专题带电粒子在匀强电场中的运动典型例题
高中物理带电粒子在电场中的运动典型例题解析
带电粒子在电场中的运动专题练习1.一个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图,AB 与电场线夹角θ=30°,已知带电微粒的质量m =1.0×10-7kg ,电量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2,结果保留二位有效数字)求: (1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向?(3)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少?2.一个带电荷量为-q 的油滴,从O 点以速度v 射入匀强电场中,v 的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨迹的最高点时,它的速度大小又为v ,求:(1) 最高点的位置可能在O 点的哪一方? (2) 电场强度 E 为多少?(3) 最高点处(设为N )与O 点的电势差U NO 为多少? 3. 如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m ,两板间距离 d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为 m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F .求(1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度v 0应为多少?(2) 以上述速度入射的带电粒子,最多能有多少落到下极板上?4.如图所示,在竖直平面内建立xOy 直角坐标系,Oy 表示竖直向上的方向。
已知该平面内存在沿x 轴负方向的区域足够大的匀强电场,现有一个带电量为2.5×10-4C 的小球从坐标原点O 沿y 轴正方向以0.4kg.m/s 的初动量竖直向上抛出,它到达的最高点位置为图中的Q 点,不计空气阻力,g 取10m/s 2. (1)指出小球带何种电荷; (2)求匀强电场的电场强度大小; (3)求小球从O 点抛出到落回x 轴的过程中电势能的改变量.5、如图所示,一对竖直放置的平行金属板A 、B 构成电容器,电容为C 。
专题:带电粒子在匀强电场中的运动教案+练习
一、教学目标1. 让学生掌握带电粒子在匀强电场中的运动规律。
2. 培养学生运用物理知识解决实际问题的能力。
3. 引导学生运用数学方法分析物理问题。
二、教学内容1. 带电粒子在匀强电场中的运动规律。
2. 带电粒子在匀强电场中的速度与电势关系。
3. 带电粒子在匀强电场中的动能与电势能转化。
4. 带电粒子在匀强电场中的运动轨迹。
5. 带电粒子在匀强电场中的受力分析。
三、教学重点与难点1. 教学重点:带电粒子在匀强电场中的运动规律,速度与电势关系,动能与电势能转化。
2. 教学难点:带电粒子在匀强电场中的运动轨迹,受力分析。
四、教学方法1. 采用讲授法,讲解带电粒子在匀强电场中的运动规律、速度与电势关系、动能与电势能转化等知识点。
2. 利用多媒体展示带电粒子在匀强电场中的运动轨迹,帮助学生直观理解。
3. 引导学生进行受力分析,培养学生的分析能力。
4. 设置练习题,巩固所学知识。
五、教学过程1. 引入:通过回顾初中阶段学习的带电粒子在电场中的基本概念,引导学生进入本节课的学习。
2. 讲解:讲解带电粒子在匀强电场中的运动规律,速度与电势关系,动能与电势能转化。
3. 演示:利用多媒体展示带电粒子在匀强电场中的运动轨迹,让学生直观理解。
4. 分析:引导学生进行受力分析,培养学生运用物理知识解决实际问题的能力。
5. 练习:布置练习题,让学生运用所学知识解决问题,巩固知识点。
6. 小结:总结本节课的主要内容,强调重点和难点。
7. 作业:布置作业,让学生进一步巩固所学知识。
六、教学练习(练习一)题目:一个带电粒子在匀强电场中运动,电荷量q=5×10^-6 C,质量m=2×10^-3 kg,电场强度E=20 N/C,重力加速度g=9.8 m/s^2。
求:1. 粒子在电场中的受力大小。
2. 粒子的加速度。
3. 粒子从静止开始运动2秒后的速度。
4. 粒子在电场中运动一周的周期。
七、教学练习(练习二)题目:一个带电粒子在匀强电场中运动,电荷量q=10^-6 C,质量m=1×10^-3 kg,电场强度E=5 N/C。
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1. 如图所示,在平行板电容器之间有匀强电场,一带电粒子(重力不计)以速度v 0垂直电场线射人电场,经过时间t l 穿越电场,粒子的动能由E k 增加到2E k ; 若这个带电粒子以速度32 v 0 垂直进人该电场,经过时间t 2穿越电场。
求:( l )带电粒子两次穿越电场的时间之比t 1:t 2; ( 2 )带电粒子第二次穿出电场时的动能。
2.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求: ⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离.解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动. ⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU m eE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为:112mdv l eU at v y == 电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移v 0图 5dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 3. 在真空中存在空间范围足够大的、水平向右的匀强电场.若将一个质量为m 、带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直方向夹角为︒37的直线运动。
专题_电容器、带电粒子在匀强电场中的运动典型例题
专题:电容器专题训练1.平行板电容器所带的电荷量为Q=4×10-8C,电容器两板间的电压为U=2V,则该电容器的电容为;如果将其放电,使其所带电荷量为原来的一半,则两板间的电压为,两板间电场强度变为原来的倍,此时平行板电容器的电容为。
2.对于给定的电容器,描述其电容C、电量Q、电压U之间相应关系的图应是图1中的[ ]3.关于电容器和电容的概念下列说法正确的是[ ]A.任何两个彼此绝缘又互相靠近的导体都可以看成是一个电容器B.用电源对平板电容器充电后,两极板一定带有等量异种电荷C.某一电容器带电量越多,它的电容量就越大D.某一电容器两板间的电压越高,它的电容就越大4.电容是表征_______的物理量,如果某电容器的电量每增加10-6C,两板之间的电势差就加1V,则该电容器的电容为_____.5.如图4所示,用静电计测量电容器两板间的电势差,不改变两板的带电量,把A板向右移,静电计指针偏角将_______;把A板竖直向下移,静电计指针偏角将______;把AB板间插入一块电介质,静电计指针偏角将__________.6.图5为电容器C与电压U的电源连接成的电路.当电键K与1接通,电容器A板带____电,B板带____电,这一过程称电容器的____.电路稳定后,两板间的电势差为____.当K与2接通,流过导体acb的电流方向为____,这就是电容器的____ 过程.7.一个电容器当带电量为Q时,板间电势差为U,当它的电量减少3×10-6C时,板间电势差降低2×102V,此电容器的电容为________μF.专题: 带电粒子在匀强电场中的运动典型例题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
高中物理【带电粒子在电场中的运动】专题训练1
高中物理【带电粒子在电场中的运动】专题训练1[A 组 基础达标练]1.如图所示,两平行的带电金属板水平放置。
若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态。
现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A .保持静止状态B .向左上方做匀加速运动C .向正下方做匀加速运动D .向左下方做匀加速运动解析:两平行金属板水平放置时,带电微粒静止,则mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,静电力方向也逆时针旋转45°,但大小不变,此时静电力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确。
答案:D2.如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中的O 点自由释放后,分别抵达B 、C 两点。
若AB =BC ,则它们带电荷量之比q 1∶q 2等于( )A .1∶2B .2∶1C .1∶ 2D.2∶1解析:竖直方向有h =12gt 2,水平方向有l =qE 2m t 2,联立可得q =mgl Eh ,所以有q 1q 2=21,B正确。
答案:B3.在电场强度大小为E 的匀强电场中,将一个质量为m 、电荷量为q 的带电小球由静止开始释放,带电小球沿与竖直方向成θ角的方向做直线运动。
关于带电小球的电势能和机械能的判断,正确的是( )A .若sin θ<qEmg,则电势能一定减少,机械能一定增加B .若sin θ=qEmg ,则电势能、机械能一定不变C .若sin θ=qEmg ,则电势能一定增加,机械能一定减少D .若tan θ=qEmg,则电势能可能增加,机械能一定增加解析:若sin θ<qEmg ,静电力可能做正功,也可能做负功,所以电势能可能减少也可能增加,机械能可能增加也可能减少,A 项错误;若sin θ=qEmg ,则静电力与速度方向垂直,静电力不做功,电势能、机械能一定不变,B 项正确,C 项错误;若tan θ=qEmg ,则静电力沿水平方向,静电力和重力的合力与速度方向同向,静电力做正功,电势能一定减少,机械能一定增加,故D 项错误。
带电粒子在匀强电场中的运动习题课(含答案)
带电粒子在匀强电场中的运动习题课1.如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,极板长L=0.1m,两板间距离d=0.4cm.有一束由相同粒子组成的带电粒子流从两板中央平行于板射入,由于重力作用,粒子能落到下板上.已知粒子质量为m=2×10-6 kg,电荷量q=1×10-8 C,电容器的电容C=10-6 F.求:(1)为使第一个粒子能落在下板中点O到紧靠边缘的B点之间,粒子入射速度v0应为多大?(2)以上述速度入射的带电粒子,最多能有多少个落到下极板上?(g取10m/s2)(1)第一个粒子在极板间做平抛运动,即水平位移:x=v0t①2. 如图所示,在O点处放置一个正电荷。
在过O点的竖直平面内的A点,自由释放一个带正电的小球,小球的质量为m、电荷量为q。
小球落下的轨迹如图中虚线所示,它与以O为圆心、R为半径的圆(图中实线表示)相交于B、C两点,O、C在同一水平线上,∠BOC = 30°,A距离OC的竖直高度为h。
若小球通过B点的速度为v求小球由A至B的过程中损失的机械能B到OC的垂直距离为R/2,AB之间的竖直距离为h-R/2AB过程使用动能定理有:W电+WG=mv^2/2W电+mg(h-R/2)=mv^2/2W电=mv^2/2 -mg(h-R/2)取B点重力势能为零,则A点机械能EA=mg(h-R/2)B点机械能为EB=mv^2/2ΔE=EA-EB=mg(h-R/2)-mv^2/2 =-W电也就是说小球从A到B过程中机械能损失为mg(h-R/2)-mv^2/2 ,而且知道电场力做的功为mv^2/2 -mg(h-R/2)沿垂直场强方向射入两平行金属板中间的匀强电场中.现增3..A电子以初速度v大两板间的电压,但仍使电子能够穿过平行板间,则电子穿越平行板所需要的时间( D)A.随电压的增大而减小B.随电压的增大而增大C.若加大两板间距离,时间将减小D.与电压及两板间距离均无关4.带电粒子垂直进入匀强电场中发生偏转时(除电场力外不计其他力的作用)(B)A.电势能增加,动能增加B.电势能减小,动能增加C.动能和电势能都不变D.上述结论都不正确5.氢的三种同位素氕、氘、氚的原子核分别为它们以相同的初动能垂直进人同一匀强电场,离开电场时,末动能最大的是( D)A.氕核B.氘核C.氚核D.一样大6. 质子和氮核从静止开始经相同电压加速后,又垂直于电场方向进入同一匀强电场,离开偏转电场时,它们横向偏移量之比和在偏转电场中运动的时间之比分别为( B)A.2:1, 根号2:1B.1:1, 1:根号2C.1:2,2:1D.1:4,1:27.a、b、c三个а粒子由同一点垂直电场方向进入偏转电场,其轨迹如图所示,其中b恰好飞出电场.由此可以肯定( ACD )A.在b飞离电场的同时,а刚好打在负极板上B.b和c同时飞离电场C.进入电场时,c的速度最大,a的速度最小D.动能的增量,c的最小,a 和b的一样大8.—个初动能为EK的带电粒子,垂直电场线方向飞人带电的平行板电容器,飞出时带电粒子动能为飞入时动能的2倍.如果使粒子的初速度为原来的2倍,那么当它飞出电容器的时刻,动能为( B)A.4EK B.4.25EKC.5EKD.8EK9.质子、氘核和氦核从静止开始经相同电压加速后,从同一点垂直进人同一匀强电场关于它们在匀强电场中的运动,下列说法中正确的是( A)A.质子、氘核和а粒子的轨迹相同B.有两条轨迹.其中质子和氘核轨迹相同C.有两条轨迹,其中氘核和а粒子轨迹相同D.三者的轨迹各不相同10.5、如图所示,绝缘细线系一带有负电的小球,小球在竖直向下的匀强电场中,做竖直面内的圆周运动,以下说法正确的是( CD)A.当小球到达最高点时,线的张力一定最小B.当小球到达最低点时,小球的速度一定最大C.当小球到达最高点时,小球的电势能一定最小D.小球在最高点机械能最大11. 真空中有一带电粒子,其质量为m,带电荷量为q,以初速度v0从A点竖直向上射入水平方向的匀强电场,如图所示.粒子在电场中到达B点时,速度方向变为水平向右,大小为2V0,则该匀强电场的场强E=______,A、B两点间电势差U AB=______答案:(1)由于在A点时受到重力和电场力的作用,合力斜向下,则做类斜抛运动到B点时竖直速度为0E=2mg/q(2)由A到B由动能定理有-mgh+qU=1/2m(2v0)^2-1/2mv0^2又由上小题可知mgh=1/2mv0^2qU=1/2m(2v0)^2解得U=2mv0^2/q12.如图所示,电子电荷量为-e,以v0的速度,沿与电场强度E垂直的方向从A点飞入匀强电场,并从另一端B沿与场强E成150°角飞出则A、B两点间的电势差为______.答案:电子受电场力F=eE,则加速度为a=F/m=eE/m,方向与场强E方法相反。
高中物理带电粒子在电场中的运动题20套(带答案)及解析
高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
专题-带电粒子在匀强电场中的运动典型例题
静止状态,细绳与竖起方向的夹角为θ,如图所示,该粒子带正电还是负,则其电荷量为多少?,剪断细绳,小球做什么运动?到达负极板的速度现有质量为m ,带电量为+q 的小球在B 板下方距离为H 处,以初速度V0竖直向上从B 板小孔进入板间电场,欲使小球刚好打到A 板,A 、B 间电势差U AB 应为多少?
变式训练:带电粒子所带的电量为q ,质量为m ,板间电势差为U ,板距为d ,板长为L ,电荷由正极板边缘A 点静止释放,粒子沿直线AB 运动到负极板,试问粒子带什么电?做什么运动?粒子到达负极板的速度为多大?时间为多少?
二、带电粒子在电场中的偏转(垂直于场射入)【例4】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将
做匀变速曲线运动,如图所示,若不计粒子重力,则可求出如下相关量:
分析方法:(1)粒子穿越电场的时间t :(2)粒子离开电场时的速度v (3)粒子离开电场时的侧移距离y :(4)粒子离开电场时的偏角 :
(5)速度方向的反向延长线必过偏转电场的中点
带电粒子在匀强电场中的偏转
(1)研究条件:带电粒子垂直于电场方
向进入匀强电场。
(2)处理方法:类似于平抛运动,应用
运动的合成与分解的方法。
①沿初速度方向做匀速直线运动,运动时间t =
l v 0。
②沿电场方向,做初速度为零的匀加速直线运动。
U0
U 0123t/s U/V
4。
带电粒子在匀强电场中的运动练习题
外对市爱戴阳光实验学校带电粒子在匀强电场中的运动(1)·自学阶梯评估知识掌握1.如图14-111所示,E发射的电子初速度为零,两电源的电压分别为45V、30V,A、B两板上有小孔O A、O B,那么电子经过O A、O B以及到C板的动能分别为:E kA=________eV,E kB=________eV, E kC=________eV.2.在匀强电场中,有两个质量分别为m和M,带电量分别为q和Q 的粒子,从静止开始沿电场方向通过相同的距离,那么两者的动能之比为[ ]A.M/mB.m/MC.Q/qD.q/Q3.一电子由静止开始从A板向B运动.如图14-112所示,当到达B板时速度为v,保持两板间电压不变,那么[ ]A.当增大两板间距离时,v也增大B.当减小两板间距离时,v增大C.当改变两板间距离时,v不变D.当增大两板间距离时,电子在两板间运动的时间增大4.静止的电子在匀强电场中的A、B两点间加速,电子从A到B的时间t和到B点时动量p与A、B两点间电压U的关系正确的选项是(A、B 两点距离一)[ ]5.如图14-113所示,A、B为在真空中的相距为5cm的一对平行金属板,两板间的电压为500V,一个电子以107m/s的速度从A板的小孔与板面垂直地射入电场中,那么:(1)电子从B板的小孔射出时的速度是多大?电子飞越该电场需要多长时间.(2)如果要使进入电场的电子不能从B板的小孔射出,该怎么办?两板间的电压该多大?6.如图14-114所示,两块相互平行的金属板水平放置,两板间的距离为d,电势差为U,在两板之间有一质量为m的带电油滴,其电量为q,两板间为真空.那么:(1)假设油滴恰好处于静止状态,它是带何种电荷?(2)保持电势差U不变,将两板的距离拉大或缩小,油滴还能保持平衡吗?如果不能,将做什么运动.能力提高7.如图14-115所示,在电场中,一个负电荷从C点分别沿直线移到A点和B点,在这两种过程中,均需克服电场力做功,且做功的值相同,有可能满足这种做功的电场是[ ]A.正y方向的匀强电场B.正x方向的匀强电场C.在第Ⅰ象限内有负点电荷D.在第Ⅳ象限内有负点电荷8.在相距1cm的平行金属板M、N间,加上如图14-116所示的电场,在t=0时刻,N板电压比M板高,并有一质量为8×10-5kg,电量为-1.6×10-10C的微粒从M板的小孔无初速进入M、N间匀强电场中,重力不计.求:(1)微粒在M、N间做什么运动?(2)微粒打到N板需要多少时间?9.一电场中的势面是一族互相平行的平面,间隔均为d,各势面的电势如图14-117所示,现有一质量为m的带电小球,以速度v0射入电场,v0方向与水平方向成45°角斜向上,要使质点作直线运动,那么(1)小球带电量及带电性质;(2)在入射方向的最大位移是多大?10.一根对称的“∧〞型玻璃管置于竖直平面内,管所在的空间有竖直方向的匀强电场E,质量为m,带电量为+Q的小物体在管内从A点由静止开始运动,且与管壁的动摩擦因数为μ,管AB长为L,小球在B端与管作用没有能量损失,管与水平面夹角为θ,如图14-118,求:从A 开始,小物体运动的总路程是多少?(设qE>mg)延伸拓展11.来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流强度为1mA的细柱形质子流.质子电荷e=1.60×10-19C.这种质子流每秒打到靶上的质子数________.假分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距L和4L的两处,各取一段极短的相长度的质子流,其中的质子数分别为12.如图14-119所示,一面积较小的薄圆盘带负电,规盘心O处电势为零,一带负电的微粒质量为m,电量大小为q,将该微粒从O点正上方无限接近O处由静止释放,运动到A点时速度最大,运动到D点时速度为零,且OD=h,重力加速度为g,由上述条件,可求出以下哪些物理量的值[ ]A.微粒运动到A点时的速度B.圆盘所带负电荷形成的电场在A点的电场强度C.微粒到达D点时的加速度D.微粒在D点处的电势能参考答案1.45 45 15 2.D 3.CD 4.A 5.(1)1.66×107m/s 3.8×10-9s (2)将两板的极性颠倒×102V 6.(1)负电 (2)不能,匀加速直线运动 7.ACD 8.(1)匀加速,匀减速直线运动交替 (2)10s 9.(1)正,mgd/100 (2)U02/4g 10.Ltanθ/μ 11.5×1015 2 12.BD 带电粒子在匀强电场中的运动(2)·自学阶梯评估知识掌握1.质子和α粒子以相同的速度,进入同一个偏转电场,速度方向与电场方向垂直,离开电场时,其横向偏移量的比为:[ ]A.2∶1B.1∶2C.1∶1D.1∶42.质子和α粒子经过相同电压加速后,进入同一个偏转电场,且速度与电场方向垂直,当它们离开电场时,其横向偏移量之比为[ ]A.2∶1B.1∶1C.1∶2D.1∶43.在真空中有一个匀强电场,场强方向是水平向右的,一个带电量为+q,质量为m的液滴由静止开始在该电场中运动,液滴运动的轨迹为图14-128中的[ ]4.如图14-129,电子以速度v0沿着垂直于电场线的方向,飞入偏转板间的匀强电场,然后离开电场,电子离开电场时偏离原方向的距离是h,两平行板间的距离是d,电势差是U,板长是L,如果电子的速度增加到2v0,那么偏离原来方向的距离是[ ]A.4hB.h/2C.2hD.h/45.真空中有一束电子流,以初速度v0沿着与场强垂直的方向,自O 点进入匀强电场,如图14-130,以O点为坐标原点,x轴垂直于场强方向,y轴平行于场强方向,沿x轴取OA=AB=BC,再自A、B、C点作y 轴的平行线与电子流分别交于M、N、P点.那么:(1)AM∶BN∶CP=________(2)电子流经过M、N、P三点时,沿x轴的分速度之比为________;沿y轴的分速度之比为________.6.如图14-131,一个电子从平行板的中间飞入平行板内,板内为匀强电场,要使电子刚要离开电场时恰好击到极板的边缘,电子射入电场时的速度v0该多大?L=10cm,d=2.0cm,电源电压是90V.能力提高7.如图14-132所示为一示波管内部结构示意图:A、B为水平放置的电极,C、D为竖直放置的电极,为使阴极发射出的电子能打到荧光屏上的区域“Ⅱ〞,那么在A、B间加的电压U AB和C、D间加的电压U CD 该是[ ]A.U AB>0,U CD>0B.U AB>0,U CD<0C.U AB<0,U CD>0D.U AB<0,U CD<08.一个带电颗粒质量m=5×10-6kg,它以v0=20m/s的初速沿AB两平行带电金属板的中线入射,两板水平放置,当AB间所加电压为1000V 时,小颗粒恰好不发生偏转.如图14-133所示, AB间的距离d=4cm,板长L=10cm.求:(1)小颗粒所带电量.(2)要使小颗粒能飞离电场,U AB 的值在什么范围内?9.如图14-134所示,A、B、C、D为带电金属极板,长度均为L,A、B两板水平放置,相距为d,电压为U1,C、D两板竖直放置,相距也是d,电压为U2,今有一静止的电子经电压U0加速后,平行于金属板进入电场,当电子离开电场时,偏离多少距离?这时它的动能是多大?(假极板间的电场是匀强电场,并设电子未与极板相碰)10.如图14-135所示,质量为m,电量为q的带电粒子以速度v从A点竖直进入水平匀强电场,并从M板的小孔B水平飞出电场,最后落到与A同一高度的C点.AC的距离是AB竖直距离的倍.求:(1)匀强电场的场强E的大小;(2)带电粒子经B孔时的速度大小.延伸拓展11.如图14-136所示,相互平行的,彼此靠近的金属板AC、BD、HG、NM分别和变阻器上的触点a、b、h、f连接,孔O1正对C、H点,孔O2正对D、N点,一个电子以初速度v0=4×106m/s沿AC方向,从A点进入电场,恰好穿过O1和O2后,从M点离开电场,变阻器上ab、bh和hf的电压之比为1∶2∶3,金属板间的距离d1=2cm,d2=2d1,d3=3d1,电源的总电压U=182V,假设正对两板间为匀强电场.求:(1)电子从A点运动到M点的时间.(2)电子离开M点的动能.(3)四块金属板的总长度AC+BD+HG+NM.参考答案1.A 2.B 3.C 4.D 5.1∶4∶9 1∶1∶1 1∶2∶3 6.2.0×107m/s 7.C 8.(1)-2×10-9C (2)(3)0.24m带电粒子在匀强电场中的运动练习题一、选择题A.只适用于匀强电场中,v0=0的带电粒子被加速B.只适用于匀强电场中,粒子运动方向与场强方向平行的情况C.只适用于匀强电场中,粒子运动方向与场强方向垂直的情况D.适用于任何电场中,v0=0的带电粒子被加速2.如图1,P和Q为两平行金属板,板间电压为U,在P板附近有一电子由静止开始向Q板运动.关于电子到达Q板时的速率,以下说法正确的选项是 [ ]A.两板间距离越大,加速时间越长,获得的速率就越大B.两板间距离越小,加速度越大,获得的速率就越大C.与两板间距离无关,仅与加速电压U有关D.以上说法都不正确3.带电粒子以初速v0垂直电场方向进入平行金属板形成的匀强A.粒子在电场中作类似平抛的运动C.粒子飞过电场的时间,决于极板长和粒子进入电场时的初速度D.粒子偏移距离h,可用加在两极板上的电压控制4.带电粒子垂直进入匀强电场中偏转时〔除电场力外不计其它力的作用〕 [ ]A.电势能增加,动能增加B.电势能减小,动能增加C.电势能和动能都不变D.上述结论都不正确5.电子以初速度v0沿垂直场强方向射入两平行金属板中间的匀强电场中,现增大两板间的电压,但仍使电子能够穿过平行板间,那么电子穿越平行板所需要的时间 [ ]A.随电压的增大而减小B.随电压的增大而增大C.加大两板间距离,时间将减小D.与电压及两板间距离均无关6.如图2所示,从灯丝发出的电子经加速电场加速后,进入偏转电场,假设加速电压为U1,偏转电压为U2,要使电子在电场中的偏转量y 增大为原来的2倍,以下方法中正确的选项是 [ ]B.使U2增大为原来的2倍C.使偏转板的长度增大为原来2倍7.如图3所示,A、B、C、D是某匀强电场中的4个势面,一个质子和一个α粒子〔电荷量是质子的2倍,质量是质子的4倍〕同时在A势面从静止出发,向右运动,当到达D面时,以下说法正确的选项是 [ ] A.电场力做功之比为1∶2B.它们的动能之比为2∶1D.它们运动的时间之比为1∶18.真空中水平放置的两金属板相距为d,两板电压是可以调节的,一个质量为m、带电量为+q 的粒子,从负极板的小孔以速度A.使v0增大1倍B.使板间电压U减半C.使v0和U同时减半9.分别将带正电、负电和不带电的三个质量小球,分别以相同的水平速度由P点射入水平放置的平行金属板间,上板带负电,下板接地.三小球分别落在图4中A、B、C三点,那么 [ ]A.A带正电、B不带电、C带负电B.三小球在电场中加速度大小关系是:a A<a B<a CC.三小球在电场中运动时间相D.三小球到达下板时的动能关系是E kC>E kB>E kA10.如5所示,带电粒子以平行极板的速度从左侧飞入匀强电场,恰能从右侧擦极板边缘飞出电场〔重力不计〕,假设粒子的初动能变为原来的2倍,还要使粒子保持擦极板边缘飞出,可采用的方法是 [ ] A.将极板的长度变为原来的2倍C.将两板之间的电势差变为原来的2倍D.上述方法都不行二、填空题11.如图6所示,B板电势为U,质量为m的带电粒子〔重量不计〕以初速v0水平射入电场.假设粒子带-q电量,那么粒子到达B板时速度大小为______;假设粒子带+q电量,它到达B板时速度大小为______.12.电子电量为e,质量为m,以速度v0沿着电场线射入场强为E的匀强电场中,如图7所示,电子从A点入射到达B点速度为零,那么AB 两点的电势差为______;AB间的距离为______.13.电子垂直场强方向进入匀强电场,初速为v0,如图8所示,电子离开电场时偏离原来方向h距离.假设使两极板间电压变为原来的2倍,那么电子离开电场时偏离原来方向的距离为_______.14.如图9,真空中有一束电子流以一的速度v0沿与场强垂直的方向,自O点进入匀强电场,以O点为坐标原点,x、y轴分别垂直于、平行于电场方向.假设沿x轴取OA=AB=BC,分别自A、B、C作与y轴平行的线与电子流的径迹交于M、N、P,那么电子流经M、N、P三点时,沿y轴方向的位移之比y1∶y2∶y3=_____;在M、N、P三点电子束的即时速度与x轴夹角的正切值之比tgθ1∶tgθ2∶tgθ3=_______;在OM、MN、NP这三段过程中,电子动能的增量之比△E k1∶△E k2∶△E k3=_______.15.如图10,两带电粒子P1、P2先后以相同的初速度v从带电的平行金属板A、B央O点垂直于电场线进入匀强电场,偏转后分别打在A板上的C点和D点.AC=CD,P1带电量是P2的3倍,那么P1、P2的质量比为___________.16.两金属板间距离为4×10-2m,所加电压为100V.现有一个具有一速度的电子沿垂直于电场方向飞入,离开电场时,侧向位移为×10-2m,那么电子经过电场加速后的动能增量为_________eV.17.一个质量为m、电量为q的带电粒子〔不计重力〕,以平行于电场的初速v0射入匀强电场.经过t秒时间,带电粒子具有的电势能与刚射入到电场时具有的电势能相同,那么此匀强电场的场强E=_______,带电粒子在电场中所通过的路程是________.18.如图11所示,电子的电量为e,质量为m,以v0的速度沿与场强垂直的方向从A点飞入匀强电场,并从另一侧B点沿与场强方向成150°角飞出.那么A、B两点间的电势差为________.三、计算题19.如图12所示,AB板间有一匀强电场,两板间距为d,所加电压为U,有一带电油滴以初速v竖直向上自M点飞入电场,到达N点时,速度方向恰好变为水平,大小于初速v,试求:〔1〕油滴从M点到N点的时间.〔2〕MN两点间的电势差.20.如图13所示,一个半径为R的绝缘光滑半圆环,竖直放在场强为E的匀强电场中,电场方向竖直向下.在环壁边缘处有一质量为m,带有正电荷q的小球,由静止开始下滑,求小球经过最低点时对环底的压力.答案一、选择题1.D2.C3.ACD4.B5.D6.ABD7.AC8.B9.ABD10.C二、填空题13.2h14.1∶4∶9,1∶2∶3,1∶3∶515.3∶416.3017.2mv0/qt,v0t/2三、计算题19.v/g,Uv2/2gd 20.3〔mg+qE〕。
高中物理带电粒子在电场中的运动题20套(带答案)
高中物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .2.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.3.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
专题带电粒子在匀强电场中的运动典型例题
带电粒子在匀强电场中运动的典型例题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以电压U 。
在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由静止开始从正极板向负极板运动,到达负极板的速度为多大?【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?二、带电粒子在电场中的偏转(垂直于场射入) ⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动. ⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解). 02102v tat t 垂直于电场方向匀速运动:x=沿着电场方向作初速为的匀加速:y=两个分运动联系的桥梁:时间相等 设粒子带电量为q ,质量为m ,如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d .则场强U E d=, 加速度qE qU a m md, 通过偏转极板的时间:0L t v 侧移量:y 222201242LU qUL at dU mdv 偏加 偏转角:0tan at v 202LU qUL dU mdv 偏加 (U 偏、U加分别表示加速电场电压和偏转电场电压)带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2L y .粒子可看作是从两板间的中点沿直线射出的。
M N q U M N q U v 0 v 图6-4-3【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速曲线运动,如图所示,若不计粒子重力,则可求出如下相关量: (1)粒子穿越电场的时间t :(2)粒子离开电场时的速度v (3)粒子离开电场时的侧移距离y : (4)粒子离开电场时的偏角ϕ: (5)速度方向的反向延长线必过偏转电场的中点。
带电粒子在匀强电场中的运动 专题训练
带电粒子在匀强电场中的运动专题训练一、选择题1、如图所示,质子()和α粒子()以相同的初动能垂直射入偏转电场(粒子不计重力),则这两个粒子射出电场时的侧位移y之比为A.1∶1 B.1∶2 C. 2∶1 D.1∶42、如图所示为示波管的示意图,以屏幕的中心为坐标原点,建立如图所示的直角坐标系xoy,当在XX′这对电极上加上恒定的电压U=2V,同时在YY′电极XX′=﹣1V时,上加上恒定的电压UYY′荧光屏上光点的坐标为(4,﹣1),则当在XX′这对电极上加上恒定=1V,同时在YY′电极的电压UXX′上加上恒定的电压U=4V时,荧YY′光屏上光点的坐标为( )A.(2,4) B.(2,﹣2)C.(4,﹣2) D.(4,2)3、如图所示,一个带负电的油滴以初速度v从P点斜向上射入水平方向的匀强电场,若油滴到达最高点的速度,则油滴最高点的位置()大小仍为 vA、在P点的左上方B、在P点的右上方C、在P点的正上方D、上述情况都可能4、三个不计重力的完全相同的带正电荷的粒子在同一地点沿同一方向水平飞入两水平板间的偏离电场,出现了如图所示的轨迹,则下列叙述错误的是()A.在b飞离电场的同时,a刚好打在下极板上B.b和c同时飞离电场C.进入电场时c的速度最大,a的速度最小D.动能的增加值c最小,a和b一样大5、一匀强电场的电场强度E随时间t变化的图像如图所示,在该匀强电场中,有一个带电粒子于t=0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是A.带电粒子只向一个方向运动B.0~2s内,电场力所做的功等于零C.4s末带电粒子回到原出发点D.2.5~4s内,速度的改变等于零6、如图所示装置,从A板释放的一个无初速电子向B板方向运动,下列对电子的描述中错误的是( )A.电子到达B板时的动能是eUB.电子从B板到C板时动能变化为零C.电子到达D板时动能是3eUD.电子在A板和D板之间往复运动二、多项选择7、如图所示,两块水平放置的带电平行金属板间有竖直向上的匀强电场.一个质进入电场,并在电场中沿直线运动了一段量为m、带电量为q的油滴以初速度v时间,空气阻力不计,则A.该油滴带正电B.在这段时间内电场力所做的功等于油滴重力势能的变化量C.在这段时间内油滴的机械能保持不变D.在这段时间内油滴的动能保持不变,水平放置的一对平8、如图所示,竖直放置的一对平行金属板间的电势差为U1行金属板间的电势差为U.一电子由静止开始经U1加速后,进入水平放置的金属2板间,刚好从下板边缘射出.不计电子重力,下列说法正确的是,电子一定打在金属板上A.增大U1B.减小U,电子一定打在金属板上,电子一定能从水平金属板间射出C.减小U2D.增大U,电子一定能从水平金属板间射出29、如图所示,A板发出的电子经加速后,沿水平方向射入水平放置的两平行金属板间,金属板间所加的电压为U,电子最终打在荧光屏P上,关于电子的运动,则下列说法中正确的是( )A.当滑动触头向右移动时,其他不变,则电子打在荧光屏上的位置上升B.当滑动触头向左移动时,其他不变,则电子打在荧光屏上的位置上升C.水平金属板电压U增大时,其他不变,则电子打在荧光屏上的速度大小不变D.水平金属板电压U增大时,其他不变,则电子从发出到打在荧光屏上的时间不变10、如图所示,空间中存在倾斜向上的匀强电场,图中水平直线是某一个带电质点的运动轨迹,a、b是它轨迹上的两点。
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动是中学物理中的重要知识点,以下是一些经典例题:
1. 一个质量为 m、带电量为 q 的粒子在匀强电场中由 A 点运动到 B 点,电场强度为 E,时间为 t,则粒子在 AB 之间的平均速度为多大?
答案:v 平均 = (E*t)/m
2. 一个带电粒子在电场中从静止开始运动,到达电场极板后速度变为 v,则粒子在电场中的加速度为多大?
答案:a = (F - E*v/m)/qE
3. 一个带电粒子在电场中沿着一条直线运动,电场方向与粒子运动方向垂直,粒子在电场中的加速度为 a,电场强度为 E,则粒子的最大速度为多大?
答案:vmax = sqrt(2*a*E)
4. 一个带电粒子在匀强电场中的运动轨迹为一条抛物线,粒子的质量为 m,带电量为 q,则粒子在电场中的电场力做的功为多大?
答案:W = q*E*t
5. 一个带电粒子在磁场中做圆周运动,磁场强度为 B,粒子的质量为 m,带电量为 q,则粒子在磁场中的半径为多大?
答案:r = m*sqrt(B^2/4*q^2)
6. 一个带电粒子在磁场中沿着一条直线运动,磁场方向与粒子运动方向垂直,粒子在磁场中的加速度为 a,磁场强度为 B,则粒子
的最大速度为多大?
答案:vmax = sqrt(2*a*B)
这些例题都是带电粒子在电场中的运动的典型例子,涉及到运动的描述、加速度的计算、能量守恒、电磁感应等问题,是中学物理中非常重要的知识点。
【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析
【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析⼀、⾼考物理精讲专题带电粒⼦在电场中的运动1.如图甲所⽰,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续⽆初速地释放质量为m 、电荷量为+q 的粒⼦,经电场加速后,沿极板C 、D 的中⼼线射向荧光屏(荧光屏⾜够⼤且与中⼼线垂直),当C 、D 板间未加电压时,粒⼦通过两板间的时间为t 0;当C 、D 板间加上图⼄所⽰电压(图中电压U 1已知)时,粒⼦均能从C 、D 两板间飞出,不计粒⼦的重⼒及相互间的作⽤.求:(1)C 、D 板的长度L ;(2)粒⼦从C 、D 板间飞出时垂直于极板⽅向偏移的最⼤距离;(3)粒⼦打在荧光屏上区域的长度.【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md== 【解析】试题分析:(1)粒⼦在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒⼦从nt 0(n=0、2、4……)时刻进⼊C 、D 间,偏移距离最⼤粒⼦做类平抛运动偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒⼦在C 、D 间偏转距离最⼤时打在荧光屏上距中⼼线最远ZXXK] 出C 、D 板偏转⾓0tan y v v θ=0y v at =打在荧光屏上距中⼼线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md==考点:带电粒⼦在匀强电场中的运动【名师点睛】此题是带电粒⼦在匀强电场中的运动问题;关键是知道粒⼦在⽔平及竖直⽅向的运动规律和特点,结合平抛运动的规律解答.2.如图1所⽰,光滑绝缘斜⾯的倾⾓θ=30°,整个空间处在电场中,取沿斜⾯向上的⽅向为电场的正⽅向,电场随时间的变化规律如图2所⽰.⼀个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重⼒加速度g=10m/s 2,求:(1)0~4s 内滑块的最⼤速度为多少? (2)0~4s 内电场⼒做了多少功? 【答案】(1)20m/s (2)40J 【解析】【分析】对滑块受⼒分析,由⽜顿运动定律计算加速度计算各速度.【详解】【解】(l)在0~2 s 内,滑块的受⼒分析如图甲所⽰,电场⼒F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受⼒分析如图⼄所⽰22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速,在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最⼤由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场⼒做正功1160W F x J == - 在2~4 s 内,电场⼒做负功2220W F x J ==- 电场⼒做功W=40 J 3.在⽔平桌⾯上有⼀个边长为L 的正⽅形框架,内嵌⼀个表⾯光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.⼀带电⼩球从圆盘上的P 点(P 为正⽅形框架对⾓线AC 与圆盘的交点)以初速度v 0⽔平射⼊磁场区,⼩球刚好以平⾏于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所⽰.现撤去磁场,⼩球仍从P 点以相同的初速度v 0⽔平⼊射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起⼀定⾼度,如图⼄所⽰,忽略⼩球运动过程中的空⽓阻⼒,已知重⼒加速度为g .求:(1)⼩球两次在圆盘上运动的时间之⽐;(2)框架以CD 为轴抬起后,AB 边距桌⾯的⾼度.【答案】(1)⼩球两次在圆盘上运动的时间之⽐为:π:2;(2)框架以CD 为轴抬起后,AB边距桌⾯的⾼度为222vg.【解析】【分析】【详解】(1)⼩球在磁场中做匀速圆周运动,由⼏何知识得:r2+r2=L2,解得:r=22L,⼩球在磁场中做圆周运的周期:T=2rvπ,⼩球在磁场中的运动时间:t1=14T=2Lπ,⼩球在斜⾯上做类平抛运动,⽔平⽅向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)⼩球在斜⾯上做类平抛运动,沿斜⾯⽅向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对⼩球,由⽜顿第⼆定律得:a=mgsinmθ=g sinθ,AB 边距离桌⾯的⾼度:h =L sinθ=222v g;4.⼀电路如图所⽰,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平⾏板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有⼀未知的、待研究的带电粒⼦沿虚线⽅向以v0=2.0m/s 的初速度射⼊MN 的电场中,已知该带电粒⼦刚好从极板的右侧下边缘穿出电场,求该带电粒⼦的⽐荷q/m (不计粒⼦的重⼒,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -? (2)46.2510/C kg -?【解析】【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===?=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==??=?(2)粒⼦在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联⽴解得46.2510/qC kg m-=?5.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN ⼀侧有电场强度为E 的匀强电场(垂直于MN ),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,⾝边有多个质量均为m 、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN ⽅向抛出各⼩球.其中第1个⼩球恰能通过MN 上的C 点第⼀次进⼊磁场,通过O 点第⼀次离开磁场,OC=2h .求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B ;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q E=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2q vB mR=得1mvRq B=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q ,磁感应强度B '①⼩球作平抛运动过程002hmx v tv qE== 2y qE v h m= ②⼩球穿过磁场⼀次能够⾃⾏回到A ,满⾜要求:sin R x θ=,变形得:sin mvx qB θ'= 解得:0E B v '=.6.竖直平⾯内存在着如图甲所⽰管道,虚线左侧管道⽔平,虚线右侧管道是半径R=1m 的半圆形,管道截⾯是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E=4×103V/m .⼩球a 、b 、c 的半径略⼩于管道内径,b 、c 球⽤长2m L =的绝缘细轻杆连接,开始时c 静⽌于管道⽔平部分右端P 点处,在M 点处的a 球在⽔平推⼒F 的作⽤下由静⽌向右运动,当F 减到零时恰好与b 发⽣了弹性碰撞,F-t 的变化图像如图⼄所⽰,且满⾜224F t π+=.已知三个⼩球均可看做质点且m a =0.25kg ,m b =0.2kg ,m c =0.05kg ,⼩球c 带q=5×10-4C 的正电荷,其他⼩球不带电,不计⼀切摩擦,g =10m/s 2,求(1)⼩球a 与b 发⽣碰撞时的速度v 0; (2)⼩球c 运动到Q 点时的速度v ;(3)从⼩球c 开始运动到速度减为零的过程中,⼩球c 电势能的增加量.【答案】(1)04m/s v = (2)v =2m/s (3) 3.2J P E ?=【分析】对⼩球a ,由动量定理可得⼩球a 与b 发⽣碰撞时的速度;⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞由动量守恒和机械能守恒可列式,⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理可得⼩球c 运动到Q 点时的速度;由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得;解:(1)对⼩球a ,由动量定理可得00a I m v =-由题意可知,F-图像所围的图形为四分之⼀圆弧,⾯积为拉⼒F 的冲量,由圆⽅程可知21S m = 代⼊数据可得:04/v m s =(2)⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞,由动量守恒可得012()a a b c m v m v m m v =++ 由机械能守恒可得222012111()222a abc m v m v m m v =++ 解得120,4/v v m s ==⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理22211()()22c b c b c m gR qER m m v m m v -=+-+ 代⼊数据可得2/v m s =(3)由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直⽅向的夹⾓为θ从c 球运动到Q 点到减速到零的过程列能量守恒可得:21(1cos )sin ()sin 2b c b c m gR m gR m m v qER θθθ-+++=解得sin 0.6,37θθ==?因此⼩球c 电势能的增加量:(1sin ) 3.2P E qER J θ?=+=7.如图所⽰,在竖直⾯内有两平⾏⾦属导轨AB 、CD .导轨间距为L ,电阻不计.⼀根电阻不计的⾦属棒ab 可在导轨上⽆摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸⾯向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有⼀⽔平放置的电容为C 的平⾏板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
【物理】物理带电粒子在电场中的运动练习题20篇
【物理】物理带电粒子在电场中的运动练习题20篇一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题: 带电粒子在匀强电场中的运动典型例题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以电压U 。
在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由静止开始从正极板向负极板运动,到达负极板的速度为多大?【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?二、带电粒子在电场中的偏转(垂直于场射入)⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动.⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解).02102v tat t 垂直于电场方向匀速运动:x=沿着电场方向作初速为的匀加速:y=两个分运动联系的桥梁:时间相等设粒子带电量为q ,质量为m ,如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d .则场强UE d =,加速度qE qUammd, 通过偏转极板的时间:0L t v 侧移量:y22221242LU qUL at dU mdv 偏加偏转角:0tanat v 202LU qULdU mdv 偏加(U 偏、U加分别表示加速电场电压和偏转电场电压)带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2Ly .粒子可看作是从两板间的中点沿直线射出的q U M N qUv 0 v 图6-4-3【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速曲线运动,如图所示,若不计粒子重力,则可求出如下相关量:(1)粒子穿越电场的时间t :(2)粒子离开电场时的速度v(3)粒子离开电场时的侧移距离y : (4)粒子离开电场时的偏角ϕ:(5)速度方向的反向延长线必过偏转电场的中点 解:(1)粒子穿越电场的时间t :粒子在垂直于电场方向以0v v x =做匀速直线运动,t v l 0=,0v l t =; (2)粒子离开电场时的速度v :粒子沿电场方向做匀加速直线运动,加速度mdqUm qE a ==,粒子离开电场时平行电场方向的分速度0mdv qUl at v y ==,所以202022)(mdv qUl v v v v y x +=+=。
(3)粒子离开电场时的侧移距离y :222221mdv qUl at y ==(4)粒子离开电场时的偏角ϕ:因为20tan mdv qUl v v x y ==ϕ,所以20arctan mdv qUl =ϕ。
(5)速度方向的反向延长线必过偏转电场的中点由20tan mdv qUl =ϕ和2022mdv qUl y =,可推得ϕtan 2ly =。
粒子可看作是从两板间的中点沿直线射出的。
三、带电粒子经加速电场后进入偏转电场【例4】如图所示,由静止开始被电场(加速电压为1U )加速的带电粒子平行于两正对的平行金属板且从两板正中间射入,从右侧射出,设在此过程中带电粒子没有碰到两极板。
若金属板长为L ,板间距离为d 、两板间电压为2U ,试分析带电粒子的运动情况。
解:(1)粒子穿越加速电场获得的速度1v设带电粒子的质量为m ,电量为q ,经电压1U 加速后速度为1v 。
由动能定理有 21121mv qU =,mqU v 112= (2)粒子穿越偏转电场的时间t :带电粒子以初速度1v 平行于两正对的平行金属板从两板正中间射入后,在偏转电场中运动时间为t ,则112qU m L v L t ==q v 02(3)粒子穿越偏转电场时沿电场方向的加速度a : 带电粒子在偏转电场中运动时沿电场方向的加速度dmqU m F a 2='=(4)粒子离开偏转电场时的侧移距离y :带电粒子在偏转电场中运动时沿电场方向作初速度为0的做匀加速直线运动dU L U L qU m dm qU at y 1222122422121=⨯⨯==(5)粒子离开偏转电场时沿电场方向的速度为y v : 带电粒子离开电场时沿电场方向的速度为y v ,则122mU qd L U at v y ==(6)粒子离开偏转电场时的偏角ϕ:设飞出两板间时的速度方向与水平方向夹角为θ。
则dU LU v v xy 122tan ==θ【例5】如图所示,由静止开始被电场(加速电压为1U )加速的带电粒子平行于两正对的平行金属板且从两板正中间射入。
若金属板长为L ,板间距离为d 、两板间电压为2U ,试讨论带电粒子能飞出两板间的条件和飞出两板间时的速度方向。
分析:设带电粒子的质量为m ,电量为q ,经电压1U 加速后速度为1v 。
由动能定理有 21121mv qU =,mqU v 112=。
带电粒子以初速度1v 平行于两正对的平行金属板从两板正中间射入后,若能飞出偏转电场,在电场中运动时间为t ,则112qU m L v L t ==。
带电粒子在偏转电场中运动时的加速度dmqU a 2=。
带电粒子飞出偏转电场时的侧移y 的最大值为2d,则d U L U d 12242=,所以22122L d U U =。
由上式可知,当两极板间电压22122L d U U >时,带电粒子不可能飞出两金属板之间;当2U ≤2212L d U 时,带电粒子可飞出两金属板之间。
在满足2U ≤2212L d U 的条件下,设带电粒子飞出两金属板之间的侧移为y ,由上面的讨论可知dU L U at y 1222421==。
带电粒子离开电场时沿电场方向的速度为y v ,则122mU qd L U at v y ==。
设飞出两板间时的速度方向与水平方向夹角为θ。
则dU LU v v xy 122tan ==θ。
U 2【例6】如图6-4-10,让一价氢离子.一价氦离子和二价氦离子的混合物由静止经过同一加速电场加速,然后在同一偏转电场里偏转,它们是否会分成三股?请说明理由.【例7】若几种不同的带电粒子经同一加速电场1U 加速后进入同一偏转电场2U ,证明粒子的侧移位移y 、偏转角度θ与粒子的q 、m 无关,仅取决于加速电场和偏转电场,即dU U l y 1224= , d U lU 122tan =θ.【例8】氢核(H )和氦核(He )垂直射入同一匀强电场,求分别在下列情况下离开电场时它们的横向位移之比:(1)初速相同;(2)初动能相同;(3)初动量相同;(4)先经过同一加速电场后进入偏转电场。
【例9】如图所示,电子经U 1电压加速后以速度v 0进入偏转电压为U 的电场中,电子离开电场后打在距离偏转电场为L 的屏上,试求电子打在屏上的位置与屏的中点的距离y (平行板的长度为,板间距离为d )图6-4-10【例10】如图所示,加速电场的两极板间距为d ,两极板间电压为U 1,偏转电场的平行金属板的板长,两极板间电压为U 2。
设电子初速度为零经加速电场加速后以某一速度沿两板中线垂直进入偏转电场中,电子离开偏转电场后打在距离偏转电场为L 的屏上P 点,当偏转电场无电压时,电子恰好击中荧光屏上的中心点O ,当偏转电场加上偏转电压U 2时,电子打在荧光屏上的点P 。
(已知电子的质量为m ,电量为e ) (1) .求电子从进入加速电场到击中恰好P 点的时间。
(2)OP 的距离。
(3)电子击中荧光屏时的速度大小。
四、带电粒子在复合场中的运动【例11】如图6-4-6,水平方向的匀强电场中,有质量为m 的带电小球,用长L 的细线悬于O 点.当小球平衡时,细线和竖直方向成θ角,如图所示.现给小球一个冲量,使小球恰能在竖直平面内做圆周运动.问:小球在轨道上运动的最小速度是多少?【解析】方法一:设小球在图6-4-7中的Q 处时的速度为u ,则mgcosα+qEsinα+T =mu 2/L 开始小球平衡时有qE =mgtanθ ∴T =mu 2/L -mgcos(θ-α)/cosθ可以看出,当α=θ时,T最小为:T =mu 2/L -mg/cosθ 若球不脱离轨道T≥0,所以/cos ugL所以最小速度为/cos gL方法二:由题给条件,可认为小球处于一个等效重力场中,其方向如图6-4-8,等效重力加速度g′=g/cosθ.K 为此重力场“最低点”,则图中Q 便是圆周运动“最高点”.小球在Q 有临界速度u =g L =/cos gL 时,小球恰能完成圆周运动.图6-4-7 gg图6-4-8 图6-4-6。