椭圆的几何性质知识点归纳及典型例题及练习(付答案)

合集下载

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质基础卷1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >02.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为(A )221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )2211625x y += 3.已知P 为椭圆221916x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A )54 (B )45 (C )417 (D )7474.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A )23 (B )33 (C )316 (D )6165.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有(A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C )123111,,r r r 成等差数列 (D )123111,,r r r 成等比数列 6.椭圆221925x y +=的准线方程是 (A )x =±254 (B )y =±165 (C )x =±165 (D )y =±2547.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 .8.对于椭圆C 1: 9x 2+y 2=36与椭圆C 2:2211612x y +=,更接近于圆的一个是 . 9.椭圆12222=+by a x 上的点P (x 0, y 0)到左焦点的距离是r = .10.已知定点A (-2, 3),F 是椭圆2211612x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

椭圆知识点总结及经典习题练习

椭圆知识点总结及经典习题练习

第二部分 圆锥曲线(一)---椭圆知识点一:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。

注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.注意:椭圆122=+b y a x ,122=+bx a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ac e ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。

知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题

椭圆的基本知识1 •椭圆的定义:把平面内与两个定点 F 「F 2的距离之和等于常数(大于 F ,F 2)的点的轨迹叫做椭圆•这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距 (设为2c ).2.椭圆的标准方程:焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为 虑焦点位置,求出方程 3.求轨迹方程的方法:定义法、待定系数法、相关点法、直接法例1如图,已知一个圆的圆心为坐 标原点,半径为2.从这个圆上任意一点P 向x 轴作垂线的解:段PP ,求线段PP 中点M 的轨迹•关点法)设点Mx , y ), 点Rx o , y o ), 贝 y x =x o , y = 匹 得 x o =x , y o = 2y.2x o 2+ y o 2= 4,得 x 2+ (2 y ) 2= 4,即- y 21.所以点M 的轨迹是一个椭圆42 2 2 24.范围.x < a , y < b ,••• | x| < a , | y| < b . 椭圆位于直线x =± a 和y =± b 围成的矩形里.5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x = 0,得y =± b ,点Bi(0, — b )、R(0, b )是椭圆和y 轴的两个交点;令 y = 0,得x =± a ,点A ( —a ,0)、A(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A ( — a , 0)、A(a , 0)、B(0, — b )、B(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段AA 、BB 分别叫做椭圆的长轴和短轴 . 长轴的长等于2a .短轴的长等于2b . a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长.y| BH | = |BF 2| = | BH| = | BF 2| = a .在 Rt △ OBF 2中,|OF |2= | BaF 2| 2 — | 0团 2, AZ b即 c 2 = a 2 — b 2.x7.椭圆的几何性质:mx2+ny2=1(m>0 n>0)不必考2 2a b2 2a b椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐和召Hi¥厂1,J /1 .PjAJ4j对 关T r 轴・,、轴・燮标原点荊称荒于J 鞋*孑轴・坐肺腺点时称(K 点Ai ( —Un 0 ) a HI O) fihCOi —At tO-B — a J » A* a }(CXr-CI) a几点说明:(1)长轴:线段 AA ,长为2a ;短轴:线段B 1B 2,长为2b ;焦点在长轴上。

专题10 椭圆及其性质(知识梳理+专题过关)(解析版)

专题10 椭圆及其性质(知识梳理+专题过关)(解析版)

专题10椭圆及其性质【知识梳理】知识点一:椭圆的定义平面内与两个定点12,F F 的距离之和等于常数2a (122||a F F >)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距,记作2c ,定义用集合语言表示为:{}1212|||||2(2||20)P PF PF a a F F c +=>=>注意:当22a c =时,点的轨迹是线段;当22a c <时,点的轨迹不存在.知识点二:椭圆的方程、图形与性质椭圆的方程、图形与性质所示.焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>>()222210y x a b a b +=>>统一方程221(m 0,n 0,)mx ny m n +=>>≠参数方程cos ,[0,2]sin x a y b θθθπθ=⎧∈⎨=⎩为参数()cos ,[0,2]sin x a y b θθθπθ=⎧∈⎨=⎩为参数()第一定义到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >)范围a x a -≤≤且b y b-≤≤b x b -≤≤且a y a-≤≤顶点()1,0a A -、()2,0a A ()10,a A -、()20,a A①2max 12122cos 1,b F BF r r θθ=-=∠,(B 为短轴的端点)②1202012|s |,1tan 2|in 2|,PF F c y x S x r b r c y θθ∆⎧⎪===⎨⎪⎩焦点在轴上焦点在轴上12()F PF θ=∠考点1:椭圆的定义与标准方程考点2:椭圆方程的充要条件考点3:椭圆中焦点三角形的周长与面积及其他问题考点4:椭圆上两点距离的最值问题考点5:椭圆上两线段的和差最值问题考点6:离心率的值及取值范围考点7:椭圆的简单几何性质问题考点8:利用第一定义求解轨迹【典型例题】考点1:椭圆的定义与标准方程1.(2021·湖北·高二期中)椭圆()2222101x y m m m+=>+的焦点为1F ,2F ,与y 轴的一个交点为A ,若12π3F AF ∠=,则m =()A .1B CD .2【答案】C 【解析】在椭圆()2222101x y m m m+=>+中,a =,b m =,1c =.易知12AF AF a ==.又12π3F AF ∠=,所以12F AF 为等边三角形,即112AF F F =2=,即m =.故选:C.2.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)椭圆2251162x y +=上点P 到上焦点的距离为4,则点P 到下焦点的距离为()A .6B .3C .4D .2【答案】A【解析】椭圆2251162x y +=,所以225a =,即5a =,设上焦点为1F ,下焦点为2F ,则12210PF PF a +==,因为14PF =,所以26PF =,即点P 到下焦点的距离为6;故选:A3.(2021·山东山东·高二期中)已知椭圆的两个焦点为(10,F ,(2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22194x y +=B .22149x y +=C .22127x y +=D .22172x y +=【答案】B【解析】由212PF PF a +=,得()222121222124PF PF PF PF PF F a P ++⋅+==,又因为12MF MF ⊥,所以()22212220PF PF c +==,由22121220,8PF PF PF PF +=⋅=,得222121242201636a PF PF PF PF =++⋅=+=,所以29,3a a ==,又2c b =∴=.因为椭圆的焦点在y 轴上,所以椭圆的方程是22149x y +=.故选:B.4.(2021·四川·遂宁中学高二期中(文))与椭圆229436x y +=有相同的焦点,且短半轴长为)A .2212520x y +=B .2212520y x +=C .2214520y x +=D .2218580y x +=【答案】B【解析】椭圆229436x y +=的标准方程为22194y x +=,该椭圆的焦点坐标为(0,,设所求椭圆的长半轴长为a ,则5a =,故所求椭圆的标准方程为2212520y x +=.故选:B.5.(2021·全国·高二期中)设1F 、2F 分别是椭圆E :2221y x b+=(01b <<)的左、右焦点,过1F 的直线l 与椭圆E 相交于A 、B 两点,且222AB AF BF =+,则AB 的长为______.【答案】43【解析】由椭圆的定义得:122AF AF a +=,122BF BF a +=,又222||||||AB AF BF =+,11AB AF BF =+,所以43AB a =,由椭圆222:1y E x b+=知1a =,所以43AB =.故答案为:436.(2021·江苏省南通中学高二期中)求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点()3,2M ;(2)离心率为513,且椭圆上一点到两焦点的距离之和为26.【解析】(1)由焦距是4可得2c =,又焦点在y 轴上,所以焦点坐标为()0,2-,()02,,由椭圆的定义可知28a ==,所以4a =,所以22216412b a c =-=-=,所以椭圆的标准方程为2211612y x +=;(2)由题意知226a =,即13a =,又513c e a ==,所以5c =,所以22222135144b a c =-=-=,当椭圆的焦点在x 轴上时,椭圆的方程为221169144x y +=;当椭圆的焦点在y 轴上时,椭圆的方程为221169144y x +=,所以椭圆的方程为221169144x y +=或221169144y x +=7.(2021·黑龙江·大兴安岭实验中学高二期中)(1)求焦点的坐标分别为(0,3),(0,3)-,且过点16(,3)5P 的椭圆的方程.(2)求中心在原点,焦点在坐标轴上,且经过两点11(,33P 、1(0,)2Q -的椭圆标准方程.【解析】(1)由题意,椭圆的焦点在y 轴上,设椭圆方程为22221y x a b+=由椭圆定义,210a ==故5,3,4a cb ===故椭圆的标准方程为:2212516y x +=(2)不妨设椭圆的方程为:221mx ny +=经过两点11(,)33P 、1(0,2Q -故11199114m n n ⎧+=⎪⎪⎨⎪=⎪⎩,解得5,4m n ==即22541x y +=故椭圆的标准方程为:2211145y x +=8.(2021·吉林油田高级中学高二期中)求满足下列条件的椭圆的标准方程.(1)与椭圆22184x y +=有相同的焦点,且经过点()2,3-;(2)点A,B-,(2,C -,()3,0D 中恰有三个点在椭圆上.【解析】(1)椭圆22184x y +=的焦点坐标为()2,0-,()2,0.所以设椭圆的标准方程为()222210x y a b a b+=>>,由题意得()222222231,4,a ba b ⎧-⎪+=⎨⎪-=⎩解得2216,12.a b ⎧=⎨=⎩所以椭圆的标准方程为2211612x y +=.(2)根据椭圆的对称性,A,B-两点必在椭圆上,因为点A 和点C的纵坐标为A ,C 两点并不关于y 轴对称,故点C 不在椭圆上.所以点A,B-,()3,0D 三点在椭圆上.设椭圆方程为()2210 ,0mx ny m n +=>>,代入A ,D 两点得381,91,m n m +=⎧⎨=⎩解得1,91.12m n ⎧=⎪⎪⎨⎪=⎪⎩所以椭圆的标准方程为221912x y +=.考点2:椭圆方程的充要条件9.(2021·安徽·芜湖一中高二期中)若方程22191x y k k +=--表示椭圆C ,则下面结论正确的是()A .()1,9k ∈B .椭圆C的焦距为C .若椭圆C 的焦点在x 轴上,则()1,5k ∈D .若椭圆C 的焦点在x 轴上,则()5,9k ∈【答案】C【解析】因方程表示椭圆,则有90k ->,10k ->,且91k k -≠-,即()()1,55,9k ∈,A 错误;焦点在x 轴上时,910k k ->->,解得()1,5k ∈,D 错误,C 正确;焦点在x 轴上时,则()291102c k k k =---=-,焦点在y 轴上时,()219210c k k k =---=-,B 错误.故选:C10.(2021·北京工业大学附属中学高二期中)设22:1p mx ny +=表示的是椭圆;:0,0q m n >>,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若221mx ny +=表示的是椭圆,则0,0m n >>且m n ≠,即p q ⇒成立;反例:当1m n ==时,221mx ny +=表示的是圆,即q p ⇒不成立;即p 是q 成立的充分不必要条件,故选:A.11.(2021·上海·高二期中)对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当0mn >时,方程221mx ny +=的曲线不一定是椭圆,例如:当1m n ==时,方程221mx ny +=的曲线不是椭圆而是圆;或者是m ,n 都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程221mx ny +=的曲线是椭圆时,应有m ,n 都大于0,且两个量不相等,得到0mn >;由上可得:“0mn >”是“方程221mx ny +=的曲线是椭圆”的必要不充分条件.故选:B.12.(多选题)(2021·江苏·无锡市第一女子中学高二期中)已知曲线22:1C mx ny +=()A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确,故B 错误;对于C ,若0m n =>,则221mx ny +=可化为221x y n+=,此时曲线C 表示圆心在原点,半的圆,故C 不正确;对于D ,若0,0m n =>,则221mx ny +=可化为21y n =,y n=,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:AD.13.(2021·上海市宝山中学高二期中)已知方程22164x y m m+=+-表示焦点在y 轴上的椭圆,则实数m 的取值范围是_______;【答案】61m -<<-【解析】由于方程22164x y m m +=+-表示焦点在y 轴上的椭圆,所以4660m m m ->+⎧⎨+>⎩,解得61m -<<-.故答案为:61m -<<-14.(2021·广西·钦州一中高二期中(文))若椭圆22113x y k k+=--的焦点在y 轴上,则实数k的取值范围是___________.【答案】(1,2)【解析】因为椭圆22113x y k k+=--的焦点在y 轴上,所以313010k k k k ->-⎧⎪->⎨⎪->⎩,解得12k <<,即实数k 的取值范围为(1,2).故答案为:(1,2)考点3:椭圆中焦点三角形的周长与面积及其他问题15.(2021·全国·高二期中)已知椭圆2214x y +=的左、右焦点为1F ,2F ,点P 为椭圆上动点,则12PF PF +的值是______;12PF PF ⋅的取值范围是______.【答案】4[]2,1-【解析】对椭圆2214x y +=,其2224,1,3a b c ===,焦点坐标分别为())12,F F ,由椭圆定义可得:12PF PF +24a ==;设点P 的坐标为(),x y ,则2214x y =-,且[]2,2x ∈-,故12PF PF ⋅())222123,,324x y x y x y x =-⋅-=+-=-,又[]2,2x ∈-,故[]2322,14x -∈-,即12PF PF ⋅的取值范围为:[]2,1-.故答案为:4;[]2,1-.16.(2021·安徽滁州·高二期中)已知1F 、2F 是椭圆22110020x y +=的两个焦点,M 是椭圆上一点,且12MF MF ⊥,则12F MF △的面积为______.【答案】20【解析】由22110020x y +=,得2100a =,220b =,所以10a =,c ==所以122F F c ==1MF m =,2MF n =,所以220m n a +==,因为12MF MF ⊥,所以22320m n +=,所以()()222280mn m n m n =+-+=,所以12F MF △的面积为12mn 20=.故答案为:20.17.(2021·安徽·高二期中)设12,F F 是椭圆22:1167x yC +=的左,右焦点,点P 在C 上,O 为坐标原点,且||3OP =,则12PF F △的面积为___________.【答案】7【解析】由题意得,4a =,3c =,12132OP F F ==,∴P 在以线段12F F 为直径的圆上,∴12PF PF ⊥,∴222121236PF PF F F +==①,由椭圆的定义知,128PF PF +=②,由①②,解得1214PF PF ⋅=,∴1212172PF F S PF PF =⋅=△.故答案为:7.18.(2021·山东师范大学附中高二期中)已知椭圆221126x y +=的左、右焦点为1F 、2F ,P 在椭圆上,且12PF F △是直角三角形,这样的P 点有______个【答案】6【解析】当P 不是直角顶点时,P 为过焦点与x 轴垂直的直线与椭圆的交点,易知这样的点有4个;当P 是直角顶点时,P 在以12F F为直径的圆上,c =故圆方程为226x y +=,联立方程:222211266x y x y ⎧+=⎪⎨⎪+=⎩,解得0x y =⎧⎪⎨=⎪⎩0x y =⎧⎪⎨=⎪⎩.综上所述:共有6个点满足条件.故答案为:6.19.(2021·上海市控江中学高二期中)设1F 、2F 分别是椭圆22:12516x yC +=的左、右焦点,点P在椭圆C 上,且满足120PF PF ⋅=,则12PF PF ⋅=___________.【答案】32【解析】由题意,椭圆22:12516x y C +=,可得5,4a b ==,则3c =,根据椭圆的定义,可得1210PF PF +=,又由120PF PF ⋅=,可得12PF PF ⊥,所以22212436PF PF c +==,因为()2221212121221002PF PF PF PF PF PF PF PF +=+-=-,即12100236PF PF -=,解得1232PF PF =.故答案为:32.20.(2021·辽宁·大连市第三十六中学高二期中)已知1F ,2F 是椭圆22:1123x y C +=的两个焦点,点P 在椭圆上,120PF PF ⋅=,则12PF F △的面积是()A .3B .6C.D.【答案】A【解析】因为120PF PF ⋅=,所以12PF PF ⊥,2221212PF PF F F +=,则()221212122PF PF PF PF F F +-⋅=,所以222122226PF PF a c b ⋅=-==,所以1212132PF F S PF PF =⋅=△,故选:A21.(多选题)(2021·江苏·淮阴中学高二期中)已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A .若12PF PF =,则1230PF F ∠=B .12F PF △C .12PF PF -的最大值为D .满足12F PF △是直角三角形的点P 有4个【答案】ABC【解析】在椭圆M 中,2a =,1b =,c =12F F =对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得222112212112cos 2PF F F PF PF F PF F F +-∠=⋅因为120180PF F <∠<,所以,1230PF F ∠=,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为122c b bc ⨯⨯==B 对;对于C 选项,因为2a c PF a c -≤≤+,即222PF ≤≤,所以,()12222222PF PF a PF a a c c -=-≤--==C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()100F P x y =,()200F P x y =,222120003130F P F P x y y ⋅=-+=-=,所以,0y =03x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.22.(多选题)(2021·广东·深圳市高级中学高二期中)已知椭圆M :2212520x y +=的左右焦点分别为12F F 、,左右顶点分别为12A A 、,P 是椭圆上异于12A A 、的任意一点,则下列说法正确的是()A .12PF F △周长为10B .12PF F △面积最大值为10C .存在点P 满足:1290F PF ︒∠=D .若12PF F △面积为P横坐标为【答案】BD【解析】由题意5,a b c ===,1(F,2F,短轴一个端点2B,由题知12210PF PF a +==,故12PF F △周长为10+A 错误;利用椭圆的性质可知12PF F △面积最大值为1102⨯=,故B 正确;因为22221tan 12OF OB F OB ∠===<,所以22045OB F ︒<∠<︒,从而12222290F B F OB F ∠=∠<︒,而P 是椭圆上任一点时,当P 是短轴端点时12F PF ∠最大,因此不存在点P 满足1290F PF ∠=︒,故C 错误;因为121212PF F P P S F F y y =⋅=△4P y =,则21612520P x +=,P x =D 正确.故选:BD .23.(2021·湖南·长沙市明德中学高二期中)椭圆221169x y +=的左、右焦点为1F 、2F ,一直线过1F 交椭圆于A 、B ,则2ABF 的周长为()A .32B .16C .8D .4【答案】B【解析】在椭圆221169x y +=中,4a =,则2ABF 的周长为1212416AF AF BF BF a +++==.故选:B.24.(2021·广东·广州市番禺区实验中学高二期中)已知1F ,2F 是椭圆22:12516x yC +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为().A .13B .12C .25D .16【答案】C【解析】由椭圆方程知:5a =;根据椭圆定义知:12210MF MF a +==,21212252MF MF MF MF ⎛+⎫∴⋅≤= ⎪⎝⎭(当且仅当12MF MF =时取等号),12MF MF ∴⋅的最大值为25.故选:C.考点4:椭圆上两点距离的最值问题25.(2021·陕西·长安一中高二期中(文))设B 是椭圆22:14x C y +=的上顶点,点P 在C 上,则PB 的最大值为________.【答案】3【解析】根据题意,易知()0,1B ,设(),P x y ,则2214xy +=,即2244x y =-,故PB =因为11y -≤≤,所以当13y =-时,max PB ==26.(2021·福建宁德·高二期中)点P 为椭圆22159x y +=上一点,F 为焦点,则PF 的最大值为()A .1B .3C .5D .7【答案】C 【解析】22159x y +=,29a ∴=,2254b c =⇒=,即3,2a c ==.所以PF 的最大值为325a c +=+=.故选:C27.(2021·河北·正定一中高二期中)椭圆22195x y +=上任一点P 到点()1,0Q 的距离的最小值为()AB .152C .2D .3【答案】B【解析】设点P 的坐标为(),m n ,其中[3,3]∈-m ,由22195m n +=,可得22559m n =-,又由PQ ====,当94m =时,PQ 取得最小值,最小值为min 2PQ =.故选:B.28.(2021·上海市行知中学高二期中)设1F 、2F 是椭圆2216416x y+=的左右焦点,过1F 的直线l 交椭圆于A 、B 两点,则22AF BF +的最大值为______.【答案】28【解析】由题意,椭圆2216416x y +=,可得2264,16a b ==,即8,4a b ==,根据椭圆的定义,可得121216,16AF AF BF BF +=+=,则22112232AF BF AF BF AF BF AB +++=++=,所以2232AF BF AB +=-,当AB 垂直于x 轴时,AB 取得最小值,此时22AF BF +取得最大值,此时2221648b AB a ⨯===,所以22AF BF +的最大值为32428-=.故答案为:28.考点5:椭圆上两线段的和差最值问题29.(2021·四川·树德中学高二期中(文))已知点()4,0A ,()2,2B 是椭圆221259x y+=内的两个点,M 是椭圆上的动点,则MA MB +的最大值为______.【答案】10+221259x y +=,所以5,3,4a b c ===,所以()4,0A 是椭圆的右焦点,设左焦点为()4,0C -,根据椭圆的定义可知210MA MB a MC MB MB MC +=-+=+-,MB MC BC -≤==,所以MA MB +的最大值为10+故答案为:10+30.(2021·天津市嘉诚中学高二期中)已知椭圆22143x y +=的左、右焦点分别为1F ,2F ,点P 为椭圆上一点,点(4,4)A -,则2||PA PF -的最小值为__________.【答案】1【解析】依题意,椭圆22143x y +=的左焦点1(1,0)F -,右焦点2(1,0)F ,点P 为椭圆上一点,点A 在此椭圆外,由椭圆的定义得21||4||PF PF =-,因此,211||||4||4PA PF PA PF AF -=+-≥-41=-=,当且仅当点P 是线段1AF 与椭圆的交点时取“=”,所以2||PA PF -的最小值为1.故答案为:131.(2021·安徽·池州市第一中学高二期中)已知椭圆C 的方程为221,(2,0),(4,2)95x y B A +=-,M 为C 上任意一点,则||||MA MB -的最小值为___________.【答案】6【解析】由题意,3,a b ==2c =,所以(2,0)B -为左焦点,(2,0)D 为右焦点,所||||||(2||)||||2||26MA MB MA a MD MA MD a AD a -=--=+-≥-=,当且仅当M 、D 、A 共线时取等号.故答案为:6.32.(2021·湖北·黄石市有色第一中学高二期中)设F 1,F 2分别是椭圆225x +216y=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为____.【答案】15【解析】如图所示:在椭圆225x +216y=1中,a =5,b =4,c =3,所以焦点坐标分别为F 1(-3,0),F 2(3,0).|PM |+|PF 1|=|PM |+(2a -|PF 2|)=10+(|PM |-|PF 2|).∵|PM |-|PF 2|≤|MF 2|,当且仅当P 在直线MF 2上时取等号,∴当点P 与图中的点P 0重合时,有(|PM |-|PF 2|)max =|MF 222(6-3)(40)+-=5,此时|PM |+|PF 1|取最大值,最大值为10+5=15.故答案为:1533.(多选题)(2021·河北·石家庄市第四中学高二期中)已知椭圆22x y E :13620+=的左、右点分别为1F ,2F ,定点()1,4A ,若点P 是椭圆E 上的动点,则1PA PF +的值可能为()A .7B .10C .18D .20【答案】AB【解析】由椭圆方程得6,25,4a b c ===,则由椭圆定义可得1212PF PF +=,∴1221212PA PF PA PF PA PF +=+-=+-,()24,0F ,()2221445AF ∴-+=,255PA PF ∴-- ,则1717PA PF + .故选:AB.34.(2021·河北·石家庄二十三中高二期中)设P 是椭圆2212516x y +=上一点,M ,N 分别是圆221:(3)1C x y ++=和222:(3)4C x y -+=上的点,则PM PN +的最大值为()A .13B .10C .8D .7【答案】A【解析】根据题意作出如图所示的图象,其中1F 、2F 是椭圆的左,右焦点,在1PMF 中可得:1111PF PM PF -≤≤+①,当且仅当P 、M 、1F 三点共线时,等号成立,在2PNF 中可得:2222PF PN PF -≤≤+②,当且仅当P 、N 、2F 三点共线时,等号成立,由①+②得:121233PF PF PM PN PF PF +-≤+≤++,由椭圆方程2212516x y +=可得:225a =,即5a =,由椭圆定义可得:12210PF PF a +==,所以,713PM PN ≤+≤.故选:A.考点6:离心率的值及取值范围35.(2021·贵州·黔西南州金成实验学校高二期中(理))设P 是椭圆C :2221(6x y a a +=>上任意一点,F 为C 的右焦点,PF C 的离心率为_________.【答案】12【解析】P 是椭圆222:1(6x y C a a +=>上任意一点,F 为C 的右焦点,||PF 的最,可得a c -=所以a =即a 所以(226a a =-,解得a =所以12c e a =.故答案为:12.36.(2021·黑龙江·绥化市第一中学高二期中)已知椭圆()2222:10x y C a b a b +=>>上有一点P ,1F ,2F 是椭圆的左、右焦点,若使得12F PF △为直角三角形的点P 有8个,则椭圆的离心率的范围是______.【答案】⎫⎪⎪⎝⎭【解析】由椭圆的对称性,1221,PF F PF F ∠∠为直角,共有4个位置,12F PF ∠为直角,共有4个位置,于是以12F F 为直径的圆与椭圆有4个交点.又离心率越大椭圆越扁,而当点P 在y轴上时,2,2c b c e a ==,12e ⎫∈⎪⎪⎝⎭.故答案为:2⎛⎫⎪ ⎪⎝⎭.37.(2021·广西柳州·高二期中(理))已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,过F 作一条倾斜角为45的直线与椭圆C 交于,A B 两点,若()3,2M -为线段AB 的中点,则椭圆C 的离心率是()A3B .12C .25D【答案】A【解析】设点1122(,),(,)A x y B x y ,依题意,2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,相减得2212121212()()a ()()0b x x x x y y y y +-++-=,因直线AB 的倾斜角为45,即直线AB 的斜率为12121y y x x -=-,又()3,2M -为线段AB 的中点,则126x x +=-,124y y +=,因此有22460a b -=,即2223b a =,所以椭圆C的离心率33e a ==.故选:A38.(2021·宁夏·吴忠中学高二期中(文))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,点P 为C 上一点,若212PF F F ⊥,且1230PF F ∠=︒,则椭圆C 的离心率为()A .16B.6C .13D【答案】D 【解析】P 点椭圆C 上的点,12+2PF PF a∴=212PF F F ⊥,且1230PF F ∠=︒2124,33PF a PF a ∴==在12PF F △中,2221221F F PF PF +=即22224(2)()()33c a a +=,整理得:2213c a=即213,33e e =∴=故选:D39.(2021·四川·阆中中学高二期中(文))已知1()0F c -,,2(0)F c ,是椭圆C :22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在一点P 使得212PF PF c ⋅=,则椭圆C 的离心率的取值范围为()A .33(],B .32[],C .3[312,D .2[1)2【答案】B【解析】设点(,)P x y ,22212(,)(,)=PF PF c x y c x y x c y ⋅=---⋅---+22222222222b c x c b x x c b a a=-+-=-+,因为220x a ≤≤,所以22212b c PF PF b -≤⋅≤,即2222b c c b -≤≤,结合222=b a c -可得221132c a ≤≤,所以3232e ∈⎣⎦.故选:B.40.(2021·江西赣州·高二期中(文))已知椭圆()2222:10x y C a b a b+=>>,P 是椭圆C 上的点,()()12,0,,0F c F c -是椭圆C 的左右焦点,若12PF PF ac ⋅≤恒成立,则椭圆C 的离心率e 的取值范围是()A .1,12⎫⎪⎪⎣⎭B .(1⎤⎦C .12⎛⎤- ⎥ ⎝⎦D .)1,1【答案】A【解析】设()()()222002001001200,,,,,,P x y PF c x y PF c x y PF PF x c y ac ∴=--=---∴⋅=-+≤,P 在椭圆上,[]2222222000002221,,,x y a b b x x a a y a b a -∴+=∈-∴=,222222222002a b b x x c y x c ac a -∴-+=-+≤,两边都乘以2a 化简后得:22224302c x a c a a c -+≤,3422220220,a a x a x a c c⎡⎤∴≤+-∈⎣⎦,2342222111152,12,24a a a a c c e e e ⎛⎫∴≤+-∴≤+-⇒-≤ ⎪⎝⎭e ∴≥()0,1e ∈,1,12e ⎫∴∈⎪⎢⎪⎣⎭.故选:A.41.(2021·浙江浙江·高二期中)设椭圆2222:1(0)x y C a b a b+=>>的两焦点为1F ,2F .若椭圆C 上有一点P 满足1290F PF ∠=︒,则椭圆C 的离心率的最小值为()A 22B .3C .13D 【答案】A【解析】由椭圆的几何性质知当点P 在短轴顶点时,12F PF ∠最大,设短轴顶点为B ,则1290F BF ∠≥︒,得sin 452c a ≥︒=,故选:A42.(2021·江苏·扬州中学高二期中)椭圆22221(0)x y a b a b+=>>的左、右焦点为1F 、2F ,P是椭圆上一点,O 为坐标原点,若2POF V 为等边三角形,则椭圆的离心率为()A1B 1-C D 【答案】A【解析】连接1F P ,根据题意,作图如下:因为2POF V 为等边三角形,即可得:12OF OP OF c ===,则122190,60F PF PF F ∠=︒∠=︒则112sin 603PF F F c =︒⨯=,由椭圆定义可知:21223PF a PF a c c =-==,故可得:3131c a =-+.故选:A.考点7:椭圆的简单几何性质问题43.(2021·黑龙江·齐齐哈尔市第八中学校高二期中)焦点在x 轴的椭圆2214x y m +=的焦距是4,则m 的值为()A .8B .3C .5或3D .20【答案】A【解析】因为焦点在x 轴,故4m >,而焦距是442m -=即8m =,故选:A.44.(2021·辽宁·高二期中)已知椭圆()2210x my m +=>的焦点在y 轴上,长轴长是短轴长的两倍,则m =()A .2B .1C .14D .4【答案】C【解析】因为椭圆()2210x my m +=>的焦点在y 轴上,故01m <<,且椭圆的标准方程为:2211y x m+=,所以221,1a b m==所以141m=⨯,故14m =,故选:C.45.(2021·海南·琼海市嘉积第二中学高二期中)已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过2F 且斜率为1的直线l 交椭圆C 于A 、B 两点,则AB 等于()A .247B .127C.7D.7【答案】A【解析】设直线AB 方程为1y x =-,联立椭圆方程22143x y+=整理可得:27880x x --=,设()()1122,,,A x y B x y ,则1287x x +=,1287x x ⋅=-,根据弦长公式有:AB ==247.故B ,C ,D 错误.故选:A.46.(2021·安徽·高二期中)已知圆()()222x a y b r -+-=经过椭圆C :22198x y +=的右焦点,上顶点与右顶点,则b =()A .8B .118C .1124D .114【答案】A【解析】椭圆C :22198x y +=,右焦点为()1,0,上顶点为(0,,右顶点为()3,0,代入圆的方程222()()x a y b r -+-=,得()()()()()()22222222210030a b r a b r a b r ⎧-+-=⎪⎪-+=⎨⎪⎪-+-=⎩,解得22112815332a b r ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以该圆的方程为()221532832x y ⎛⎫-+-= ⎪ ⎪⎝⎭.故选:A47.(2021·广西玉林·高二期中(理))已知点P (k ,1),椭圆2294x y +=1,点P 在椭圆外,则实数k 的取值范围为_____.【答案】∞⎛⎫∞⋃+ ⎪ ⎪⎝⎭⎝⎭-【解析】因为点P (k ,1)在椭圆2294x y +=1外,所以2194k +>1,解得k <k >2,故实数k 取值范围为22∞⎛⎛⎫∞⋃+ ⎪ ⎪⎝⎭⎝⎭-,-.故答案为:∞⎛⎫∞⋃+ ⎪ ⎪⎝⎭⎝⎭-考点8:利用第一定义求解轨迹48.(2021·辽宁沈阳·高二期中)已知圆M :()22236x y ++=,定点()2,0N ,A 是圆M 上的一动点,线段AN 的垂直平分线交MA 于点P ,则P 点的轨迹C 的方程是()A .22143x y +=B .22195x y +=C .22134x y +=D .22159x y +=【答案】B【解析】由题可得圆心()2,0M ,半径为6,P 是垂直平分线上的点,PA PN ∴=,6PM PN PM PA ∴+=+=,∴P 点的轨迹是以,M N 为焦点的椭圆,且26,2a c ==,a 3∴=,2225b a c ∴=-=,故P 点的轨迹方程为22195x y +=.故选:B.49.(2021·吉林油田高级中学高二期中(文))已知ABC 的周长是20,且顶点B 的坐标为(0,4)-,C 的坐标为(0,4),则顶点A 的轨迹方程是()A .221(0)2036x y x -=≠B .221(0)3620x y x +=≠C .221(0)2036x y x +=≠D .221(0)3620x y x -=≠【答案】C【解析】由题意可知20812AC AB BC +=-=>,则点A 的轨迹是焦点在y 轴且中心为原点的椭圆,且点A 不在y 轴上2226,4,6420a c b ===-=,即221(0)2036x y x +=≠故选:C50.(2021·云南省昆明市第十二中学高二期中)一个动圆与圆221:(3)1C x y ++=外切,与圆22:(3)81C x y +-=内切,则这个动圆圆心的轨迹方程为()A .2212516y x +=B .2212516x y +=C .221169y x +=D .221169x y +=【答案】A【解析】设动圆半径为r ,圆心为M ,根据题意可知,2(0,3C )和1(0,3C -),1||1+MC r =,2||9MC r =-,12|C |3(3)6C =--=12||+||91+106MC MC r r =-+=>,故动圆圆心的轨迹为焦点在y 轴上椭圆,且焦点坐标为2(0,3C )和1(0,3C -),其中210,5a a ==,122||6,3c C C c ===,所以222=25916b a c -=-=,故椭圆轨迹方程为:2251162x y +=,故选:A.51.(2021·广东·深圳外国语学校高二期中(理))△ABC 的两个顶点坐标A (-4,0),B (4,0),它的周长是18,则顶点C 的轨迹方程是()A .22+1259x y =B .22+1259y x =(y ≠0)C .()22+10169x y y ≠D .()22+10259x y y ≠【答案】D【解析】因为++18AB AC BC =,所以+10>AC BC AB =,所以顶点C 的轨迹为以A ,B 为焦点的椭圆,去掉A ,B ,C 共线的情况,即2210,4,9a c b ==∴=,所以顶点C 的轨迹方程是()22+10259x y y ≠,故选:D.52.(2021·安徽·肥东县综合高中高二期中(理))已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程是()A .2216448x y -=B .2214864x y +=C .2214864x y -=D .2216448x y +=【答案】D【解析】设动圆的圆心(),M x y ,半径为r圆M 与圆1C :()224169x y -+=内切,与C 2:()2249x y ++=外切.所以1213,3MC r MC r =-=+.1212+168MC MC C C =>=由椭圆的定义,M 的轨迹是以12,C C 为焦点,长轴为16的椭圆.则8,4a c ==,所以2228448b =-=动圆的圆心M 的轨迹方程为:2216448x y +=故选:D53.(2021·宁夏·贺兰县景博中学高二期中(理))已知动点P 与平面上两定点()A ,)B连线的斜率的积为定值-12.则动点P 的轨迹方程为________【答案】(2212x y x +=≠【解析】设动点(),P x y ,则PA k =PB k =12=-,整理得:2212x y +=,又因为动点P 不能与定点()A ,)B重合,故x ≠综上:动点P 的轨迹方程为(2212x y x +=≠故答案为:(2212x y x +=≠54.(2021·福建福州·高二期中)已知动圆P 过定点(3,0)A -,且在定圆22:(3)64B x y -+=的内部与其相内切,则动圆P 的圆心的轨迹方程为____________________.【答案】221167x y +=【解析】设动圆P 和定圆B 内切于点M ,动点P 到定点(3,0)A -和定圆圆心(3,0)B 距离之和恰好等于定圆半径,即||||||||||86PA PB PM PB BM +=+==>,∴点P 的轨迹是以A ,B 为两焦点,半长轴为4的椭圆,b =∴点P 的轨迹方程为221167x y +=,故答案:221167x y +=.55.(2021·黑龙江·哈师大附中高二期中)ABC 中,()12,0B -,()12,0C ,AC ,AB 边上的两条中线之和为39,则ABC 的重心的轨迹方程为___________.【答案】()221016925x y y +=≠【解析】根据题意,设ABC 的重心为G ,因为AC ,AB 边上的两条中线之和为39,所以23926243GB GC +=⨯=>,根据椭圆定义可知,点G 轨迹是以B 、C 为焦点的椭圆,且13a =,12c =,因此ABC 的重心的轨迹方程为()221016925x y y +=≠.故答案为:()221016925x y y +=≠.56.(2021·安徽·六安一中高二期中)已知圆1C :()2211x y ++=和圆2C :()22125x y -+=,动圆M 同时与圆1C 外切和圆2C 内切,则动圆的圆心M 的轨迹方程为________.【答案】22198x y +=【解析】由圆1C :()2211x y ++=可得圆心()11,0C -,半径11r =,由圆2C :()22125x y -+=可得圆心()21,0C ,半径25r =,设圆M 的半径为r ,因为动圆M 同时与圆1C 外切和圆2C 内切,所以11MC r =+,25MC r =-,所以12121562MC MC r r C C +=++-=>=,所以点M 的轨迹是以()11,0C -,()21,0C 为焦点,26a =的椭圆,所以3a =,1c =,b ==,所以动圆的圆心M 的轨迹方程为:22198x y +=,故答案为:22198x y +=.57.(2021·四川·雅安中学高二期中)平面上一动点(),P x y满足4=,则P 的轨迹方程为__________.【答案】22143x y +=【解析】动点(,)P x y4=,∴动点(,)P x y 到(1,0)A -和(1,0)B 的距离之和等于4||2AB >=,∴动点P 的轨迹是以点,A B 为焦点的椭圆,设其方程为22221(0)x ya b a b+=>>,由题得21,24,2,413c a a b ==∴==-=.∴动点P 的轨迹方程是22143x y +=.故答案为:22143x y +=.58.(2021·天津河西·高二期中)动点(,)M x y 与定点(4,0)F 的距离和M 到定直线l :254x =的距离的比是常数45,则动点M 的轨迹方程是___________.【答案】221259x y +=【解析】因为动点(,)M x y 与定点(4,0)F 的距离和M 到定直线l :254x =的距离的比是常数45,45=,即()22225254164x y x ⎛⎫⎡⎤-+=- ⎪⎣⎦⎝⎭,整理可得:22925225x y +=,即221259x y +=,故答案为:221259x y +=.。

椭圆知识点总结及经典习题

椭圆知识点总结及经典习题

圆锥曲线与方程--椭圆知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F1,F2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(212F F a =时为线段21F F ,212F F a <无轨迹)。

2.标准方程: 222ca b =-①焦点在x 轴上:12222=+by a x (a>b>0); 焦点F(±c,0)②焦点在y 轴上:12222=+bx a y (a >b >0);焦点F(0, ±c)注意:①在两种标准方程中,总有a>b>0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+by a x (a>b>0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x≤b(2)椭圆12222=+bx a y (a>b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A 1(-a,0),A 2(a,0),B 1(0,-b),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a,短轴长等于2b ,a和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率(1)我们把椭圆的焦距与长轴长的比22ca,即a c 称为椭圆的离心率,ﻫ记作e (10<<e ),22221()be a a==-ce 0=是圆;e 越接近于0 (e越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

椭圆知识点总结附例题

椭圆知识点总结附例题

圆锥曲线与方程椭 圆知识点一.椭圆及其标准方程1.椭圆的概念:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};那个地址两个定点F 1,F 2叫椭圆的核心,两核心间的距离叫椭圆的焦距2c 。

(212F F a =时为线段21F F ,212F F a <无轨迹)。

2.标准方程: 222c a b =-①核心在x 轴上:12222=+by a x (a >b >0); 核心F (±c ,0) ②核心在y 轴上:12222=+bx a y (a >b >0); 核心F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,而且椭圆的核心总在长轴上; ②两种标准方程可用一样形式表示:221x y m n+= 或 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性椭圆关于x 轴y 轴都是对称的,那个地址,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.极点(1)椭圆的极点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 别离叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 别离叫做椭圆的长半轴长和短半轴长。

4.离心率(1)咱们把椭圆的焦距与长轴长的比22c a ,即a c 称为椭圆的离心率, 记作e (10<<e ),22221()b e a a==-c e 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

专题60:椭圆知识点和典型例题(解析版)

专题60:椭圆知识点和典型例题(解析版)

专题60:椭圆知识点和典型例题(解析版)1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁通径过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a焦半径公式题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c =∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过(2,(A B 两点 【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.(2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, ⎪⎭⎫ ⎝⎛-2325,得:14213241mnm n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.已知ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如图所示,因为2c =,则(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <.又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:已知在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足, 设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=,∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:已知椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆3C 3. (1)求椭圆C 的标准方程;(2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||32b cF F MN c MN a===由已知得3c a =,∴21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.(Ⅱ)若0m =,则()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 若0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=. 设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-=得()2224240k x mkx m +++-=,由已知得()()222244440m k k m∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义:1、椭圆的定义:平面与两个定点F i 、F 2的距离之和等于定长(大于 IRF 2I )的点的轨迹叫做椭圆。

这两个定点 F i 、F 2叫做椭圆的 焦点,两焦点的距离 厅汀2|叫做椭圆的 焦距。

对椭圆定义的几点说明:(1) “在平面”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2) “两个定点”的设定不同于圆的定义中的“一个定点” ,学习时注意区分;(3) 作为到这两个定点的距离的和的 “常数”,必须满足大于| F i F 2|这个条件。

若不然, 当这个“常数”等于| F i F 2|时,我们得到的是线段 F 1F 2;当这个“常数”小于| F i F 2|时,无 轨迹。

这两种特殊情况,同学们必须注意。

(4) 下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个 对称中心,我们把它的两条对称轴与椭圆的交点记为 A i , A 2, B i , B 2,于是我们易得| A i A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F i |、|B i F 2|+|B i F i |也等于那个“常数”。

同学们想一想 其中的道理。

(5)中心在原点、焦点分别在 x 轴上,y 轴上的椭圆标准方程分别为:2 2 2 2i (a b 0),77i (a b 0),a ba b2 2 2相同点是:形状相同、大小相同;都有 a > b > 0, a c b 。

不同点是:两种椭圆相对于坐标系的位置不同, 它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(一c , 0)和(c , 0),第二个椭圆的焦点坐标为(0,— c )和(0, c )。

椭圆的 焦点在x 轴上 标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上标准方程中y 2项的分母较大。

(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标; 一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只2 2要X 2 每 i (a b 0)的有关性质中横坐标x 和纵坐标y 互换,就可以得出 a b2 2^2 —2 i (a b 0)的有关性质。

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。

两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。

椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。

这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。

该性质主要用于求最值、轨迹检验等问题。

椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。

长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。

椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。

当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。

椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。

二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。

1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。

(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。

(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。

(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。

(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。

一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。

椭圆的定义及几何性质(含答案)

椭圆的定义及几何性质(含答案)

椭圆的定义及其几何性质[要点梳理]1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质椭圆的常用性质(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.[基础自测]一、思考辨析判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(3)椭圆的离心率e越大,椭圆就越圆.()(4)椭圆既是轴对称图形,又是中心对称图形.()(5)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(6)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案:(1)×(2)√(3)×(4)√(5)√(6)√二、小题查验1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5 C.8 D.10解析:D[由椭圆的定义知:|PF1|+|PF2|=2×5=10.]2.已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2 B.3 C.4 D.9解析:B[由题意知25-m2=16,解得m2=9,又m>0,所以m=3.]3.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A .13B .12C .22D .223解析:C [由椭圆x 2a 2+y 24=1知b 2=4,∴b =2,c =2,∴a =b 2+c 2=22.∴椭圆的离心率e =c a =222=22.]4.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( )A .x 215+y 210=1B .x 225+y 220=1C .x 210+y 215=1D .x 220+y 215=1解析:A [由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去),∴所求椭圆的方程为x 215+y 210=1.]5.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是__________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4. 答案:(3,4)∪(4,5) 三、大题突破1.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且 与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32,解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b 2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知, k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.第1课时 椭圆的定义及简单几何性质[考点梳理]1.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1[解析] 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,又|C 1C 2|=8<16,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,则a =8,c =4,∴b 2=48,故所求的轨迹方程为x 264+y 248=1.2.F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B .74C .72D .752[解析] 由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45°=|AF 1|2-4|AF 1|+8, ∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8.∴|AF 1|=72,∴S △AF 1F 2=12×72×22×22=72.[答案] (1)D (2)C3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________. 解析:由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, ∵△ABF 2的周长为16,∴4a =16,∴a =4. 则|AF 1|+|AF 2|=2a =8, ∴|AF 2|=8-|AF 1|=8-3=5.4.已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.解析:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3. 答案:(1)5 (2)31.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1B .x 24+y 25=1C .x 25+y 2=1或x 24+y 25=1D .x 24+y 2=1[解析] C [直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.] 2.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的标准方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 24+y 22=1D .x 28+y 24=1[解析] A [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列, 则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12即a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.] 3.已知F 1(-1,0),F 2(1,0)是椭圆的两个焦点,过F 1的直线l 交椭圆于M ,N 两点,若△MF 2N 的周长为8,则椭圆方程为( )A .x 24+y 23=1B .y 24+x 23=1C .x 216+y 215=1D .y 216+x 215=1解析:∵F 1(-1,0),F 2(1,0)是椭圆的两个焦点,∴c =1.根据椭圆的定义,得△MF 2N 的周长为4a =8,得a =2,∴b =3,∴椭圆方程为x 24+y 23=1,故选A .4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且与抛物线y 2=x 交于A ,B 两点,若△OAB (O 为坐标原点)的面积为22,则椭圆C 的方程为( )A .x 28+y 24=1B .x 22+y 2=1C .x 212+y 26=1D .x 212+y 28=1解析:∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=x 交于A ,B 两点∴设A (x ,x ),B (x ,-x ),则x x =22,解得x =2,∴A (2,2).由已知得⎩⎨⎧c a =22,4a 2+2b2=1,a 2=b 2+c 2,解得a =22,b =2.∴椭圆C 的方程为x 28+y 24=1,故选A .答案:(1)A (2)A[命题角度1] 椭圆的长轴、短轴、焦距1.已知椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5 解析:A [∵椭圆x 2m -2+y 210-m =1的长轴在x 轴上,∴⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.∵焦距为4,∴c 2=m -2-10+m =4,解得m =8.] [命题角度2] 椭圆的离心率2.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14解析:D [如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1,由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2, tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4.所以e =c a =14.故选D .]2.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32 B .2-3 C .3-12D .3-1 解析:D [在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|FP 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1(a >b >0)中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D .]3.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .[32,1) B .[31,22] C .[31,1) D .(0,31]解析:C [如图所示,∵线段PF 1的中垂线经过F 2, ∴|PF 2|=|F 1F 2|=2c , 即椭圆上存在一点P , 使得|PF 2|=2c .∴a -c ≤2c <a +c .∴e =c a ∈⎣⎡⎭⎫13,1.] [命题角度3] 与椭圆有关的最值或范围问题4.已知F 是椭圆C :x 29+y 25=1的左焦点,P 为C 上一点,A (1,34),则|P A |+|PF |的最小值为( )A .103B .113C .4D .133解析:D [设椭圆C :x 29+y 25=1的右焦点为F ′(2,0),F (-2,0),由A ⎝⎛⎭⎫1,43,则|AF ′|=53, 根据椭圆的定义可得|PF |+|PF ′|=2a =6,所以|P A |+|PF |=|P A |+6-|PF ′|≥6-|AF ′|=6-53=133.]5.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为( )A .1B .23C .4D .43解析:C [设P 点坐标为(x 0,y 0). 由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤3. 又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0), ∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=-2时,PF →·P A →取得最大值4.][课时训练]一、选择题1.椭圆x 216+y 225=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±9,0)D .(0,±9) 解析:B [根据椭圆方程可得焦点在y 轴上,且c 2=a 2-b 2=25-16=9,∴c =3,故焦点坐标为(0,±3).故选B.]2.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A .x 24+y 23=1B .x 28+y 26=1C .x 22+y 2=1D .x 24+y 2=1解析:A [依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A.] 3.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .k >4B .k =4C .k <4D .0<k <4 解析:D [方程kx 2+4y 2=4k表示焦点在x 轴上的椭圆,即方程x 24+y 2k=1表示焦点在x轴上的椭圆,可得0<k <4,故选D.]4.若椭圆x 24+y 2m =1上一点到两焦点的距离之和为m -3,则此椭圆的离心率为( )A .53B .53或217C .217D .37或59解析:A [由题意得,2a =m -3>0,即m >3,若a 2=4,即a =2,则m -3=4,m =7>4,不合题意,因此a 2=m ,即a =m ,则2m =m -3,解得m =9,即a =3,c =m -4=5,所以椭圆离心率为e =53.故选A.] 5.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为( ) A .32 B .22 C .12 D .33解析:A [△PEF 2的周长为|PE |+|PF 2|+|EF 2|=|PE |+2a -|PF 1|+|EF 2| =2a +|EF 2|+|PE |-|PF 1|≥2a +|EF 2|-|EF 1|=2a =4b ,∴e =c a =1-⎝⎛⎭⎫b a 2=1-14=32,故选A.] 6.在椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别是其左、右焦点,若|PF 1|=2|PF 2|,则该椭圆离 心率的取值范围是( )A .(31,1)B .[31,1)C .(0,31)D .(0,31] 解析:B [根据椭圆定义得|PF 1|+|PF 2|=2a ,将|PF 1|=2|PF 2|代入,得|PF 2|=2a 3,根据椭圆的几何性质,知|PF 2|≥a -c ,故2a 3≥a -c ,即a ≤3c ,故c a ≥13,即e ≥13,又e <1,故该椭圆离心率的取值范围是⎣⎡⎭⎫13,1,故选B.]7.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则 △PQF 周长的最小值是( )A .14B .16C .18D .20 解析:C [如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.]二、填空题8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线y 2=16x 的焦点相同,离心率为63,则此椭圆 的方程为______________.解析:由题意知抛物线y 2=16x 的焦点为(4,0),∴c =4, ∵e =c a =4a =63,∴a =26,∴b 2=a 2-c 2=8,∴椭圆的方程为x 224+y 28=1. 答案:x 224+y 28=1 9.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是____________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2, 解得0<k <1.答案:(0,1)10.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________. 解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8.答案:4或811.若椭圆x 2a 2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1→·PF 2→=0,则椭圆离心率的取值范围是 ______________.解析:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°.设P (x 0,y 0)S △PF 1F 2=b 2=c |y 0|≤cb ,即b ≤c ,则a 2-c 2≤c 2,解得e 2≥12,即e ≥22,又在椭圆中0<e <1,故椭圆离心率的取值范围是⎣⎡⎭⎫22,1. 答案:⎣⎡⎭⎫22,1三、解答题12.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.解:设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.13.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4, 所以椭圆的标准方程为x 225+y 216=1. (2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12. 14.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,b 2a 2c =34, 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去). 故C 的离心率为12. (2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a=4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.② 将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1. 解得a =7,b 2=4a =28,故a =7,b =27.14.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.解:(1)由椭圆的定义知,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知得PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1. (2)如图,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义知,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,所以|PF 1|+|PQ |+|QF 1|=4a .于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎡⎦⎥⎤2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43及1+λ+1+λ2关于λ的单调性, 得3≤t <4,即14<1t ≤13,进而12<e 2≤59,即22<e ≤53.。

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题椭圆的基本知识1.椭圆的定义:把平⾯内与两个定点21,F F 的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准⽅程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0)焦点在坐标轴上的椭圆标准⽅程有两种情形,为了计算简便,可设⽅程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出⽅程3.求轨迹⽅程的⽅法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意⼀点半径为标原点已知⼀个圆的圆⼼为坐如图例M P P P P x P ''解: (相关点法)设点M (x , y ), 点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是⼀个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b .椭圆位于直线x =±a 和y =±b 围成的矩形⾥.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中⼼.椭圆的对称中⼼叫做椭圆的中⼼.6.顶点只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点.线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.. a A 1yO F 1F2x B 2B 1A 2c b y O F 1F 2x Mc cxF 2F 1O y M c cy xPO P 'M)的离⼼率为(轴分成三等份,则椭圆若椭圆的连个焦点把长 .1⽆法确定 D. 32 C. 31 B. 61 A..7),0()0,()0,()0(1 .2112222=-->>=+e bAB F b B a A c F b a by a x ,则椭圆的离⼼率的距离为到直线如果是两个顶点,、,的左焦点为椭圆.1612)2,1( .322的标准⽅程有相同的离⼼率的椭圆,且与椭圆求经过点=+y x M越⼩,因此椭圆越扁;,从⽽越接近时,越接近当221)1(c a b a c e -=因此椭圆越接近于圆;,越接近,从⽽越接近时,越接近当a b c e 00)2(. 0)3(222a y x c b a =+==为圆,⽅程成为,两焦点重合,图形变时,当且仅当..21点坐标求求,为左右焦点,,上的点,为椭圆已知P S PF PF F F y x P F PF ?⊥=+yO x椭圆典型例题例1 已知椭圆06322=-+m y mx 的⼀个焦点为(0,2)求m 的值.分析:把椭圆的⽅程化为标准⽅程,由2=c ,根据关系222c b a +=可求出m 的值.解:⽅程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m .⼜2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中⼼在原点,且经过点()03,P ,b a 3=,求椭圆的标准⽅程.分析:因椭圆的中⼼在原点,故其标准⽅程有两种情况.根据题设条件,运⽤待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准⽅程.解:当焦点在x 轴上时,设其⽅程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+ba .⼜b a 3=,代⼊得12=b ,92=a ,故椭圆的⽅程为1922=+y x .当焦点在y 轴上时,设其⽅程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知2=+ba .⼜b a 3=,联⽴解得812=a ,92=b ,故椭圆的⽅程为198122=+x y .例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三⾓形重⼼G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利⽤椭圆定义求解.(2)由G 的轨迹⽅程G 、A 坐标的关系,利⽤代⼊法求A 的轨迹⽅程.解:(1)以BC 所在的直线为x 轴,BC 中点为原点建⽴直⾓坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其⽅程为()013610022≠=+y y x .(2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x .①由题意有='='33y y x x ,代⼊①,得A 的轨迹⽅程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的⼀个焦点,求椭圆⽅程.解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a .从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PFRt ?中,21sin 12∠PF PF F PF ,可求出621π=∠F PF ,3526cos21==πPF c ,从⽽310222=-=c a b .∴所求椭圆⽅程为1103522=+y x 或1510322=+y x .例5 已知椭圆⽅程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上⼀点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的⾯积(⽤a 、b 、α表⽰).分析:求⾯积要结合余弦定理及定义求⾓α的两邻边,从⽽利⽤C ab S sin 21=求⾯积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第⼀象限.由余弦定理知: 2 21F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得α.故αsin 212121PF PF S PF F ?=? ααsin cos 12212+=b 2tan 2αb =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆⼼P 的轨迹⽅程.分析:关键是根据题意,列出点P 满⾜的关系式.解:如图所⽰,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆⼼()03,B 距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的⽅程:171622=+y x .说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准⽅程,求轨迹的⽅程.这是求轨迹⽅程的⼀种重要思想⽅法.例7 已知椭圆1222=+y x (1)求过点??2121,P 且被P 平分的弦所在直线的⽅程;(2)求斜率为2的平⾏弦的中点轨迹⽅程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹⽅程;(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满⾜21-=?OQ OP k k ,求线段PQ 中点M 的轨迹⽅程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的⽅法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()022*******=-+++x x y y y y x x ,将③④代⼊得022121=--+x x y y y x .⑤(1)将21=x ,21=y 代⼊⑤,得212121-=--x x y y ,故所求直线⽅程为: 0342=-+y x .⑥将⑥代⼊椭圆⽅程2222=+y x 得041662 =--y y ,0416436>??-=?符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代⼊⑤得所求轨迹⽅程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代⼊⑤得所求轨迹⽅程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得:()2222212221=+++y y x x ,⑦,将③④平⽅并整理得 212222124x x x x x -=+,⑧, 2122将⑧⑨代⼊⑦得:()224424212212=-+-y y y x x x ,⑩再将212121x x y y -=代⼊⑩式得: 221242212212=??--+-x x y x x x ,即 12122=+y x .此即为所求轨迹⽅程.当然,此题除了设弦端坐标的⽅法,还可⽤其它⽅法解决.例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的⽅程.解:(1)把直线⽅程m x y +=代⼊椭圆⽅程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-??-=?m m m ,解得2525≤m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得:51025145211222=-?-??? ??-?+m m .解得0=m .⽅程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采⽤的⽅法与处理直线和圆的有所区别.这⾥解决直线与椭圆的交点问题,⼀般考虑判别式?;解决弦长问题,⼀般应⽤弦长公式.⽤弦长公式,若能合理运⽤韦达定理(即根与系数的关系),可⼤⼤简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上⼀点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆⽅程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找⼀点,使该点到直线同侧的两已知点(即两焦点)的距离之和最⼩,只须利⽤对称就可解决.解:如图所⽰,椭圆131222=+y x 的焦点为()031,-F ,()032,F .点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的⽅程为032=-+y x .解⽅程组?=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最⼩.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,⼜3=c ,∴()363532222=-=-=c a b .因此,所求椭圆的⽅程为1364522=+y x .例10 已知⽅程13522-=-+-k y k x 表⽰椭圆,求k 的取值范围.解:由??-≠-<-<-,35,03,05k k k k 得53<∴满⾜条件的k 的取值范围是53<说明:本题易出现如下错解:由?<-<-,03,05k k 得53<出错的原因是没有注意椭圆的标准⽅程中0>>b a 这个条件,当b a =时,并不表⽰椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表⽰焦点在y 轴上的椭圆,求α的取值范围.分析:依据已知条件确定α的三⾓函数的⼤⼩关系.再根据三⾓函数的单调性,求出α的取值范围.解:⽅程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα.因此0sin >α且1tan -<α从⽽)43,2(ππα∈.说明:(1)由椭圆的标准⽅程知0sin 1>α,0cos 1>-α,这是容易忽视的地⽅. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题⽬中的条件πα<≤0.例12 求中⼼在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆⽅程分析:由题设条件焦点在哪个轴上不明确,椭圆标准⽅程有两种情形,为了计算简便起见,可设其⽅程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,解:设所求椭圆⽅程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得=?+-?=-?+?,11)32(,1)2()3(2222n m n m 即=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆⽅程为151522=+y x .例13 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利⽤弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利⽤椭圆定义及余弦定理,还可以利⽤焦点半径来求.解:(法1)利⽤直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆⽅程为193622=+y x ,左焦点)0,33(-F ,从⽽直线⽅程为93+=x y .由直线⽅程与椭圆⽅程联⽴得:0836372132=?++x x .设1x ,2x 为⽅程两根,所以1337221-=+x x ,1383621?=x x ,3=k ,从⽽1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利⽤椭圆的定义及余弦定理求解.2=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ?中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22-?+=-m m m ;所以346-=m .同理在21F BF ?中,⽤余弦定理得346+=n ,所以1348=+=n m AB .(法3)利⽤焦半径求解.先根据直线与椭圆联⽴的⽅程0836372132=?++x x 求出⽅程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从⽽求出11BF AF AB +=.例14 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所⽰,设椭圆的另⼀个焦点为2F ,由椭圆第⼀定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,⼜因为ON 为21F MF ?的中位线,所以2==MF ON ,故答案为A .说明:(1)椭圆定义:平⾯内与两定点的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这⼀定义,即a MF MF 221=+,利⽤这个等式可以解决椭圆上的点与焦点的有关距离.例15 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利⽤上述条件建⽴m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的⽅程为n x y +-=41.由⽅程组=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ①。

椭圆的性质及常考题含答案

椭圆的性质及常考题含答案

椭圆的性质2.椭圆的离心率:ce a=,焦距与长轴长之比,01e <<,e 越趋近于1,椭圆越扁;反之,e 越趋近于0,椭圆越趋近于圆. 题型一:椭圆的定义例1 到两定点F 1(-4,0),F 2(4,0)的距离之和等于8的点的轨迹是( ) A .椭圆 B .圆 C .线段 D .射线 答案:C例2平面内一动点M到两定点F 1、F2距离之和为常数2a,则点M的轨迹为( )A.椭圆B.圆 C.无轨迹D.椭圆或线段或无轨迹解析:当2a>|F1F2|时,轨迹为椭圆;当2a=|F1F2|时,轨迹为线段;当2a<|F1F2|时,轨迹不存在.答案:D巩固已知F 1,F2是椭圆x225+y29=1的左、右两个焦点.(1)求F1,F2的坐标;(2)若AB为过椭圆的焦点F1的一条弦,求△ABF2的周长.解析:(1)由椭圆的方程x225+y29=1可知,a2=25,b2=9,∴c2=a2-b2=25-9=16,∴c=4.∴F1(-4,0),F2(4,0).(2)由椭圆的定义可知|AF 1|+|AF 2|=2a =10,|BF 1|+|BF 2|=2a =10.∴△ABF 2的周长为|AB |+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=2a +2a =4a =20.题型二 焦点三角形问题1.对焦点三角形12F PF △的处理方法,通常是运用⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin 2.若P 是椭圆:12222=+by ax 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb(用余弦定理与a PF PF 221=+可得).例3 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.解析:由已知a =2,b =3,得c =a 2-b 2=4-3=1,即|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°,即|PF 2|2=|PF 1|2+4+2|PF 1|.①由椭圆定义,得|PF 1|+|PF 2|=4,即|PF 2|=4-|PF 1|.②②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F2|·sin 120°=12×65×2×32=335,即△PF 1F 2的面积是335.巩 固 已知椭圆y 2a 2+x 2b2=1 (a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值.解析:(1)依题意知c =1,又c 2=a 2-b 2,且3a 2=4b 2,所以a 2-34a 2=1,即14a 2=1.a 2=4.因此b 2=3.从而椭圆方程为y 24+x 23=1.(2)由于点P 在椭圆上,所以|PF 1|+|PF 2|=2a =2×2=4,又|PF 1|-|PF 2|=1,所以|PF 1|=52,|PF 2|=32,又|F 1F 2|=2c =2,所以由余弦定理得cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|2,2·|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫322-222×52×32=35.即∠F 1PF 2的余弦值等于35. 题型三 求椭圆的离心率例4 已知椭圆的两个焦点为F 1、F 2,A 为椭圆上一点,且AF 1⊥AF 2,∠AF 2F 1=60°,求该椭圆的离心率.解析:不妨设椭圆的焦点在x 轴上,画出草图如右图所示.由AF 1⊥AF 2知△AF 1F 2为直角三角形,且∠AF 2F 1=60°.由椭圆定义知|AF 1|+|AF 2|=2a ,|F 1F 2|=2c ,则在Rt△AF 1F 2中, 由∠AF 2F 1=60°得|AF 2|=c ,|AF 1|=3c ,所以|AF 1|+|AF 2|=2a =(3+1)c ,所以离心率e =c a=3-1.点评:求离心率的值或取值范围是一类重要问题,解决这类问题通常有两种办法: ①直接求出a 和c 的值,套用公式e =c a求得离心率;②根据题目条件提供的几何关系,建立参数a ,b ,c 之间的关系式,结合椭圆定义以及a 2=b 2+c 2等,消去b ,得到a 和c 之间的关系,从而求得离心率的值或范围.巩 固设椭圆的两个焦点分别为F 1,F 2。

椭圆知识点归纳汇总和经典例题

椭圆知识点归纳汇总和经典例题

椭圆知识点归纳汇总和经典例题————————————————————————————————作者:————————————————————————————————日期:椭圆的基本知识1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M (x , y ),点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是一个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2.7.椭圆的几何性质:a A 1yO F 1F 2x B 2B 1A 2c b yO F 1F 2xMc cxF 2F 1O y Mc cy xPO P 'M椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b+=>>的有关性质。

椭圆 知识点+例题+练习

椭圆 知识点+例题+练习

教学内容椭圆教学目标掌握椭圆的定义,几何图形、标准方程及其简单几何性质.重点椭圆的定义,几何图形、标准方程及其简单几何性质难点椭圆的定义,几何图形、标准方程及其简单几何性质教学准备教学过程椭圆知识梳理1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b教学效果分析教学过程考点二椭圆的几何性质【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.规律方法(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【训练2】(1)(2013·四川卷改编)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是________.(2)(2012·安徽卷)如图,F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A教学效果分析教学过程设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.【训练3】(2014·山东省实验中学诊断)设F1,F2分别是椭圆:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=43a.(1)求该椭圆的离心率;(2)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.1.椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,教学效果分析|BF |=8,cos ∠ABF =45,则C 的离心率为________.6.(2014·无锡模拟)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________. 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 8.(2013·福建卷)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.二、解答题9.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积.10.(2014·绍兴模拟)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0).已知点M ⎝ ⎛⎭⎪⎫3,22在椭圆上,且点M 到两焦点距离之和为4. (1)求椭圆的方程;。

椭圆知识点总结加例题

椭圆知识点总结加例题

椭圆知识点总结加例题一、椭圆的定义和性质1.1 椭圆的定义在平面上,椭圆的定义为:对于给定的两个不重合的实点F1和F2,以及一个实数2a (a>0),定义为到点F1和点F2的距离的和等于2a的点的轨迹,这个轨迹就是椭圆。

1.2 椭圆的几何性质(1)焦点性质:椭圆上到焦点的距离之和是一个常数2a。

(2)长短轴性质:椭圆有两个互相垂直的对称轴,其中较长的轴称为长轴,较短的轴称为短轴。

(3)离心率性质:椭圆的离心率e定义为焦距与长轴的比值,介于0和1之间。

(4)焦点到顶点的连线和短轴的交点为端点的线段称为短轴的焦径。

(5)焦点到顶点的连线和长轴的交点为端点的线段称为长轴的焦径。

1.3 椭圆的方程和标准方程椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 其中a、b分别为椭圆长轴和短轴的半轴长。

通过坐标平移和旋转,可以得到椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 椭圆长轴在x轴上,且椭圆的中心为原点。

1.4 椭圆的参数方程和极坐标方程椭圆的参数方程:$\begin{cases}x=a\cos \theta\\ y=b\sin \theta\end{cases}$, $\theta \in [0, 2\pi)$。

椭圆的极坐标方程:$r(\theta)=\frac{ab}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$。

二、椭圆的相关性质2.1 椭圆的离心率和焦距的关系设椭圆的长轴和短轴分别为2a和2b,焦点到几点段为2c,则椭圆的离心率e满足关系:$e=\frac{c}{a}$。

2.2 椭圆的面积和周长椭圆的面积:$S=\pi ab$。

椭圆的周长:$L=4aE(e)$,其中E(e)为第二类完全椭圆积分。

2.3 椭圆的切线和法线对于椭圆上任一点P(x,y),其切线的斜率为$k=-\frac{b^2x}{a^2y}$,切线的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,且斜率为$k$的切线方程为$y-kx+ka^2=0$。

椭圆知识点及例题

椭圆知识点及例题
e=
四.直线和椭圆的位置关系
1.位置关系的判断:判别式法
2.相交弦:
(1)弦长公式:
(2)中点弦问题:点差法
3、点M(x0,y0)与椭圆 的位置关系:
点M在椭圆内:
点M在椭圆外:
五、例题
1、椭圆定义的应用
(1)椭圆 + =1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=?;求cos∠F1PF2
(1)2-(2)得:|PF1| | PF2| =2b2/(1+cosθ)
∴S=b2tanθ/2
二、椭圆的标准方程
三、椭圆的几何性质
以焦点在X轴的标准方程为例
1、范围:
|x| a,|y| b 即椭圆位于直线x= a、y= b围成的矩形里。
2、对称性
对称中心:O (0,0),对称轴方程:x=0,y=0.
∠F1PF2=60º,则∆PF1F2的面积是?
2、椭圆几何性质的应用
(1)过椭圆 (a>b>0)的左焦点F1作x轴的垂线交椭圆与点P,F2为右焦点,若∠F1PF2=600,则椭圆的离心率为?
(2)已知椭圆C: (a>b>0)的离心率e= ,短轴的一个端点到右焦点的距离为 ,求椭圆C的方程。
(3)已知椭圆 +y2=1的焦点为F1、F2,点M在该椭圆上,由 =0,则点M到y轴的距离为?
(2)已知F是椭圆5x2+9y2=45的左焦点,p是椭圆上的点,A(1,1)是一定点,则|PA|+|PF|的最大值和最小值分别为?
(3)一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=1内切,则动圆圆心的轨迹方程为?
(4)已知椭圆x2+9y2=9的两个焦点分别为F1,F2,

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。

6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

椭圆含答案

椭圆含答案

椭圆一、知识要点:1、椭圆的定义:平面内与两个定点()1212,20F F F F c =>的距离和等于定值()2220a a c >>的点的轨迹叫做椭圆。

定点12,F F 叫做椭圆的焦点,12F F 叫做椭圆的焦距。

注:①若22a c =,则轨迹为线段12F F ;②若22a c <,则无轨迹。

2、椭圆的标准方程:①中心在原点,焦点在x 轴上的标准方程:()222222210,x y a b a b c a b +=>>=+;②中心在原点,焦点在y 轴上的标准方程:()222222210,y x a b a b c a b +=>>=+;3、椭圆的几何性质:设椭圆的方程为:()222210x y a b a b+=>>,则①顶点坐标:()()()(),0,,0,0,,0,a a b b --;②焦点坐标:()(),0,,0c c -; ③长轴:2a ;短轴:2b ;焦距:2c ;④取值范围:[][],,,x a a y b b ∈-∈-。

二、典型例题:1、如图所示,在ABC ∆中,24BC =,,AC AB 的两条中线之和为39,求ABC ∆的重心G 的轨迹方程。

C解:以BC 为x 轴,BC 的中垂线为y 轴建立直角坐标系,设(),G x y ,则()()12,0,12,0B C -2624BG CG +=> ,所以G 的轨迹是椭圆,()221016925x y y ∴+=≠。

2、已知椭圆22154x y +=,过右焦点2F 的直线l 交椭圆于,A B两点,若AB =l 的方程。

解:()21,0F ,①当直线l 的斜率存在时,设()1y k x =-联立直线与椭圆的方程,消y 得:()222245105200k x k x k +-+-=由1219AB x x k=-⇒==±;②当直线的斜率不存在时,直线方程为1x=,则AB=,不符题意,舍去;综上,直线l的方程为10x y--=或10x y+-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)椭圆的定义:1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。

这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。

对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面);(2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。

若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。

这两种特殊情况,同学们必须注意。

(4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。

同学们想一想其中的道理。

(5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为:22222222x y y x 1(a b 0),1(a b 0),a b a b+=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,222a cb =+。

不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。

椭圆的焦点在 x 轴上⇔标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上⇔标准方程中y 2项的分母较大。

(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b +=>>的有关性质。

总结如下:几点说明:(1)长轴:线段12A A ,长为2a ;短轴:线段12B B ,长为2b ;焦点在长轴上。

(2)对于离心率e ,因为a>c>0,所以0<e<1,离心率反映了椭圆的扁平程度。

由于22221c a b b e a a a-===-,所以e 越趋近于1,b 越趋近于0,椭圆越扁平;e越趋近于0,b 越趋近于a ,椭圆越圆。

(3)观察下图,22||,||OB b OF c ==,所以22||B F a =,所以椭圆的离心率e = cos ∠OF 2B 2(三)直线与椭圆:直线l :0Ax By C ++=(A 、B 不同时为0)椭圆C :2222x y 1(a b 0)a b+=>>那么如何来判断直线和椭圆的位置关系呢?将两方程联立得方程组,通过方程组的解的个数来判断直线和椭圆交点的情况。

方法如下:222201Ax By C x y ab ++=⎧⎪⎨+=⎪⎩ 消去y 得到关于x 的一元二次方程,化简后形式如下20(0)mx nx p m ++=>, 24n mp ∆=-(1)当0∆>时,方程组有两组解,故直线与椭圆有两个交点; (2)当0∆=时,方程组有一解,直线与椭圆有一个公共点(相切); (3)当0∆<时,方程组无解,直线和椭圆没有公共点。

注:当直线与椭圆有两个公共点时,设其坐标为1122(,),(,)A x y B x y ,那么线段AB 的长度(即弦长)为||AB =k ,可得:||AB ==12|x x -,然后我们可通过求出方程的根或用韦达定理求出。

典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a ,∴222112a a x x x M +=+=,2111a x y M M +=-=, 4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫ ⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x , 即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为 ()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=, ∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x . 解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程. 分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十例10 设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7. 解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫ ⎝⎛-=-==a b a b a a c e 可得2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫ ⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin34222+--=θθb b b3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b 成立.于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,. 典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值. 分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫ ⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB . (2)如果椭圆上存在一个点Q ,使120=∠AQB ,求C 的离心率e 的取值范围. 分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P ba y a xbc x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2. ∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴120≠∠APB .(2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x y a x y AQB -+=-++--=∠ ∵120=∠AQB , ∴32222-=-+a y x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e . 典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==. 又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(. 典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x)0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=.分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F . (1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+by a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin c n m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e . (2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆.即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos ba b -=θ, ∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?[例1]求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点的距离的和等于10;(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点(-23,25);(3)焦点在坐标轴上,且经过点A (3,-2)和B (-23,1)分析:根据题意,先判断椭圆的焦点位置,后设椭圆的标准方程,求出椭圆中的a 、b 即可。

相关文档
最新文档