2017-2018学年山东省济南市章丘市八年级(下)期末数学试卷
山东济南市章丘区2017八年级数学下学期期末片区联考

山东省济南市章丘区2016-2017学年八年级数学下学期期末片区联考试题(时间:90分钟,满分150分)第Ⅰ卷 (选择题 共48分)一、选择题(共12小题,每小题4分,共48分.请将答案填入题后答案表格内) 1. 已知等腰三角形的两边长分别为6cm 、3cm ,则该等腰三角形的周长是 A .9cm B .12cm C .12cm 或者15cm D .15cm 2. 下列因式分解正确的是A .2x 2-2=2(x +1)(x -1) B . x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D . x 2-x +2=x (x -1)+2 3. 已知x <y ,则下列式子中成立的是A. –7x <–7yB. 7-x >7-yC. x -7>y -7D. x +7>y +74. 如图, △ABC 和△ADE 均为正三角形,则图中可看作是旋转 关系的三角形是A. △ABC 和△ADEB. △ABC 和△ABDC. △ABD 和△ACED. △ACE 和△ADE5. 某校团委举办了“火红的五月红红的歌”歌咏比赛,王老师为鼓励同学们, 带了100元钱去购买甲、乙两种奖品.已知甲奖品每件14元,乙奖品每件10元,每种至少 买3件,则王老师购买方案共有 A .3种 B .4种 C .5种 D .6种6. 如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形 ABCD 为平行四边形的是 A .AB ∥CD ,AD ∥BC B .OA =OC ,OB =OD C .AD =BC ,AB ∥CD D .AB =CD ,AD =BC7. 若分式2122---x x x 的值为0,则x 的值为A. 1或-1B. 1C. -1D. 28. “五一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的 同学共x 人,则所列方程为AB C ED第4题图A DB CO第6题A.31802180=--x x B.31802180=-+x x C.32180180=--x x D.32180180=+-x x 9. 如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形 (如图②),通过计算两个图形(阴影部分)的面积,验 证了一个等式,则这个等式是A .()()2222a b a b a ab b +-=+-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()22a b a b a b -=+-10. 如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为 A .4 B .3 C .52D .2 11. 如图,E 是矩形ABCD 中BC 边的中点,将△ABE 沿AE 折 叠到△AFE ,F 在矩形ABCD 内部,延长AF 交DC 于G 点, 若∠AEB =55°,则∠DAF =A .40°B .35°C .20°D .15°12. △ABC 为等腰直角三角形,∠ACB =90°,AC =BC =2,P 为线段AB 上一动点,D 为BC 上中点,则PC +PD 的最小值为A.1第Ⅰ卷答题栏第Ⅱ卷(非选择题 共102分)A E DB D第10题A DB CFG E第11题二、填空题(每小题4分,共24分)13. 平行四边形的周长是12,而相邻两边的差是2,则其相邻边长分别是 . 14. 如图,在Rt△ABC 中,AB ⊥BC ,DE ⊥AC ,AD =CD , ∠BAE =20°,则∠C = . 15. 若关于a 的分式方程222-=--a ma a 有增根, 则m 的值为__________. 16. a 、b 为实数,且ab =1,设11+++=b b a a P ,1111+++=b a Q ,则P Q (选 填“>”、“<”或“=”). 17. 4个数a ,b ,c ,d 排列成c ad b ,我们称之为二阶行列式.规定它的运算法则为:db c a =ad ﹣bc .若33-+x x 33+-x x >12,则x . 18. 如图,在边长为1的菱形 ABCD 中,∠ABC =120°.连接对角线AC ,以AC 为边作第二个菱形ACEF ,使∠ACE =120°.连接AE ,再以AE 为边作第三个菱形AEGH ,使 ∠AEG =120°,…,按此规律所作 的第n 个菱形的边长是 . 三、解答题(共7题,78分) 19. (本小题14分)⑴(每小题3分,共6分)因式分解:3a 3+12a 2+12a 2016+20162-20172⑵(4分)解不等式组:⎩⎨⎧+≤+<-52)1(362x x x , 并将解集在数轴上表示出来.ACD⑶(4分)解分式方程:1613122-=-++x x x .20. (本小题9分)已知若一个关于x 的方程可化为(ax +b )(cx +d )=0的形式,则可分别解出ax +b =0和cx +d =0得到x 的值都是原方程的解. 根据以上信息,先化简,再求值.aa a a a a 4)4822(222-÷-+-+,其中a 满足方程a 2-3a +2=0,并使分式成立.21. (本小题9分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到 △A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2. ⑴在网格中画出△A 1B 1C 1和△A 1B 2C 2;⑵计算线段AC 从开始变换到A 1 C 2的过程中扫过区域的面积(重叠部分不重复计算)22. (本小题10分)如图,在△ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE.⑴图中的平行四边形有哪几个?请说明理由⑵若△AEF的面积是3,求四边形BCFD的面积23. (本小题10分)如图,在梯形ABCD中,AD∥BC,DE=CE,连接AE、BE, BE⊥AE,延长AE交BC的延长线于点F.求证:△ABF是等腰三角形.24. (本小题12分)某地充分利用当地地理优势,大力发展山村特色旅游,为推介宣传,现制作两种宣传手提袋,已知同样用6m材料制成甲种的个数比制成乙种的个数少2个,且制成一个甲种比制成一个乙种需要多用20%的材料.⑴求制作每个甲种、乙种各用多少米材料?⑵如果制作甲、乙两种手提袋共3000个,且甲种的数量不少于乙种数量的2倍,那么请写出所需要材料的总长度l(m)与甲种数量n(个)之间的函数关系式,并求出最少需要多少米材料?25.(本小题14分)如图,正方形ABCD的边长为8cm,分别过四个顶点A、B、C、D做四条直线EF、FG、GH、HE,并保证相邻两条直线垂直,相交于E、F、G、H四点,且AE=BF=CG=DH.⑴求证:四边形EFGH是正方形;⑵判断无论如何按照上述要求作图,线段EG、AC的中点是否重合,并说明理由;⑶判断四边形EFGH的面积有无最大值,若有请写出面积最大值,并说明理由.八年级数学参考答案一、选择题(共48分,每题4分)二、填空题(共24分,每题4分)13. 2,4 14. 35° 15.2 16. = 17. >1 18. 1)3(-n 三、解答题(共78分,阅卷时请根据实际情况给出步骤分) 19. (14分)(1)(每小题3分)3a (a +2)2;-2017(2)-3<x ≤2……3分 数轴表示略………………………………………………4分 (3)x =1……3分经检验,x =1为原方程的增根,原方程无解. …………………………………4分20. (9分)a a a a a a 4)4822(222-÷-+-+化简得:2)2(1+a ………………………4分a 2-3a +2=(a -1)(a -2)=0………………………………………………………………………5分 a -1=0, a -2=0. ∴a =1或2………………………………………………………………7分∵a = 2使原式分母为零,∴舍去…………………………………………………………8分 把a =1代入2)2(1+a 得:原式=91………………………………………………………9分 21.(9分)(1)如图所示: ………………4分(2)如图:观察可知,线段AC 变换到A 1C 2过程中所扫过部分为两个平行四边形和圆心角为45°扇形,所以扫过区域的面积=4×2+3×2+458360π⨯=14+π ……………………………9分 22.(10分)(1)图中的平行四边形有:平行四边形ADCF ,平行四边形BDFC ,…………………………2分理由是:∵E 为AC 的中点, ∴AE =CE , ∵DE =EF ,∴四边形ADCF 是平行四边形, …………………………………………4分 ∴AD ∥CF ,AD =CF , ∵D 为AB 的中点, ∴AD =BD , ∴BD =CF ,BD ∥CF ,∴四边形BDFC 是平行四边形. …………………………6分 (2)由(1)知四边形ADCF 是平行四边形,四边形BDFC 是平行四边形, ∴△CEF 的面积和△CED 的面积都等于△AEF 的面积为3…………………………8分 ∴平行四边形BCFD 的面积是12 ………………………………10分 23.(10分)∵AD ∥CF ,∴∠DAE =∠CFE ……………………………………………………2分 ∴在△ADE 和△FCE 中,∠DAE =∠CFE ,∠AED =∠FEC ,DE =CE∴△ADE ≌△FCE ……………………………………………6分 ∴AE =FE ……………………………………………7分 又∵BE ⊥AE ,∴BE 为线段AF 的垂直平分线…………………………………………8分 ∴AB =FB ………………………………………9分 ∴△ABF 是等腰三角形. …………………………………………10分 24.(12分)(1)设制作每个乙种用x 米材料,则制作甲种用(1+20%)x 米材料,xx %)201(626+=- 解得:x =0.5, …………………………………………3分 经检验x =0.5是原方程的解, ∴(1+20%)x =0.6(米),答:制作每个甲种用0.6米材料;制作每个乙种用0.5米材料.…………………………………6分(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲种的数量不少于乙种数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,………………………………9分∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.………………………………12分25.(14分)解:(1)证明:∵相邻两条边互相垂直∴∠E=∠F=∠G=∠H=90°又∵AE=BF=CG=DH,AB=BC=CD=DA∴△EAB≌△FBC≌△GCD≌△HDA…………………………………………………2分∴AH=BE=CF=DG ………………3分∴EF=FG=GH=HE …………4分∵相邻两条边互相垂直∴四边形EFGH是正方形……………………5分(2)(证法不唯一)线段EG、AC的中点重合. ……………………6分连结EC、AG,∵AE= CG,且AE∥CG∴四边形AECG为平行四边形,…………………………………………………8分∴线段EG、AC的中点重合. …………………………………………………10分(3)有最大值,面积最大值为128cm2. …………………………………………11分如图,当ABCD分别为各边中点时,四边形EFGH面积最大.(理由叙述合理即可.)………………………………………………………12分例如:在各种情况中当ABCD分别为各边中点时,四边形EFGH边长为正方形ABCD对角线,其他情况中边长都比对角线小.…………………………………………………14分。
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
八年级期末试卷章丘数学

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. -√3B. 0.123C. 2/5D. π2. 已知一个数的绝对值是3,那么这个数可能是()A. -3B. 3C. ±3D. ±3,±53. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = 3x - 14. 若一个等腰三角形的底边长为4cm,腰长为6cm,则这个三角形的面积是()A. 12cm^2B. 16cm^2C. 18cm^2D. 20cm^25. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 直角三角形的两个锐角互余C. 等边三角形的三边都相等D. 平行四边形的对角线互相平分6. 已知函数y = kx + b(k ≠ 0),下列说法正确的是()A. 当k > 0时,函数图像是向上倾斜的直线B. 当k < 0时,函数图像是向下倾斜的直线C. 当b > 0时,函数图像与y轴交点在x轴上方D. 当b < 0时,函数图像与y轴交点在x轴下方7. 若方程3x - 2 = 2(x + 1)的解是x = 2,则方程2x + 3 = 3x - 1的解是()A. x = 2B. x = 3C. x = 4D. x = 58. 下列各数中,不是实数的是()A. √-1B. 0.001C. 2/3D. π9. 若一个平行四边形的对角线相等,那么这个平行四边形是()A. 矩形B. 菱形C. 等腰梯形D. 梯形10. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若a > 0,那么函数图像的开口方向是()A. 向上B. 向下C. 向左D. 向右二、填空题(每题5分,共50分)1. 已知函数y = 2x - 1,当x = 3时,y = ________。
2. 若一个数的平方是4,那么这个数是 ________。
2017-2018学年山东省济南市市中区八年级(下)期末数学试卷(解析版)

A.
B.
C.
D.
4.(4 分)使分式 有意义的 x 的取值范围是( )
A.x=2
B.x≠2
C.x=﹣2
D.x≠﹣2
5.(4 分)如图,在▱ ABCD 中,AC、BD 相交于点 O,点 E 是 AB 的中点.若 OE=1cm,
则 AD 的长是( )cm.
A.3
B.
C.
D.4
11.(4 分)如图,边长 2 的菱形 ABCD 中,∠A=60°,点 M 是 AD 边的中点,将菱形 ABCD
翻折,使点 A 落在线段 CM 上的点 E 处,折痕交 AB 于点 N,则线段 EC 的长为( )
A.
B. ﹣1
C.
D. ﹣1
12. (4 分)如图,在 Rt△ABC 中,∠ACB=90°,将△ABC 绕顶点 C 逆时针旋转得到△A'B'C,
A.2
B.3
C.4
D.5
6.(4 分)如图,在 6×6 方格中有两个涂有阴影的图形 M、N,①中的图形 M 平移后位置
如②所示,以下对图形 M 的平移方法叙述正确的是( )
A.向右平移 2 个单位,向下平移 3 个单位
第 1 页(共 19 页)
B.向右平移 1 个单位,向下平移 3 个单位 C.向右平移 1 个单位,向下平移 4 个单位 D.向右平移 2 个单位,向下平移 4 个单位 7.(4 分)在数轴上表示不等式 x≥﹣2 的解集,正确的是( )
第 4 页(共 19 页)
购进甲种玩具多少?
24.(10 分)探索发现:
=1﹣ ;
根据你发现的规律,回答下列问题:
2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷2017-2018学年八年级第二学期期末测试数学试卷(考试时间100分钟,满分120分)2018.06一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是x≥2.2.(3分)下列各组数中能作为直角三角形的三边长的是3,4,5.3.(3分)若一次函数 y=x+4 的图象上有两点 A(-1,y1)、B(1,y2),则下列说法正确的是 y1<y2.4.(3分)如图,四边形 ABCD 的对角线 AC 和 BD 交于点 O,则下列不能判断四边形 ABCD 是平行四边形的条件是∠ABD=∠ADB,∠BAO=∠DCO。
5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同。
其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数。
6.(3分)在平面直角坐标系中,平行四边形 ABCD 的顶点 A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点 C 的坐标是(7,3)。
二、填空题(每题3分,共24分)7.(3分)将直线 y=2x 向下平移2个单位,所得直线的函数表达式是 y=2x-2.8.(3分)直线y=kx+b(k>0)与x 轴的交点坐标为(2,0),则关于 x 的不等式 kx+b>0 的解集是 x>-b/k。
9.(3分)计算:(-2)²=4.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点 C 与点 A 重合,折痕为 DE,则△ABE 的周长为6+2√13.11.(3分)如图,平行四边形ABCD 中,AD=5,AB=3,若 AE 平分∠BAD 交边 BC 于点 E,则线段 EC 的长度为 3/2.12.(3分)已知一组数据1,2,-1,x,1 的平均数是1,则这组数据的中位数为 1.13.(3分)一次函数 y=kx+3 的图象过点 A(1,4),则这个一次函数的解析式 y=kx+1.14.(3分)如图,菱形ABCD 周长为16,∠ADC=120°,E 是 AB 的中点,P 是对角线 AC 上的一个动点,则 PE+PB 的最小值是 8.2三、计算题15.计算:-8 + 3.5 = -4.516.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:1)在图1中,作出∠DAE的角平分线;2)在图2中,作出∠AEC的角平分线.四、应用题17.已知一次函数y=kx-4,当x=2时,y=-3.1)求一次函数的解析式:由题意得,-3=k(2)-4,解得k=1,所以一次函数的解析式为y=x-4.2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标。
2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
山东省济南市章丘市2017-2018学年八年级(下)期末数学试卷(含解析)

2017-2018学年山东省济南市章丘市八年级(下)期末数学试卷一、选择题(共12小题,每小题4分,共48分)1.若a>b,则下列不等式中,不成立的是()A.a﹣3>b﹣3B.﹣3a>﹣3b C.>D.﹣a<﹣b2.若不等式(a﹣5)x<1的解集是x>,则a的取值范围是()A.a>5B.a<5C.a≠5D.以上都不对3.若不等式组A.a≥1无解,则实数a的取值范围是()B.a<﹣1C.a<1D.a≤﹣14.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b<kx ﹣1的解集在数轴上表示正确的是()A.C.B.D.5.现有球迷150人欲租用客车去观看足球赛,有A,B,C三种型号客车若干可供租用,载客量分别为50人,30人,10人,要求租用的车辆,每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.10种D.12种6.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)7.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 C.(a﹣3)(a+7)=a2+4a﹣21B.a2+4a﹣21=(a﹣3)(a+7)D.a2+4a﹣21=(a+2)2﹣258.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形9.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4B.8C.2D.410.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.1411.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°12.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;△③ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二、填空题(每小题4分,共24分)13.一个矩形,两边长分别为x cm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.14.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b△2,则ABC是三角形.15.若分式方程:有增根,则k=.16.a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).17.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为P A,PB的中点,对下列各值:①线段MN的长;②△P AB的周长;△③PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中不会随点P的移动而改变的是(填序号)△18.如图,在等边ABC中,AC=7,点P在△ABC内部,且∠APC=90°,∠BPC=120°,直接写出△APC的面积为.三、解答题(共7题,78分)19.(6分)解分式方程:=+.20.(6分)解不等式组:,并将解集在数轴上表示出来.21.(6分)已知+=(a≠b),求﹣的值.22.(8分)先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值;(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.23.(8分)如图,已知P是正方形ABCD内一点,P A=1,PB=2,PC=3,以点B为旋转中心,将△ABP按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.(△1)请画出旋转后的图形,说出此时ABP以点B为旋转中心最少旋转了多少度;(2)求出PG的长度;(△3)请你猜想PGC的形状,并说明理由;(4)请你计算∠BGC的角度.24.(10分)某大型超市从生产基地购进一批水果,运输过程中质量损失5%,假设不计超市其他费用.(1)如果超市在进价的基础上提高5%作为售价,那么请你通过计算说明超市是否亏本;(2)如果超市至少要获得20%的利润,那么这种水果的售价最低应提高百分之几?(结果精确到0.1%)25.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形CDEF是平行四边形;(2)求四边形BDEF的周长和面积.26.(12分)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)售价(元/双)m240m﹣20160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?27.(12分)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB =AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.2017-2018学年山东省济南市章丘市八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,共48分)1.【解答】解:A、a﹣3>b﹣3成立,故正确;B、同理,﹣3a>﹣3b,错误;C、不等式两边乘(或除以)同一个正数,不等号的方向不变>成立,故正确;D、不等式两边乘(或除以)同一个负数,不等号的方向改变,﹣a<﹣b,故正确.故选:B.2.【解答】解:∵不等式(a﹣5)x<1的解集是x>,∴a﹣5<0,∴a<5,故选:B.3.【解答】解:解不等式x﹣a≥0,得:x≥a,解不等式1﹣2x>x﹣2,得:x<1,∵不等式组无解,∴a≥1,故选:A.4.【解答】解:当x<﹣1时,x+b<kx﹣1,即不等式x+b<kx﹣1的解集为x<﹣1.故选:C.5.【解答】解:设B、C两种车分别租a辆、b辆.①当A型号租用0辆时,则有30a+10b=150,3a+b=15.又a,b是整数,则a=0,b=15或a=1,b=12或a=2,b=9或a=3,b=6或a=4,b=3或a=5,b=0.②当A型号租用1辆时,则有30a+10b=150﹣50,3a+b=10.又a,b是整数,则a=0,b=10或a=1,b=7或a=2,b=4或a=3,b=1.③当A型号租用2辆时,则有30a+10b=150﹣50×2,3a+b=5.又a,b是正整数,则a=0,b=5或a=1,b=2.综上所述,共有12种.故选:D.6.【解答】解:∵A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,∴1+2=3,﹣2+3=1;点B的坐标是(1,3).故选:B.7.【解答】解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.8.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选:B.9.【解答】解:在△RT ABF中,∵∠AFB=90°,AD=DB,DF=4,∴AB=2DF=8,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=4,==4.∴BF=故选:D.10.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.11.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.12.【解答】解:∵△ABE、△ADF是等边三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°﹣∠CDA)=300°﹣∠CDA,∠FDC=360°﹣∠FDA﹣∠ADC=300°﹣∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;在等边三角形ABE中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG ⊥AE不能求证,故④错误.故选:B.二、填空题(每小题4分,共24分)13.【解答】解:矩形的周长是2(x+10)cm,面积是10x cm2,根据题意,得,解不等式:2(x+10)<80,解得:x<30,解不等式:10x>100,解得:x>10,所以x的取值范围是:10<x<30.故答案为:10<x<30.14.【解答】解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.15.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.16.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.17.【解答】解:∵点A,B为定点,点M,N分别为P A,PB的中点,∴MN是△P AB的中位线,∴MN=AB,即线段MN的长度不变,故①符合题意,△S APC = AP •PC =7P A 、PB 的长度随点 P 的移动而变化,所以,△P AB 的周长会随点 P 的移动而变化,故②不符合题意;∵MN 的长度不变,点 P 到 MN 的距离等于 l 与 AB 的距离的一半,∴△PMN 的面积不变,故③符合题意;直线 MN ,AB 之间的距离不随点 P 的移动而变化,故④符合题意;∠APB 的大小点 P 的移动而变化,故⑤不符合题意.综上所述,不会随点 P 的移动而改变的是:①③④.故答案是:①③④.18.【解答】解:将△APB 绕点 A 按逆时针方向旋转 △60°,得到AP ′C ,∴△APP ′是等边三角形,∠AP ′C =∠APB =360°﹣90°﹣120°=150°,∴PP ′=AP ,∠AP ′P =∠APP ′=60°,∴∠PP ′C =90°,∠P ′PC =30°,∴PP ′= PC ,即 AP = PC ,∵∠APC =90°,∴AP 2+PC 2=AC 2,即( PC )2+PC 2=72,∴PC =2∴AP =,,∴故答案为 7.;三、解答题(共 7 题,78 分)19.【解答】解:两边都乘以 2(x +3),得:2(2﹣x )=x +3+2,解得:x =﹣ ,检验:当x=﹣时,2(x+3)=∴分式方程的解为x=﹣.20.【解答】解:≠0,,解①式,得x≥﹣1,解②式,得<2,∴原不等式组的解集为:﹣1≤x<2,将解集表示在数轴上为:.21.【解答】解:∵+=∴=,,则原式===.22.【解答】解:(1)∵a+b=2,ab=2,∴原式=ab(a2+2ab+b2)=ab(a+b)2=2×22=8;(2)原式=4x2﹣y2﹣4y2+x2=5x2﹣5y2,当x=2,y=1时,原式=20﹣5=15.23.【解答】解:(1)如图,由旋转知,旋转角为∠ABC=90°,∴△ABP以点B为旋转中心最少旋转了90度;(2)连接PG,由旋转知,BP=BG,∠PBG=∠ABC=90°,∵BP=2,∴BG=BP=2,∴PG=BP=2;(3)由旋转知,CG=AP=1,由(2)知,PG=2,∵PC=3,∴PG2+CG2=8+1=9,PC2=9,P Q∴PG 2+CG 2=PC 2,∴△PCG 是直角三角形;(4)由(2)知,BP =BG ,∠PBG =90°,∴∠BGP =45°,由(△3)知, PCG 是直角三角形,∴∠PGC =90°,∴∠BGC =∠BGP +∠PGC =135°.24.【解答】解:(1)设超市购进水果 P 千克,每千克 Q 元,则购进大水果用去 PQ 元,但在售出时,水果只剩下 (1﹣5%)千克,而每千克的售价为 (1+5%)元,于是售出后可得款 P (1﹣5%)•Q (1+5%)=PQ[1﹣(5%)2](元),∵0<5%<1,∴0<(5%)2<1 或 0<1﹣(5%)2<1,∴PQ[1﹣(5%)2]<PQ ,这就是说超市要亏本;(2)设水果售价应提高 x%,则有 P (1﹣5%)•Q (1+x%)≥PQ (1+20%),即(1﹣5%)(1+x%)≥1+20%,即 1+x%≥B∴x%≥≈26.3%.答:售价最低应提高约 26.3%.25.【解答】(1)证明:∵D 、E 分别是 AB ,AC 中点,∴DE ∥BC ,DE = BC ,∵CF = BC ,∴DE =CF ,∴四边形 CDEF 是平行四边形,(2)解:∵四边形 DEFC 是平行四边形,∴DC =EF ,∵D 为 AB 的中点,等边△ABC 的边长是 2,∴AD =BD =1,CD ⊥AB ,BC =2,∴DC =EF = = ,∴四边形 BDEF 的周长是 1+1+2+1+过点 D 作 DH ⊥BC 于 H .=5+ .∵∠DHC =90°,∠DCB =30°,∴DH = DC =∵DE =CF =1,,∴S 四边形DEF = •(DE +BF )•DH = .26.【解答】解:(1)依题意得,整理得,3000(m ﹣20)=2400m ,解得 m =100,经检验,m =100 是原分式方程的解,= ,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.27.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵△Rt ABH中,BH=∴△S ABE=AE×BH=×4×==,;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰△Rt CNG中,NG=NC,∴GC=∴BE=NG=GC,ME=BE,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省济南市章丘市八年级(下)期末数学试卷(考试时间:120分满分:150分)一、选择题(共12小题,每小题4分,共48分)1.(4分)若a>b,则下列不等式中,不成立的是()A.a﹣3>b﹣3 B.﹣3a>﹣3b C.>D.﹣a<﹣b2.(4分)若不等式(a﹣5)x<1的解集是x>,则a的取值范围是()A.a>5 B.a<5 C.a≠5 D.以上都不对3.(4分)若不等式组无解,则实数a的取值范围是()A.a≥1 B.a<﹣1 C.a<1 D.a≤﹣14.(4分)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b<kx ﹣1的解集在数轴上表示正确的是()A.B.C.D.5.(4分)现有球迷150人欲租用客车去观看足球赛,有A,B,C三种型号客车若干可供租用,载客量分别为50人,30人,10人,要求租用的车辆,每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.10种D.12种6.(4分)把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)7.(4分)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣258.(4分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形9.(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.410.(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.1411.(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°12.(4分)如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G 在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二、填空题(每小题4分,共24分)13.(4分)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.14.(4分)已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.15.(4分)若分式方程:有增根,则k=.16.(4分)a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).17.(4分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中不会随点P的移动而改变的是(填序号)18.(4分)如图,在等边△ABC中,AC=7,点P在△ABC内部,且∠APC=90°,∠BPC=120°,直接写出△APC的面积为.三、解答题(共7题,78分)19.(6分)解分式方程:=+.20.(6分)解不等式组:,并将解集在数轴上表示出来.21.(6分)已知+=(a≠b),求﹣的值.22.(8分)先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值;(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.23.(8分)如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.(1)请画出旋转后的图形,说出此时△ABP以点B为旋转中心最少旋转了多少度;(2)求出PG的长度;(3)请你猜想△PGC的形状,并说明理由;(4)请你计算∠BGC的角度.24.(10分)某大型超市从生产基地购进一批水果,运输过程中质量损失5%,假设不计超市其他费用.(1)如果超市在进价的基础上提高5%作为售价,那么请你通过计算说明超市是否亏本;(2)如果超市至少要获得20%的利润,那么这种水果的售价最低应提高百分之几?(结果精确到0.1%)25.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形CDEF是平行四边形;(2)求四边形BDEF的周长和面积.26.(12分)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?27.(12分)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.2017-2018学年山东省济南市章丘市八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,共48分)1.(4分)若a>b,则下列不等式中,不成立的是()A.a﹣3>b﹣3 B.﹣3a>﹣3b C.>D.﹣a<﹣b【分析】根据不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变等来判断.【解答】解:A、a﹣3>b﹣3成立,故正确;B、同理,﹣3a>﹣3b,错误;C、不等式两边乘(或除以)同一个正数,不等号的方向不变>成立,故正确;D、不等式两边乘(或除以)同一个负数,不等号的方向改变,﹣a<﹣b,故正确.故选:B.【点评】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.(4分)若不等式(a﹣5)x<1的解集是x>,则a的取值范围是()A.a>5 B.a<5 C.a≠5 D.以上都不对【分析】根据不等式(a﹣5)x<1的解集是x>,得出关于a的不等式,求出a的取值范围即可.【解答】解:∵不等式(a﹣5)x<1的解集是x>,∴a﹣5<0,∴a<5,故选:B.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.3.(4分)若不等式组无解,则实数a的取值范围是()A.a≥1 B.a<﹣1 C.a<1 D.a≤﹣1【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.【解答】解:解不等式x﹣a≥0,得:x≥a,解不等式1﹣2x>x﹣2,得:x<1,∵不等式组无解,∴a≥1,故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(4分)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b<kx ﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】观察函数图象得到当x<﹣1时,函数y=x+b的图象都在y=kx﹣1的图象下方,所以不等式x+b <kx﹣1的解集为x<﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【解答】解:当x<﹣1时,x+b<kx﹣1,即不等式x+b<kx﹣1的解集为x<﹣1.故选:C.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.(4分)现有球迷150人欲租用客车去观看足球赛,有A,B,C三种型号客车若干可供租用,载客量分别为50人,30人,10人,要求租用的车辆,每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.10种D.12种【分析】设B、C两种车分别租a辆、b辆.然后根据三种情况:A型号租0辆或1辆或2辆,列方程进行讨论.【解答】解:设B、C两种车分别租a辆、b辆.①当A型号租用0辆时,则有30a+10b=150,3a+b=15.又a,b是整数,则a=0,b=15或a=1,b=12或a=2,b=9或a=3,b=6或a=4,b=3或a=5,b=0.②当A型号租用1辆时,则有30a+10b=150﹣50,3a+b=10.又a,b是整数,则a=0,b=10或a=1,b=7或a=2,b=4或a=3,b=1.③当A型号租用2辆时,则有30a+10b=150﹣50×2,3a+b=5.又a,b是正整数,则a=0,b=5或a=1,b=2.综上所述,共有12种.故选:D.【点评】本题主要考查的是二元一次方程组的应用,分类讨论是解题的关键.6.(4分)把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)【分析】根据平移的基本性质,向上平移a,纵坐标加a,向右平移a,横坐标加a;【解答】解:∵A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,∴1+2=3,﹣2+3=1;点B的坐标是(1,3).故选:B.【点评】本题考查了平移的性质,①向右平移a个单位,坐标P(x,y)⇒P(x+a,y),①向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),①向上平移b个单位,坐标P(x,y)⇒P(x,y+b),①向下平移b 个单位,坐标P(x,y)⇒P(x,y﹣b).7.(4分)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣25【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.【解答】解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.【点评】此题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.8.(4分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选:B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.9.(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF =4,则BF的长为()A.4 B.8 C.2D.4【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4,∴AB=2DF=8,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=4,∴BF===4.故选:D.【点评】本题考查三角形中位线性质、含30度角的直角三角形性质、直角三角形斜边中线性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.10.(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.【点评】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.11.(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC =∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.12.(4分)如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G 在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④【分析】根据题意,结合图形,对选项一一求证,判定正确选项.【解答】解:∵△ABE、△ADF是等边三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°﹣∠CDA)=300°﹣∠CDA,∠FDC=360°﹣∠FDA﹣∠ADC=300°﹣∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG⊥AE不能求证,故④错误.故选:B.【点评】本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.二、填空题(每小题4分,共24分)13.(4分)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是10<x<30 .【分析】根据已知矩形的周长为2(x+10)cm,面积为10xcm2,列出不等式方程组即可解.【解答】解:矩形的周长是2(x+10)cm,面积是10xcm2,根据题意,得,解不等式:2(x+10)<80,解得:x<30,解不等式:10x>100,解得:x>10,所以x的取值范围是:10<x<30.故答案为:10<x<30.【点评】本题考查的是一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,根据周长<80cm,面积>100cm2列不等式组解答.14.(4分)已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是等边三角形.【分析】先把原式化为完全平方的形式再求解.【解答】解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故答案为:等边.【点评】此题考查因式分解的实际运用以及非负数的性质,利用完全平方公式因式分解是解决问题的关键.15.(4分)若分式方程:有增根,则k= 1 .【分析】把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.【点评】本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.16.(4分)a、b为实数,且ab=1,设P=,Q=,则P =Q(填“>”、“<”或“=”).【分析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【点评】解答此题关键是先把所求代数式化简再把已知代入即可.17.(4分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中不会随点P的移动而改变的是①③④(填序号)【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①符合题意,PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②不符合题意;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③符合题意;直线MN,AB之间的距离不随点P的移动而变化,故④符合题意;∠APB的大小点P的移动而变化,故⑤不符合题意.综上所述,不会随点P的移动而改变的是:①③④.故答案是:①③④.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.18.(4分)如图,在等边△ABC中,AC=7,点P在△ABC内部,且∠APC=90°,∠BPC=120°,直接写出△APC的面积为7.【分析】将△APB绕点A按逆时针方向旋转60°,得到△AP′C,只要证明∠PP′C=90°,利用勾股定理即可解决问题;【解答】解:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即(PC)2+PC2=72,∴PC=2,∴AP=,∴S△APC=AP•PC=7;故答案为7.【点评】本题考查全等三角形的判定和性质、等边三角形的性质和判定、勾股定理、三角形的面积等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.三、解答题(共7题,78分)19.(6分)解分式方程:=+.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:两边都乘以2(x+3),得:2(2﹣x)=x+3+2,解得:x=﹣,检验:当x=﹣时,2(x+3)=≠0,∴分式方程的解为x=﹣.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(6分)解不等式组:,并将解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:,解①式,得x≥﹣1,解②式,得<2,∴原不等式组的解集为:﹣1≤x<2,将解集表示在数轴上为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.21.(6分)已知+=(a≠b),求﹣的值.【分析】原式通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵+=,∴=,则原式===.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.(8分)先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值;(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.【分析】(1)原式变形后,将已知等式代入计算即可求出值;(2)原式利用平方差公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)∵a+b=2,ab=2,∴原式=ab(a2+2ab+b2)=ab(a+b)2=2×22=8;(2)原式=4x2﹣y2﹣4y2+x2=5x2﹣5y2,当x=2,y=1时,原式=20﹣5=15.【点评】此题考查了平方差公式,以及提公因式法与公式法的综合运用,熟练掌握公式及法则是解本题的关键.23.(8分)如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.(1)请画出旋转后的图形,说出此时△ABP以点B为旋转中心最少旋转了多少度;(2)求出PG的长度;(3)请你猜想△PGC的形状,并说明理由;(4)请你计算∠BGC的角度.【分析】(1)直接利用旋转的性质即可得出结论;(2)先判断出BP=BG,进而利用等腰直角三角形的性质即可得出结论;(3)利用勾股定理的逆定理即可得出结论;(4)先求出∠BGP=45°,再求出∠PGC=90°,即可得出结论.【解答】解:(1)如图,由旋转知,旋转角为∠ABC=90°,∴△ABP以点B为旋转中心最少旋转了90度;(2)连接PG,由旋转知,BP=BG,∠PBG=∠ABC=90°,∵BP=2,∴BG=BP=2,∴PG=BP=2;(3)由旋转知,CG=AP=1,由(2)知,PG=2,∵PC=3,∴PG2+CG2=8+1=9,PC2=9,∴PG2+CG2=PC2,∴△PCG是直角三角形;(4)由(2)知,BP=BG,∠PBG=90°,∴∠BGP=45°,由(3)知,△PCG是直角三角形,∴∠PGC=90°,∴∠BGC=∠BGP+∠PGC=135°.【点评】此题是四边形综合题,主要考查了旋转的性质,等腰直角三角形的性质,勾股定理及逆定理,求出PG是解本题的关键.24.(10分)某大型超市从生产基地购进一批水果,运输过程中质量损失5%,假设不计超市其他费用.(1)如果超市在进价的基础上提高5%作为售价,那么请你通过计算说明超市是否亏本;(2)如果超市至少要获得20%的利润,那么这种水果的售价最低应提高百分之几?(结果精确到0.1%)【分析】(1)因为题目中缺少质量和进价,所以可设出这两个未知数.求出总进价和总售价,让总售价﹣总进价看是正数还是负数,是正数,不亏缺;是负数,亏钱.(2)根据关系式:售价≥进价×(1+20%)进行计算即可.【解答】解:(1)设超市购进水果P千克,每千克Q元,则购进大水果用去PQ元,但在售出时,水果只剩下P(1﹣5%)千克,而每千克的售价为Q(1+5%)元,于是售出后可得款P(1﹣5%)•Q(1+5%)=PQ[1﹣(5%)2](元),∵0<5%<1,∴0<(5%)2<1或0<1﹣(5%)2<1,∴PQ[1﹣(5%)2]<PQ,这就是说超市要亏本;(2)设水果售价应提高x%,则有P(1﹣5%)•Q(1+x%)≥PQ(1+20%),即(1﹣5%)(1+x%)≥1+20%,即1+x%≥∴x%≥≈26.3%.答:售价最低应提高约26.3%.【点评】本题考查了一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.25.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形CDEF是平行四边形;(2)求四边形BDEF的周长和面积.【分析】(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出四边形BDEF的周长.)过点D作DH⊥BC于H,求出CF、DH即可求出面积;【解答】(1)证明:∵D、E分别是AB,AC中点,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∴四边形CDEF是平行四边形,(2)解:∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF==,∴四边形BDEF的周长是1+1+2+1+=5+.过点D作DH⊥BC于H.∵∠DHC=90°,∠DCB=30°,∴DH=DC=,∵DE=CF=1,∴S四边形BDEF=•(DE+BF)•DH=.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.26.(12分)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋甲乙价格进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点评】本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论.27.(12分)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.【点评】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论。