
物理化学实验二 双液系的气—液平衡相图
实验二双液系的气—液平衡相图1. 目的要求(1) 绘制在p0下环己烷-乙醇双液系的气-液平衡相图,了解相图和相律的基本概念。
(2) 掌握测定双组分液体沸点的方法。
(3) 掌握用折光率确定二元液体组成的方法。
2. 基本原理任意两个在常温时为液态的物质混合起来组成的体系称为双液系。
两种溶液若能按任意比例进行溶解,称为完全互溶双液系;若只能在一定比例范围内溶解,称为部分互溶双液系。
环己烷-乙醇二元体系就是完全互溶双液系。
双液系蒸馏时的气相组成和液相组成并不相同。
通常用几何作图的方法将双液系的沸点对其气相和液相的组成作图,所得图形叫双液系的沸点(T)组成(x)图,即T—x图。
它表明了在沸点时的液相组成和与之平衡的气相组成之间的关系。
图2.2.1 双液系的T-x图双液系的T—x图有三种情况:(1)理想溶液的T—x图(图2.2.1a),它表示混合液的沸点介于A、B二纯组分沸点之间。
这类双液系可用分馏法从溶液中分离出两个纯组分。
(2)有最低恒沸点体系的T—x图(图2.2.1b)和有最高恒沸点体系的T—x图(图2.2.1c)。
这类体系的T—x图上有一个最低和一个最高点,在此点相互平衡的液相和气相具有相同的组成,分别叫做最低恒沸点和最高恒沸点。
对于这类的双液系,用分馏法不能从溶液中分离出两个纯组分。
本实验选择一个具有最低恒沸点的环己烷—乙醇体系。
在101.325kPa下测定一系列不同组成的混合溶液的沸点及在沸点时呈平衡的气液两相的组成,绘制T—x图,并从相图中确定恒沸点的温度和组成。
测定沸点的装置叫沸点测定仪(图2.2.2)。
这是一个带回流冷凝管的长颈圆底烧瓶。
冷凝管底部有一半球形小室,用以收集冷凝下来的气相样品。
电流通过浸入溶液中的电阻丝。
这样可以减少溶液沸腾时的过热现象,防止暴沸。
测定时,温度计水银球要一半在液面下,一半在气相中,以便准确测出平衡温度。
溶液组成分析:由于环己烷和乙醇的折光率相差较大,而折光率的测定又只需少量样品,4. 实验步骤(1) 纯液体折光率的测定 :分别测定乙醇和环己烷的折光率,重复2次~3次。
双液体系气—液平衡相图的绘制及思考题
双液体系气—液平衡相图的绘制一、实验目的1. 绘制环己烷—异丙醇双液体系的沸点组成图,确定其恒沸组成和恒沸温度。
2. 掌握回流冷凝管法测定溶液沸点的方法。
3.掌握阿贝折射仪的使用方法。
二、实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不 同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图 (a)所示。
(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图 (b)所示。
(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点如图 (c))所示。
上图为二组分真实液态混合物气—液平衡相图(T-x 图)t At AtAt Bt B t Bt / o Ct / o t / o x Bx Bx BABAABB(a)(b)(c)x 'x '后两种情况为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。
为了测定双液系的T-x相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验以环己烷-异丙醇为体系,该体系属于上述第三种类型,在沸点仪中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。
本实验中两相的成分分析均采用折光率法测定。
三、仪器与试剂1、仪器:沸点仪1台;调压变压器1台;阿贝折射仪1台;温度计(0-100℃) 1支;长滴管1个;短滴管2支;2、试剂:环己烷(分析纯);异丙醇(分析纯)异丙醇—环己烷标准溶液(异丙醇分别为0.20,0.40,0.50,0.60,0.80,0.90)四、主要实验步骤1. 测定环己烷、异丙醇及标准溶液的折射率调节阿贝折射仪,用一支干燥的短滴管吸取环己烷数滴,注入折射仪的加液孔内,测定其折射率n,读数两次,取其平均值。
物化实验报告-双液系气液平衡相图的绘制
双液系气液平衡相图的绘制(物化实验得认真做)一、实验目的1. 用回流冷凝法测定沸点是气相和液相的组成,绘制双液系相图。
2 找出恒沸点混合物的组成和恒沸点的温度。
掌握测定双组分液体的沸点及正常沸点的测定方法。
3 了解阿贝折射计的构造原理,熟悉掌握阿贝折射计的使用方法。
二、实验原理1 液体的沸点是液体饱和蒸汽压和外压相等时的温度,在外压一定时,纯液体的沸点有一个确定值。
但双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关。
2 大多数情况下,T-x 曲线将出现或正或负的偏差,当这个偏差足够大的时候,在曲线上将出现极大点或极小点。
这种极大点或者极小点就称为恒沸点。
3 考虑综合因素,实验选择具有最低恒沸点的乙醇- 乙酸乙酯双液系。
4 根据相平衡原理,对两组分体系,当压力恒定时,在气液平衡两相去,体系的自由度为1. 若温度一定时,则气液两相的组成也随之而定。
当原溶液的组成一定时,根据杠杆原理,两相的相对量一定。
反之,实验中利用回流的方法保持气液两相相对量一定,测量体系温度不发生改变时,即两相平衡后,取出两相的样品,用阿贝折射计测定气相、液相的折射率,再通过预先测定的折射率- 组成工作曲线来确定平衡时气相、液相的组成(即该温度下气液两相平衡成分的坐标点)。
改变体系的总成分,再如上法找出另一对坐标点。
这样得若干对坐标点分别按气相点和液相点连成气相线和液相线,即得T-x 平衡图。
三、实验仪器和试剂1、实验仪器沸点仪、阿贝折射仪、调压变压器、温度计两只、干燥小烧杯3只,干燥5ml小试管16只,软木塞若干,擦镜纸2、实验试剂无水乙醇(AR乙酸乙酯(AR丙酮(C.P)乙醇体积分数为5% 10% 15% 22% 38% 50% 70% 90%组成的乙醇- 乙酸乙酯溶液。
四实验过程1、将干燥的沸点仪安装好。
从侧管加入约20mL5混合液于蒸馏瓶内,并使温度计浸入液体内。
冷凝管接通冷凝水。
将稳流电源电压调至13V左右,使加热丝将液体加热至缓慢沸腾。
双液系气液平衡相图的绘制实验报告
双液系沸点-组成图测绘实验报告实验时间:2015年4月15日学号:1120132970 一、目的要求1.测定相应组成时的沸点并制作常压下环已烷—无水乙醇双液系的平衡相图。
2.从沸点组成图了解分馏原理。
3.了解沸点的测定技术,掌握两组分液体沸点的测定方法。
4.掌握折光率与组成的关系及阿贝折光仪的测量原理和使用方法。
二.实验原理1、由液态物质混合而成的二组分系统称为双液系统。
若两液体能以任意比例互溶,称其为完全互溶双液系,若两液体只能部分互溶,称其为部分互溶双液系。
一个完全互溶的二元体系,两个纯液体组分在所有组成范围内完全互溶。
在定压下,完全互溶的二元体系的沸点—组成图可分为三类,如图C7.1所示。
a.溶液的沸点介于两纯组分沸点之间,如苯一甲苯体系;b.溶液有最低恒沸点,如环己烷-乙醇体系;c.溶液有最高恒沸点,如丙酮—氯仿体系。
下面以a为例,简单说明绘制沸点-组成图的原理。
加热总组成为x1的溶液,体系的温度上升,达液相线上1点时溶液开始沸腾,组成为x2的气相开始生成,但气相量很少,趋于0,x1、x2二点代表达到平衡时液、气两相组成。
继续加热,气相量逐渐增多,沸点继续上升,气、液二相组成分别在气相线和液相线上变化,当达某温度(如2点)并维持温度不变时,则x3、x4为该温度下液、气两相组成,气相、液相的量之比按杠杆规则确定。
从相律f = c - p +2可知:当外压恒定时,在气、液两相共存区域自由度等于1;当温度一定时,则气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也已确定。
因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相的量与液相的量之比也不变时(达气-液平衡),则体系的温度也就恒定。
分别取出气、液两相的样品,分析其组成,得到该温度下气、液两相平衡时各相的组成。
改变溶液总组成,得到另一温度下气、液两相平衡时各相的组成。
测得溶液若干总组成下的气液平衡温度及气、液相组成,分别将气相点用线连接即为气相线,将液相点用线连接即为液相线,得到沸点-组成图。
13 实验五 二元液体溶液的气—液平衡相图
实验五 二元液态混合物的气-液平衡相图【目的要求】1.实验测定并绘制环己烷-乙醇体系的沸点组成(T -x )图,确定其恒沸点及恒沸混合物的组成。
2.了解测量折光率的原理,掌握阿贝折光仪的使用方法。
【实验原理】两种液体能在任意浓度范围内完全相溶的体系称完全互溶的双液体系。
根据相律:f =K Φ+2式中:f 为体系的自由度;K 为体系中的组分数;Φ为体系中的相数;2是指压力和温度两个变量。
对于定压下的二组分液态混合物,相律可表示为:f =3-Φ。
在大气压力下,液体的蒸气压和外压相等时,平衡温度即为沸点。
对于完全互溶的双液体系,当气液两相平衡时Φ=2,f =1。
完全互溶的双液体系在定压下并没有固定的沸点,为一沸程,并且是和溶液的组成有关的,即T 是x 的函数。
完全互溶的双液体系,由于两种液体的蒸气压不同,溶液上方的气相组成和液相组成是不相同的,测定溶液的沸点和溶液在沸点时的气相和液相的组成,可绘制出溶液的气-液平衡相图,即溶液的沸点与组成关系图,T -x -y 图。
完全互溶的双液体系,T -x -y 图可分三类:如图5-1所示。
图5-1(1)是理想液态混合物和偏离拉乌尔定律较小的体系的T -x -y 相图;图5-1(2)是对拉乌尔定律有较大正偏差的体系;图5-1(3)是对拉乌尔定律有较大负偏差的体系。
在图5-1(2)和图5-1(3)中,由于偏离拉乌尔定律较大以致在T -x -y 图上分别出现了最低点和最高点,在最低点和最高点上,液态混合物的气相组成和液相组成相同,这种组成的液态混合物称为恒沸混合物,在最高点和最低点上时液态混合物的沸点称为恒沸点。
将一定组成的环已烷-乙醇混合物在特制的蒸馏器中进行蒸馏。
当温度保持不变时,即表示气、液两相己达平衡,记下沸点温度,并测定沸点时气相(冷凝液)和液相的组成,Fig.5-1 二组分完全互溶双液体系的T -x -y 相图 (1)理想或近似理想的体系 (2)有最低恒沸点的体系 (3)有最高恒沸点的体系 Fig.5-1 Phase diagram for mixture of binary liquid(1)Ideal mixture (2)With minimum aezotropic point (3) With maximum aezotropic 液相Liquid 气相Gas T B x B (y B ) (3) M A B液相Liquid气相Gas T A T B x B (y B ) T (1) AB 液相Liquid 气相Gas T A T Bx B (y B ) (2) M A B T A图5-2 沸点仪示意图 1.温度计;2.接加热器;3.加液口;4.电热丝连接点;5.电热丝;6.分馏液;7.分馏液取样口 Fig.5-2 The sketch of ebulliometer 1.thermometer;2. connection pole;3. inlet orifice; 4. connection point of heater with wire;5.heater; 6. fractional liquid;7. sampling orifice 即可得到一组T -x -y 数据。
二元气液平衡数据的测定
实验三 二元气液平衡数据的测定一、实验目的1.测定甲醇—乙醇二元体系在常压下的气液平衡数据,绘制相图。
2.通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能。
3.掌握气相色谱仪的操作。
4.应用Wilson 方程关联实验数据。
二、实验原理气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。
化工生产中的蒸馏和吸收等分离过程设备的设计、改造以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。
化工生产过程均涉及相间物质传递,故气液平衡数据的重要性是显而易见的。
随着化工生产的不断发展,现有气液平衡数据远不能满足需要。
许多物系的平衡数据,很难由理论直接计算得到,必须由实验测定。
相平衡研究的经典方法是首先测定少量的实验数据,然后选择合适的模型关联,进而计算平衡曲线;这其中,最常用到的是状态方程法和活度系数法。
气液平衡数据实验测定方法有两类,即间接法和直接法。
直接法中有静态法、流动法和循环法等。
其中以循环法应用最为广泛。
若要测得准确的气液平衡数据,平衡釜的选择是关键。
现已采用的平衡釜形式有多种,且各有特点,应根据待测物系的特征,选择适当的釜型。
平衡釜的选择原则是易于建立平衡、样品用量少、平衡温度测定准确、气相中不夹带液滴、液相不返混及不易爆沸等。
用常规的平衡釜测定平衡数据,需样品量多,测定时间长。
本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快。
以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。
当体系达到平衡时,两个容器的组成不随时间变化,这时从A 和B 两容器中取样分析,即可得到一组平衡数据。
当达到平衡时,两相的压力、温度、化学位、逸度相等,其热力学基本关系为:V i L i f f = (1)s φγ=i i i i Py P x (2)常压下,气相可视为理想气体, i =1;忽略压力对液体逸度的影响, i = 0 i 从而得出低压下气液平衡关系式为:i i i i Py γP x =s(3)式中—体系压力(总压);P s i —纯组分i 在平衡温度下饱和蒸气压,可用安托尼(Antoine )公式计算; i 、 i —分别为组分i 在液相和气相中的摩尔分率; i —组分i 的活度系数。
7-二元气液平衡相图
(3) 沸点仪干燥后,将 6 号溶液加入其中,同步骤(1)操作,测定环己烷的沸腾温度。 (4) 实验完毕,清理仪器。读取室内大气压。 4. 思考题 (1) 沸点仪通电加热前为什么一定要通大气并通冷却水?
(2) 在加入 2-7 号溶液时沸点仪需要干燥吗?为什么? (3) 本实验中取样所用的毛细管为什么必须干燥? (4) 蒸馏瓶气相冷凝液取样口处收集冷凝液的小球太大、 太小都不好, 为什么?每次蒸馏取样为何应该先
6
(2) 向沸点仪中加入已配制好的 2 号溶液,
同法加热至液体沸腾。 当温度在 2~3 分钟内不 变时,记录沸腾温度后切断电源。迅速用干燥 的毛细管从取样口 4 吸取气相冷凝液, 测定其 折射率。用丙酮洗净折射仪棱镜后,再用另一 支干燥的毛细管从取样口 3 吸取少许液相样 品, 测其折射率。 测试完毕, 洗净折射仪棱镜, 将 2 号溶液倒回原瓶中。 在沸点仪中依次加入 3-7 号溶液, 分别按 上述步骤重复操作,测定沸腾温度及气、液相 折射率。
取气相冷凝液?
5. 注意事项 (1) 实验中必须在冷凝管中通入冷凝水,以使气相充分冷凝。 (2) 电阻丝一定要被待测溶液浸没。变压器输出电压应缓慢上调至液体沸腾,一般不超过 20V。 (3) 只能在切断电源后才可取样分析。 (4) 使用折射仪时,棱镜不能触及硬物(如滴管),擦拭棱镜用擦镜纸。
3. 实验步骤 1. 绘制工作曲线:
在一定温度下,量取一定体积的无水乙醇和环己烷配制成一系列不同组成的乙醇—环己烷混合物。用 折射仪分别测量各溶液的折射率 n(此步数据由教师给出) 。以折射率为纵坐标,组成为横坐标作 n~x 图, 即工作曲线。 序 号 1 0 20 2 2 18 3 5 15 4 8 12 5 11 9 6 14 6 7 17 3 8 20 0
物理化学实验 二元液系的气液平衡相图
• ③由于气相样品(冷凝液)挥发性大,量少, 蒸发面大,只有在停止加热后迅速取样测 定,才能保证气相组成的正确性,至于液 相,因为量多,挥发性小,很少发生不正 常情况,故可从容测定。
• ④用滴管取样,注意滴管的倾斜度,不要 让样品流入橡皮帽。 • • 1.在本实验中,气液两相是怎样达到平衡的? • 2.绘制工作曲线的目的是什么? • 3.每次加入乙醇及环已烷的量是否要求准 确? • 4.实验测得的沸点与大气压对应的沸点是 否一致?
实验注意事项
• ① • (ⅰ)明暗分界线从上和从下趋向十字交点, 其数值常不一致,取两者的平均值,或所 有测定连同校准都从一个方向趋向十字交
•
(ⅱ)丙酮或其他易挥发性液体从镜上挥发 后;棱镜温度有所降低,因此棱镜干燥后 要合上一段时间或者样品加好后过一会再 测。
• ②由于蒸馏瓶中的气相外壁处在室温下, 气相有精馏作用,即高度不同,气相成分 不同。笔者认为,近液面的气相组成比较 正确,因此冷凝管的进气管应当尽量的低, 或者下段气相加以保温。盛气相样品小槽 有0.5ml已够,不大不深,则可较快达到平 衡。但操作时,液相面不可过高,加热不 可过猛,以免液体进入气相样品中。
100% 80% 60% 40% 20% 0%
环已烷 mol%
折光率 1.4238 1.4163 (25度) 折光率 1.4218 1.4149 (30度) 1.4030 1.3915 1.3740 1.3637
1.4016 1.3896 1.3680 1.3622
3、一定组成环已烷—乙醇混合液沸 点及气液两相折射率的测定
1、加热丝一定要被测液体浸没,否则通电 加热时可能会引起有机液体燃烧。 2、加热功率不能太大,加热丝上有小气泡 逸出即可。 3、温度传感器(温度计)不要直接碰到加 热丝。
二元液系气液平衡相图
实验二二元液系气液平衡相图一、实验目得1、了解环己烷—乙醇系得沸点—组成图2、由图上得出其最低恒沸温度及最低恒沸组成(含乙醇%)3、学会使用数字阿贝折射仪4、学会使用WTS-05数字交流调压器二、原理一个完全互溶双液体系得沸点—组成图,表明在气液二相平衡时沸点与二相成分间得关系,它对了解这一体系对行为及分馏过程都有很大得实用价值。
在恒压下完全互溶双液系得沸点与组分关系有下列三种情况:1、溶液沸点介于二纯组分之间;2、溶液有最高恒沸点;3、溶液有最低恒沸点、图1表示有最低恒沸点,本次实验图形也像如此得样子,A′LB′代表液相线得交点表示在该温度时互成平衡得二相得成份。
绘制沸点—成份图得简单原理如下:当总成份为X得溶液开始蒸馏时,体系得温度沿虚线上升,开始沸腾时成份为Y得气相生成、若气相量很少,x、y二点即代表互成平衡时液气二相成份。
继续蒸馏,气相量逐渐增多,沸点沿虚线继续上升,气液二相成份分别在气相与液相线上沿箭头指示方向变化。
当二相成份达到某一对数值x′与y′,维持二相得量不变,则体系气液二相又在此成份达到平衡,而二相得物质数量按杠杆原理分配。
本实验利用回流得方法保持气液二相相对量一定,则体系温度恒定。
待二相平衡后,取出二相得样品,用阿贝折光仪测定其折射率。
得出该温度下气液二相平衡成份得坐标点,改变体系得总成份,再用上法找出一对坐标点,这样测得若干坐标点后,分别按气相点与液相点连成气相线与液相线,即得T—X平衡图。
三、步骤1、安装接通仪器,打开冷凝水;2、加入环己烷20ml,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2—3分钟基本不变,记下温度,关闭调压器;3、A组加入乙醇0。
5ml,用上法测定温度,然后关闭调压器,取出气相,液相得样品,测其折射率,以后分别加入1。
0,2.0,4、0,8.0,12、0ml乙醇;4、B组加入20ml无水乙醇,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2-3分钟基本不变,记下温度,关闭调压器;5、加环己烷0。
实验6 二元液系相图
实验6 二元液系相图第次课 4 学时实验6 二元液系相图一、实验目的1. 用回流冷凝法测定常压下环己烷—异丙醇的气液平衡数据,绘制二元液系T~x 图,确定系统恒沸组成及恒沸温度。
2. 学会阿贝折光仪的使用。
二、实验原理在常温下,两种液态物质以任意比例相互溶解所组成的系统为完全互溶系统。
在恒定的压力下,表示溶液沸点与组成的图称之为沸点-组成图。
完全互溶双液系恒定压力下的沸点-组成图可以分成三类:⑴溶液沸点介于两纯组分沸点之间(图6-1)⑵溶液存在最低沸点(图6-2)⑶溶液存在最高沸点(图6-3)。
t/ ℃ p=常数 t/ ℃ p=常数t/ ℃ p=常数g g gt1l llA xG xLxB→ B A xB→B A xB→ B图(6-1) 图(6-2) 图(6-3)图(6-2)、图(6-3)有时被称为具有恒沸点的双液系。
和图(6-1)根本的区别在于,系统处于恒沸点时气、液两相的组成相同。
因而不能象第一类那样通过反复蒸馏而使两种组分完全分离。
如果进行简单的反复蒸馏只能得到某一纯组分和组成为恒沸点相应组成的混合物。
如果要获得两纯组分需要采用其它的方法。
系统的最高或最低恒沸点即为恒沸温度,恒沸温度对应的组成为恒沸组成。
异丙醇-环己烷双液系属于具有最低恒沸点一类的系统。
为了绘制沸点-组成图,可采用不同的方法。
化学方法和物理的方法,相对而言物理的方法具有简捷、准确的特点。
本实验是利用回流及分析的方法来绘制相图。
取不同组成的溶液在沸点仪中回流,测定其沸点及气、液相组成沸点数据可直接由温度计获得,气、液相组成可通过测定其折光率,然后由组成-折光率曲线中最后确定。
三、仪器和试剂蒸馏瓶 1套;调压器 1台;温度计( 50~100℃,1/10) 1支;阿贝折光仪 1台;长取样管 1支;短取样管 1支;25ml移液管 3支;电吹风机 1台;环己烷(A.R) 1瓶;异丙醇(A.R) 1瓶四、实验步骤1. 用阿贝折光仪测定纯环己烷、异丙醇及标准混合物样品的折光率。
二元液相系图
物理化学实验报告实验名称:完全互溶双液系统气液平衡相图的绘制专业班级:生物工程112班学生姓名:钟坤学号:1108110391实验时间:2103年5月14日8:00~10:00指导老师:刘定富老师一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点- 组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图2.7(a)所示。
(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图2.7(b)所示。
(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压t A t A tAtB t B t Bt / o C t / o C t / o C x B x Bx B A B A A B B(a)(b)(c)x 'x '都大,混合物存在着最低沸点如图2.7(c))所示。
图2.7 二组分真实液态混合物气—液平衡相图(T-x图)后两种情况为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。
为了测定双液系的T-x相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2.8)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。
二元气液平衡相图的绘制
二元气液平衡相图的绘制一、 实验目的:1、 定不同组成的环己烷—乙醇溶液的沸点及气、液两相的平衡浓度,由此绘制其沸点—组成图。
2、 握爱贝斯折射仪的原理及使用方法。
二、 实验原理:了解二元溶液的沸点—组成图,对两组分的分离—精馏有 指导意义。
本实验室用回流冷凝法测定不同浓度的环己烷—乙醇溶液的沸点和气、液两相的组成,从而绘制T-x 图。
图1为环己烷—乙醇的沸点—组成的大致形状,ADC 和BEC 为气相线,AD ’C 和DE ’C 为液相线。
他们表明了沸点和气、液组成个关系。
当体系总组成为x 的溶液开始沸腾时,气象组成为y ,继续蒸馏,则气相量增加,液相量相应减少(总量不变),溶液温度上升,由于回流作用,控制了两相的量为一定,其沸点也为一定,此时气相组成为y ’,与其平衡的液相组成为x ’,体系的平衡沸点为t 沸,此时气液两相的量服从杠杆原理。
当压力一定时,对两项共存区进行相律分析:独立组分数K=2,相数P=2,所以自由度f=K-P+1=2-2+1=1这说明,若体系温度一定,气、液两相成分就已确定,当总量一定时由杠杆原理可知,两相的量也一定,反之,在一定实验装置汇总,用利用回流的方法,控制气液两相的相对量为一定,使体系的温度一定,则气液组成一定。
用精密温度计可以测出平衡温度,取出气液两相样品测定其折射率可以求出其组成。
因为折射率和组成由一一对应的关系,则可以通过测定仪系列一直组成的样品折射率,会出工作曲线即折射率—组成曲线。
这样,只要测出样品的折射率就可从工作曲线上找到未知样品的组成。
三、 仪器和药品仪器:阿贝折射仪、超级恒温槽、蒸馏瓶、调压变压器、1/10°C 刻度温度计、25ml 移液管一支、5ml 、10ml 移液管各两支、锥形瓶四个、滴管若干支。
药品:环己烷、乙醇、丙酮。
四、实验步骤t/℃ 图6—1 沸点—组成图1、工作曲线的测定把超级恒温槽调至25°C,用橡皮管连接好恒温槽与阿贝折射仪,使恒温水流经折射仪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验九二元气液平衡相图的绘制
一.实验目的
1.测定不同组成的环己烷-乙醇溶液的沸点及气.液两相的平衡浓度,由此绘制其沸点-组成图。
2.掌握阿贝折射仪的原理及使用方法。
二.实验原理
本实验是用回流冷凝法测定不同浓度的环己烷-乙醇溶液的沸点和气﹑液两相的组成,从而绘制T—x图。
由于回流作用,两相的量一定,沸点一定,且不同平衡点气液两相的量服从杠杆原理。
若体系温度一定,气﹑液两相的组成就已确定,反之,实验时利用回流的方法,控制气.液两相的相对量为一定,使体系温度一定,则气﹑液两相的组成一定。
用精密温度计可以测出平衡温度(即沸点),取出气液两相样品测定其折射率可以求出其组成。
因为折射率和组成有一一对应的关系,则可以通过测定一系列已知组成的样品的折射率,绘制工作曲线即折射率—组成曲线。
这样,只要测出样品的折射率就可以从工作曲线上找到未知样品的组成。
三.仪器与药品
仪器:阿贝折射仪,超级恒温槽,蒸馏瓶,调压变压器,1/10℃刻度温度计,25ml移液管1支,5ml﹑10mL移液管各2支,锥形瓶4个,滴管若干只。
药品:环己烷,乙醇,丙酮。
四.实验步骤
1.把超级恒温槽调至25℃,用橡皮管连接好恒温槽与阿贝尔折射仪,使恒温水流经折射仪。
量取环己烷1、2、3、4ml分别与4.3.
2.1ml 的乙醇混合,随配随测,测混合液折射率,并绘制工作曲线。
2.安装好仪器,先把调压变压器调制电压最小,将25ml环己烷加入蒸馏瓶中,打开冷凝水,接通电源,缓慢增加至12-16v,加热至液体沸腾时,记下温度稳定值。
3.停止加热,依次加入1﹑4﹑7ml乙醇,每次加完后,加热至液体沸腾测其沸点,停止加热,及时测定气相样品折射率,再测定液相样品。
4.做完后,拔下电源插头,回收母液,加入25ml乙醇,测定其沸点,再依次加入1﹑4﹑7ml环己烷,分别测定气.液两相的折射率。
五.注意事项
1.进气管应较低,加热时不可过猛,以免液沫进入气相样品中。
2.由于气相样品挥发性大,应在停止加热后迅速测定。
3.用滴管取样时,注意滴管的倾斜度,不要让样品流入橡皮帽。
六.原始数据记录
1.工作曲线
表1 环己烷-乙醇标准溶液的折射率
物质环己烷乙醇环己烷:乙醇(体积比/环己烷质量百分数:x环己烷)
1:42:33:24:1
环己烷百
1 0 0.19780.39660.59660.7977
分比
折射率
1.4223 1.3601 1.3565 1.3695 1.3739 1.4160
表2 环己烷-乙醇混和液测定数据
25ml 环己烷中加入乙醇的量(ml ) 0 1 4 7
25ml 乙醇中加
入环己烷的量(ml )
0 1 4 7
沸点(°) 72.3
70.0 65.4 62.8 沸点 74.2
72.1 65.0 61.8 气相折射率
1.3621 1.3660 1.3750 气相折射率
1.3830 1.3898 1.3970 气相组成
0.9289 0.7236 0.6161 气相组成
0.5055 0.3835 0.1972 液相折射率
1.4156 1.4086 1.3902 液相折射率
1.36 1.3663 1.3748 液相组成
0.8989
0.8598
0.6392
液相组成
0.4836
0.2606
0.1714
七、数据处理 1.绘制工作曲线
环己烷密度:0.778 乙醇密度:0.789
环己烷质量
百分比 0
0.1978 0.3966 0.5966 0.7977 1 折射率 1.3586
1.3665
1.3695
1.3739
1.416
1.4223
2.做出组成-沸点图。
由组成-沸点曲线,可知最低恒沸点为61.7度,此时混合物中环己烷含量为0.58.
八、实验结论
通过实验可以做出环己烷-乙醇溶液沸点-组成图,而可以依据环己烷-乙醇溶液沸点-组成图,通过测定混合溶液的折射率得到混合溶液的组成,这是由于折射率与组成有一一对应的关系,这给测定溶液组成提供的一种简单的算法。
九、误差分析
本次试验可能的误差来源有:
1.溶液量取时产生误差,导致测定的折射率值不准确;
2.由于液相样品挥发性比较大,停止加热后应迅速取样,由于样品挥发会产生误差;
3.由于测定液体折射率使用的滴管相同,导致溶液组分改变,从而导致折射率测定产生误差。
十、思考题
1.绘制工作曲线的目的是什么?
答:通过绘制工作曲线,可以根据折射率与组成一一对应的关系知道溶液的组成。
2.每次加入乙醇及环己烷的量是否要求准确?
答:每次加入乙醇及环己烷的量可以不是很准确,因为工作曲线已经绘制出来,只要通过测定折射率就可以知道其组成。