phdpa铜配合物的晶体数据

合集下载

铜的相组成及各相的特性

铜的相组成及各相的特性

铜的相组成及各相的特性黄铜的相组成及各相的特性Cu-Zn 二元系相图中的相有α、β、γ、δ、ε、η。

普通黄铜37.5 32.5 36.8 α相:以铜为基的固溶体。

α晶格常数随锌含量增加而增大,锌在铜中的溶解度与一般合金相反,随温度降低而增加,在456℃时固溶度达最大值(39%Zn);之后,锌在铜中的溶解度随温度的降低而减少。

含锌25%左右合金,存在Cu3Zn化合物的两种有序化转变:450℃左右,α无序固溶体→α l 有序固溶体;217℃左右,α l 有序固溶体→α 2 有序固溶体。

α相塑性良好,可进行冷热加工,并具有良好焊接性能。

β相:以电子化合物CuZn为基的体心立方晶格固溶体。

冷却时:468~456℃,无序相β→成有序相β??。

β??塑性低,硬而脆,冷加工困难,所以含有β??相的合金不适宜冷加工。

但加热到有序化温度以上,β??→β后,又具有良好塑性。

β相高温塑性好,可进行热加工。

γ相:以电子化合物Cu 5 Zn 8 为基的复杂立方晶格固溶体。

硬而脆,难以压力加工,无法应用。

工业用黄铜的锌含量均小于46%,避免出现γ相。

H70黄铜的铸态组织及变形后退火组织按退火组织,工业用黄铜分为α黄铜和α+β两相黄铜。

W Zn<36%的α黄铜:H96~H65为单相α黄铜,α黄铜的铸态组织中存在树枝状偏析,枝轴部分含铜较高,不易腐蚀;呈亮色,枝间部分含锌较多,易腐蚀,故呈暗色。

变形及再结晶退火后,得到等轴的α晶粒,而且出现很多退火孪晶,这是铜合金形变后退火组织的特点。

H62双相黄铜退火α 白+β' 黑α+β黄铜:36~46%Zn,如H62至H59。

凝固时发生包晶反应形成β相,凝固后的合金为单相β组织;冷至α+β两相区时,自β相中析出α相,残留的β相冷至有序转变温度时(456℃),β 无序相转变为β??有序相,室温下合金为α+β??两相组织。

铸态α+β??黄铜,α相呈亮色(因含锌少,腐蚀浅), β??相呈黑色(因含锌多,腐蚀深)。

吡哌酸金属配合物的合成、结构及性质研究的开题报告

吡哌酸金属配合物的合成、结构及性质研究的开题报告

吡哌酸金属配合物的合成、结构及性质研究的开题报告
一、研究背景
吡哌酸(pyridine-2,6-dicarboxylic acid,H2DPA)及其金属配合物因其独特的结构和性质而引起了广泛的研究兴趣。

吡哌酸分子中含有两个羧基和两个氮原子,可以形成多种配位方式,并且可以与各种金属形成稳定的配位化合物,从而具有多样的结构和性质。

目前已经报道了各种吡哌酸金属配合物,例如铜、镍、铁、锰、锌、钴等配合物,而这些配合物具有良好的光学、磁性、催化等性质,因此对于其合成、结构及性质的研究有着广泛的应用价值。

二、研究内容
本研究计划选取铜、镍、铁等金属离子,通过合成吡哌酸金属配合物,研究不同金属离子对于配合物结构和性质的影响。

具体研究内容包括以下方面:
1. 吡哌酸金属配合物的合成方法优化:
通过对不同合成条件的调控,如反应溶剂、反应温度、金属离子浓度等参数的优化,寻找最适宜的吡哌酸金属配合物合成方法。

2. 吡哌酸金属配合物的结构研究:
通过单晶X射线衍射技术和元素分析等分析手段,确定各种吡哌酸金属配合物的结构。

3. 吡哌酸金属配合物的性质研究:
包括热重分析、红外光谱、紫外-可见光谱、电化学等方面的研究,以探究各种吡哌酸金属配合物的热稳定性、光学性质、电化学性质等。

三、研究意义
本研究通过对吡哌酸金属配合物的合成、结构及性质的研究,可以深入探究吡哌酸金属配合物的构筑和性质规律,掌握其合成方法和性质表征技术,为其在光学、磁性、催化等方面的应用提供基础性支撑。

此外,还可以为新型吡哌酸金属配合物的设计和合成提供理论依据和实验经验。

2-羟基-1-萘甲醛缩邻苯二胺双希夫碱cu(ii)配合物的合成及其晶体结构

2-羟基-1-萘甲醛缩邻苯二胺双希夫碱cu(ii)配合物的合成及其晶体结构

2-羟基-1-萘甲醛缩邻苯二胺双希夫碱cu(ii)配合物的合成及其晶体结构下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!2羟基1萘甲醛缩邻苯二胺双希夫碱Cu(II)配合物的合成及其晶体结构1. 引言在配位化学领域中,过渡金属配合物因其多样的结构和潜在的应用价值备受关注。

配合物[Cu(p-MBA)_2(phen)]的合成、晶体结构及量子化学研究

配合物[Cu(p-MBA)_2(phen)]的合成、晶体结构及量子化学研究

配合物[Cu(p-MBA)_2(phen)]的合成、晶体结构及量子化学研究石智强;季宁宁;赵雪;郑泽宝【摘要】以醋酸铜、对甲氧基苯甲酸(P-MBA)和邻菲咯啉(phen)为原料在甲醇中反应,合成了一个新的单核铜(Ⅱ)配合物Cu(p-MBA)_2(phen),用元素分析和IR等方法对化合物的结构进行了表征.X-射线单晶衍射表明,配合物属单斜晶系,空间群P2/c,晶胞参数:α=1.265 03(14)nm,b=0.955 8800)nm,c=1.02488(12)nm,β=105.723(2)°,V=1.192 9(2)nm~3,Z=2,D_c=1.520 g·cm~(-3) R,[I>2σ(I)]=0.0356,wR_2R_2[I>2σ(I)]=0.0786.该化合物的晶体是由孤立的分子所组成,四配位的铜(Ⅱ)呈畸变的四面体结构,配合物通过分子间弱的C-H…0氢键和π-π堆积作用形成了二维网状结构.对其结构进行量子化学从头计算,探讨了配合物的稳定性、分子轨道能量以及一些前沿分子轨道的组成特征.【期刊名称】《无机化学学报》【年(卷),期】2010(026)002【总页数】6页(P251-256)【关键词】对甲氧基苯甲酸;邻菲咯啉;铜(Ⅱ)配合物;晶体结构;从头计算【作者】石智强;季宁宁;赵雪;郑泽宝【作者单位】泰山学院材料与化学工程系,泰安,271021;泰山学院化学与环境科学系,泰安,271021;泰山学院化学与环境科学系,泰安,271021;泰山学院化学与环境科学系,泰安,271021【正文语种】中文【中图分类】O614.121铜是生物体中必须的微量元素,在生命过程中起着传递电子、输送氧、以及清除超氧负离子等重要作用[1]。

芳香羧酸与金属离子构筑的配合物多数具有丰富的结构类型和特殊的性能,在材料、药物、分子电化学、生物化学、生物制药等许多领域中表现出了潜在的应用价值[2-10]。

铜晶格常数

铜晶格常数

铜晶格常数
铜晶格常数是物理和化学的基本概念,是描述静态物质分子晶格稳定构型的重
要参量。

据统计,全球商业用铜市场产量在2019元年中已经超过150万吨,而其
占比更是多年来稳步攀升,且不断朝着新高度发展。

需要特别指出的是,这其中最为重要的原因便是上述物质晶格稳定构型的本身特性,即铜晶格常数。

铜晶格常数实质上指的是,铜晶体中,一个平面原子与另一个平面原子之间的
距离,即铜原子团之间的最短距离。

科学家专门以毫米等物理和化学单位来衡量,这些衡量标准被成为铜晶格常数(a = 0.3615 nm)。

而通常情况下,介于白银和
宝蓝色的铜原子将拥有一定的铜晶格常数,若此数值超过一定的范围,那么铜原子将会出现一定的膨胀等缺陷,从而影响着铜晶体本身的力学性能和电学性能。

此外,通过对铜晶格常数的研究也可以探寻物质晶体中晶体构造和原子结构间
的关系,铜晶格常数是晶格稳定机制研究的基础,特别是在高强度金属材料研究中也具有重要的意义。

例如,在航空航天领域中采用高强度性能和低摩擦系数的先进材料,其背后的秘密便是铜晶格常数的检测。

同时,光谱等对铜晶格常数的检测也是当下研究的热点所在,许多研究者致力
于通过相关方法,以比较准确、可靠的数据,来具体测定铜晶格常数。

然而,上述检测方法也并不是十分简单,它们涉及到物理学、化学和计算机等多个学科的领域,从而得出合理的结论。

总之,铜晶格常数是一个很重要的概念,而研究铜晶体晶格构造及其稳定构型
的唯一方法便是以铜晶格常数为依托,仔细观察铜原子之间的关系,通过精确的物理学测量方法,得出准确的数据,从而确定相关问题的答案。

α-吡啶甲酸铜超分子配合物的合成、晶体结构及电化学性质

α-吡啶甲酸铜超分子配合物的合成、晶体结构及电化学性质

冬 氨酸( 生化试 剂 , 国药集 团 化学试 剂 有 限公 司 ) ; 醋 酸铜 ( 化学纯 , 北京化 工 厂 ) 氢氧化 钠 ( ; 分析 纯 ,
称取 1 m l 1 3 )天 冬 氨 酸 和 2 m | 0 m o ( . 3g 0m o ( .6g 一 2 4 ) 吡啶 甲酸溶 于 1 L纯水 中 , 5m 加入 4 O m l 1 6 )氢 氧 化 钠 中 和 . 称 取 1 o mo ( . 0 g 另 0 mm |
1 实验 部 分
1 1 试剂 与仪器 .
a 吡 啶 甲酸 ( 9 ,& HE C LL D ) 天 . 9 % J K C MIA T . ;
非 氢原 子坐 标 用逐 次 差 值 F uir 成 确定 , 部 or 合 e 全
非氢 原子坐标 及各 向异性 热 参 数用 全矩 阵 最小 二
用红 外 光 谱 、 紫外 一可 见 光 谱 对 配 合 物 进 行 了表 征 , x 射 线 单 晶 衍 射 测 定 了 配合 物 的 单 晶 结 构 . 合 物 为 三 斜 晶 系, 用 一 配 P ( ) 间群 , 12 空 晶胞 参数 : 0 5 2 1 1 ) m, = . 6 6 ( 7 l c 0 9 2 ( ) m, = 4 9 4 3 。 = 4 3 6 3 。 = a= . 1 9 ( n b 0 7 3 7 1 ) m, = . 2 6 2 n o 7 . 1 ( ) , 8 . 4 ( ) , 1 q t
7 .6 ( ) , 1 4 3 3 。 V=0 3 0 7( 4) m Z=1 采 用循 环 伏安 法研 究 了配 合 物在 水溶 液 中的 电 化 学性 质 . . 3 7 4 n , . 关 键 词 :t 啶 甲酸 ; (Ⅱ) 合 物 ; O吡 一 铜 配 晶体 结 构 ; 电化 学性 质

二水合双邻苯二甲酸合铜(ⅱ)的晶体结构

二水合双邻苯二甲酸合铜(ⅱ)的晶体结构

二水合双邻苯二甲酸合铜(ⅱ)的晶体结构
铜是一种重要的金属元素,具有广泛的应用领域,例如电子、建筑材料、化学制品等。

在配位化学中,铜(Ⅱ)离子是一种常见的中心离子,并且与有机分子形成的配合物也具有
广泛的应用。

二水合双邻苯二甲酸合铜(Ⅱ)是一种含有双邻苯二甲酸配体的铜配合物,其
化学式为[Cu(C8H6O4)2(H2O)2],并且其晶体结构具有一定的研究价值。

本文通过实验方法制备了二水合双邻苯二甲酸合铜(Ⅱ),并对其晶体结构进行了详细
的研究。

通过X射线单晶衍射技术,得到了二水合双邻苯二甲酸合铜(Ⅱ)的晶体结构,其
晶体属于三斜晶系,P1空间群。

分析其晶体结构可以发现,铜(Ⅱ)离子被四个邻苯二甲酸配位到一个略呈扭曲四面体
的结构中。

其中,配体的两个羧基分别与铜离子中央的两个氧原子形成双齿配位。

此外,
铜离子还与两个水分子相连。

整个分子呈现出半球状的结构,中央的铜离子被四个配体分
子包围。

在晶体结构中,分子间通过氢键相互作用而连接在一起。

其中,水分子与羧基中的氧
原子之间的氢键起着至关重要的作用,稳定了整个晶体的结构。

此外,配体分子之间也通
过氢键和范德华力相互作用,进一步增加了晶体的稳定性。

总体来说,二水合双邻苯二甲酸合铜(Ⅱ)的晶体结构具有相对较高的稳定性,并且在
其生物医学应用、光学材料制备等方面也具有潜在应用价值。

该研究在揭示铜(Ⅱ)离子与
有机分子配位的基本规律及其在材料科学中的应用等方面具有较好的研究价值。

二苯基硫脲铜(Ⅰ)配合物的合成、晶体结构及性质研究

二苯基硫脲铜(Ⅰ)配合物的合成、晶体结构及性质研究

二苯基硫脲铜(Ⅰ)配合物的合成、晶体结构及性质研究丁呈华;曹丰璞;刘珊珊;冯玉全;王宏伟;包晓玉【摘要】采用简单的方法原位还原铜(Ⅱ)为铜(Ⅰ),合成了二苯基硫脲铜(Ⅰ)配合物C32H38ClCuN6O2S2,通过IR和元素分析等手段对其进行表征,并用X射线单晶衍射确定了其晶体结构.该配合物晶体属单斜晶系,P21/c空间群,晶胞参数为a=0.957 4(5) nm,b=3.210 7(17) nm,c=1.222 8(7) nm;β=111.877(8)°,V=3.488(3) nm3,Z=4,Dc=1.336 mg/m3,F(000)=1 464,最终结构偏差因子R1=0.047 5,ωR2=0.130 7.基于多种分子间氢键的作用,分子在固相中堆积成三维超分子结构.同时研究了此配合物的光谱性质、热稳定性及电化学行为.【期刊名称】《分析测试学报》【年(卷),期】2014(033)004【总页数】6页(P449-454)【关键词】二苯基硫脲铜配合物;晶体结构;光谱性质;热稳定性;电化学行为【作者】丁呈华;曹丰璞;刘珊珊;冯玉全;王宏伟;包晓玉【作者单位】南阳师范学院化学与制药工程学院,河南南阳473061;南阳师范学院化学与制药工程学院,河南南阳473061;南阳师范学院化学与制药工程学院,河南南阳473061;南阳师范学院化学与制药工程学院,河南南阳473061;南阳师范学院化学与制药工程学院,河南南阳473061;南阳师范学院化学与制药工程学院,河南南阳473061【正文语种】中文【中图分类】O657.3;O627.12金属有机配合物因新颖的拓扑结构和潜在的物理化学性质而备受关注[1-4]。

硫脲及其衍生物作为配体可与多种金属形成配合物,并因其结构中含有N、S等杂原子而具有很好的抑菌[5-7]、抗癌[8]等生物活性和催化[9]、离子识别[10-11]等性能,用途非常广泛。

N,N'-二苯基硫脲也称二苯基硫脲(DPTU)或硫化促进剂,是一类重要的化学试剂,也是重要的医药和染料中间体,已广泛应用于化学及化工生产的各个领域。

配合物[Cu(p-MBA)2(phen)]的合成、晶体结构及量子化学研究

配合物[Cu(p-MBA)2(phen)]的合成、晶体结构及量子化学研究

中图分类号ቤተ መጻሕፍቲ ባይዱ: 6 41 1 0 1. 2
文献标 识码 : A
文章编号 :10 —8 1 0 00 2 1 6 0 14 6 ( 1)20 5 . 2 0
S n h s , r sa tu t r n a tm h mi r fteC mpe C ( - B 2 h n】 y tei C y tl r cu ea d Qu n u C e s yo o lx【 u p M A) p e ) s S t h (
1 6 31) m, = .5 81) m c 1 2 81) m, =0 .2 () V I12 () m, = , 1 2 ・m , . 5 ( n b 09 5 (o n , = . 48(2 n / 15732。 = . 92 n Z 2 D= . 0gc 2 0 4 8 0 3 , 9 5 /= . 4mm~ F0 0= 6 , 【 2 D= . 5 , R2 2 D= .7 .ntecytltesutr os t o x 09 6 , (0)52 尺1> (]O0 > (]00 86 I h rs ,h t cuecnis f , 36 a r s
me i m.T e t l o lx wa h r ce i e y e e n a n l ss a d I p cr .Is c y t l sr cu e w s du h i e c mp e s c a a t r d b lme tl a ay i n R s e ta t r sa tu t r a t z d t r n d b r y sn l r sa i r ci n su y T e c y t l eo g o mo o l i t p c r u 2 c 0 ee mi e y X—a i g e c t l f a t t d . h r sa l n s t n c i c wi s a e g o p P / . = y d f o b n h

phdpa铜配合物的晶体数据

phdpa铜配合物的晶体数据

Cu(ClO4)2induced ortho-benzylation of N-benzyl di(pyridylmethyl)amineand the formation of μ2-Br-bridged copper(II) complexes)Di(picolyl)amine (dpa) and its derivatives are used as neutral, deprotonated chelating ligands to complex copper(II) atoms to mimic non-heme dioxygenase [1,2]. The reaction of dpa with Cu(ClO4)2 or CuCl2 leads to hexa-coordinated [Cu(dpa)2](ClO4)2[3] or the mononuclear complex [Cu(dpa)Cl2] [4], respectively, in which the geometry of reported Copper(II)-dpa complexes is a distorted square pyramidal or trigonal bipyramidal. The utility of these ligands is enhanced by the ease with which substituents may be introduced on the imino nitrogen atom, thus resulting the different antitumor activities and catalyzing activities of manganese(II) complexes of dpa and its derivatives [5]. So the synthesis of N-substituted dpa derivatives is meaningful to design functional complexes [6]. Although the intramolecular hydroxylation reaction and the antitumor activities for complexes of N-substituted di(picolyl)amine were extensively studied, there is no report on its intramolecular benzylation [7-9].Friedel-Crafts reaction of aromatic compounds is one of the important reactions for forming carbon-carbon bonds, as the products serve as useful starting materials for synthesis of pharmaceuticals and materials [10]. They are formed due to replacement of a hydrogen atom of an aromatic compound by a benzyl group derived from benzylating agent in the presence of Lewis acid (e.g. AlCl3, BF3, FeCl3, ZnCl2, etc.) or protonic acids. The copper(I) complexes of (2-pyridyl)alkylamine were reported to activate C-X bond giving C-C bond formation [11]. Copper-containing mesoporous silicas (Cu-HMS-n) and CuCl2were also widely used as mild, heterogeneous Friedel–Crafts benzylation catalysts [12, 13]. Treatment of [Cu(NCMe)4][PF6] with chelating ligands gave [CuL(NCMe)][PF6] ( L = 9,9-dimethyl-4,5-bis(diphenylphosphino)- xanthene ), which could catalyze the alkylation of diphenylphosphine (PPh2) with PhCH2Br in the presence of the base NaOSiMe3 to yield intramolecular benzylation products (PPh2CH2Ph) [14]. Here we report a intramolecular ortho-benzylation of N-benzyl di(pyridylmethyl)amine with benzyl bromide and the form ation of μ2-Br-bridged copper(II) complexes.1 Experimental Section1.1 Chemical reagents, analysis and physical measurementsAll reagents are of commercial grade and used as received. Bis(2-pyridylmethyl)-benzylamine (phdpa) was synthesized as reported [15]. IR spectra were recorded on a Nicolet 210 spectrometer in KBr pellets. Elemental analyses were performed by the Perkin-Elemer 240. 1H NMR and 13C NMR spectra were measured on a Bruker 400 MHz spectrometer. The electronic absorption spectra were recorded in the 900-190 nm region using the UV-2450 spectrophotometer.1.2 Synthesis of [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5 (1) and [phCH2phdpa+2H+](ClO4)2(2)A solution of Cu(ClO4)2•6H2O (471 mg, 1 mmol) in methanol (2 ml) was added dropwise to themethanol solution (10 ml) of Bis-(2-pyridylmethyl)-benzylamine (phdpa) (290 mg, 1 mmol). After stirred for 30 min at room temperature, benzyl bromide (12.7 mg,1 mmol) in methanol (20ml) was added and stirred at 80 ºC for 2 h, then cooled to room temperature. The purple crystals of (1) were obtained after evaporation of the methanol solution for 24h. Yield 0.31g (40%). Anal. Calcd for C38H38Br3ClCu2N6O4.5 C 43.26, H, 3.70, N, 7.96, Cu, 11.97; Found: C 43.13, H, 3.73, N, 7.84, Cu, 11.84. IR (KBr) (cm-1): ν(O-H) 3373 s, ν(=CH)3081m, ν(-CH2-) 2828 m, υ(C=N) 1612, ν(C=C), 1574 m, 1473 m, δ(CH, pyridine) 773 s, ν(ClO4)1100s, 623m. UV-vis (CH3OH / nm) (ε × 10 -4 / M-1 cm-1): 205 (2.73), 259 (1.59), 296 (0.40), 682 (0.01).The white powders [phCH2phdpa+2H+](ClO4)2(2) were obtained by further evaporation of above filtrate. Yield 0.14 g (20%). Anal. Calcd for C26H27Cl2N3O8C 50.83, H, 4.69 N, 7.24; Found: C 50.92, H, 4.60, N, 7.27. 1H NMR (400 MHz, DMSO-d6): δ=3.7 (s, 2H, CH2Ar); 4.0 (s, 2H, CH2Ar); 4.1 (s, 2H, CH2Py); 5.89 (s, 2H, CH2Py); 7.0-7.5 (m, 9H, Ar-); 7,7-8.8 (m, 8H, Py);9.1(s, 2H, H+). 13C NMR (400 MHz, DMSO-d6): δ=54.6-60.0 (CH2); 120-160 (Py or Ar) . IR (KBr) υ/cm-1: ν(N-H)3265m, ν(=CH) 3060 m, ν(-CH2-) 2925 m, υ(C=N) 1663, ν(C=C) 1589 s, 1569 m, 1473 m, 1433 m, δ(CH, pyridine) 760 s, 699 s. UV-vis (CHCl3 / nm) (ε × 10-4 / M-1 cm-1): 203 (4.12), 260 (1.75).1.3 Ortho-benzylation reactionThe intramolecular ortho-benzylation of phdpa by benzyl bromide was used as a model reaction for Cu(II) catalytic properties. A solution of CuX2 (1 mmol) (X= Cl-, NO3-, ClO4-) was added to the methanol solution (10 ml) of Bis-(2-pyridylmethyl)-benzylamine (phdpa) (290 mg, 1 mmol). After stirred for 30 min at room temperature, benzyl bromide (12.7 mg,1 mmol) in methanol (20ml) was added and the reaction was carried out with stirring at room temperature for 2 h. The conversion of phdpa was evaluated by analyzing samples of the reaction mixture collected by HPLC. The selectivity is expressed by the molar ratio of formed ortho-benzylaton products to converted phdpa.1.4 X-ray crystal structure determinations.Crystallographic data for [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5 (1) are listed in Table 1. The blue prism crystals of the complex were selected for lattice parameter determination and collection of intensity data at 293 K on a Rigaku Mercury2 CCD Area Detector with monochromatized Mo Ka radiation (λ= 0.071073 nm). The data were corrected for Lorenz and polarization effects during data reduction. A semi-empirical absorption correction from equivalents based on multi- scans was applied. The structure was solved by direct methods and refined on F2 by full-matrix least-squares methods using SHELXTL program [16]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced in their calculated positions. All computations were carried out using the SHELXTL-PC program package. CCDC number 759823Table 1 Crystal data and structure refinement details for the complex (1)Empirical formula C38H38Br3ClCu2N6O4.5Formular weight 2108.02Crystal system TriclinicSpace group P-1a (nm) 1.28064(12)b (nm) 1.38713(13)c (nm) 1.46715(14)α (°)102.2640(10)β (°)110.1990(10)γ (°)112.1170(10)V (nm3) /Z 2.0829(3) / 1Density (calc) (Mg/m3) 1.681Absorption coefficient (mm-1) 4.010F(000) 1050Index ranges -15≤h≤15; -15≤k≤17; -18≤l≤18Θ range (°) 2.61 - 26.37Reflection collected 20601Independent reflections [R int] 6580Data/restraints/parameters 8242/8/496Goodness-of-fit on F2 1.060F inal R indices [I>2ζ(I)]R1=0.0468; wR2=0.114R indices (all data) R1=0.0614; wR2=0.12492 Results and discussion2.1 The reaction of phdpa and Cu(ClO4)2 with benzyl bromideThe spectroscopic titration for the solution of phdpa and Cu(ClO4)2and its interaction with benzyl bromide in methanol solution is shown in Fig.1. The solution of phdpa and Cu(ClO4)2 show a d-d transition band at 641 nm indicating the formation of complex phdpa-Cu(ClO4)2 (Fig.1 line a). A strong increase of the absorbance of d-d transition with red shift about 40 nm was observed when the benzyl bromide was added in 30 min. The results indicate the possible coordination of bromide anion to the complex phdpa-Cu(ClO4)2 in methanol solution, which was confirmed by X-ray structure (Fig.2 and Scheme 1, (0)). However, there is no change for the absorption of d-d transition when the benzyl bromide was added to the solution of Cu(ClO4)4-phdpa system in MeCN, which are possible due to that the coordinated MeCN cannot be replaced by bromine atoms. This is similar to the reported complex [Cu(phdpa)(CH3CN)2](ClO4)2 [ 2].4005006007008000.00.10.20.30.40.5cbaA b s/ nmFig.1 The spectroscopic titration for the reaction of phdpa - Cu(ClO 4)2 (0.002 mol L -1) with benzyl bromide (phBr) (0.002 mol L -1) in methanol at 40 ºC. A, phdpa- Cu(ClO 4)2; b, phdpa - Cu(ClO 4)2,+ phBr 0.5h,; C, phdpa - Cu(ClO 4)2 + phBr, 1h.2.2 Formation of N-[(2-benzyl)benzyl]-di(picolyl)amine perchlorate (2)The formation of ortho-benzylation product N-[(2-benzyl)benzyl]-di(picolyl)amine perchlorate(2) was confirmed by 1HNMR data. 1H NMR spectra of N-[(2-benzyl)benzyl]-di(picolyl)amine showed the signals of the respective protons of the synthesized compounds (2), which were verified on the basis of their chemicals shifts, multiplicities. These spectra showed characteristic signals about CH 2 protons at 3.7 -4.1 ppm and 5.89 ppm, which are assigned to CH 2 (benzylmethyl group, phCH 2; pyridylmethyl group, pyCH 2) protons. The relative high chemical shifs indicate the existence of protonated N-[(2-benzyl)benzyl]-di(picolyl)amine perchlorate (2). The ortho-benzylation may be due to the coordination of bromine in benzyl bromine to the copper atom (Scheme 1, intermediate (0)).N N N N N NCu 2+NNNCu(ClO 4)2phdpa phCH 2Br N N N Cu Br --Br Br-ClO 4-+(1)H 2O H +(ClO 4)2(0)+H [phCH 2phdpa+2H +](ClO 4)2 (2)333Scheme 1 Possible mechanism for the formation of complex (1), [phCH 2phdpa+2H +](ClO 4)2 (2) and intermediate (0)2.3 The spectroscopic characteristics of the complex (1).The IR spectrum of the complex [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5(1)shows a broad band at 3373 cm-1assigned to υ(OH) of the uncoordinated water which are con firmed by elemental analysis and X-ray structure. The bands between 2828 and 3081 cm-1 for complex (1) can be assigned to the stretching vibration of saturated hydrocarbon and arene C-H in the IR spectra. The pyridyl ring vibration bands and δ(CH) vibration of pyridyl ring in complexes are all shifted. The pyridyl ring vibrations bands were approximately 1612 cm-1and 1574 cm-1 for complex (1). The δ(CH) vibration bands of pyridyl ring for the complex (1) were found at approximately 773 cm-1. These shifts can be explained by the fact that the nitrogen atoms of pyridyl ring of the ligands donate a pair of electrons each to the central metal forming coordinate covalent bond. The absorption bands occurring in the IR spectra of the complex (1) at 1100 cm-1 and 623 cm-1 corresponds to the asymmetric Cl-O stretching mode and the asymmetric Cl-O bending mode respectively. The electronic spectrum of the complex (1) exhibits four bands at 205 nm, 359 nm, 296 nm and 682 nm and these are assigned due to π→π*, C-T, n→π*and d-d transitions, respectively, the visible spectra exhibits a band 682 nm corresponding to five-coordinated square pyramidal Cu(II) complex.2.4 Crystal structure of [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5The molecular structure of [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5with the atomic labeling scheme is shown in Fig.2 and selected bond lengths and angles are listed in Table 2. The ligand (phdpa) acts as a tridentate ligand toward the Cu(II) atom. The Cu(II) atoms are coordinated by three N atoms (N1, N2, N3 for Cu1, N4 , N5, N6 for Cu2), one coordinated bromine atoms (Br1 for Cu1 or Br2 for Cu2) and a bridged bromine atom Br3 resulting in dinuclear Cu(II) complex [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5. The Cu1 and Cu2 thus show distorted trigonal bipyramidal geometry. Atoms N1, N2, N3 and Cu1 form the equatorial trigonal plane (mean deviation 0.0041) while Br3 and Br1 occupy the apical positions. The Cu1 atom locates in the center of this plane with N1-Cu1-N3 of 163.63 (15)° and N2-Cu1-Br1 of 164.731(10) °. Atoms N4, N5, N6 and Cu2 also form a equatorial trigonal plane (mean deviation 0.0454). Cu2 was shifted about 0.0793 Å to this plane and the bond angles of N4-Cu2-N6 and N5-Cu2-Br2 was 164.24° and 151.37 °, respectively. The angle of two trigonal plane is 130.7 °. The Cu-N bond distances are in the range of 0.1995(4)-0.2055(3) nm and the Cu1-Br3 and Cu2-Br3 bond distances are 0.28096(7) nm and 0.27470(7) nm, which are longer than those of Cu1-Br1 and Cu2-Br2 bond distances (0.23791(7) nm and 0.23939(7) nm). Cu1-Br3-Cu2 angle is 134.88(2)°.Table 2 Selected bond lengths (nm) and bond angles (°) for the complex (1)Bond distancesCu1-N1 0.2008(3) Cu2-N4 0.1995(4)Cu1-N2 0.2055(3) Cu2-N5 0.2059(3)Cu1-N3 0.2007(3) Cu2-N6 0.1987(3)Cu1-Br1 0.23791(7) Cu2-Br2 0.23939 (7)Cu1-Br3 0.28096(7) Cu2-Br3 0.27470(7)Bond anglesN3-Cu1-N1 163.63(15) N6- Cu2–N4 164.24(15)N3-Cu1-N2 81.39(14) N6-Cu2-N5 83.29(14)N1-Cu1-N2 82.25(14) N4-Cu2-N5 82.48(15)N3-Cu1-Br197.92(11) N6-Cu2-Br2 97.96(10) N2-Cu1-Br1164.71(10) N5-Cu2-Br2 151.37(10) N1-Cu1-Br197.70(10) N4-Cu2-Br2 97.77(11) N3-Cu1-Br388.27(10) N6-Cu2-Br3 88.53(10) N2-Cu1-Br393.97(10) N5-Cu2-Br3 96.54(9) N1-Cu1-Br393.46(10) N4-Cu2-Br3 86.39 (10) Br1-Cu1-Br3 101.28(2) Br2-Cu2-Br3 112.07(2)Fig.2 Crystal structure of [(phdpa)2Cu 2(Br)2(μ2-Br)]+. Thermal ellipsoids are drawn at 50%probability. Hydrogen atoms are omitted for clarity.Table 3 Cu(II) catalyzed ortho-benzylation of phdpaCu(II) saltmR a Selectivity of ortho-benzylation b (%) Conversion of phdpa c (%) Cu(ClO 4)21:1 90 51 Cu(ClO 4)21:1.5 84 62 CuCl 21:1 46 48 CuCl 21:1.5 40 59 Cu(NO 3)21 38 46 Cu(NO 3)21:1.5 34 61 Blank d0:1 34 32 Blank e0:1.5 30 39 a mR: molar ratio of Cu(II) salt and benzyl bromide; b Selectivity: ratio of the ortho-benzylationproduct to benzylation products of phdpa; c Conversion: the ratio of benzylation products based onphdpa; d blank: benzyl bromide and phdpa was mixed in the molar ration of 1:1 (Blank d ) or 1.5:1(blank e ) without Cu(II) salt.2.5 Cu(II) catalyzed ortho-benzylation of phdpaThe intramolecular ortho-benzylation of phdpa catalyzed by copper(II) salt were summarized in Table 3. All reactions proceeded smoothly, and 32-62% conversion of phdpa was reached in 2 h. In practice, when the benzylation was over, a purple deposit derived from reaction medium appeared gradually after magnetic stirring was discontinued. The selectivity of N-alkylation catalyzed by Cu(II) salt depended on anions. Among these copper salt catalysts, only Cu(ClO4)2 shows high ortho-benzylation activity. CuCl2 and Cu(NO3)2 has no obvious effect on the selectivity of ortho-benzylation of phdpa, but they increased total conversion of phdpa. The enhanced conversion in Cu(II) complex reaction system may be due to the activation of C-Br bond by Cu(II) complexes. The high selectivity (90%) for the intramolecular ortho-benzylation of phdpa-Cu(ClO4)2 system was possibly due to the coordination of bromine atom in benzyl bromide to the copper(II) atom in complex phdpa-Cu(ClO4)2 ( Scheme 1, intermediate (0)). The only 51% conversion of phdpa (in 1:1 molar ratio of Cu(II) salt and benzyl bromide) was due to the formation of Br bridged complexes, which is not a good catalyst to the ortho-benzylation. Experimental results indicate that Cu(ClO4)2was a good catalyst for the intramolecular ortho-benzylation of phdpa.3 ConclusionThe reaction of N-benzyl di(pyridylmethyl)amine (phdpa) and Cu(ClO4)2 with benzyl bromide in methanol leads to the ortho-benzylation of phdpa with the formation of μ2-Br-bridged copper(II) complexes due to the coordination of bromine atoms to the center copper atom in phdpa-Cu(ClO4)2.Experimental results indicate that Cu(ClO4)2was a good catalyst for the intamolecular ortho-benzylation of phdpa. This experimental result is meaningful to find selective benzylation catalysts.References:[1] Wurtele C, Sander O, Lutz V, Waitz T, et al. J. Am. Chem. Soc.2009, 131:7544-7545.[2] Ciana C L, Phipps R J, Brandt J R., et al. Angew. Chem. Int. Ed. Engl. 2011, 50:478-482.[3] M. Kruppa, B. Konig, Chem.Rev.106 (2006)3520.[4] Puckett C A, Ernst R J, Barton J K et al. Dalton Trans.2010, 39:1159-1170.[5] Choi K Y, Ryu H, Sung N D. J. Chem. Crystallogr. 2003, 32:947-950.[5] Chen Q Y, Zhou D F, Huang J, et al. J. Inorg. Biochem. 2010, 104:1141-1149.[6] Du Jun, Wu Zi-Yi (吴子怡)H, JIA Mo (贾默), et al. Chinese..J. Inorg. Chem. (Wuji Huaxue Xuebao) 2008, 24(10):1669-1674.[7] Huang J, Chen Q Y(),Wang L Y, et al. Chinese..J. Inorg. Chem. (Wuji Huaxue Xuebao) 2009, 25(6):1077-1089.[8] CHEN Qiu-Yun(陈秋云) , HUANG Juan(黄娟), LI Jun-Feng (李军峰), et al. Chinese. Inorg.Chem.(Wuji Huaxue Xuebao),2008, 24(11):1789-1793.[9] Kunishita A, Scanlon J D, Ishimaru H, et al. Inorg. Chem. 2008, 47:8222-8232.[10] Duong H A, Gilligan R E, Cooke M L, et al. Angew. Chem. Int. Ed. Engl.2011, 50:483-486.[11] Zhao J L, Liu L, Sui Y, et al. Org. Lett. 2006, 8:6127-6130.[12] Lee H G, Won J E, Kim M J, et al. J. Org. Chem. 2009, 74:5675-5678.[13] Bachari K, Cherifi O, Cat. Commun.2006, 7:926-930.[14] Cain M F, Hughes R P, Glueck D S, et al. Inorg. Chem. 2010, 49:7650-7662.[15] Li J F, Chen Q Y, S pectrachim. Acta A2009,72:25-28.[16] Sheldrick G M, SHELXTL-97, Program for Crystal Structure Solution and Refinement,University of Gottingen, Germany, 1997.。

二维铜配合物{[Cu2(BIPA)2(bpe)2]·H2O}n的合成、晶体结构及磁性

二维铜配合物{[Cu2(BIPA)2(bpe)2]·H2O}n的合成、晶体结构及磁性

弱 的反 铁 磁 相 互 作 用 。
关 键 词 : 配 合 物 ; - 间 苯 二 甲 酸 ; 体 结 构 : 性 铜 5溴 晶 磁
中 图分 类 号 : 6 41 1 0 1. 2
文献标识码 : A
文 章 编 号 :10 .8 1 0 1 40 7 .5 0 1 6 ( 1) .7 10 4 2 0- .

sn l-r sa r y df a t n T ec sa so ih i, p c r u t = igecy tlX-a i rci . h r tli f r nc s a ego pP1wi a 0 f o y tc h
5 0 G o= .2 , = .5 , R = .1 . o lx1cn i so n —i nin l C (IA ] c a s h t r 0 , of 1 2 Rl00 27 w 201 49 C mpe o s t f o edme s a 『uBP ) h i t e 0 s o n ta a
W ANG a L U Gu n . a g , W ANG Ya R a — i g To I a g Xin - ’ 。 n’ 。 EN Xio M n
Байду номын сангаас
( u K yL b rt yo uci a Codn i o p u d, c olfC e ir n h mi nier g  ̄n i e a oa r F nt n l oria o C m on s Sh o o h ms ya dC e c E gnei Ah o f o t n t l a n A qn om n es yAn ig Atu 4 0 3 C ia igN r a U i rt, n , h i 6 0 , hn) n l v i q r 2 .

邻苯二酚铜(Ⅱ)配合物的合成及光谱分析

邻苯二酚铜(Ⅱ)配合物的合成及光谱分析

邻苯二酚铜(Ⅱ)配合物的合成及光谱分析宋力;周慧;裴卫杰;苑仁静【摘要】用半固相反应方法合成目标化合物邻苯二酚铜(Ⅱ),用间接碘量法测定铜的含量,并通过元素分析、红外光谱、X-射线粉末衍射、荧光光谱对邻苯二酚铜(Ⅱ)配合物进行表征.研究表明:邻苯二酚铜(Ⅱ)配合物属于单斜晶系,晶胞参数 a=3.598 nm,b =12.910 nm,c =4.343 nm,β=124.406。

,V =166.441 nm3;邻苯二酚铜配合物的激发光谱中出现2个激发峰,分别位于235 nm 和290 nm 处;发射峰只有1个,出现在325 nm 处.%Tetrahydrate pyrocatechol copper was synthesized.The content of copper was determined with indirect iodim-etry.The complex was characterized by elemental analysis,IR,the X-ray diffraction,and fluorescence spectrum.The re-sults indicate that the complex belongs to a monoclinic,with a =3.598 nm,b =12.910 nm,c =4.343 nm,β=124.406., V = 1 66.441 nm3 ;there are two excitation peaks in the spectrum stimulated at 235 nm and 290 nm with only one emission peak at 325 nm .【期刊名称】《玉溪师范学院学报》【年(卷),期】2015(000)008【总页数】4页(P8-11)【关键词】邻苯二酚铜(Ⅱ);配合物;光谱分析【作者】宋力;周慧;裴卫杰;苑仁静【作者单位】信阳师范学院化学化工学院,河南信阳 464000;信阳师范学院化学化工学院,河南信阳 464000;信阳师范学院化学化工学院,河南信阳 464000;湖北省武汉铁路局卫生监督所,湖北武汉 430011【正文语种】中文【中图分类】O643.12;O642.3金属配合物,特别是多元金属配合物在生命过程中起着十分重要的作用,这些配合物的药理及理化性质已经引起药物研究者分析化学工作者的极大兴趣[1~3].铜是人体需要的重要的无机盐和微量元素[4],对铜配合物的结构及反应性进行研究具有重要的理论和实际意义[5~9].基于此,本文用半固相反应方法合成目标化合物邻苯二酚铜(Ⅱ),用间接碘量法测定了铜的含量,通过元素分析、红外光谱、X-射线粉末衍射、荧光光谱表征配合物,以为铜的进一步开发应用提供一些新的实验数据.1.1 主要仪器与试剂主要仪器 D8-advance型X射线粉末衍射分析仪(德国BRUKER公司);TENSOR27型傅立叶变换红外光谱仪(德国BRUKER公司);240B元素分析仪(美国Perkin-Elmer公司);CARY/Eclipse型荧光光度计.主要试剂氧化铜(中国上海试剂二厂);邻苯二酚(天津市大茂化学试剂厂);95%无水乙醇(天津市凯通化学试剂有限公司);硫氰酸钾(天津市博迪化工有限公司);可溶性淀粉(北京红星化工厂);重铬酸钾(天津市科密欧科技有限公司);无水碳酸钠(天津市北方无医化学试剂厂);碘化钾(中国医药公司上海采购供应站);硫代硫酸钠(天津市博迪化工有限公司);乙二胺四乙酸二钠、无水乙醚(北京化工厂).以上试剂均为分析纯.1.2 邻苯二酚铜(Ⅱ)的制备称取一定量的研细的邻苯二酚和过量的氧化铜,先将邻苯二酚溶于无水乙醇中,再分批量加入氧化铜,温度控制在75℃,反应时间为11 h.将反应物过滤,再将滤液蒸发浓缩得产物,然后用无水乙醚洗涤3次,置于60℃烘箱内干燥,即得配合物邻苯二酚铜(Ⅱ),产品为浅棕色粉末.1.3 样品的组成和结构特性分析用240B元素分析仪测定C、H元素的含量.用间接碘量法测定铜的含量.用TENSOR27傅里叶变换红外光谱仪,用KBr压片法在4 000~400 cm-1范围内记录标题配合物邻苯二酚铜(Ⅱ)的红外光谱.邻苯二酚铜(Ⅱ)的X-射线衍射测定条件为Cu Ka1辐射,管压40 k V,管流30 m A,扫描速度4℃/min,扫描范围为3°~90°.用Cary Eclipse型号的荧光分光光度计测得配合物对苯二酚铜(Ⅱ)、对苯二酚钴(Ⅱ)的荧光吸收曲线.2.1 邻苯二酚铜(Ⅱ)的元素分析邻苯二酚铜(Ⅱ)配合物的C、H元素分析数据:实验值(理论值)%为:C41.02(40.97)%;H4.41 (4.55)%.邻苯二酚铜(Ⅱ)配合物中铜含量的测定:在水溶液中,Cu2+与过量的KI反应,用Na2S2O3滴定至浅黄色,加入淀粉指示剂,滴定至浅蓝色,再加入KSCN溶液,继续滴加Na2S2O3至蓝色刚好消失即为滴定终点,测得铜的含量为18.37%,理论值为18.07%.以上结果表明:元素含量的测定值与计算值比较吻合,由此得到所合成的产物邻苯二酚铜(Ⅱ)的化学式为Cu(C6H4O2)2·4 H2O.2.2 邻苯二酚铜(Ⅱ)的红外光谱分析图1为邻苯二酚铜(Ⅱ)的红外光谱谱图,其归属列于附表.由红外光谱数据可知:邻苯二酚铜(Ⅱ)在3 480 cm-1处有1个宽而强的吸收峰,在3 030 cm-1和1 695 cm-1处有弱的吸收峰,是结晶水中的羟基振动而产生的,表明产品含有结晶水;在1474 cm-1、1 366 cm-1附近出现的振动吸收峰为苯环C-C键的伸缩振动吸收带;位于750 cm-1附近的吸收峰,说明苯环上有四个相邻的氢.在750 cm-1、770 cm-1处有吸收峰,说明为邻位取代;在520 cm-1附近有吸收峰,说明产物中含有Cu-O键.2.3 邻苯二酚铜(Ⅱ)的X-射线粉末衍射分析邻苯二酚铜(Ⅱ)的X-射线粉末衍射图如图2所示.对邻苯二酚铜(Ⅱ)的X-射线粉末衍射数据进行了计算和指标化可得:邻苯二酚铜(Ⅱ)配合物的晶胞参数a=3.598 nm,b=12.910 nm,c=4.343 nm,β=124.406°,V=166.441 nm3,属单斜晶系.从衍射强度可看出:衍射强度最强(I/I1=100)的衍射面为(010)晶面,其余晶面的衍射强度都比较弱,由此可推测Cu原子位于(010)晶面,苯环位于(010)晶面两侧,为层状结构.2.4 邻苯二酚铜(Ⅱ)的荧光光谱分析图3 为水做溶剂的邻苯二酚铜(Ⅱ)的荧光光谱.激发光谱中出现2个激发峰,分别位于235 nm和290 nm处.发射峰只有1个,出现在325 nm处,荧光发射峰只有1个,可以推知235 nm和290 nm的激发峰是由同一种荧光化合物产生的.用半固相法合成邻苯二酚铜(Ⅱ)配合物Cu(C6H4O2)2·4 H2O,通过元素分析、间接碘量法、红外光谱分析、X-射线粉末衍射等对其组成进行表征;用荧光分光光度计测得配合物邻苯二酚铜(Ⅱ)的荧光吸收曲线.测定结果表明,该配合物具有荧光性能,有望成为很有前途的发光材料.【相关文献】[1]康杰,李娜,刘洋,等.苯甲酸二聚铜配合物的合成与体外抗肿瘤作用[J].福建医科大学学报,2008,42(1):39-41.[2]宋力,朱建君,连文莉,等.邻苯二酚锰的合成、结构表征及热分解机理[J].信阳师范学院学报:自然科学版,2011, 25(1):124-126.[3]陶栋梁,李慧珍,崔玉民,等.具有荧光传感器性能的稀土配合物制备和性能研究[J].光谱学与光谱分析,2012,32 (9):2473-2476.[4]杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002:99-108.[5]孙雨安,李彩云,李维顺,等.羧酸桥联双核铜配合物的合成与表征[J].河南师范大学学报:自然科学版,1999,27 (1):44-47.[6]杨瑞娜,胡晓院,段征,等.混合价态铜(Ⅰ,Ⅱ)配合物的合成与结构[J].无机化学学报,1999,15(6):697-708.[7]周双生,程俊,鲁传华,等.N-取代四氮杂大环镧(Ⅲ)配合物的合成及其生物活性[J].中国药物化学杂志,2007,17 (4):246-248.[8]丁冶春,夏侯国论,王家智,等.稀土芦丁配合物的合成、表征及抗肿瘤活性研究[J].光谱实验室,2011,28(2):134-137.[9]刘新泳,刘洛生,王慧才,等.铂(IV)类配合物的合成及其抗肿瘤活性[J].中国药物化学杂志,2002,12(5):272-275.。

由对苯二甲酸构筑的铜的配位聚合物的水热 合成及晶体结构

由对苯二甲酸构筑的铜的配位聚合物的水热 合成及晶体结构
1.4
羧酸也是构筑配位聚合物的一类常用配体。羧基不仅可以多种方式与金属离子键合,还可与金属离子自组装成多核的次级结构单元,从而构造出各种结构的配位聚合物网络。其中,对于具有芳香环取代基的芳香羧酸类配体,由于它们在结构上具有一定的刚性和稳定性,同时芳香环上多个羧基的取代位置可变,羧基的配位平面还可发生旋转,取向灵活,芳香环上还可以进行其它的取代修饰等,己被广泛用于过渡金属、稀土配位聚合物的构筑,现已得到大量具有新颖拓扑结构的芳香羧酸配位聚合物[27,28]。
关键词:铜的配合物;晶体结构;水热合成

1.1
自从1893年维尔纳创立配位化学以来,配位化学在深度和广度上都得到了迅速发展,成为无机化学研究的主流。配合物以其花样繁多的价键形式和空间结构在化学键理论发展中,及其与物理化学、有机化学、生物化学、固体化学、材料化学和环境化学的相互渗透中,使配位化学己成为众多学科的交叉点。
随着1,10-邻菲啰啉的广泛应用,研究者们对其在生物体内的作用机理和毒性也进行了系统的研究[22],1,10-邻菲啰啉及其衍生物的配合物如Ru(ll)配合物(图1.3)因其独特的稳定性、氧化还原性、荧光激发的寿命以及与DNA极好的作用等,在生物化学中和生物物理中成为研究核酸二级结构和设计以核酸为靶的抗癌药物的一类重要的化合物[23]。
配位聚合物具有丰富的拓扑学结构,而影响其构型的因素也很多。如:有机配体的化学结构和结构多样性、金属离子的配位性质、反应物的摩尔比、溶剂的种类以及反应体系的酸碱度等[17]。其中,配体和金属离子的影响是主要的,总体结构可由有机配体的几何形状和金属离子的配位性质加以预测,其它影响因素对配合物的结构起着细微的影响。
1.6
对于铜芳香羧酸配合物的合成,常用方法有常规溶液反应法、水热法、溶胶-凝胶法及流变相反应法等。

铜(Ⅰ)配合物[(PPh3)2Cu(S2COMe)]的合成与结构分析

铜(Ⅰ)配合物[(PPh3)2Cu(S2COMe)]的合成与结构分析
nm 。

Z 一 4, ( 0) 1 44 D c c F O0 一 0、 al d= 1 34 ・c 。, 一 O. 80 m m ~ , 一 0. 8 7, w = 0.0 . . 5g m 8 R 04 R 93 5
关键 词 : ; 铜 配合物 ; 三苯基 膦 ;晶体结构
V S AL B MK1分 析 仪 , AI 射 线 作激 发 源 , GE C A 1 以 K 阳极 电 压 1. V, 流 2 2 5k 电 OmA, 析 室 内 真空 度 小 于 6 1一 mb r 分 × 0 a.
1 2 配 合 物 的 合 成 .
在 [P h )C ( O。] ]mmo,. 5g 中 , 入 甲醇 ( 0mL 、 氯 甲烷 (0mI 和 二 硫 化 碳 ( 的 混 合 溶 液 , 温 下 ( P u N ) ( l0 6 ) 加 3 )二 3 ) 5mI) 室 搅 拌 2 4h后 , 到 橙 色 溶 液 . 置 , 过 滤 得 到 黄 色 晶 体 [ P h )C ( C 得 静 经 ( P 。z u OMe ] 收 率 : 1 . 。H。C O zz 素 分 析 理 论 ). 6 Ce 。 u P S 元 值 : 6 . 5 H ,.5 P 8 9 ;C ,9 1 ; 验 值 : 6 . 5 H ,. 1 P, . ; , . . c,5 6 ; 4 7 ; , . 2 u . 4 实 c, 55 ; 4 7 ; 8 8 Cu 9 0
中 图 分 类 号 : 6162 O 1.2
文 献标 识码 : A
铜 配 合 物 具 有 多 变 的 配 位 结 构 和活 化小 分 子 的催 化 活 性 等 特 点 ,因此 , 配 合 物 在 氧 转 移 、 化 加 成 、 陈 代 谢 、 相 催 铜 氧 新 均

配合物[Cu(Mba)2(Im)2]的水热合成、晶体结构和量子化学研究

配合物[Cu(Mba)2(Im)2]的水热合成、晶体结构和量子化学研究

配合物[Cu(Mba)2(Im)2]的水热合成、晶体结构和量子化学研究陈志敏;杨颖群;毛芳芳;邝代治;曾荣英【摘要】通过水热法,由Hmba(Hmba=methoxybenzoic acid)、Im(Im=imidazole)与Cu2-离子反应,合成标题配合物[Cu(Mba)2 (Im)2].单晶X射线衍射分析表明,晶体属单斜晶系,空间群为P2 (1)/c,晶胞参数:a=1.429 64 (4) nm,b=1.147 34 (3) nm,c=1.356 92 (3) nm,β=102.789 (2)°,V=2.170 52 (1) nm3,Z=4,μ (MoKα) =10.54 cm-1,F(000) =1 036,R1=0.037 4,wR2=0.093 0[I >2σ (Ⅰ)].在配合物中,中心铜原子与配位原子构成四配位的变形平面四方形构型.最小不对称单元间通过芳环间的π-π堆积、C-H…π弱相互作用和氢键,构筑成三维网状结构.此外,利用量子化学Gaussian03程序包,在lanl2dz基组上,研究了标题配合物的稳定性、配合物的分子轨道能量以及前沿分子轨道的成键特征.【期刊名称】《衡阳师范学院学报》【年(卷),期】2015(036)006【总页数】5页(P1-5)【关键词】水热合成;铜(Ⅱ)配合物;晶体结构;量子化学【作者】陈志敏;杨颖群;毛芳芳;邝代治;曾荣英【作者单位】衡阳师范学院化学与材料科学学院,湖南衡阳 421008;衡阳师范学院功能金属有机材料湖南省普通高等学校重点实验室,湖南衡阳 421008;衡阳师范学院化学与材料科学学院,湖南衡阳 421008;衡阳师范学院功能金属有机材料湖南省普通高等学校重点实验室,湖南衡阳 421008;衡阳师范学院化学与材料科学学院,湖南衡阳 421008;衡阳师范学院化学与材料科学学院,湖南衡阳 421008;衡阳师范学院功能金属有机材料湖南省普通高等学校重点实验室,湖南衡阳 421008;衡阳师范学院化学与材料科学学院,湖南衡阳 421008【正文语种】中文【中图分类】O614.121铜是生物体的微量金属元素,是一些重要酶的活性中心,起着生物电子的递传、氧分子的输运,以及超氧负离子的清除等重要作用[1]。

铜(ⅱ)与α,β—不饱和酸根形成的超分子配合物的合成,磁性及晶体结构

铜(ⅱ)与α,β—不饱和酸根形成的超分子配合物的合成,磁性及晶体结构

铜(ⅱ)与α,β—不饱和酸根形成的超分子配合物的合成,磁性及晶体结构
超分子结构是一种新兴的分子结构,是由多种化学稳定和有益的分子组成的结构个体。

最近,Sun, et al.和Dong, et al.合作研究了一种新型的超分子配合物Cu(ⅱ)与α, β-不饱和酸根的合成、磁性及晶体结构.
首先, 通过不对称催化合成, 他们构建了一种新型的超分子配合物的结构.该结构由Cu(ⅱ)与α,β—不饱和酸根组成,并介电带扭结形成。

其次, 采用数值分析方法分析配合物的磁性性质, 通过对比实验数据, 利用扩散磁共振(DeR)分析了配体的磁性特征.最后, 通过X 射线结晶分析, 获得了配合物的晶体结构。

研究表明, Cu(ⅱ)与α,β—不饱和酸根组成的超分子配合物形成一种特殊的平面结构, 并呈现异质双节点形态。

本研究发现, Cu(ⅱ)与α,β—不饱和酸根可以形成稳定的超分子配合物, 呈现出特殊的磁性和晶体结构. 它有助于丰富了有机-无机配体的分子结构解答, 也将可能开发出新型
的超分子材料. 并且, 这项研究结果对未来对超分子结构的研究有一定的启发意义。

五种铜的配合物的制备

五种铜的配合物的制备

五种铜的配合物的制备与晶体场分裂能的测定20103010400034 王佳琪武汉大学化学与分子科学学院化学基地一班摘要本次实验中以硫酸铜分别和氨水、EDTA、乙二胺、水、氯化钠反应配制一系列的铜的配合物:[Cu(NH3)4]SO4、[Cu(H2O)6]SO4、[Cu(EDTA)]SO4、[Cu(en)2(H2O)2]SO4、Na2[CuCl4]。

用紫外分光光度计测出五种铜的配合物的紫外分光光谱图,并找出最大吸收峰所对应的波长λ,并根据△=1/λ×107×C h(C 是光速,h是普朗克常量)来计算各个配合物的晶体场分裂能,与文献元素光谱化学序列作对比。

关键词硫酸铜配合物紫外吸收光谱最大吸收峰晶体场分裂能引言过渡金属离子形成配合物后,在配体场的作用下,金属离子的d轨道分裂成能量不同的简并轨道。

简并轨道之间的能量差为分裂能,以△表示。

在八面体场的作用下,d轨道分裂为两组:t2g (三个简并轨道)和eg(两个简并轨道),后者能量较高,如图:e g 和t2g轨道之间的能级差为分裂能,其大小与下列因素有关:○1配体相同,△0按下列次序递减:平面正方形场﹥八面体场﹥四面体场○2对于同一M离子,晶体场分裂能大小随配体不同而变化,如八面体中,Iˉ<Brˉ<Clˉ<SCNˉ<OHˉ<C2O42ˉ<H2O<NH3<NO2ˉ<CNˉ;这一序列成为光谱化学序列。

按配位原子来说,晶体场分裂能大小为:卤素<氧<氮<碳。

本实验以硫酸铜为原料制备五种铜的配合物:[Cu(NH3)4]SO4、[Cu(H2O)6]SO4、[Cu(EDTA)]SO4、[Cu(en)2(H2O)2]SO4、Na2[CuCl4],通过测定五种配合物的紫外吸收光谱及最大吸收峰所对应的波长计算其晶体场分裂能,并对数据进行分析。

试剂及仪器试剂:五水硫酸铜固体、 6mol/L氨水、EDTA二钠盐、乙二胺、95%的乙醇、10%的乙二胺—甲醇溶液。

配合物[Co(p-MBA)2(phen)(H2O)]·(p-MBA)的水热合成、晶体结构及量子化学研究

配合物[Co(p-MBA)2(phen)(H2O)]·(p-MBA)的水热合成、晶体结构及量子化学研究
第 2 6卷 第 9期 21 0 0年 9月






Vo .6 No9 12 . l 69 1 7 6 — 6 4
CHI S OURN NORGANI HE S R NE E J AL OF I CC MI T Y
配 合物 [ op MB ) p e ) 0)・ . A) C ( . A 2 h n( ( H2 ]( MB 的水 热合 成 、 p 晶体 结构 及 量 子 化 学研 究
赵仁 高 t 石智 强 t 季 宁宁 z 李季坤 - ,
(泰 山 学院材 料 与化 学 工程 系, 泰安 2 1 2 ) 701 (泰 山 学院化 学与环 境科 学 系 , 泰安 2 12 ) 701
摘 要 : 过 水 热 反 应 , 成 了一 个 新 的单 核 钴 () 合 物 [opMB )p e) ). . A , 元 素 分 析 和 红 外 光 谱 对 配合 物 进 通 合 Ⅱ配 C (- A h n( O I( MB )用 ( H p
行 了表 征 。X 射 线 单 晶衍 射 表 明 , 合 物 属 三 斜 晶 系 , 间 群 , 胞 参 数 := .6 88 n 6 1 2 38 n c 1.1 (3 一 配 空 晶 a 1 5 ( m,= . 8 () m,= 61811) 0 8 ) 1 7
n a 7 .8 01),= 1 2 01),= 36 3 (o。 V I 3 92 a Z 2 D = .4 ・m , [ m,= 6 9 (0。, 7 . 8 (0。T 6 .8 o1 ), = . 7 () m , - , c1 3g a 。 Rl> 9 8 2 6 4 ,
Hy r te ma y tei C y tl tu t r n a tm h mi r f h d oh r l n h s , r sa r cu ea d Qu n u C e s yo e S s S t t

三维铜配位聚合物的构筑、晶体结构及磁性质

三维铜配位聚合物的构筑、晶体结构及磁性质

文 采用 经过 萘基修 饰 的羧 酸硫 脲配 体 N 一 ( 2 - 萘 甲酰基 ) . 氨 基 乙酸 硫脲 ( 2 N G H ) 与 醋 酸铜 反应 , 用元 素 分析 、 红 外光谱 以及 x射 线单 晶衍射 等方 法对 得 到 的金 属 有机框 架 { [ c u , ( 2 N G) : ( D M F ) ( H 。 O ) 。 ] ・ 2 H 。 O} ( 配
B R U K E R T E N S O R 2 7红外 光谱 仪上 测定 ; 热 分析 采 用 N E T Z S C H S T A 4 0 9 P C同步 热 分 析仪 , 空 气气 氛 下 , 升 温速 率为 1 0 ̄ C / m i n ; 粉末 X射 线衍射 ( P XR D) 采用 P A N a l y t i c a l X’ p e r t P R O 型 x 射 线 粉 末 衍 射 仪 测 定
冯 俊 阳 , 郭 清 , 安 子 龙 , 李 纲
( 1 . 郑州大学 化学与分子工程学院 河南 郑州 4 5 0 0 0 1 ; 2 . 河南应用技术职业学院 医药学院
河南 开封 4 7 5 0 0 4 )
摘要 : 采 用 一 水 合 醋 酸 铜 与 有 机 桥 连 配体 N - ( 2 一 萘 甲酰 基 ) - 氨基 乙酸硫脲 ( 2 N G H ) 在 甲 醇 和 N, N 一 二 甲基 甲 酰 胺 ( D MF ) 混 合 溶 液 中反 应 , 用 溶 剂 挥 发法 制 备 了 铜 的 三 维 配 位 聚 合 物 { [ C u ( 2 N G) : ( D MF ) ( H 0) ] ・ 2 H 0} ( 配 合物 1 ) . 利 用 红外 光谱 、 元 素 分 析 和 热 分 析 等 方 法 对 其 进 行 了表 征 , 并 用 x射 线 单 晶衍 射 测 定 晶 体 结 构 . X P S测 试 结果证实 , 在 配 合 物 1中存 在 二 价 和 一 价 铜 的混 合 离 子 . 测 试 了配 合 物 1在 2— 3 0 0 K内的变温磁 化率 , 结 果表 明 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cu(ClO4)2induced ortho-benzylation of N-benzyl di(pyridylmethyl)amineand the formation of μ2-Br-bridged copper(II) complexes)Di(picolyl)amine (dpa) and its derivatives are used as neutral, deprotonated chelating ligands to complex copper(II) atoms to mimic non-heme dioxygenase [1,2]. The reaction of dpa with Cu(ClO4)2 or CuCl2 leads to hexa-coordinated [Cu(dpa)2](ClO4)2[3] or the mononuclear complex [Cu(dpa)Cl2] [4], respectively, in which the geometry of reported Copper(II)-dpa complexes is a distorted square pyramidal or trigonal bipyramidal. The utility of these ligands is enhanced by the ease with which substituents may be introduced on the imino nitrogen atom, thus resulting the different antitumor activities and catalyzing activities of manganese(II) complexes of dpa and its derivatives [5]. So the synthesis of N-substituted dpa derivatives is meaningful to design functional complexes [6]. Although the intramolecular hydroxylation reaction and the antitumor activities for complexes of N-substituted di(picolyl)amine were extensively studied, there is no report on its intramolecular benzylation [7-9].Friedel-Crafts reaction of aromatic compounds is one of the important reactions for forming carbon-carbon bonds, as the products serve as useful starting materials for synthesis of pharmaceuticals and materials [10]. They are formed due to replacement of a hydrogen atom of an aromatic compound by a benzyl group derived from benzylating agent in the presence of Lewis acid (e.g. AlCl3, BF3, FeCl3, ZnCl2, etc.) or protonic acids. The copper(I) complexes of (2-pyridyl)alkylamine were reported to activate C-X bond giving C-C bond formation [11]. Copper-containing mesoporous silicas (Cu-HMS-n) and CuCl2were also widely used as mild, heterogeneous Friedel–Crafts benzylation catalysts [12, 13]. Treatment of [Cu(NCMe)4][PF6] with chelating ligands gave [CuL(NCMe)][PF6] ( L = 9,9-dimethyl-4,5-bis(diphenylphosphino)- xanthene ), which could catalyze the alkylation of diphenylphosphine (PPh2) with PhCH2Br in the presence of the base NaOSiMe3 to yield intramolecular benzylation products (PPh2CH2Ph) [14]. Here we report a intramolecular ortho-benzylation of N-benzyl di(pyridylmethyl)amine with benzyl bromide and the form ation of μ2-Br-bridged copper(II) complexes.1 Experimental Section1.1 Chemical reagents, analysis and physical measurementsAll reagents are of commercial grade and used as received. Bis(2-pyridylmethyl)-benzylamine (phdpa) was synthesized as reported [15]. IR spectra were recorded on a Nicolet 210 spectrometer in KBr pellets. Elemental analyses were performed by the Perkin-Elemer 240. 1H NMR and 13C NMR spectra were measured on a Bruker 400 MHz spectrometer. The electronic absorption spectra were recorded in the 900-190 nm region using the UV-2450 spectrophotometer.1.2 Synthesis of [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5 (1) and [phCH2phdpa+2H+](ClO4)2(2)A solution of Cu(ClO4)2•6H2O (471 mg, 1 mmol) in methanol (2 ml) was added dropwise to themethanol solution (10 ml) of Bis-(2-pyridylmethyl)-benzylamine (phdpa) (290 mg, 1 mmol). After stirred for 30 min at room temperature, benzyl bromide (12.7 mg,1 mmol) in methanol (20ml) was added and stirred at 80 ºC for 2 h, then cooled to room temperature. The purple crystals of (1) were obtained after evaporation of the methanol solution for 24h. Yield 0.31g (40%). Anal. Calcd for C38H38Br3ClCu2N6O4.5 C 43.26, H, 3.70, N, 7.96, Cu, 11.97; Found: C 43.13, H, 3.73, N, 7.84, Cu, 11.84. IR (KBr) (cm-1): ν(O-H) 3373 s, ν(=CH)3081m, ν(-CH2-) 2828 m, υ(C=N) 1612, ν(C=C), 1574 m, 1473 m, δ(CH, pyridine) 773 s, ν(ClO4)1100s, 623m. UV-vis (CH3OH / nm) (ε × 10 -4 / M-1 cm-1): 205 (2.73), 259 (1.59), 296 (0.40), 682 (0.01).The white powders [phCH2phdpa+2H+](ClO4)2(2) were obtained by further evaporation of above filtrate. Yield 0.14 g (20%). Anal. Calcd for C26H27Cl2N3O8C 50.83, H, 4.69 N, 7.24; Found: C 50.92, H, 4.60, N, 7.27. 1H NMR (400 MHz, DMSO-d6): δ=3.7 (s, 2H, CH2Ar); 4.0 (s, 2H, CH2Ar); 4.1 (s, 2H, CH2Py); 5.89 (s, 2H, CH2Py); 7.0-7.5 (m, 9H, Ar-); 7,7-8.8 (m, 8H, Py);9.1(s, 2H, H+). 13C NMR (400 MHz, DMSO-d6): δ=54.6-60.0 (CH2); 120-160 (Py or Ar) . IR (KBr) υ/cm-1: ν(N-H)3265m, ν(=CH) 3060 m, ν(-CH2-) 2925 m, υ(C=N) 1663, ν(C=C) 1589 s, 1569 m, 1473 m, 1433 m, δ(CH, pyridine) 760 s, 699 s. UV-vis (CHCl3 / nm) (ε × 10-4 / M-1 cm-1): 203 (4.12), 260 (1.75).1.3 Ortho-benzylation reactionThe intramolecular ortho-benzylation of phdpa by benzyl bromide was used as a model reaction for Cu(II) catalytic properties. A solution of CuX2 (1 mmol) (X= Cl-, NO3-, ClO4-) was added to the methanol solution (10 ml) of Bis-(2-pyridylmethyl)-benzylamine (phdpa) (290 mg, 1 mmol). After stirred for 30 min at room temperature, benzyl bromide (12.7 mg,1 mmol) in methanol (20ml) was added and the reaction was carried out with stirring at room temperature for 2 h. The conversion of phdpa was evaluated by analyzing samples of the reaction mixture collected by HPLC. The selectivity is expressed by the molar ratio of formed ortho-benzylaton products to converted phdpa.1.4 X-ray crystal structure determinations.Crystallographic data for [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5 (1) are listed in Table 1. The blue prism crystals of the complex were selected for lattice parameter determination and collection of intensity data at 293 K on a Rigaku Mercury2 CCD Area Detector with monochromatized Mo Ka radiation (λ= 0.071073 nm). The data were corrected for Lorenz and polarization effects during data reduction. A semi-empirical absorption correction from equivalents based on multi- scans was applied. The structure was solved by direct methods and refined on F2 by full-matrix least-squares methods using SHELXTL program [16]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced in their calculated positions. All computations were carried out using the SHELXTL-PC program package. CCDC number 759823Table 1 Crystal data and structure refinement details for the complex (1)Empirical formula C38H38Br3ClCu2N6O4.5Formular weight 2108.02Crystal system TriclinicSpace group P-1a (nm) 1.28064(12)b (nm) 1.38713(13)c (nm) 1.46715(14)α (°)102.2640(10)β (°)110.1990(10)γ (°)112.1170(10)V (nm3) /Z 2.0829(3) / 1Density (calc) (Mg/m3) 1.681Absorption coefficient (mm-1) 4.010F(000) 1050Index ranges -15≤h≤15; -15≤k≤17; -18≤l≤18Θ range (°) 2.61 - 26.37Reflection collected 20601Independent reflections [R int] 6580Data/restraints/parameters 8242/8/496Goodness-of-fit on F2 1.060F inal R indices [I>2ζ(I)]R1=0.0468; wR2=0.114R indices (all data) R1=0.0614; wR2=0.12492 Results and discussion2.1 The reaction of phdpa and Cu(ClO4)2 with benzyl bromideThe spectroscopic titration for the solution of phdpa and Cu(ClO4)2and its interaction with benzyl bromide in methanol solution is shown in Fig.1. The solution of phdpa and Cu(ClO4)2 show a d-d transition band at 641 nm indicating the formation of complex phdpa-Cu(ClO4)2 (Fig.1 line a). A strong increase of the absorbance of d-d transition with red shift about 40 nm was observed when the benzyl bromide was added in 30 min. The results indicate the possible coordination of bromide anion to the complex phdpa-Cu(ClO4)2 in methanol solution, which was confirmed by X-ray structure (Fig.2 and Scheme 1, (0)). However, there is no change for the absorption of d-d transition when the benzyl bromide was added to the solution of Cu(ClO4)4-phdpa system in MeCN, which are possible due to that the coordinated MeCN cannot be replaced by bromine atoms. This is similar to the reported complex [Cu(phdpa)(CH3CN)2](ClO4)2 [ 2].4005006007008000.00.10.20.30.40.5cbaA b s/ nmFig.1 The spectroscopic titration for the reaction of phdpa - Cu(ClO 4)2 (0.002 mol L -1) with benzyl bromide (phBr) (0.002 mol L -1) in methanol at 40 ºC. A, phdpa- Cu(ClO 4)2; b, phdpa - Cu(ClO 4)2,+ phBr 0.5h,; C, phdpa - Cu(ClO 4)2 + phBr, 1h.2.2 Formation of N-[(2-benzyl)benzyl]-di(picolyl)amine perchlorate (2)The formation of ortho-benzylation product N-[(2-benzyl)benzyl]-di(picolyl)amine perchlorate(2) was confirmed by 1HNMR data. 1H NMR spectra of N-[(2-benzyl)benzyl]-di(picolyl)amine showed the signals of the respective protons of the synthesized compounds (2), which were verified on the basis of their chemicals shifts, multiplicities. These spectra showed characteristic signals about CH 2 protons at 3.7 -4.1 ppm and 5.89 ppm, which are assigned to CH 2 (benzylmethyl group, phCH 2; pyridylmethyl group, pyCH 2) protons. The relative high chemical shifs indicate the existence of protonated N-[(2-benzyl)benzyl]-di(picolyl)amine perchlorate (2). The ortho-benzylation may be due to the coordination of bromine in benzyl bromine to the copper atom (Scheme 1, intermediate (0)).N N N N N NCu 2+NNNCu(ClO 4)2phdpa phCH 2Br N N N Cu Br --Br Br-ClO 4-+(1)H 2O H +(ClO 4)2(0)+H [phCH 2phdpa+2H +](ClO 4)2 (2)333Scheme 1 Possible mechanism for the formation of complex (1), [phCH 2phdpa+2H +](ClO 4)2 (2) and intermediate (0)2.3 The spectroscopic characteristics of the complex (1).The IR spectrum of the complex [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5(1)shows a broad band at 3373 cm-1assigned to υ(OH) of the uncoordinated water which are con firmed by elemental analysis and X-ray structure. The bands between 2828 and 3081 cm-1 for complex (1) can be assigned to the stretching vibration of saturated hydrocarbon and arene C-H in the IR spectra. The pyridyl ring vibration bands and δ(CH) vibration of pyridyl ring in complexes are all shifted. The pyridyl ring vibrations bands were approximately 1612 cm-1and 1574 cm-1 for complex (1). The δ(CH) vibration bands of pyridyl ring for the complex (1) were found at approximately 773 cm-1. These shifts can be explained by the fact that the nitrogen atoms of pyridyl ring of the ligands donate a pair of electrons each to the central metal forming coordinate covalent bond. The absorption bands occurring in the IR spectra of the complex (1) at 1100 cm-1 and 623 cm-1 corresponds to the asymmetric Cl-O stretching mode and the asymmetric Cl-O bending mode respectively. The electronic spectrum of the complex (1) exhibits four bands at 205 nm, 359 nm, 296 nm and 682 nm and these are assigned due to π→π*, C-T, n→π*and d-d transitions, respectively, the visible spectra exhibits a band 682 nm corresponding to five-coordinated square pyramidal Cu(II) complex.2.4 Crystal structure of [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5The molecular structure of [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5with the atomic labeling scheme is shown in Fig.2 and selected bond lengths and angles are listed in Table 2. The ligand (phdpa) acts as a tridentate ligand toward the Cu(II) atom. The Cu(II) atoms are coordinated by three N atoms (N1, N2, N3 for Cu1, N4 , N5, N6 for Cu2), one coordinated bromine atoms (Br1 for Cu1 or Br2 for Cu2) and a bridged bromine atom Br3 resulting in dinuclear Cu(II) complex [(phdpa)2Cu2(Br2)(μ2-Br](ClO4)(H2O)0.5. The Cu1 and Cu2 thus show distorted trigonal bipyramidal geometry. Atoms N1, N2, N3 and Cu1 form the equatorial trigonal plane (mean deviation 0.0041) while Br3 and Br1 occupy the apical positions. The Cu1 atom locates in the center of this plane with N1-Cu1-N3 of 163.63 (15)° and N2-Cu1-Br1 of 164.731(10) °. Atoms N4, N5, N6 and Cu2 also form a equatorial trigonal plane (mean deviation 0.0454). Cu2 was shifted about 0.0793 Å to this plane and the bond angles of N4-Cu2-N6 and N5-Cu2-Br2 was 164.24° and 151.37 °, respectively. The angle of two trigonal plane is 130.7 °. The Cu-N bond distances are in the range of 0.1995(4)-0.2055(3) nm and the Cu1-Br3 and Cu2-Br3 bond distances are 0.28096(7) nm and 0.27470(7) nm, which are longer than those of Cu1-Br1 and Cu2-Br2 bond distances (0.23791(7) nm and 0.23939(7) nm). Cu1-Br3-Cu2 angle is 134.88(2)°.Table 2 Selected bond lengths (nm) and bond angles (°) for the complex (1)Bond distancesCu1-N1 0.2008(3) Cu2-N4 0.1995(4)Cu1-N2 0.2055(3) Cu2-N5 0.2059(3)Cu1-N3 0.2007(3) Cu2-N6 0.1987(3)Cu1-Br1 0.23791(7) Cu2-Br2 0.23939 (7)Cu1-Br3 0.28096(7) Cu2-Br3 0.27470(7)Bond anglesN3-Cu1-N1 163.63(15) N6- Cu2–N4 164.24(15)N3-Cu1-N2 81.39(14) N6-Cu2-N5 83.29(14)N1-Cu1-N2 82.25(14) N4-Cu2-N5 82.48(15)N3-Cu1-Br197.92(11) N6-Cu2-Br2 97.96(10) N2-Cu1-Br1164.71(10) N5-Cu2-Br2 151.37(10) N1-Cu1-Br197.70(10) N4-Cu2-Br2 97.77(11) N3-Cu1-Br388.27(10) N6-Cu2-Br3 88.53(10) N2-Cu1-Br393.97(10) N5-Cu2-Br3 96.54(9) N1-Cu1-Br393.46(10) N4-Cu2-Br3 86.39 (10) Br1-Cu1-Br3 101.28(2) Br2-Cu2-Br3 112.07(2)Fig.2 Crystal structure of [(phdpa)2Cu 2(Br)2(μ2-Br)]+. Thermal ellipsoids are drawn at 50%probability. Hydrogen atoms are omitted for clarity.Table 3 Cu(II) catalyzed ortho-benzylation of phdpaCu(II) saltmR a Selectivity of ortho-benzylation b (%) Conversion of phdpa c (%) Cu(ClO 4)21:1 90 51 Cu(ClO 4)21:1.5 84 62 CuCl 21:1 46 48 CuCl 21:1.5 40 59 Cu(NO 3)21 38 46 Cu(NO 3)21:1.5 34 61 Blank d0:1 34 32 Blank e0:1.5 30 39 a mR: molar ratio of Cu(II) salt and benzyl bromide; b Selectivity: ratio of the ortho-benzylationproduct to benzylation products of phdpa; c Conversion: the ratio of benzylation products based onphdpa; d blank: benzyl bromide and phdpa was mixed in the molar ration of 1:1 (Blank d ) or 1.5:1(blank e ) without Cu(II) salt.2.5 Cu(II) catalyzed ortho-benzylation of phdpaThe intramolecular ortho-benzylation of phdpa catalyzed by copper(II) salt were summarized in Table 3. All reactions proceeded smoothly, and 32-62% conversion of phdpa was reached in 2 h. In practice, when the benzylation was over, a purple deposit derived from reaction medium appeared gradually after magnetic stirring was discontinued. The selectivity of N-alkylation catalyzed by Cu(II) salt depended on anions. Among these copper salt catalysts, only Cu(ClO4)2 shows high ortho-benzylation activity. CuCl2 and Cu(NO3)2 has no obvious effect on the selectivity of ortho-benzylation of phdpa, but they increased total conversion of phdpa. The enhanced conversion in Cu(II) complex reaction system may be due to the activation of C-Br bond by Cu(II) complexes. The high selectivity (90%) for the intramolecular ortho-benzylation of phdpa-Cu(ClO4)2 system was possibly due to the coordination of bromine atom in benzyl bromide to the copper(II) atom in complex phdpa-Cu(ClO4)2 ( Scheme 1, intermediate (0)). The only 51% conversion of phdpa (in 1:1 molar ratio of Cu(II) salt and benzyl bromide) was due to the formation of Br bridged complexes, which is not a good catalyst to the ortho-benzylation. Experimental results indicate that Cu(ClO4)2was a good catalyst for the intramolecular ortho-benzylation of phdpa.3 ConclusionThe reaction of N-benzyl di(pyridylmethyl)amine (phdpa) and Cu(ClO4)2 with benzyl bromide in methanol leads to the ortho-benzylation of phdpa with the formation of μ2-Br-bridged copper(II) complexes due to the coordination of bromine atoms to the center copper atom in phdpa-Cu(ClO4)2.Experimental results indicate that Cu(ClO4)2was a good catalyst for the intamolecular ortho-benzylation of phdpa. This experimental result is meaningful to find selective benzylation catalysts.References:[1] Wurtele C, Sander O, Lutz V, Waitz T, et al. J. Am. Chem. Soc.2009, 131:7544-7545.[2] Ciana C L, Phipps R J, Brandt J R., et al. Angew. Chem. Int. Ed. Engl. 2011, 50:478-482.[3] M. Kruppa, B. Konig, Chem.Rev.106 (2006)3520.[4] Puckett C A, Ernst R J, Barton J K et al. Dalton Trans.2010, 39:1159-1170.[5] Choi K Y, Ryu H, Sung N D. J. Chem. Crystallogr. 2003, 32:947-950.[5] Chen Q Y, Zhou D F, Huang J, et al. J. Inorg. Biochem. 2010, 104:1141-1149.[6] Du Jun, Wu Zi-Yi (吴子怡)H, JIA Mo (贾默), et al. Chinese..J. Inorg. Chem. (Wuji Huaxue Xuebao) 2008, 24(10):1669-1674.[7] Huang J, Chen Q Y(),Wang L Y, et al. Chinese..J. Inorg. Chem. (Wuji Huaxue Xuebao) 2009, 25(6):1077-1089.[8] CHEN Qiu-Yun(陈秋云) , HUANG Juan(黄娟), LI Jun-Feng (李军峰), et al. Chinese. Inorg.Chem.(Wuji Huaxue Xuebao),2008, 24(11):1789-1793.[9] Kunishita A, Scanlon J D, Ishimaru H, et al. Inorg. Chem. 2008, 47:8222-8232.[10] Duong H A, Gilligan R E, Cooke M L, et al. Angew. Chem. Int. Ed. Engl.2011, 50:483-486.[11] Zhao J L, Liu L, Sui Y, et al. Org. Lett. 2006, 8:6127-6130.[12] Lee H G, Won J E, Kim M J, et al. J. Org. Chem. 2009, 74:5675-5678.[13] Bachari K, Cherifi O, Cat. Commun.2006, 7:926-930.[14] Cain M F, Hughes R P, Glueck D S, et al. Inorg. Chem. 2010, 49:7650-7662.[15] Li J F, Chen Q Y, S pectrachim. Acta A2009,72:25-28.[16] Sheldrick G M, SHELXTL-97, Program for Crystal Structure Solution and Refinement,University of Gottingen, Germany, 1997.。

相关文档
最新文档