椭圆的简单几何性质(附练习题答案及知识点回顾)

合集下载

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质基础卷1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >02.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为(A )221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )2211625x y += 3.已知P 为椭圆221916x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A )54 (B )45 (C )417 (D )7474.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A )23 (B )33 (C )316 (D )6165.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有(A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C )123111,,r r r 成等差数列 (D )123111,,r r r 成等比数列 6.椭圆221925x y +=的准线方程是 (A )x =±254 (B )y =±165 (C )x =±165 (D )y =±2547.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 .8.对于椭圆C 1: 9x 2+y 2=36与椭圆C 2:2211612x y +=,更接近于圆的一个是 . 9.椭圆12222=+by a x 上的点P (x 0, y 0)到左焦点的距离是r = .10.已知定点A (-2, 3),F 是椭圆2211612x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

椭圆的简单几何性质(最全)

椭圆的简单几何性质(最全)

42 52
41
25 9
尝试遇到困难怎么办? 作出直线 l 及椭圆,
几何画板显示图形
观察图形,数形结合思考.
36
直线与椭圆的位置关系 :
直线和椭圆方程分别为
y
: Ax By C
y
0
,x a
2 2
y2 b2
1
y
F1 o
F2 x F1 o
F2 x F1 o
F2 x
Ax By C 0
则由 x2 y2
x2 y2 1
4 16
x2 y2 综上所述,椭圆的标准方程是 1

x2 y2 1
41
4 16
15:01:32
26
练习2:
已知椭圆 x2 y2 1 的离心率 e 1
k 8 9
2
x 解:当椭圆的焦点在 轴上时,
k ,求 的值
a2 k 8 b2 9
y 由
e
1 2
,得:
k
4
当椭圆的焦点在 轴上时,
3、若椭圆的 的两个焦点把长轴分成三等分,则其离心率

1。
3
4、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3
则其离心率e=______5____
回顾
[1]椭圆标准方程
x2 a2
y2 b2
1(a b 0)
所表示的椭圆的存在范围是什么?
[2]上述方程表示的椭圆有几几个顶点?顶点是谁与谁的交点?
3)c=0(即两个焦点重合)e =0,则 b= a,
椭圆方程变为x2+ y2=a2(圆)
即离心率是反映椭圆扁平程度的一个量。
结论:离心率e越大,椭圆越扁; 离心率e越小,椭圆越圆

椭圆的简单几何性质(省级优质课一等奖)

椭圆的简单几何性质(省级优质课一等奖)

9

4
1
例2: 求适合下列条件的椭圆的标准方程:(1) 经过点P(-3,0)、Q(0,-2);(2)长 轴的长等于20,离心率等于3/5 。 解:(2) 由已知得, 2a 20, e c 3 ,
a 10, c 6, b2 102 62 64.
a
5
由于椭圆的焦点可能在x轴上,也可能在y轴上, 所以所求椭圆的标准方程为 :
小 顶点坐标 结
焦点坐标 半轴长 离心率 a、b、c 的关系
对称性
关于x轴、y轴成轴对称;关于原点成中心对称 (a,0)、(-a,0)、 (0,b)、(0,-b) (c,0)、(-c,0) (b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c)
长半轴长为a,短半轴长为b. (a>b)
二、导学导思:
x y 2 1(a b 0) [1]椭圆标准方程 2 a b
所表示的椭圆的范围是什么? [2] 椭圆有几条对称轴?几个对称中心? [3]上述方程表示的椭圆有几个顶点?顶点坐标是什么? [4]2a 和 2b表示什么? a和 b又表示什么? [5]椭圆离心率是如何定义的?范围是什么?
B2
A1
b F1
a F2
A2
o c
B1
x
x2 y2 2、椭圆 2 2 1( a b 0)的对称性: a b
从图形上看, 椭圆关于x轴、y轴、原点对称。
x2 y2 从方程上看: 2 2 1(a b 0) a b
(1)把x换成-x方程不变,图象关于 y 轴对称;
(2)把y换成-y方程不变,图象关于 x 轴对称; Y (3)把x换成-x,同时把y换成-y方程不变, 图象关于原点 成中心对称。

椭圆知识点总结及经典习题练习

椭圆知识点总结及经典习题练习

第二部分 圆锥曲线(一)---椭圆知识点一:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。

注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.注意:椭圆122=+b y a x ,122=+bx a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ac e ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。

知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析椭圆是高中数学中一个重要的几何图形,它有着独特的性质和应用。

本文将从椭圆的定义、性质以及相关题目解析等方面进行阐述,帮助高中学生更好地理解和应用椭圆。

一、椭圆的定义与性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,线段F1F2的长度为2c,a和c之间的关系为a > c。

椭圆的长轴是通过焦点的直线段,长度为2a;短轴是与长轴垂直的直线段,长度为2b,且满足a > b > c。

椭圆的离心率e定义为e = c / a,离心率决定了椭圆的形状。

当e < 1时,椭圆是一个封闭曲线;当e = 1时,椭圆变成一个抛物线;当e > 1时,椭圆变成一个双曲线。

椭圆的焦点和准线的性质也是我们需要了解的。

焦点到椭圆上任意一点的距离之和等于椭圆的长轴长度,即PF1 + PF2 = 2a;准线是与长轴平行且过焦点的直线,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即PD =e * PF。

二、椭圆的相关题目解析1. 题目:已知椭圆的长轴长为10,短轴长为8,求椭圆的离心率。

解析:根据椭圆的定义,我们知道a = 5,b = 4。

将a和c的值代入离心率公式e = c / a,可得e = 4 / 5。

2. 题目:已知椭圆的焦点坐标分别为F1(-3, 0)和F2(3, 0),且焦点到准线的距离为2,求椭圆的方程。

解析:根据椭圆的性质,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即2 = e * a。

由于焦点到准线的距离为2,而椭圆的长轴长度为2a,所以a = 1。

再根据焦点的坐标,可得椭圆的中心为O(0, 0)。

因此,椭圆的方程为x^2 + y^2 / 1^2 = 1,即x^2 + y^2 = 1。

3. 题目:已知椭圆的焦点坐标分别为F1(-2, 0)和F2(2, 0),准线方程为x = 3,求椭圆的方程。

椭圆的简单几何性质(一)

椭圆的简单几何性质(一)

2.2.2椭圆的简单几何性质(一)学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一椭圆的范围、对称性和顶点坐标思考1观察椭圆x2a2+y2b2=1(a>b>0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答案(1)范围:-a≤x≤a,-b≤y≤b;(2)对称性:椭圆关于x轴、y轴、原点都对称;(3)特殊点:顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b).思考2在画椭圆图象时,怎样才能画的更准确些?答案在画椭圆图象时,可先画一个矩形,矩形的顶点为(-a,b),(a,b),(-a,-b),(a,-b).梳理椭圆的简单几何性质焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0) 图形焦点坐标(±c,0)(0,±c)对称性关于x轴、y轴轴对称,关于坐标原点中心对称顶点坐标A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)范围 |x |≤a ,|y |≤b |x |≤b ,|y |≤a长轴、 短轴长轴A 1A 2长为2a ,短轴B 1B 2长为2b思考 如何刻画椭圆的扁圆程度?答案 用离心率刻画扁圆程度,e 越接近于0,椭圆越接近于圆,反之,越扁. 梳理 (1)椭圆的焦距与长轴长的比e =ca叫椭圆的离心率.(2)对于x 2a 2+y 2b 2=1,b 越小,对应的椭圆越扁,反之,e 越接近于0,c 就越接近于0,从而b越接近于a ,这时椭圆越接近于圆,于是,当且仅当a =b 时,c =0,两焦点重合,图形变成圆,方程变为x 2+y 2=a 2.(如图)类型一 由椭圆方程研究其简单几何性质例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 解 已知方程化成标准方程为x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6, 离心率e =c a =74,又知焦点在x 轴上,∴两个焦点坐标分别是(-7,0)和(7,0), 四个顶点坐标分别是(-4,0),(4,0),(0,-3)和(0,3).反思与感悟 解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量. 跟踪训练1 求椭圆9x 2+y 2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 椭圆的标准方程为x 29+y 281=1,则a =9,b =3,c =a 2-b 2=62,长轴长:2a =18; 短轴长:2b =6;焦点坐标:(0,62),(0,-62);顶点坐标:(0,9),(0,-9),(3,0),(-3,0). 离心率:e =c a =223.类型二 椭圆的几何性质的简单应用例2 如图所示,已知椭圆的中心在原点,它在x 轴上的一个焦点F 与短轴两个端点B 1,B 2的连线互相垂直,且这个焦点与较近的长轴的端点A 的距离为10-5,求这个椭圆的方程. 解 依题意,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),由椭圆的对称性知|B 1F |=|B 2F |, 又B 1F ⊥B 2F ,∴△B 1FB 2为等腰直角三角形,∴|OB 2|=|OF |,即b =c ,|F A |=10-5, 即a -c =10-5,且a 2=b 2+c 2,将上面三式联立,得⎩⎪⎨⎪⎧b =c ,a -c =10-5,a 2=b 2+c 2,解得⎩⎨⎧a =10,b = 5.∴所求椭圆方程为x 210+y 25=1.反思与感悟 确定椭圆的标准方程时,首先要分清其焦点位置,然后,找到关于a ,b ,c 的等量关系,最后确定a 2与b 2的值即可确定其标准方程.跟踪训练2 已知椭圆的对称轴是坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OF A =23,求椭圆的标准方程.解 ∵F 是椭圆的焦点,cos ∠OF A =23,∴点A 是短轴的端点, ∴|OF |=c ,|AF |=a =3, ∴c a =23, ∴c =2,b 2=32-22=5,∴椭圆的标准方程是x 29+y 25=1或x 25+y 29=1.类型三 椭圆的离心率的求解例3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,斜率为k 的直线l 过左焦点F 1且与椭圆的交点为A ,B ,与y 轴的交点为C ,且B 为线段CF 1的中点,若|k |≤142,求椭圆离心率e 的取值范围.解 依题意得F 1(-c,0),直线l :y =k (x +c ), 则C (0,kc ).因为点B 为CF 1的中点,所以B (-c 2,kc2).因为点B 在椭圆上,所以(-c 2)2a 2+(kc 2)2b 2=1,即c 24a 2+k 2c 24(a 2-c 2)=1. 所以e 24+k 2e 24(1-e 2)=1,所以k 2=(4-e 2)(1-e 2)e 2.由|k |≤142,得k 2≤72, 即(4-e 2)(1-e 2)e 2≤72,所以2e 4-17e 2+8≤0. 解得12≤e 2≤8.因为0<e <1,所以12≤e 2<1,即22≤e <1.反思与感悟 求e 的范围有以下几个步骤:(1)切入点:已知|k |≤142,求e 的范围,需建立关于e 的不等式.(2)思考点:①e 与k 有什么关系?②建立e 与k 的等量关系式;③利用B 在椭圆上且为CF 1的中点,构建关于e 与k 的等式;④如何求e 的范围?先用e 表示k ,再利用|k |≤142,求e 的取值范围.(3)解题流程:先写出l 的方程,求出B 点的坐标,由点B 在椭圆上,建立e 与k 的关系式,再求e 的范围.跟踪训练3 已知点P (m,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的两个焦点,若△PF 1F 2的内切圆的半径为32,则此椭圆的离心率为________.答案 35解析 一方面△PF 1F 2的面积为12(2a +2c )·r ;另一方面△PF 1F 2的面积为12|y p |·2c ,∵12(2a +2c )·r =12|y p |·2c , ∴(a +c )·r =|y p |·c , ∴a +c c =|y p |r. ∴(a c +1)=|y p |r, 又y p =4,∴a c =|y p |r -1=432-1=53,∴椭圆的离心率为e =c a =35.1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6 D .10、6、0.6答案 B解析 把椭圆的方程写成标准方程为x 29+y 225=1,知a =5,b =3,c =4.∴2a =10,2b =6,ca=0.8.2.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为( )A .90°B .120°C .135°D .150° 答案 B解析 由椭圆的定义得|PF 2|=2, 因为|F 1F 2|=29-2=27,由余弦定理得cos ∠F 1PF 2=42+22-(27)22×4×2=-12,因为0°<∠F 1PF 2<180°,所以∠F 1PF 2=120°.3.若椭圆的对称轴为坐标轴,且长轴长为10,有一个焦点坐标是(3,0),则此椭圆的标准方程为________. 答案 x 225+y 216=1解析 据题意a =5,c =3,故b =a 2-c 2=4,又焦点在x 轴上,所以椭圆的标准方程为x 225+y 216=1. 4.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是________________. 答案 [4-23,4+23] 解析 因为点(m ,n )在椭圆8x 2+3y 2=24上,即在椭圆x 23+y 28=1上,所以点(m ,n )满足椭圆的范围|x |≤3,|y |≤22,因此|m |≤3,即-3≤m ≤3,所以2m +4∈[4-23,4+23]. 5. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________. 答案 (0,±69)解析 由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).(1)可以应用椭圆的定义和方程,把几何问题转化为代数问题,再结合代数知识解题.而椭圆的定义与三角形的两边之和联系紧密,因此,涉及线段的问题常利用三角形两边之和大于第三边这一结论处理.(2)椭圆的定义式:|PF 1|+|PF 2|=2a (2a >|F 1F 2|),在解题中经常将|PF 1|·|PF 2|看成一个整体灵活应用.(3)利用正弦、余弦定理处理△PF 1F 2的有关问题.(4)椭圆上的点到一焦点的最大距离为a +c ,最小距离为a -c .一、选择题1.椭圆4x 2+49y 2=196的长轴长、短轴长、离心率依次是( ) A .7,2,357B .14,4,357C .7,2,57D .14,4,-57答案 B解析 先将椭圆方程化为标准形式:x 249+y 24=1,其中b =2,a =7,c =3 5.2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=1 答案 A解析 依题意得:c =25, a +b =10 ,又a 2=b 2+c 2从而解得a =6,b =4. 3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32C.83D.23答案 B 解析∵a 2=2,b 2=m ,e =ca= 1-b 2a2= 1-m 2=12,∴m =32.4.椭圆(m +1)x 2+my 2=1的长轴长是( ) A.2m -1m -1B.-2-m mC.2m mD .-21-m m -1答案 C解析 椭圆方程可简化为x 211+m +y 21m =1,由题意知m >0,∴11+m <1m ,∴a =mm ,∴椭圆的长轴长2a =2mm.5.已知椭圆的方程x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1,F 2,|F 1F 2|=2,离心率e =12,则椭圆方程为( ) A.x 216+y 212=1 B.x 24+y 2=1 C.x 24+y 23=1 D.x 23+y 24=1 答案 C解析 因为|F 1F 2|=2,离心率e =12,所以c =1,a =2,所以b 2=3,椭圆方程为x 24+y 23=1.6.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A.12 B.23 C.34 D.45 答案 C解析 设直线x =3a2与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,|PF 2|=|F 1F 2|=2c ,|F 2M |=3a 2-c ,故cos 60°=|F 2M ||PF 2|=32a -c2c =12,解得c a =34,故离心率e =34.7.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m 等于( )A .2B .3C .4D .9 答案 B解析 由题意知25-m 2=16,解得m 2=9,又m >0,所以m =3. 二、填空题8.一椭圆的中心在原点,焦点F 1,F 2在x 轴上,点P 是椭圆上的一点,线段PF 1与y 轴的交点M 是该线段的中点,若|PF 2|=|MF 2|,则椭圆的离心率等于________. 答案33解析 ∵M 是线段PF 1的中点, ∴OM ∥PF 2, ∴PF 2⊥F 1F 2, ∵|PF 2|=|MF 2|, ∴设|PF 2|=|MF 2|=x , 则|PF 1|=2x ,则|PF 1|+|PF 2|=2x +x =3x =2a , x =2a 3,3x 2=4c 2,即3(2a3)2=4c 2,则a 23=c 2, 即a =3c ,则离心率e =c a =c 3c =33.9.若椭圆长轴长是短轴长的2倍,且焦距为2,则此椭圆的标准方程为__________.答案 x 243+y 213=1或y 243+x 213=1解析 由题意可知a =2b ,c =1, 所以1+b 2=4b 2,故b 2=13,a 2=43,则此椭圆的标准方程为x 243+y 213=1或x 213+y 243=1.10.已知P 点是椭圆x 2a 2+y 2b 2=1(a >b >0)上异于顶点的任一点,且∠F 1PF 2=60°,则这样的点P有________个. 答案 4解析 依据椭圆的对称性知,四个象限内各有一个符合要求的点. 三、解答题11.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.解 (1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10,短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④离心率:e =35. 12.如图,在Rt △ABC 中,∠CAB =90°,|AB |=2,|AC |=22.一曲线E 过点C ,动点P 在曲线E 上运动,且保持|P A |+|PB |的值不变. (1)建立适当的坐标系,求曲线E 的方程;(2)试根据(1)所求方程判断曲线是否为椭圆方程,若是,写出其长轴长、焦距、离心率. 解 (1)以AB 所在直线为x 轴,方向向右,AB 的中点O 为原点建立直角坐标系,则A (-1,0),B (1,0).由题设可得|P A |+|PB |=|CA |+|CB |=22+22+⎝⎛⎭⎫222=2 2. 又因为22>2=|AB |,所以可设动点P 的轨迹方程为x 2a 2+y 2b 2=1(a >b >0),则a =2,c =1,b=a 2-c 2=1,所以曲线E 的方程为x 22+y 2=1.(2)由曲线E 的方程x 22+y 2=1知,其为椭圆方程,且长轴长为22,焦距为2,离心率为22.13.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1. (1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此 2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,由PF 1⊥PQ , |PQ |=λ|PF 1|,得 |QF 1|= |PF 1|2+|PQ |2 =1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,进而|PF 1|+|PQ |+|QF 1|=4a . 于是(1+λ+1+λ2)|PF 1|=4a , 解得|PF 1|=4a1+λ+1+λ2,故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2.由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+[2a (λ+1+λ2-1)1+λ+1+λ2]2=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2.若记t =1+λ+1+λ2,则上式变成 e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.2.2.2椭圆的简单几何性质(一)(学生版)学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一椭圆的范围、对称性和顶点坐标思考1观察椭圆x2a2+y2b2=1(a>b>0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答案(1)范围:-a≤x≤a,-b≤y≤b;(2)对称性:椭圆关于x轴、y轴、原点都对称;(3)特殊点:顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b).思考2在画椭圆图象时,怎样才能画的更准确些?答案在画椭圆图象时,可先画一个矩形,矩形的顶点为(-a,b),(a,b),(-a,-b),(a,-b).梳理椭圆的简单几何性质焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0) 图形焦点坐标(±c,0)(0,±c)对称性关于x轴、y轴轴对称,关于坐标原点中心对称顶点坐标A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0) 范围|x|≤a,|y|≤b |x|≤b,|y|≤a长轴、短轴长轴A1A2长为2a,短轴B1B2长为2b思考如何刻画椭圆的扁圆程度?答案用离心率刻画扁圆程度,e越接近于0,椭圆越接近于圆,反之,越扁.梳理(1)椭圆的焦距与长轴长的比e=ca叫椭圆的离心率.(2)对于x2a2+y2b2=1,b越小,对应的椭圆越扁,反之,e越接近于0,c就越接近于0,从而b越接近于a,这时椭圆越接近于圆,于是,当且仅当a=b时,c=0,两焦点重合,图形变成圆,方程变为x2+y2=a2.(如图)类型一由椭圆方程研究其简单几何性质例1求椭圆9x2+16y2=144的长轴长、短轴长、离心率、焦点和顶点坐标.反思与感悟解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a,b,c之间的关系和定义,求椭圆的基本量.跟踪训练1求椭圆9x2+y2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率.类型二 椭圆的几何性质的简单应用例2 如图所示,已知椭圆的中心在原点,它在x 轴上的一个焦点F 与短轴两个端点B 1,B 2的连线互相垂直,且这个焦点与较近的长轴的端点A 的距离为10-5,求这个椭圆的方程.反思与感悟 确定椭圆的标准方程时,首先要分清其焦点位置,然后,找到关于a ,b ,c 的等量关系,最后确定a 2与b 2的值即可确定其标准方程.跟踪训练2 已知椭圆的对称轴是坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OF A =23,求椭圆的标准方程.类型三 椭圆的离心率的求解例3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,斜率为k 的直线l 过左焦点F 1且与椭圆的交点为A ,B ,与y 轴的交点为C ,且B 为线段CF 1的中点,若|k |≤142,求椭圆离心率e 的取值范围.反思与感悟 求e 的范围有以下几个步骤:(1)切入点:已知|k |≤142,求e 的范围,需建立关于e 的不等式.(2)思考点:①e 与k 有什么关系?②建立e 与k 的等量关系式;③利用B 在椭圆上且为CF 1的中点,构建关于e 与k 的等式;④如何求e 的范围?先用e 表示k ,再利用|k |≤142,求e 的取值范围.(3)解题流程:先写出l 的方程,求出B 点的坐标,由点B 在椭圆上,建立e 与k 的关系式,再求e 的范围.跟踪训练3 已知点P (m,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的两个焦点,若△PF 1F 2的内切圆的半径为32,则此椭圆的离心率为________.1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6 D .10、6、0.62.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为( )A .90°B .120°C .135°D .150°3.若椭圆的对称轴为坐标轴,且长轴长为10,有一个焦点坐标是(3,0),则此椭圆的标准方程为________.4.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是________________.5. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________.(1)可以应用椭圆的定义和方程,把几何问题转化为代数问题,再结合代数知识解题.而椭圆的定义与三角形的两边之和联系紧密,因此,涉及线段的问题常利用三角形两边之和大于第三边这一结论处理.(2)椭圆的定义式:|PF 1|+|PF 2|=2a (2a >|F 1F 2|),在解题中经常将|PF 1|·|PF 2|看成一个整体灵活应用.(3)利用正弦、余弦定理处理△PF 1F 2的有关问题.(4)椭圆上的点到一焦点的最大距离为a +c ,最小距离为a -c .一、选择题1.椭圆4x 2+49y 2=196的长轴长、短轴长、离心率依次是( ) A .7,2,357B .14,4,357C .7,2,57D .14,4,-572.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=13.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32C.83D.234.椭圆(m +1)x 2+my 2=1的长轴长是( ) A.2m -1m -1B.-2-m mC.2m mD .-21-m m -15.已知椭圆的方程x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1,F 2,|F 1F 2|=2,离心率e =12,则椭圆方程为( ) A.x 216+y 212=1 B.x 24+y 2=1 C.x 24+y 23=1 D.x 23+y 24=16.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.457.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m 等于( )A .2B .3C .4D .9二、填空题8.一椭圆的中心在原点,焦点F 1,F 2在x 轴上,点P 是椭圆上的一点,线段PF 1与y 轴的交点M 是该线段的中点,若|PF 2|=|MF 2|,则椭圆的离心率等于________.9.若椭圆长轴长是短轴长的2倍,且焦距为2,则此椭圆的标准方程为__________.10.已知P 点是椭圆x 2a 2+y 2b 2=1(a >b >0)上异于顶点的任一点,且∠F 1PF 2=60°,则这样的点P有________个.三、解答题11.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.12.如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=22.一曲线E过点C,动点P在曲线E上运动,且保持|P A|+|PB|的值不变.(1)建立适当的坐标系,求曲线E的方程;(2)试根据(1)所求方程判断曲线是否为椭圆方程,若是,写出其长轴长、焦距、离心率.13.如图,椭圆x2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PQ|=λ|PF1|,且34≤λ<43,试确定椭圆离心率e的取值范围.。

椭圆的简单几何性质1有答案

椭圆的简单几何性质1有答案
A.(±13,0)B.(0,±10)
C.(0,±13)D.(0,± )
(2)如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为()
A. B.
C. D.
【自主解答】(1)由题意知椭圆焦点在y轴上,且a=13,b=10,则c= = ,故焦点坐标为(0,± ).
(2)设长轴长为2a,短轴长为2b,由题意可知a=2b,则c= = = b,所以离心率为e= = = .
B.(-6,0),(6,0)
C.(- ,0),( ,0)
D.(0,- ),(0, )
【解析】椭圆的标准方程为x2+ =1,焦点在y轴上,其长轴的端点坐标为(0,± ).
【答案】D
(2)已知椭圆 + =1的一个顶点为(0,5),试求椭圆的长轴长,短轴长,焦点坐标,离心率及其余的顶点.
【解】∵(0,5)是椭圆 + =1的顶点,
(2)焦点在y轴上,c=6,e= ;
(3)短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3;
(4)离心率为 ,经过点(2,0).
【精彩点拨】本题考查椭圆方程的求法.根据题中所给条件,结合椭圆的几何性质定位(即确定焦点位置)、定量(即确定长轴和短轴的长),若没有指明焦点位置,要分焦点在x轴上、y轴上进行讨论.
【答案】
5.求满足下列各条件的椭圆的标准方程.
(1)已知椭圆的中心在原点,焦点在y轴上,若其离心率为 ,焦距为8;
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 .
【解】(1)由题意知,2c=8,c=4,
∴e= = = ,∴a=8,
从而b2=a2-c2=48,
∴椭圆的标准方程是 + =1.
【自主解答】(1)由a=4,e= = 知,c=2,b2=16-4=12.

高二上学期数学练习题(7)(椭圆的简单几何性质)有详细答案

高二上学期数学练习题(7)(椭圆的简单几何性质)有详细答案

高二上学期数学练习题(7)(椭圆的简单几何性质)班级 姓名 学号一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69) 2. 椭圆x 2+4y 2=1的离心率为 ( ) A.32 B.34 C.22 D.233. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12C .2D .4 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.136. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( ). A.15 B.25 C.55 D.2557. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .88. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-139. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 12.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.13.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.14.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________15.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.17.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=_______18.如图,在平面直角坐标系xOy 中,A1,A 2,B 1,B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 则该椭圆的离心率为________. 三.解答题19.求椭圆x 24+y 2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.20.已知椭圆长轴长是短轴长的2倍,且过点A (2,-6).求椭圆的标准方程.21.已知椭圆E 的中心在坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0). (1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t ,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围.22.已知直线l :y =kx +1与椭圆x 22+y 2=1交于M 、N 两点,且|MN |=423.求直线l 的方程.23.已知过点A (-1,1)的直线与椭圆x 28+y24=1交于点B 、C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程.24.如图所示,点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF . (1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.高二上学期数学练习题(7)(椭圆的简单几何性质)参考答案班级 姓名 学号 (5-12页)一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).答案 D 2. 椭圆x 2+4y 2=1的离心率为 ( ). A.32 B.34 C.22 D.23解析:将椭圆方程x 2+4y 2=1化为标准方程x 2+y 14=1,则a 2=1,b 2=14,即a =1,c =a 2-b 2=32,故离心率e =c a =32.答案 A 3. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 解析 因为c a =63,且c =2,所以a =3,b =a 2-c 2=1.所以椭圆C 的方程为x 23+y 2=1.答案 A4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12 C .2 D .4 解析 将椭圆方程化为标准方程为x 2+y 21m=1,∵焦点在y 轴上,∴1m >1,∴0<m <1.由方程得a =1m ,b =1.∵a =2b ,∴m =14. 答案 A 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.13解析:记|F 1F 2|=2c ,则由题设条件,知|PF 1|=2c 3,|PF 2|=4c3, 则椭圆的离心率e =2c 2a =|F 1F 2||PF 1|+|PF 2|=2c 2c 3+4c 3=33,故选B.答案 B6. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B A.15 B.25 C.55 D.255解析:由条件知,F 1(-2,0),B (0,1),∴b =1,c =2,∴a =22+12=5,∴e =c a =25=255.答案 D7. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .8 解析 如图,两条平行直线分别经过椭圆的两个焦点,连接 AF 1、FD .由椭圆的对称性可知,四边形AFDF 1(其中F 1为椭 圆的下焦点)为平行四边形,∴AF 1=FD ,同理BF 1=CF , ∴AF +BF +CF +DF =AF +BF +BF 1+AF 1=4a =8.答案 D8. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-13解析 设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 12=b 2-b 2x 12a2,所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 12x 2-x 12=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案 D 9. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 解析 设点A (2,n ),B (x 0,y 0).由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1,∴右焦点F (1,0).∴由F A →=3FB →得(1,n )=3(x 0-1,y 0).∴1=3(x 0-1)且n =3y 0,∴x 0=43,y 0=13n ,将x 0,y 0代入x 22+y 2=1,得12³(43)2+(13n )2=1.解得n 2=1,∴|AF →|=(2-1)2+n 2=1+1= 2.所以选A.答案 A 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( D )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 解析:设椭圆的长半轴长为a ,短半轴长为b ,焦距为2c ,则b =1,a 2+b 2=(5)2,即a 2=4. 所以椭圆的标准方程是x 24+y 2=1或y 24+x 2=1.答案 x 24+y 2=1或y 24+x 2=112.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.解析:①当k +8>9时,e 2=c 2a 2=k +8-9k +8=14,k =4;②当k +8<9时,e 2=c 2a 2=9-k -89=14,k =-54.答案4或-5413.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.解析:依题意设椭圆G 的方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆上一点到其两个焦点的距离之和为12.∴2a =12,即a =6.∵椭圆的离心率为32,∴e =c a =a 2-b 2a =32,∴36-b 26=32,∴b 2=9.∴椭圆G 的方程为x 236+y 29=1.答案 x 236+y 29=114.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________解析:由题意知⎩⎪⎨⎪⎧a +b =92,c a =35,a 2=b 2+c 2,解得⎩⎨⎧a =52,b =42.但焦点位置不确定.答案 x 250+y 232=1或x 232+y 250=115.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.解析:由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1消去y ,整理得(3+m )x 2+4mx +m =0,若直线与椭圆有两个公共点,则⎩⎪⎨⎪⎧3+m ≠0,Δ=(4m )2-4m (3+m )>0,解得⎩⎪⎨⎪⎧m ≠-3,m <0或m >1.由x 2m +y 23=1表示椭圆知,m >0且m ≠3. 综上可知,m 的取值范围是(1,3)∪(3,+∞).答案 (1,3)∪(3,+∞) 16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.解析:由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+(12x 1-12x 2)2=54[(x 1+x 2)2-4x 1x 2]=54(4+24)=35,答案 35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的简单几何性质基础卷1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >02.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为(A )221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )2211625x y += 3.已知P 为椭圆221916x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A )54 (B )45 (C )417 (D )7474.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A )23 (B )33 (C )316 (D )6165.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有(A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C )123111,,r r r 成等差数列 (D )123111,,r r r 成等比数列 6.椭圆221925x y +=的准线方程是 (A )x =±254 (B )y =±165 (C )x =±165 (D )y =±2547.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 .8.对于椭圆C 1: 9x 2+y 2=36与椭圆C 2:2211612x y +=,更接近于圆的一个是 . 9.椭圆12222=+by a x 上的点P (x 0, y 0)到左焦点的距离是r = .10.已知定点A (-2, 3),F 是椭圆2211612x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

提高卷1.若方程221x y a b-=表示焦点在y 轴上的椭圆,则下列关系成立的是(A >(B < (C > (D <2.曲线221259x y +=与221259x y k k+=-- (k <9)有相同的 (A )短轴 (B )焦点 (C )准线 (D )离心率3.椭圆的长半轴长、短半轴长、半焦距分别为a , b , c ,则其焦点到相应准线的距离P 是(A )2a c (B )2b c (C )2b a (D )2a b4.椭圆2244x y +=上一点P 到两焦点距离之和与该点到两准线的距离之和的比是 (A )3 (B )23 (C )21(D )随P 点位置不同而有变化 5.椭圆12222=+b y a x (a >b >0)的左焦点F 到过顶点A (-a , 0), B (0, b ),则椭圆的离心率为(A )21(B )54 (C )76 (D )76+6.设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为 (A )316 (B )23 (C )22 (D )327.中心在原点,准线方程为y =±4,离心率为21的椭圆方程是 . 8.若椭圆22189x y k +=+的离心率为e =21,则k 的值等于 . 9.若椭圆的一短轴端点与两焦点连线成120°角,则该椭圆的离心率为 .10.椭圆222112x y m m+=+的准线方程为 .综合练习卷1.离心率为32,长轴长为6的椭圆的标准方程是 (A )22195x y += (B )22195x y +=或22159x y += (C )2213620x y += (D )2213620x y +=或2212036x y += 2.椭圆22143x y +=上有n 个不同的点P 1, P 2, P 3,……, P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于1100的等差数列,则n 的最大值为 (A )199 (B )200 (C )198 (D )2013.点P 是长轴在x 轴上的椭圆12222=+by a x 上的点,F 1, F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是(A )1 (B )a 2 (C )b 2 (D )c 24.一个圆心在椭圆右焦点F 2,且过椭圆的中心O (0, 0),该圆与椭圆交于点P ,设F 1是椭圆的左焦点,直线PF 1恰和圆相切于点P ,则椭圆的离心率是 (A )3-1 (B )2-3 (C )22(D )23 5.椭圆短轴的两端点为B 1, B 2,过其左焦点F 1作x 轴的垂线交椭圆于点P ,若|F 1B 2|是|OF 1|和|B 1B 2|的比例中项(O 为中心),则12||||PF OB 等于 (A )2 (B )22 (C )23 (D )326.如图,已知椭圆中心在原点,F 是焦点,A 为顶点,准线l 交x 轴于点B ,点P , Q在椭圆上,且PD ⊥l 于D ,QF ⊥AO , 则椭圆的离心率是① ||||PF PD ;② ||||QF BF ;③ ||||AO BO ;④ ||||AF AB ;⑤ ||||FO AO ,其中正确的个数是(A )1个 (B )3个 (C )4个 (D )5个 7.点P 与定点(1, 0)的距离和它到直线x =5的距离的比是33,则P 的轨迹方程为 . 8.椭圆12222=+by a x (b >a >0)的准线方程是 ;离心率是 。

9.椭圆2214924x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,则Rt △PF 1F 2的面积为 . 311.若椭圆的一个焦点分长轴为3 : 2的两段,则其离心率为 .12.椭圆12222=+by a x (a >b >0)长轴的右端点为A ,若椭圆上存在一点P ,使∠APO =90°,求此椭圆的离心率的取值范围。

圆的方程练习二1.方程Ax 2+Ay 2+Dx +Ey +F =0(A ≠0)表示圆的充要条件是(A )D 2+E 2–4F >0 (B )D 2+E 2–4F <0 (C )D 2+E 2–4AF >0 (D )D 2+E 2–4AF <0 2.已知圆的方程是x 2+y 2–2x +6y +8=0,则通过圆心的一条直线方程是 (A )2x –y –1=0 (B )2x +y +1=0 (C )2x –y +1=0 (D )2x +y –1=0 3.圆x 2+y 2=16上的点到直线x –y =3的距离的最大值是 (A )232 (B )4–232 (C )4+232 (D )04.已知圆C 和圆C ’关于点(3, 2)成中心对称,若圆C 的方程是x 2+y 2=4,则圆C ’的方程是(A )(x –4)2+(y –6)2=4 (B )(x +4)2+(y +6)2=4 (C )(x –6)2+(y –4)2=4 (D )(x –6)2+(y +4)2=4 5.已知圆x 2+y 2=4关于直线l 对称的圆的方程为(x +3)2+(y –3)2=4,则直线l 的方程为 (A )y =x +2 (B )y =x +3 (C )y =–x +3 (D )y =–x –36.设M ={(x , y )| yy ≠0}, N ={(x , y )| y =x +b },若M ∩N ≠∅,则b 的取值范围是 (A )–32≤b ≤32 (B )–3≤b ≤32 (C )0≤b ≤32 (D )–3<b ≤32 7.如果圆x 2+y 2+Dx +Ey +F =0(D 2+E 2–4F >0)关于直线y =2x 对称,则D 与E 的关系式为 . 8.两定点O (0, 0)和A (3, 0),动点P 到点O 的距离与它到点A 的距离的比是21,则点P 的轨迹方程是 __________________________ .9.圆的参数方程为21x y θθ⎧=-+⎪⎨=⎪⎩,化成圆的一般方程是 ;圆心是 。

10.以A (2, 2), B (5, 3), C (3, –1)为顶点的三角形的外接圆的方程为 .圆锥曲线知识点回顾1.椭圆的性质2.双曲线的性质3.抛物线中的常用结论①过抛物线y2=2px的焦点F的弦AB长的最小值为2p②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是直线AB恒过定点(2p,(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.4.直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)(1).首先会判断直线与圆锥曲线是相交、相切、还是相离的a.直线与圆:一般用点到直线的距离跟圆的半径相比(几何法),也可以利用方程实根的个数来判断(解析法).b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离c.直线与双曲线、抛物线有自己的特殊性(2).a.求弦所在的直线方程b.根据其它条件求圆锥曲线方程(3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所在的直线方程(4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称)5.二次曲线在高考中的应用二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。

通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。

本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。

(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。

相关文档
最新文档