动量矩定理和平面运动微分方程共48页文档
合集下载
理论力学 12 动量矩定理

轴转动(zhuàn dòng)。已知均质杆 OA 长为 l ,质 C1 量为 m 1,均质圆盘 C 2 的半径为 r ,质量为 m 2,
试求复摆对 O 轴的动量矩。
A
C2 r
解: J O 的计算(jìsuàn):
JO
1 12
m1
l
2
m1
l 2
2
1 2 m2
r2
m2
l
r
2
图 12-9
由几何关系知: r R h z
h 薄圆片对 y 轴转动惯量 d J y 为:
1 r2 dm 4
精品资料
dJ y
1 4
r 2dm
z 2dm
1 4
r2
z2
r 2dz
1
4
R4 h4
h
z 4
R2 h2
h
z 2
z2
dz
整个(zhěnggè)圆锥体对于 y 轴的转动惯量为:
J y
h 0
1 4
底圆直径的转动惯量。已知圆锥体质量为 M ,
z
底圆半径为 R ,高为 h ,如图12-6所示。 r
h z dz
解:把圆锥体分成许多(xǔduō)厚度为 d z 的薄圆片,该薄圆片的质量为
d m r2d z
为圆锥体的密度,r为薄圆片的半径。
O
y
R
x
图 12-6
圆锥体的质量为
M 1R2h
3
薄圆片对自身直径的转动惯量为
精品资料
12.1 转动惯量、平行(píngxíng) 轴定1理2.1.1 转动惯量
质点系的运动,不仅(bùjǐn)与作用在质点系上的力有关, 还与质点系各质点的质量其及分布情况有关。质心是描述质 点系质量分布的一个特征量,转动惯量(Moment of inertia)则 是描述质点系质量分布的另一个特征量。
相对于质心平移系的质点系动量矩定理刚体平面运

0
0
J O d fFN Rdt
0
t
F fFN
J O 0 t f FN R
四、刚体转动惯量的计算
J z mi ri
2
——刚体对转轴的转动惯量
转动惯量——是刚体转动时惯性的度量。
转动惯量的大小不仅与质量的大小有关,
而且与质量的分布情况有关。 在国际单位制中为:kg · m2 对于质量为连续分布的刚体,则上式成为定积分
d (e) (i ) M ( m v ) M ( F ) M ( F 质点1: O 1 1 O 1 O 1 ) dt d M O (mi vi ) M O ( Fi ( e ) ) M O ( Fi (i ) ) 质点i : dt
d M O (mn v n ) M O ( Fn( e ) ) M O ( Fn(i ) ) 质点n : dt
一、质点和质点系的动量矩 二、动量矩定理 三、刚体绕定轴转动的微分方程 四、刚体转动惯量的计算 五、相对于质心(平移系)的质点系动量矩定理
六、刚体平面运动微分方程
一、 质点和质点系的动量矩
质点的动量矩——质点的动量对点之矩 z [1、力对点之矩] 空间的力对O 点之矩:
M O (F ) r F
d M x ( mv ) M x ( F ) dt d M y ( mv ) M y ( F ) dt d M z ( mv ) M z ( F ) dt
2、质点系的动量矩定理
设质点系有n个质点
每个质点的质量分别为: m1、m2、 mi mn
对轴的动量矩
z
Lz M z (mi vi )
LO Lxi Ly j Lz k
工程力学 动力学普遍定理动量矩定理.

dLO dt
dLC dt
drC dt
mvC
rC
m
dvC dt
dLC dt
rC maC
M
(e) O
ri
Fi
(rC
ri) Fi
rC
Fi
ri Fi
dLC dt
rC
maC
rC
R(e)
M
(e) C
刚体
dLC dt
M
(e) C
质点系对点O的动量矩为质点系内各质点对同一 点O的动量矩的矢量和,一般用Lo表示。
质点系内各质点对某轴的动量矩的代数和称为 质点系对该轴的动量矩,一般用Lx、Ly ,Lz表示。
动量矩定理
例:已知小球C和D质量均为m,用直杆相连,杆重不 计,直杆中点固定在铅垂轴AB上,如图示。如杆绕 轴AB以匀角速度ω转动,求质点系对定点O的动量矩。
动量矩定理
4. 常见刚体对轴的转动惯量 J z —刚体转动惯性大小的度量 质量 J z mi ri2 { 质量分布
在工程中,常将转动惯量表示为
Jz mz2 z称为回转半径或惯性半 径
其物理意义:相当于将质量集中于一点, 该点距转轴的距离为ρz
动量矩定理
上例中:求质点系对AB(z)轴的动量矩 1.利用定义
动量矩定理
§3-1 质点系动量矩定理
1.质点动量矩的计算
◆质点对一点的动量矩:
MO (mv) r (mv)
◆质点对轴的动量矩
M x (mv) [M O (mv)]x y(mv z ) z(mv y ) M y (mv) [M O (mv)] y z(mv x ) x(mv z ) M z (mv) [M O (mv)]z x(mv y ) y(mv x ) 即:质点对点的动量矩是矢量,大小为DOMD
第11章 动量矩定理

M z Q(v1r1 cos1 v2r2 cos2 )
例 3 (书上例 11-7,动量矩守恒。)
质量为 m1 = 5kg,半径 r = 30cm 的均质圆盘,可绕铅直轴 z 转
动,在圆盘中心用铰链 D 连接一质量 m2 = 4kg 的均质细杆
AB,AB = 2r,可绕 D 转动。当 AB 杆在铅直位置时,圆盘的
三、 刚体 1. 平动刚体
11-1
LO r MvC
2. 转动刚体(对定轴或平面上定点)
Lz I z
LO IO
3. 平面运动刚体
对质心 C: LC IC
对定点 O: LO mO (MvC ) IC
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
l 3g
而 aC
2
4
则
W 3g W
NA W g
4
4
IV. 绳子剪断前后 A 反力的变化:
WW W ΔN A N A N A0
42 4
例 2 例 11-5 (较典型题目)
作业:11-18
11.4 质点系相对动点的动量矩定理(*)
此部分较难,特别是公式推导不易理解。主要掌握两种:①对质心的动量矩定理;②平
m2 g
转速为 n = 90rpm。试求杆转到水平位置,碰到销钉 C 而相对
静止时,圆盘的转速。
解:系统对 z 轴动量矩守恒。
初时系统动量矩: Lz I z盘 1 m1r 2 4
末时系统动量矩: Lz Iz盘 Iz杆 1 m1r2 1 m2 (2r)2
4
12
Lz Lz
11-4
1 4
m1r 2
动量矩

质点系对固定轴z的动量矩定理
dLz Mz dt
例
最常用!
绞车圆盘 ( J O , Q, r ) 受力偶M作用,通过
绳索拉动物块B(P),不计斜面摩擦,求物 块B的加速度。 O B θ
M
解:设绞车圆盘角速度ω,顺转为正
d P ( J O r r ) M P sin r dt g
例
半径r的圆柱体被水平绳拉着作纯滚
动,质量为M;绳子绕过无重定滑轮B后系在
质量为m的物体A上,求圆柱体质心C的加速 度和绳子的拉力。
B C A
圆柱体和物体A的加速度
B
r
C
2r
A
研究物体A,受力分析:
T
aA
mg
A
maA 2mr mg T
研究圆柱体: C Mg N F 按平面运动微分方程 1 2 Mr Tr Fr 2
Mr Mr ;F 2 2 解得: aC 2 2 m( r ) r
为均质轮纯滚动,应有
F fN , F fm g
M
α
这就是力偶矩限制条件。
m gf ( r ) M r
2 2
c
o
mg
N F
aC
x
例
与垂直线成 ( m , l ) 均质杆BA 30 角,
O
C
O
轮心的速度
O
O
D
d dt
C
初始 t 0
C
f mg
D
mg N
d dt
D O Or 0
初始条件
d (0) o m f mg dt d f gdt (t ) o f gt
12动量矩定理

图12.7 钟摆
第12章 动量矩定理
12.1 转 动 惯 量
【例12.5】 匀质圆盘与匀质杆组成的钟摆如图12.7所示。已知圆盘质量m1, 直径d,杆的质量m2,长l,试求钟摆对悬挂轴O的转动惯量J0。
解:钟摆由匀质杆和匀质盘组成,所以有 = JO JO杆 + JO
其中
JO
=J c
+
m1
l
+
d 2
平方的乘积,即
12.7
J=z J zc + md 2
(12.7)
第12章 动量矩定理
12.1 转 动 惯 量
证明:如图12.5所示,设刚体总的质量为m,轴zc通过质心C,z与zc平行且 相距为d。不失一般性,可令y与yc重合,在刚体内任取一质量为mi的质点Mi,它 至zc轴和z轴的距离分别为ric和ri。刚体对于z、zc轴的转动惯量分别为
12.9
第12章 动量矩定理
12.1 转 动 惯 量
【例12.4】 质量为m,长为l的匀质杆如图12.6所示,求杆对yc的转动惯量。
解:由例12.1知
Jy
=
1 ml2 3
,根据平行轴定理式(12.7)有
J yc
=J y
−
md 2
=1 ml2 3
−
m
l
2
2
=1 12
ml 2
12.10
图12.6 匀质杆
在工程问题上,计算刚体的转动惯量时,常应用下面公式
12.3
第12章 动量矩定理
12.1 转 动 惯 量
Jz
=
mρ
2 z
(12.2)
ρ 其中m为整个刚体的质量, z 为刚体对z轴的回转半径,它具有长
理论力学 动量矩定律

MO (mv) 恒矢量
作用于质点的力对某定轴的矩恒为零,则质点对该轴的动量矩 保持不变,即
M z (mv ) 恒量
以上结论称为质点动量矩守恒定律 2)质点系动量矩守恒定理 当外力对某定点(或某定轴)的主矩等于零时,质点系对 于该点(或该轴)的动量矩保持不变,这就是质点系动量矩 守恒定律。 15 另外,质点系的内力不能改变质点系的动量矩。
24
动力学 2. 回转半径 定义:
转动惯量
z
Jz m
则
J z m z
2
即物体转动惯量等于该物体质量与回转半径平方的乘
积; 对于均质物体,仅与几何形状有关,与密度无关。
对于几何形状相同而材料不同(密度不同)的均质刚 体,其回转半径是相同的。
25
动力学
转动惯量
3. 平行移轴定理 刚体对于某轴的转动惯量,等于刚体对于过质心、并与该轴平 行的轴的转动惯量,加上刚体质量与轴距平方的乘积,即
LC LC
这样刚体作平面运动时,对过质心C且垂直于平面图形的 轴的动量矩为
J C LC LC
12
动力学
质点系动量矩定理
2.质点系的动量矩定理
n个质点,由质点动量矩定理有
d M O (mi vi ) M O ( Fi ( i ) ) M O ( Fi ( e ) ) dt
n d (e) Lx M x ( Fi ) dt i 1 n d Ly M y ( Fi ( e ) ) dt i 1 n d Lz M z ( Fi ( e ) ) dt i 1
14
动力学
质点系动量矩定理
3.动量矩守恒定理 1)质点动量矩守恒定理 如果作用于质点的力对某定点O的矩恒为零,则质点对该 点的动量矩保持不变,即
理论力学第十一章动量矩定理

JO
d 2
dt 2
mga
即:
d 2
dt 2
mga
JO
0
解: 令 2 mga
JO
——固有频率
得
2 0
通解为 O sin(
mgat )
JO
周期为 T 2 2 JO
mga
例11-3 用于测量圆盘转动惯量的三线摆中,
三根长度相等(l)的弹性线,等间距悬挂被测量的圆盘。
已知圆盘半径为 R、重量为W。
dt
dt dt
v dr dt
r d(mv) d(r mv)
dt
dt
dLO dt
MO F
矢量式
质点对固定点的动量矩对时间的导数等于作 用于质点上的力对该点的矩。
★ 质点系的动量矩定理
0
d
dt
i
ri mivi
i
MO (Fii )
i
MO (Fie )
MO (Fie )
i
F2
z
F1
LO rC mvC LC
dLO d
dt dt
rC mvC LC
ri Fie (rC + ri) Fie
rC Fie ri Fie
③
即
drC dt
mvC
rC
d dt
mvC
dLC dt
rC
Fie
dLC dt
由于
① ① drC dt
② vC ,
drC dt
mvC
★ 相对质心的动量矩
LC MC mivi ri mivi
vi vC vir
LC = rimivC rimivir
其中
ri mivC ( miri)vC 0 (rC
理论力学_12.动量矩定理

故:
d dt
(r m v ) r F ,
d dt
[ m O ( m v )] m O ( F )
质点对任一固定点的动量矩对时间的导数,等于作用在质 点上的力对同一点之矩。这就是质点对固定点的动量矩定理。
例3 单摆 已知m,l,t =0时= 0,从静止 开始释放。 求单摆的运动规律。 解:将小球视为质点。 受力分析;受力图如图示。
r
i
i
m iv
C
ri ) m i v
i
rC m i v i
ri m i v i
i
rC m v C
ri m i v
其中 L C ri m i v i 为质点系相对质心C的动量矩。 (注意:vi为质点的绝对速度。) 即 质点系对任意定点O的动量矩,等于质点系对质心的动量矩, 与将质点系的动量集中于质心对于O点动量矩的矢量和。
L z J z m 2 vr 1 2 ( m1r
2
J ,z
1
m1r ;
2
v r
m 2 vr
1 2
m 1 m 2 ) rv
系统所受外力对转轴z的矩为
M z ( Fi
(e)
) M
(e)
O
Fr M
O
f m 2gr
dL dt
z
M z (Fi
)
d 1 ( m m 2 ) rv M 2 1 dt
例如:试计算圆盘对轴O的 动量矩。质点的质量均为m。
O1 B C
vr vr
vr
L O L O 1 rO 1 m v O 1 3 mv r R l 3 m l 0 3m (vr R l 0 )
13动量矩定理

r2
O
r1
M
B
m2 g
mg
A
m1 g
理论力学 第二节 动量矩定理
第十三章
动量矩定理
解:取系统为研究对象进行受力分析和运动分析 1、受力分析
2、运动分析
Foy
FN
B
v1 r1
v2 r2
v2
M
r2
O
r1
系统对O轴的动量矩和外力矩:
LO J O m1r12 m2 r22
F1 F1
解得主动轮与从动轮的角加速度分别为:
MR 2 1 J1 R 2 J 2 r 2
MRr 2 J1 R 2 J 2 r 2
理论力学 第十三章 动量矩定理
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
理论力学
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
若平面运动刚体具有质量对称平面,且其运动平 面与该质量对称平面平行,则有:
第十三章
动量矩定理
三、质点系的动量矩定理
设质点系中有n个质点,其中第 i 个质点: d [M z mi vi ] = M z Fi e M z Fi i dt
n n d e [M z mi vi ] M z Fi M z Fi i dt i 1 i 1 i 1 n
O
A
B
理论力学 第二节 动量矩定理
第十三章
动量矩定理
FO y
O
解: 取整个系统为研究对象,
受力分析如图示。 运动分析: v =r
FO x
M F m gr m gr
e z i 1 2
O
r1
M
B
m2 g
mg
A
m1 g
理论力学 第二节 动量矩定理
第十三章
动量矩定理
解:取系统为研究对象进行受力分析和运动分析 1、受力分析
2、运动分析
Foy
FN
B
v1 r1
v2 r2
v2
M
r2
O
r1
系统对O轴的动量矩和外力矩:
LO J O m1r12 m2 r22
F1 F1
解得主动轮与从动轮的角加速度分别为:
MR 2 1 J1 R 2 J 2 r 2
MRr 2 J1 R 2 J 2 r 2
理论力学 第十三章 动量矩定理
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
理论力学
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
若平面运动刚体具有质量对称平面,且其运动平 面与该质量对称平面平行,则有:
第十三章
动量矩定理
三、质点系的动量矩定理
设质点系中有n个质点,其中第 i 个质点: d [M z mi vi ] = M z Fi e M z Fi i dt
n n d e [M z mi vi ] M z Fi M z Fi i dt i 1 i 1 i 1 n
O
A
B
理论力学 第二节 动量矩定理
第十三章
动量矩定理
FO y
O
解: 取整个系统为研究对象,
受力分析如图示。 运动分析: v =r
FO x
M F m gr m gr
e z i 1 2
第十二章:动量矩定理

周期 T = 2π J O
mga
§12-4 刚体对轴的转动惯量
n
Jz
=
∑
i −1
m
i
ri
2
单位:kg·m2
1. 简单形状物体的转动惯量计算
(1)均质细直杆对一端的转动惯量
∫ J z =
l 0
ρl x2dx
=
ρll3
3
由 m = ρll ,得
Jz
=
1 ml 2 3
(2)均质薄圆环对中心轴的转动惯量
与 zC 轴之间的距离。
即:刚体对于任一轴的转动惯量,等于刚体对 于通过质心并与该轴平行的轴的转动惯量,加 上刚体的质量与两轴间距离平方的乘积.
证明: J zC = ∑ mi (x12 + y12 )
Jz =∑mi r2 =∑mi (x2 +y2)
= ∑ mi[x12 + ( y1 + d )2 ]
=
1 ml 2 3
则
J zC
=
Jz
−
m( l )2 2
=
ml 2 12
要求记住三个转动惯量
(1) 均质圆盘对盘心轴的
转动惯量 mR2
2
(2) 均质细直杆对一端的
转动惯量 ml 2
3
(3) 均质细直杆对中心轴
的转动惯量 ml 2
12
§12-5 质点系相对于质心的动量矩定理
1.对质心的动量矩
∑ ∑ r
=
r LC
r LO
=
rrC
× mvrC
+
r LC
=
r M
O
(
mvrC
)
+
11 动力学 动量矩定理

1 J 外 m1 R12 2
于是
1 2 J内 m2 R2 2
2R1
1 1 2 2 J z m1 R1 m2 R2 2 2
Theoretical Mechanics
组合刚体的转动惯量
设单位体积的质量为r ,则
m1 R l ,
2 1
m2 R l
2 2
代入前式得
1 4 J z l ( R14 R2 ) 2 1 2 2 l ( R12 R2 )(R12 R2 ) 2
11.1 动量矩
11.1.2 质点系的动量矩
4、转动刚体对转轴的动量矩 设刚体绕定轴 z 转动的角速度为 ,刚 体上任一质点M i 的质量为mi ,到转轴的 距离为 ri ,则其速度的大小为 vi ri , 于是有
z
ri Mi
mi vi
Lz mz (mi vi ) mi vi ri ( mi ri2 )
Iy
1 2 1 2
x 2 dx
2
1 2 1 2
x2
m 1 dx ml 2 l 12
I y
l
0
( x ) dx
l
( x ) 2
0
m 1 ml 2 dx l 3
Theoretical Mechanics
11.1 动量矩
例题
例11-2 图中厚度相等的均质薄圆板的半径为R,质量为m,求 圆板对其直径轴的转动惯量。 解:首先,将圆板分成无数同心 的单元圆环,则单元圆环的质量
注意到Cxy的坐标原点与质心C重合 yC 0
m y
i
i
yc M 0
12-3 相对质心的动量矩定理--刚体平面运动微分方程

求:下降高度h时,质心的速度、加速度以及绳索的拉力。 下降高度 时 质心的速度、加速度以及绳索的拉力。
B h C A
§12-6 刚体的平面运动微分方程 解: 以圆柱体为研究对象。 以圆柱体为研究对象。
r r 受力分析: g 受力分析:m , F T 运动分析: r 运动分析: a , α C
列写平面运动微分方程, 列写平面运动微分方程,
C
的加速度。 求:重物A的加速度。 重物 的加速度
B r O R
D
A
第十二章 动量矩定理
重物 解: (1) 重物A:
maA = mg − F ① 1 1 T1
A
r F T1
(2) BC固连体 固连体: 固连体
r r r r 受力分析: 受力分析: 2 g, F , F , F m T2 s N r 运动分析: 运动分析:aO, α
r aA
r F T2
⇒F = F ⑥ T1 T2
aA = m ( R+ r) + m ( ρ2 + R2 ) 1 2
2
B r
mg ( R+ r) 1
2
rO mg 2
P
R
r aO
r F s
D
请同学们思考: 请同学们思考:
A
r F N
若固定滑轮D的质量不可忽略,那么 若固定滑轮 的质量不可忽略,那么D 的质量不可忽略 两端绳索的拉力是否相等?如何求? 两端绳索的拉力是否相等?如何求?
α
r aC
x
2
§12-6 刚体的平面运动微分方程 解:
2 1 aC = g, F = m g T 3 3
h B
vC = ?
dvC dvC ds aC = = dt dt ds dt dvC 2 = vC = g ds 3 vC 2 h ∴ ∫ vCdvC = g∫ ds 0 3 0
动量矩定理

dLO (e) (e) mO ( Fi ) M O dt
一质点系对固定点的动量矩定理
(e) (e) (e) dLx ( e ) dL y ( e ) dL z (e) m x ( Fi ) M x , m y ( Fi ) M y , mz ( Fi ) M z dt dt dt
解:研究质点系----鼓轮与重物
M
m1g
v r
系统对O轴的动量矩:
O
Fox
v
Foy m2g
JO LO J O m2vr m2r v r
2008-7-16
24
由动量矩定理
dLo dt
M O
m1g Fox v Foy
e mo (Fi )
代入数据得:
35
§12-5
质点系相对于质心的动量矩定理 刚体平面运动微分方程
一.质点系动量矩
LO rC mvC LC r
( LC LC r )
二.质点系相对质心的动量矩定理
dLC r (e) (e) mC ( Fi ) M C dt
2008-7-16
36
三.刚体平面运动微分方程
maC F , JC mC (F )
2008-7-16 21
质点系动量矩守恒定理
质点系对于某点的动量矩守恒
2008-7-16 22
2008-7-16
23
例-2示卷扬机鼓轮质量为m1,半径为r,可绕过鼓 轮中心O的 水平轴转动。鼓轮上绕一绳,绳的一端 悬挂一质量为m2的重物。 鼓轮视为匀质,并令其对O轴的转动惯量为JO。今在鼓轮上作 用一不变力 矩M,试求重物上升的加速度。
2008-7-16 31
理论力学第12章 动量矩定理.

1、例如一对称的圆轮绕不动的质心转动时,无论圆轮转动的 快慢如何,无论转动状态有什么变化,它的动量恒等于零, 可见动量不能表征或度量这种运动。 2、动量定理和质心运动定理讨论了外力系的主矢与质点系运 动变化的关系,但未讨论外力系主矩对质点系运动变化的影 响。
因此,我们必须有新的概念来描述类似的运动。
作为矩轴,对此轴应用质点的动量矩定理
dLOz dt
MOz
O
由于动量矩和力矩分别是
LOz
mvl
m(l)l
ml 2
d
dt
和
MOz mgl sin
v
A
§12.2 动量矩定理
例 题 12-2
LOz
mvl
m(l)l
ml 2
d
dt
M Oz mgl sin
从而可得
d (ml2 d ) mgl sin
于是得 d
dt MO (mv) MO (F )
F
mv
Q
r
y
§12.2 动量矩定理
质点的动量矩定理:质点对某固定点的动量矩对时间的一阶导
数,等于作用于该质点上的力的合力对于同一点的矩。
d dt
MO
(mv )
MO
(F
)
将上式投影到以矩心 O为原点的直角坐标轴上,并注意到动量
及力对点的矩在某一轴上的投影,就等于动量及力对该轴的矩,
点系对该轴的动量矩。质点系对 O点的动量矩向通过 O点的 直角坐标系的各轴投影,即质点系对过 O点的轴的动量矩:
Lx LO i mi yi zi zi yi Ly LO j mi zi xi xi zi Lz LO k mi xi yi yi xi
因此,我们必须有新的概念来描述类似的运动。
作为矩轴,对此轴应用质点的动量矩定理
dLOz dt
MOz
O
由于动量矩和力矩分别是
LOz
mvl
m(l)l
ml 2
d
dt
和
MOz mgl sin
v
A
§12.2 动量矩定理
例 题 12-2
LOz
mvl
m(l)l
ml 2
d
dt
M Oz mgl sin
从而可得
d (ml2 d ) mgl sin
于是得 d
dt MO (mv) MO (F )
F
mv
Q
r
y
§12.2 动量矩定理
质点的动量矩定理:质点对某固定点的动量矩对时间的一阶导
数,等于作用于该质点上的力的合力对于同一点的矩。
d dt
MO
(mv )
MO
(F
)
将上式投影到以矩心 O为原点的直角坐标轴上,并注意到动量
及力对点的矩在某一轴上的投影,就等于动量及力对该轴的矩,
点系对该轴的动量矩。质点系对 O点的动量矩向通过 O点的 直角坐标系的各轴投影,即质点系对过 O点的轴的动量矩:
Lx LO i mi yi zi zi yi Ly LO j mi zi xi xi zi Lz LO k mi xi yi yi xi
第九章 动量矩定理

LZ =
∑M
Z
(mi v i )
质点系对点O的动量矩矢在通过该点的 轴上 质点系对点 的动量矩矢在通过该点的z轴上 的动量矩矢在通过该点的 的投影等于质点系对于该轴的动量矩。 的投影等于质点系对于该轴的动量矩。
[LO ]Z
= LZ
4
刚体平移时 可将全部质量集中于质心, 刚体平移时,可将全部质量集中于质心,作为一个 质点计算其动量矩。 质点计算其动量矩。 刚体转动时 刚体转动时,刚体对转轴的动量 矩为
dLO = Labcd − LABCD = LCDcd − LABab
LCDcd 1 = qV ρ dt v2 r2 cosθ2 n
1 LABab = qV ρ dt v1 r cosθ1 1 n 1 dLO = qV ρ dt (v2 r2 cosθ2 − v1 r cosθ1) 1 n dLO MO (F ) = n = qV ρ(v2 r2 cosθ2 − v1 r cosθ1) 1
6
d d dr d × mv + r × ( mv ) M O ( mv ) = ( r × mv ) = dt dt dt dt
dr =v dt
则上式为
d (mv ) = F dt
d M O (mv ) = v × mv + r × F dt
因为 所以
v × mv = 0
r × F = M O (F )
dt
16
【例4 】已知 m JO, 1 m2 r ,2 ,不计摩擦。 , m, ,1 r 不计摩擦。 求(1) α ) (2)O处约束力 F ) 处约束力 N (3)绳索张力 FT , T ) F
1 2
17
解:1) LO = JOω + m v1r + m2v2r2 ( ) 1 1 = ω(JO + m1r 2 + m2r22 ) 1