高二理数学试卷、答案

合集下载

高二数学试卷练习题及答案

高二数学试卷练习题及答案

高二数学试卷练习题及答案第一部分:选择题1. 设直线$l$经过点$P(3,2)$,若$l$的斜率为$-\frac{1}{2}$,则直线$l$的方程是()A. $y=2- \frac{1}{2}x$B. $y=2+ \frac{1}{2}x$C. $y=2-2x$D. $y=2+x$答案:A解析:直线的斜率$m=-\frac{1}{2}$,过点$P(3,2)$,带入点斜式方程$y-y_1=m(x-x_1)$,可得直线方程为$y=2-\frac{1}{2}x$。

2. 已知函数$f(x)=x^2+ax+b$,经过点$P(1,1)$,则$a+b$的值为()A. 1B. 2C. 3D. 4答案:A解析:带入点$P(1,1)$,可得方程$1=a+b$,因此$a+b=1$。

3. 已知集合$A=\{x|x^2\leq7\}$,则$A$的解析式为()A. $A=\{x|x\leq\sqrt{7}\}$B. $A=\{x|x\geq\sqrt{7}\}$C. $A=\{x|x\leq-\sqrt{7}\}$D. $A=\{x|x\geq-\sqrt{7}\}$答案:A解析:由不等式$x^2\leq7$,得$x\leq\sqrt{7}$,因此$A=\{x|x\leq\sqrt{7}\}$。

4. 如果对于所有实数$x$,都有$f(x)=f(-x)$,则函数$f(x)$为()A. 奇函数B. 偶函数C. 定义在偶数集上的函数D. 定义在奇数集上的函数答案:B解析:当函数$f(x)$满足$f(x)=f(-x)$时,称$f(x)$为偶函数。

第二部分:填空题1. 已知$\tan\theta=\frac{2}{3}$,则$\sin\theta$的值是()答案:$\frac{2}{\sqrt{13}}$解析:根据正弦定理得$\sin\theta=\frac{\frac{2\sqrt{13}}{3}}{\sqrt{1+(\frac{2}{3})^2}}=\frac{2 }{\sqrt{13}}$。

2022年黑龙江省哈尔滨市黑龙江成人高级中学高二数学理月考试卷含解析

2022年黑龙江省哈尔滨市黑龙江成人高级中学高二数学理月考试卷含解析

2022年黑龙江省哈尔滨市黑龙江成人高级中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 命题:“”,则A.是假命题;:B.是真命题;:C.是真命题;:D.是假命题;:参考答案:D2. 已知离心率为的椭圆C,其中心在原点,焦点在坐标轴上,该椭圆的一个短轴顶点与其两焦点构成一个面积为的等腰三角形,则椭圆C的长轴长为()A.4 B.8 C.4 D.8参考答案:B略3. 如果a<b<0,那么下列不等式成立的是()A.B.ab<b2 C.﹣ab<﹣a2 D.参考答案:D【考点】不等关系与不等式.【分析】由于a<b<0,不妨令a=﹣2,b=﹣1,代入各个选项检验,只有D正确,从而得出结论.【解答】解:由于a<b<0,不妨令a=﹣2,b=﹣1,可得=﹣1,∴,故A 不正确.可得ab=2,b2=1,∴ab>b2,故B不正确.可得﹣ab=﹣2,﹣a2=﹣4,∴﹣ab>﹣a2,故C不正确.故选D.4. 当时,下面的程序段输出的结果是()A. B. C.D.参考答案:D5. 函数f(x)=+(x-4)0的定义域为()A. {x|x>2,x≠4} B.{x|x≥2,或x≠4} C. D.参考答案:C6. 设若的最小值为()A 8B 4C 1 D参考答案:A略7. 椭圆上两点间最大距离是8,那么()A.32 B.16 C.8 D.4参考答案:B略8. 某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A. 8B. 15C. 18D. 30参考答案:A【分析】本题是一个分类计数问题,解决问题分成两个种类,根据分类计数原理知共有3+5=8种结果.【详解】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有3+5=8种结果,故选:A.【点睛】本题考查分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.9. 设函数,其中n为正整数,则集合中元素个数是k*s*5*u ()A. 0个B.1个C.2个D.4个参考答案:C略10. 函数的最小值是()A. 4 B. 5 C. 6D. 7参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 若焦点在x轴上的椭圆的离心率为,则m=参考答案:略12. 数列1/2,3/4,5/8,7/16,…的一个通项公式为________________参考答案:13. 若函数f(x)=是R上的单调递减函数,则实数a的取值范围是.参考答案:a≤【考点】3F:函数单调性的性质.【分析】根据分段函数单调性的性质建立不等式关系进行求解即可.【解答】解:∵函数f(x)=是R上的单调递减函数,∴,即,得a≤,即实数a的取值范围是a≤,故答案为:a≤【点评】本题主要考查函数单调性的应用,根据分段函数单调性的性质建立不等式关系是解决本题的关键.14. 数列,的前n项之和等于.参考答案:【考点】数列的求和.【分析】由数列,得到a n=n+2n,所以其前n项和,利用分组求和法,得到S n=(1+2+3+4+…+n)+(),再由等差数列和等比数列的前n项和公式能够得到结果.【解答】解:数列,的前n项之和=(1+2+3+4+…+n)+()=+=.故答案为:.【点评】本题考查数列求和的应用,解题时要认真审题,仔细解答.关键步骤是找到a n=n+2n,利用分组求法进行求解.15. 过点P(1,2)且在X轴,Y轴上截距相等的直线方程是_________参考答案:x+y-3=0或2x-y=016. 已知平面区域恰好被面积最小的圆及其内部所覆盖,则圆的方程为_________.Ks5u参考答案:略17. 给n个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图1所示,由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有_________.(结果用数值表示)n=1n=2n=3n=4参考答案:21,43三、解答题:本大题共5小题,共72分。

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)
求直线被曲线 ′ 截得的最短的弦长;
(3) 已知点的坐标为(5,3),点在曲线 ′ 上运动,求线段的中点的轨迹方程.
22. (12 分)
如图,长方体 — 1 1 1 1 中, = 2 = 21 ,
点在棱上且1 丄平面1 1

(1)求 的值
21. ( 12 分)
已知两定点 (-4,0), (-1,0),动点 满足 | | = 2 ||,直线 :(2 + 1) + ( + 1) −
5 − 3 = 0.
(1) 求动点的轨迹方程,并说明轨迹的形状;
(2) 记动点的轨迹为曲线,把曲线向右平移 1 个单位长度,向上平移 1 个单位长度后得到曲线 ′ ,
反射光线所在直线的方程.
20. (12 分)
在直角梯形 中, //, = 2 = 2 =2 2,∠ = 900 如图(1). 把△沿
翻折,使得平面 ⊥平面,如图(2).
(1) 求证: ⊥ ;
(2) 若为线段的中点,求点到平面的距离.
所成角的余弦值为
A.
6
B.
3
3
C.
3
15
D.
5
10
5
12. 若圆 2 + 2 − 4 − 4 − 10 = 0至少有三个不同的点到直线: = 的距离为 2 2,则直线的倾斜角
的取值范围是



A.[ 12 , 4 ]
5
B. [ 12 , 12 ]


C. [ 6 , 3 ]
B. - 5
C. 10
D. -10
2.已知(4,1,9),(2,4,3),则线段的长为
A. 39
B.7

2022-2023学年四川省泸县第五中学高二上学期期末考数学(理)试卷带讲解

2022-2023学年四川省泸县第五中学高二上学期期末考数学(理)试卷带讲解
由S△ABF2= ·4a·r= ·2c·|y1】本题考查焦点三角形内切圆面积的求法和椭圆定义的运用,解题的关键一是采取“算两次”的方法,根据三角形面积的唯一性得到等式后求解,二是合理运用椭圆的定义进行计算.考查转化能力和计算能力,属于基础题.
12.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线 : 就是一条形状优美的曲线,对于此曲线,给出如下结论:
【详解】∵直线方程 可整理为
∴定点为
∵点A在直线 上

∴ ,当且仅当 时取等号
故答案为:
16.过点 作抛物线 的两条切线,切点分别为 和 ,又直线 经过拋物线 的焦点 ,那么 的最小值为_________.
16
【分析】设 ,写出以 为切点的切线方程,由判别式求出切线斜率,得到以 为切点的切线方程,同理求出以 为切点的切线方程,结合 在两条切线上得直线 的方程,联立直线 与抛物线方程,根据根与系数的关系,结合抛物线定义得出结果.
【考点】圆的方程,点到直线的距离公式
【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离.已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d与半径r的大小关系,以此来确定参数的值或取值范围.
9.已知 , ,若不等式 恒成立,则正数 的最小值是()
A. 2B. 4
C. 6D. 8
第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数
相同,第六组的人数为4人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。

A。

5+2i B。

5-2i C。

-5+2i D。

-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。

A。

1/3+cos1 B。

11/3sin1+cos1 C。

3sin1-cos1 D。

sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。

A。

0 B。

1 C。

2 D。

-14.定积分∫1x(2x-e)dx的值为()。

A。

2-e B。

-e C。

e D。

2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。

A。

1项 B。

k项 C。

2k-1项 D。

2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。

A。

40/3 B。

13 C。

25/2 D。

157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。

A。

(3,-3) B。

(-4,11) C。

(3,-3)或(-4,11) D。

不存在8.函数f(x)=x^2-2lnx的单调减区间是()。

A。

(0,1] B。

[1,+∞) C。

(-∞,-1]∪(0,1] D。

[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。

A。

f(x)=4/(2x+2) B。

f(x)=2^(12/(x+1)) C。

f(x)=(x+1)/2 D。

f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。

A。

[-1,+∞) B。

(-1,+∞) C。

2022年年高二下学期数学(理)期末试卷(附答案)

2022年年高二下学期数学(理)期末试卷(附答案)

年高二下学期数学(理)期末试卷考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数z 满足()543=-z i ,则z 的虚部为 A. i 54- B.54- C. i 54 D.542. 命题“0232,2≥++∈∀x x R x ”的否定为A.0232,0200<++∈∃x x R xB. 0232,0200≤++∈∃x x R xC. 0232,2<++∈∀x x R xD. 0232,2≤++∈∀x x R x3. 已知随机变量ξ服从正态分布2(1,)N σ,且(2)0.6P ξ<=,则(01)P ξ<<= A. 0.4 B. 0.3 C. 0.2 D. 0.14. 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()()q p ⌝∨⌝B.()q p ⌝∨C.()()q p ⌝∧⌝D.q p ∨5. 某校从高一中随机抽取部分学生,将他们的模块测试成绩分成6组:[)[),60,50,50,40[)[),80,70,70,60 [)[)100,90,90,80加以统计,得到如图所示的频率分布直方图.已知 高一共有学生600名,据此 统计,该模块测试成绩不少于60分的学生人数为A.588B.480C.450D.120 6. 若不等式62<+ax 的解集为()2,1-,则实数a 等于A.8B.2C.4-D.8- 7. 在极坐标系中,圆2cos 2sin ρθθ=+的圆心的极坐标是A. (1,)2πB. (1,)4πC. (2,)4πD. (2,)2π8. 已知2=x 是函数23)(3+-=ax x x f 的极小值点, 那么函数)(x f 的极大值为 A. 15 B. 16 C. 17 D. 189. 阅读如下程序框图, 如果输出5=i ,那么在空白矩形框中应填入的语句为 A. 22-*=i S B. 12-*=i S C. i S *=2 D. 42+*i10. 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. 若η2-=ξa ,1)(=ηE , 则a 的值为A. 2B.2-C. 5.1D. 311. 观察下列数的特点:1,2,2,3,3,3,4,4,4,4,… 中,第100项是A .10 B. 13 C. 14 D.10012. 若函数x x f a log )(=的图象与直线x y 31=相切,则a 的值为 A. 2e e B. e3e C. e e5D. 4ee第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13. 曲线⎩⎨⎧==ααsin 4cos 6y x (α为参数)与曲线⎩⎨⎧==θθsin 24cos 24y x (θ为参数)的交点个数 为__________个.14. 圆222r y x =+在点()00,y x 处的切线方程为200r y y x x =+,类似地,可以求得椭圆183222=+y x 在()2,4处的切线方程为________.15. 执行右面的程序框图,若输入的ε的值为25.0,则输出的n 的值为_______.16. 商场每月售出的某种商品的件数X 是一个随机变量, 其分布列如右图. 每售出一件可 获利 300元, 如果销售不出去, 每件每月需要保养费100元. 该商场月初进货9件这种商品, 则销售该商品获利的期望为____.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) X 1 2 3···12P121121 121 ···1210,1==S i1+=i i 输出i结束开始i 是奇数12+*=i S10<S是否否 是第9题图17. 在平面直角坐标系xOy 中,直线l 的参数方程为232252x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极 坐标系(与直角坐标系xOy 取相同的单位长度,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为25sin ρθ=. (I )求圆C 的直角坐标方程;(II )设圆C 与直线l 交于,A B 两点,若点P 坐标为(3,5),求PB PA ⋅的值.18. 目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单随机抽样的方法调查了110名高二学生,结果如下表:男 女 是 40 20 否2030(I )若哈三中高二共有1100名学生,试估计大约有多少学生熬夜看球; (II )能否有99%以上的把握认为“熬夜看球与性别有关”? 2()P K k ≥0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++19. 数列{}n a 中,11=a ,且12111+=++n a a nn ,(*∈N n ). (Ⅰ) 求432,,a a a ;(Ⅱ) 猜想数列{}n a 的通项公式并用数学归纳法证明.20. 已知函数x x f ln )(=,函数)(x g y =为函数)(x f 的反函数.(Ⅰ) 当0>x 时, 1)(+>ax x g 恒成立, 求a 的取值范围; (Ⅱ) 对于0>x , 均有)()(x g bx x f ≤≤, 求b 的取值范围.性别是否熬夜看球21. 哈三中高二某班为了对即将上市的班刊进行合理定价,将对班刊按事先拟定的价格进行试销,得到如下单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (元)908483807568(I )求回归直线方程y bx a =+;(其中121()(),()n i i i ni i x x y y b a y bx x x ==∑--==-∑-)(II )预计今后的销售中,销量与单价服从(I )中的关系,且班刊的成本是4元/件,为了获得最大利润,班刊的单价定为多少元?22. 已知函数a x f -=)(x2ex a e )2(-+x +,其中a 为常数.(Ⅰ) 讨论函数)(x f 的单调区间;(Ⅱ) 设函数)e 2ln()(x ax h -=2e 2--+x a x (0>a ),求使得0)(≤x h 成立的x 的最小值; (Ⅲ) 已知方程0)(=x f 的两个根为21,x x , 并且满足ax x 2ln 21<<.求证: 2)e e (21>+x x a .数学答案一. 解答题:22. (Ⅰ) 因为)1)(12()(+-+='xxae e x f ,所以, 当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数; 当0>a 时, 函数)(x f 在)1ln,(a-∞上为单调递增, 在).1(ln ∞+a 上为单调递减函数.(Ⅲ) 由(Ⅰ)知当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数, 方程至多有一根,所以0>a ,211ln ,0)1(ln x ax a f <<>,又因为 =--)())2(ln(11x f e a f x 022)2ln(111>--+-x ae e a xx ,所以0)())2(ln(11=>-x f e a f x , 可得2)2ln(1x e ax<-.即212xx e e a<-, 所以2)(21>+x x e e a .。

人教版高二上学期期末数学试卷(理)(有答案)

人教版高二上学期期末数学试卷(理)(有答案)

黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。

山东省青岛市墨尔文中学2022年高二数学理期末试卷含解析

山东省青岛市墨尔文中学2022年高二数学理期末试卷含解析

山东省青岛市墨尔文中学2021-2022学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的零点所在的一个区间是().A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)参考答案:C2. 复数的共轭复数是()A. B. C. D.参考答案:D分析】先对复数进行化简,然后再求解其共轭复数.【详解】,所以共轭复数为.故选D.【点睛】本题主要考查复数的运算及共轭复数,共轭复数的求解一般是先化简复数,然后根据实部相同,虚部相反的原则求解.3. 实半轴长等于,并且经过点B(5,﹣2)的双曲线的标准方程是()A.或B.C.D.参考答案:C【考点】双曲线的简单性质.【分析】若实轴在x轴上,可设其方程为=1,b>0,若实轴在y轴上,可设其方程为=1,b>0,分别把B(5,﹣2)代入,能求出结果.【解答】解:由题设,a=2,a2=20.若实轴在x轴上,可设其方程为=1,b>0,把B(5,﹣2)代入,得b2=16;若实轴在y轴上,可设其方程为=1,b>0,把B(5,﹣2)代入,得b2=﹣(舍),故所求的双曲线标准方程为.故选:C.4. 已知函数有平行于轴的切线且切点在轴右侧,则的范围为A.B.C.D.参考答案:A5. 已知定义在R上的奇函数,满足,且在区间[0,1]上是增函数,若方程在区间上有四个不同的根,则()(A)(B)(C)(D)参考答案:A略6. 已知椭圆C的长轴长为2,两准线间的距离为16,则椭圆的离心率e为()A. B. C.D.参考答案:C7. 下列说法不正确的是()A.空间中一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.参考答案:A略8. 已知a<b,则下列不等式正确的是()A.B.1﹣a>1﹣b C.a2>b2 D.2a>2b参考答案:B【考点】不等式比较大小;不等关系与不等式.【分析】利用不等式的性质即可得出.【解答】解:∵a<b,∴﹣a>﹣b,∴1﹣a>1﹣b.故选B.9. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A. 1盏B. 2盏C. 3盏D. 4盏参考答案:C 【分析】由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列前项和公式列出方程,即可求出塔的顶层的灯数。

四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案

四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案

高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。

2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。

3.考试结束后由监考老师将答题卡收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。

高中数学选择性必修二 北京市昌平区新学道临川学校高二上学期期末考试数学(理)试题(含答案)

高中数学选择性必修二 北京市昌平区新学道临川学校高二上学期期末考试数学(理)试题(含答案)
临川学校2020-2021学年度第一学期期末考试
高二数学理科试卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在等差数列 中,若 , ,则 =()
A. B. C. D.
【答案】C
【解析】
【分析】由等差数列通项公式可求得 ,由 可求得结果.
【详解】设等差数列 的公差为 ,则 , .
【详解】抛物线 ( )的准线为: ,
因为准线经过点 ,可得 ,即 ,
所以抛物线为 ,焦点坐标为 ,
故选:B.
11.椭圆 内有一点 过点 的弦恰好以 为中点,那么这弦所在直线的方程为()
A. B.
C. D.
【答案】B
【解析】
【分析】利用点差法得到直线斜率和中点之间的关系,即可得解.
【详解】设弦的两个端点为 ,
即曲线C右侧部分的点到原点的距离都不超过 ,
再根据对称性可知,曲线C上的所有点到原点的距离都不超过 ,②正确;
对于③,因为在x轴上方,图形面积大于四点(﹣1,0),
(1,0),(1,1),(﹣1,1)围成的矩形面积1×2=2,
在x轴下方,图形面积大于三点(﹣1,0),(1,0),(0,﹣1)围成的等腰直角三角形的面积 ×2×1=1,
故选:C.
2.在等比数列 中, , ,则 与 的等比中项是()
A. B. C. D.
【答案】A
【解析】
【分析】计算出 的值,利用等比中项的定义可求得结果.
【详解】由已知可得 ,由等比中项的性质可得 ,
因此, 与 的等比中项是 .
故选:A.
3.若△ABC中,a=4,A=45°,B=60°,则边b的值为( )

山东省济南市第二高级中学2022年高二数学理月考试题含解析

山东省济南市第二高级中学2022年高二数学理月考试题含解析

山东省济南市第二高级中学2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线的斜率为A. B. C. D.参考答案:A2. 图中的图象所表示的函数解析式是()A. B.C. D.参考答案:B3. 买4枝郁金香和5枝丁香的金额小于22元,而买6枝郁金香和3枝丁香的金额和大于24元,那么买2枝郁金香和买3枝丁香的金额比较,其结果是()A.前者贵 B.后者贵 C.一样 D.不能确定参考答案:A 解析:设郁金香x元/枝,丁香y元/枝,则,∴由不等式的可加(减)性,得x>3,y<2,∴2x>6,3y<6,故前者贵。

4. 下列四个命题:①对立事件一定是互斥事件②若、为两个事件,则③若事件两两互斥,则④若事件满足则是对立事件.其中错误命题的个数是()A.0B.1C.2D.3参考答案:D5. 设表示三条直线,、表示两个平面,则下列命题的逆命题不成立的是 ( )A.⊥,若⊥,则∥;B.β,是在内的射影,若⊥,则⊥;C.β,若⊥则⊥;D.,,若∥,则∥;参考答案:C略6. 正方体AC1中,点P、Q分别为棱A1B1、DD1的中点,则PQ与AC1所成的角为( )A.30o B.45o C.60o D.90o参考答案:D略7. 用“辗转相除法”求得333和481的最大公约数是()A.3 B.9 C.37 D.51参考答案:C【考点】用辗转相除计算最大公约数.【专题】转化思想;算法和程序框图.【分析】利用“辗转相除法”即可得出.【解答】解:481=333×1+148,333=148×2+37,148=37×4.∴333和481的最大公约数是37.故选:C.【点评】本题考查了“辗转相除法”,考查了推理能力与计算能力,属于基础题.8. 已知椭圆,则椭圆的焦距长为()(A). 1 (B). 2 (C). (D). 参考答案:D略9. 已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.参考答案:D【考点】双曲线的简单性质.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.10. 如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D上的两个动点,且EF=,则下列结论错误的是()A.AC⊥BF B.直线AE、BF所成的角为定值C.EF∥平面ABC D.三棱锥A﹣BEF的体积为定值参考答案:B【考点】异面直线及其所成的角.【分析】通过直线AC垂直平面平面BB1D1D,判断A是正确的;通过直线EF垂直于直线AB1,AD1,判断A1C⊥平面AEF是正确的;计算三角形BEF 的面积和A到平面BEF的距离是定值,说明C是正确的;只需找出两个特殊位置,即可判断D是不正确的;综合可得答案.【解答】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,又BE?平面BB1D1D,∴AC⊥BE,故A正确;∵当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠OEB,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠OE1B,显然两个角不相等,B不正确;∵平面ABCD∥平面A1B1C1D1,EF?平面A1B1C1D1,∴EF∥平面ABCD,故C正确;∵由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故V A ﹣BEF为定值.D正确;故选B.二、填空题:本大题共7小题,每小题4分,共28分11. 已知=2,=3,=4…,若=6,(a,t为互质的正整数),由以上等式,可推测a,t的值,则a+t=________.参考答案:41根据题中所列的前几项的规律可知其通项应为,所以当n=6时,,.12. 若直线ax+2by﹣2=0(a,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则的最小值为.参考答案:【考点】直线与圆的位置关系;基本不等式.【专题】计算题.【分析】由题意可知圆x 2+y 2﹣4x ﹣2y ﹣8=0的圆心(2,1)在直线ax+2by ﹣2=0上,可得a+b=1,而=()(a+b),展开利用基本不等式可求最小值【解答】解:由圆的性质可知,直线ax+2by ﹣2=0即是圆的直径所在的直线方程∵圆x2+y2﹣4x﹣2y﹣8=0的标准方程为(x﹣2)2+(y﹣1)2=13,∴圆心(2,1)在直线ax+2by﹣2=0上∴2a+2b﹣2=0即a+b=1∵=()(a+b)==3+2∴的最小值故答案为:【点评】本题主要考查了圆的性质的应用,利用基本不等式求解最值的问题,解题的关键技巧在于“1”的基本代换13. 用等值算法求294和84的最大公约数时,需要做次减法.参考答案:414. 设,将个数依次放入编号为的个位置,得到排列.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列,将此操作称为变换.将分成两段,每段个数,并对每段作变换,得到;当时,将分成段,每段个数,并对每段作变换,得到.例如,当时,,此时位于中的第4个位置.(1)当时,位于中的第个位置;(2)当时,位于中的第个位置.参考答案:(1)6;(2)15. 已知直线曲线相切则 .参考答案:16. 已知 -3+2 i是关于x的方程2x2+px+q=0的一个根,(p、q∈R),则p+q=________;参考答案:3817. 一个病人服用某种新药后被治愈的概率为0.9,服用这种新药的3个人中恰有1人被治愈的概率为__________(用数字作答).参考答案:0.027恰有人被治愈的概率.三、解答题:本大题共5小题,共72分。

人教版高二(理科)第一学期期末考试数学试题-含答案

人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。

福建省2023年高二下学期数学(理)期末试卷(附答案)

福建省2023年高二下学期数学(理)期末试卷(附答案)

福建省高二下学期数学(理)期末试卷3.独立性检验的临界值表:P(K 2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0.4550.7801.3232.0722.7063.8415.0246.6357.87910.828第I 卷(100分)一、选择题(本大题共8小题,每小题5分,共40分。

每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.已知随机变量ξ的数学期望E ξ=0.05且η=5ξ+1,则Eη等于 A. 1.15 B. 1.25 C. 0.75 D. 2.52. 某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是A.40.80.2⨯B.445C 0.8⨯ C.445C 0.80.2⨯⨯ D. 45C 0.80.2⨯⨯ 3.6个人排成一排,其中甲、乙不相邻的排法种数是A.288B.480C.600D.6404.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为A .41004901C C - B .4100390110490010C C C C C + C .4100110C C D .4100390110C C C5. 已知服从正态分布2(,)N μσ的随机变量在区间(,)μσμσ-+,(2,2)μσμσ-+和(3,3)μσμσ-+内取值的概率分别为68.3%,95.4%和99.7%。

某校高一年级1000名学生的某次考试成绩服从正态分布2(90,15)N ,则此次成绩在(60,120)范围内的学生大约有A.997B.972C.954D.683人6.某车间加工零件的数量x 与加工时间y 的统计数据如下表:零件数x (个) 10 20 30 加工时间y (分钟)213039现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为A .84分钟B .94分钟C .102分钟D .112分钟7. 先后抛掷红、蓝两枚骰子,事件A :红骰子出现3点,事件B :蓝骰子出现的点数为奇数,则(|)P A B =A.61B.31C.21D.365 8.甲、乙、丙、丁四个人排成一行,则乙、丙两人位于甲同侧的排法总数是A.16B.12C.8D.6二、填空题(本大题共4小题,每小题5分,共20分)9. 6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.10.若5(1)ax -展开式中各项系数和为32,其中a R ∈,该展开式中含2x 项的系数为_________.11.已知某一随机变量X 的概率分布列如下,且E (X )=7,求D (X ) . 12.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;(3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件。

2022-2023学年四川省内江市高二上学期期末考试数学(理)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(理)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(理)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是( ) A .12B .1336 C .49D .512【答案】B【分析】利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.【详解】解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(,)m n 表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足2225+<m n 有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足2225+<m n 的概率1336P =. 故选:B9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //n B .若α⊥β,l ⊂α,则l ⊥β C .若l ⊥α,m α⊂,则l ⊥m D .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线l :x +y -7=0上任意一点,过点P 作两条直线与圆C :()2214x y ++=相切,切点分别为A ,B .则|AB |的最小值为( )A .14B .142C .23D .3【答案】A【分析】根据直线与圆相切的几何性质可知,当||PC 取得最小值时,cos ACP ∠最大,||AB 的值最小,当PC l ⊥时,||PC 取得最小值,进而可求此时||14AB =【详解】圆C 是以(1,0)C -为圆心,2为半径的圆,由题可知,当ACP ∠最小时,||AB 的值最小. ||2cos ||||AC ACP PC PC ∠==,当||PC 取得最小值时,cos ACP ∠最大,ACP ∠最小,点C 到直线l 的距离|8|422d -==,故当||42PC =时,cos ACP ∠最大,且最大值为24,此时||||14sin 2||44AB AB ACP AC ∠===,则||14AB =.故选:A12.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F ,下列命题错误的是( )A .四棱锥11B BED F -的体积恒为定值 B .存在点E ,使得1B D ⊥平面1BD EC .存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值D .对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得CG ∥平面1EBD 【答案】D【分析】由111111B BED F E BB D F BB D V V V ---=+结合线面平行的定义,即可判断选项A ,由线面垂直的判定定理即可判断选项B ,由面面平行的性质和对称性,即可判断选项C ,由特殊位置即可判断选项D.【详解】对A ,111111B BED F E BB D F BB D V V V ---=+,又11//CC BB ,1CC ⊄平面11BB D ,1BB ⊂平面11BB D ,所以1//CC 平面11BB D ,同理1//AA 平面11BB D ,所以点E ,F 到平面11BB D 的距离为定值,则四棱锥11B BED F -的体积为定值,故选项A 正确;对于B ,因为111BB B D =,可得对角面11BB D D 为正方形,所以11B D BD ⊥,由DC ⊥平面11BCC B ,BE ⊂平面11BCC B ,所以DC BE ⊥,若1BE B C ⊥,则1B CDC C =,1,B C DC ⊂平面1B DC ,所以BE ⊥平面1B DC ,由1B D ⊂平面1B DC ,所以1B D BE ⊥,又11,,BD BE B BD BE ⋂=⊂平面1BD E ,所以1B D ⊥平面1BD E ,故B 正确;对于C ,由面面平行的性质定理可得,四边形1BED F 为平行四边形,由对称性可得,当四边形为菱形时,周长取得最小值,即存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值,故选项C 正确.对于D ,当E 点在C 处时,对于AD 上任意的点G ,直线CG 与平面1EBD 均相交,故选项D 错误. 故选:D二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=.故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||AB =所以圆心到直线的距离为d ===,=1k =±, 故答案为:1±.15.已知E 是正方体1111ABCD A B C D -的棱1DD 的中点,过A 、C 、E 三点作平面α与平面1111D C B A 相交,交线为l ,则直线l 与1BC 所成角的余弦值为______. 【答案】12【分析】由面面平行的性质与异面直线所成的角的求法求解即可 【详解】因为过,,A C E 三点的平面α与平面1111D C B A 相交于l , 平面α与平面ABCD 相交于AC ,平面1111D C B A 与平面ABCD 平行, 所以//l AC ,又11//A C AC ,故11//AC l所以直线l 与1BC 所成的角就是直线11A C 与1BC 所成的角, 也即是11AC B ∠(或补角) 又易知11A C B △为等边三角形,所以直线l 与1BC 所成角的余弦值为1cos602︒=, 故答案为:1216.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PAB 面积的最大值是_________. 【答案】52【详解】试题分析:易知A (0,0),B (1,3)两直线互相垂直,故222221510222PA PB PA PB AB S PA PB ++==∴=≤=为所求.【解析】基本不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料. 日期第一年 第二年 第三年 第四年优惠金额x (千元) 10 11 13 12 销售量y (辆) 22243127(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn iii i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =- (2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过(6,1),(3,2)A B -两点,且圆心C 在直线230x y +-=上. (1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程; (2)求圆C 的标准方程;(3)斜率为34-的直线l 过点B 且与圆C 相交于,E F 两点,求||EF .【答案】(1)60x y -=或+7=0x y -; (2)22(5)(1)5x y -++=; (3)2.【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答. (2)设出圆心坐标,由已知求出圆心及半径作答. (3)求出直线l 的方程,利用弦长公式计算作答.【详解】(1)经过点A ,在两坐标轴上的截距相等的直线,当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为=x y a +,将点(6,1)A 代入解得=7a ,即直线的方程为+7=0x y -, 所以所求直线的方程为60x y -=或+7=0x y -.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -, 又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径||||r AC BC ==,1b =-,圆心(5,1)C -,圆C的半径r = 所以圆C 的标准方程为22(5)(1)5x y -++=.(3)依题意,直线l 的方程为32(3)4y x +=--,即3410x y +-=, 圆心(5,1)C -到直线的距离为|1541|25d --==, 所以22||22542EF r d =-=-=.19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD : (2)求三棱锥1F ACA -的体积.【答案】(1)见解析2【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形,所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=.21.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M 是线段EF 的中点.(1)求证:平面ACEF ⊥平面BDF ;(2)求证:DM ⊥平面BEF ;(3)求二面角A DF B --的大小.【答案】(1)见解析(2)见解析(3)60【分析】(1)建立空间直角坐标系,利用0AM BD =,0AM DF =,可得AM ⊥平面BDF ,进而可得面面垂直.(2)由2AB 1AF =,得3==DF DE DM EF ⊥,连BM ,得DM BM ⊥,由此能证明DM ⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.(1,1,0)DC =--是平面ADF 的一个法向量,cos AM <,1222DC >==⨯即可. 【详解】(1)四边形ACEF 是矩形,FA AC ∴⊥,平面ACEF ABCD ⊥,平面ACEF 平面ABCD AC =,AF ⊂平面ACEFAF ∴⊥平面ABCD .设AC DB O ⋂=,则OM ⊥平面ABCD建立如图的直角坐标系,则各点的坐标分别为:(0O ,0,0),(0A ,1,0),(1B -,0,0),(0C ,1-,0),(1D ,0,0),(0E ,1-,1),(0F ,1,1),(0M ,0,1).(2BD =,0,0),(1DF =-,1,1),(0AM =,1-,1),∴0AM BD =,0110AM DF =-+=, AM BD ∴⊥,AM DF ⊥,BD DF D =,,BD DF ⊂平面BDF ,AM ∴⊥平面BDF ,AM ⊂平面ACEF ,所以平面ACEF ⊥平面BDF(2)由2AB =,1AF =,得3==DF DE ,M 是线段EF 的中点,DM EF ,连接BM ,由于2222,,DM OM OD MB OM OB OB OD =+=+=,得2BM DM ==,又2BD =,222DM BM BD += DM BM ∴⊥,又BM EF M =,,MB EF ⊂平面BEF , DM ∴⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.又AF ⊥平面ABCD 得AF CD ⊥,又CD DA ⊥ ,故(1,1,0)DC =--是平面ADF 的一个法向量, 故cos AM <,11222DC >==⨯ 二面角A DF B --为锐角,∴二面角A DF B --为60.22.已知圆22:(3)9M x y -+=.设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于P 、Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.【答案】(1)17;(2)点N 在定直线6x =-上.【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l的距离为:1d =所以PQ == 由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号,所以四边形EPFQ 的面积S 的最大值为17.(2)点N 在定直线6x =-上.证明:设()()1122,,,P x y Q x y ,直线PQ 过点D ,则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N , 所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。

高二理科数学第二学期期末考试试卷(含答案)

高二理科数学第二学期期末考试试卷(含答案)

高二数学第二学期期末考试(理科)试题(含答案)一、选择题:(每题5分,共60分)1.若将复数表示为、是虚数单位)的形式,则()A.0 B.-1 C.1D.22。

在的展开式中的常数项是()A。

B.C.D.3。

函数的定义域为,导函数在内的图象如图所示,则函数在内有极大值点()A.1个B.2个C.3个D.4个4.已知曲线,其中x∈[—2,2],则等于( )A.B.C.D.-45.设随机变量X~B(3,),随机变量Y=2X+3,则变量Y的期望和方差分别为()A.7,B.7,C.8, D.8,6.给出下列四个命题,其中正确的一个是()A.在线性回归模型中,相关指数,说明预报变量对解释变量的贡献率是B.在独立性检验时,两个变量的列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大C.相关指数用来刻画回归效果,越小,则残差平方和越大,模型的拟合效果越好D.随机误差e是衡量预报精确度的一个量,它满足E(e)=07.在平面上,若两个正三角形的边长之比1:2,则它们的面积之比为1:4,类似地,在空间中,若两个正四面体的棱长之比为1:2,则它的体积比为()A.1:4 B.1:6 C.1:8 D.1:98.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种9.一个电路如图所示,A、B、C、D、E、F为6个开关,其闭合的概率都是错误!,且是相互独立的,则灯亮的概率是()A.错误!B.错误!C.错误!D.错误!10.函数的最小值是()A.10 B. 9 C.8 D.711.f′(x)是f(x)的导函数,f′(x)的图象如下面右图,则f(x)的图象只可能是( )A.B.C.D.12.已知函数f(x)=x3-3x2-9x+3,若函数g(x)=f(x)-m在x∈[-2,5]上有3个零点,则m 的取值范围为()A.(-24,8)B.(-24,1] C.[1,8)D.[1,8]二、填空题(每题5 分,共20分)13.如果随机变量,且,则_ _ __14.已知,那么等于________________15。

广东省深圳市高级中学高二数学理下学期期末试卷含解析

广东省深圳市高级中学高二数学理下学期期末试卷含解析

广东省深圳市高级中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 双曲线的焦点坐标是()A.B.C.(0,±2)D.(±2,0)参考答案:C【考点】双曲线的简单性质.【分析】根据题意,由双曲线的标准方程分析可得其焦点位置以及c的值,由此可得其焦点坐标.【解答】解:根据题意,双曲线的方程为:,其焦点在y轴上,且c==2;则其焦点坐标为(0,±2),故选:C.2. 下列各式中,最小值等于2的是()A. B. C. D.参考答案:D略3. 下列说法错误的是().A.平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;B.一个平面内的两条相交直线与另外一个平面平行,则这两个平面平行;C.一条直线与一个平面内的两条直线都垂直,则该直线与此平面垂直。

D.如果两个平行平面同时和第三个平面相交,则它们的交线平行。

参考答案:C 4. 将点M的极坐标化成直角坐标是( )A. B. C. (5,5) D. (-5,-5)参考答案:A本题考查极坐标与直角坐标的互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A5. 命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数参考答案:C6. 已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2﹣2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为()A.3 B.C.D.2参考答案:D【考点】直线和圆的方程的应用.【专题】计算题;转化思想.【分析】先求圆的半径,四边形PACB的最小面积是2,转化为三角形PBC的面积是1,求出切线长,再求PC的距离也就是圆心到直线的距离,可解k的值.【解答】解:圆C:x2+y2﹣2y=0的圆心(0,1),半径是r=1,由圆的性质知:S四边形PACB=2S△PBC,四边形PACB的最小面积是2,∴S△PBC的最小值=1=rd(d是切线长)∴d最小值=2圆心到直线的距离就是PC的最小值,∵k>0,∴k=2故选D.【点评】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,是中档题.7. 如下分组正整数对:第1组为第2组为第3组为第4组为依此规律,则第30组的第20个数对是( )A. (12,20)B. (20,10)C. (21,11)D. (20,12)参考答案:C【分析】本题首先可根据题意找出每一组以及每一个数对所对应的规律,要注意区分偶数组与奇数组的不同,然后根据规律即可得出第组的第个数对。

2022年河北省邯郸市高级中学高二数学理联考试卷含解析

2022年河北省邯郸市高级中学高二数学理联考试卷含解析

2022年河北省邯郸市高级中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 计算sin240°的值为()A.﹣B.﹣C.D.参考答案:A【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式化简可得所给式子的值.【解答】解:sin240°=sin=﹣sin60°=﹣,故选:A.2. 两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为( )A.4 B.C.D.参考答案:D【考点】两条平行直线间的距离.【专题】计算题;直线与圆.【分析】根据两条直线平行的条件,建立关于m的等式解出m=2.再将两条直线化成x、y的系数相同,利用两条平行直线间的距离公式加以计算,可得答案.【解答】解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d===.故选:D 【点评】本题已知两条直线互相平行,求参数m的值并求两条直线的距离.着重考查了直线的位置关系、平行线之间的距离公式等知识,属于基础题.3. 中心在坐标原点,离心率为的双曲线的焦点在轴上,则它的渐近线方程是()A、B、C、D、参考答案:D4. 已知函数则是成立的()A.充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件参考答案:A5. 设α、β、γ为平面,m、n、l为直线,则下列哪个条件能推出m⊥β ()A.α⊥β,α∩β=l,m⊥l B.n⊥α,n⊥β,m⊥αC.α⊥γ,β⊥γ,m⊥α D.α∩γ=m,α⊥γ,β⊥γ参考答案:B6. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.参考答案:B分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7. 等比数列中,,,则等于( )A. B. C. D.参考答案:A略8. 把“二进制”数化为“五进制”数是()A. B. C. D.参考答案:C无9. 以下说法错误的是()A.推理一般分为合情推理和演绎推理B.归纳是从特殊到一般的过程,它属于合情推理C.在数学中,证明命题的正确性既能用演绎推理又能用合情推理D.演绎推理经常使用的是由大前提、小前提得到结论的三段论推理参考答案:C【考点】F2:合情推理的含义与作用.【分析】根据归纳推理、类比推理、演绎推理、合情推理的定义,即可得到结论.【解答】解:推理一般分为合情推理和演绎推理,故A正确所谓归纳推理,就是从个别性知识推出一般性结论的推理,是从特殊到一般的推理过程,故B正确在数学中,证明命题的正确性能用演绎推理但不能用合情推理,故C错误演绎推理一般模式是“三段论”形式,即大前提小前提和结论,故D正确,故选C.10. 下列函数中,最小值为的是()A. B.C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 若函数f(x)=x2+在区间上单调递增,则实数的取值范围是参考答案:略12. 已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线方程为。

河南省许昌市中学2021-2022学年高二数学理上学期期末试卷含解析

河南省许昌市中学2021-2022学年高二数学理上学期期末试卷含解析

河南省许昌市中学2021-2022学年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若等差数列{a n}和等比数列{b n}满足,则()A. -1B. 1C. -4D. 4参考答案:B【分析】根据等差数列与等比数列的通项公式,求出公差与公比,进而可求出结果.【详解】设等差数列的公差为,等比数列的公比为,因为,所以,解得,因此,所以.故选B2. 已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为( )A、30B、 26C、 36D、 6参考答案:C略3. 用反证证明:“自然数a,b,c中恰有一个偶数”时正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少两个偶数参考答案:D【考点】反证法.【分析】用反证法法证明数学命题时,假设命题的反面成立,写出要证的命题的否定形式,即为所求.【解答】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c都是奇数或至少有两个偶数.故选:D.4. 命题p:a≥1;命题q:关于x的实系数方程x2﹣2x+a=0有虚数解,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据复数的有关性质,利用充分条件和必要条件的定义进行判断.【解答】解:若关于x的实系数方程x2﹣2x+a=0有虚数解,则判别式△<0,即8﹣4a<0,解得a>2,∴p是q的必要不充分条件,故选:B5. 已知函数f(x)=xe x,则f′(2)等于()A.e2 B.2e2 C.3e2 D.2ln2参考答案:C【考点】导数的运算.【分析】先根据两乘积函数的导数运算法则求出f(x)的导数,然后将2代入导函数,即可求出所求.【解答】解:∵f(x)=xe x,∴f′(x)=e x+xe x.∴f′(2)=e2+2e2=3e2.故选C.【点评】本题主要考查了导数的运算,以及函数的求值,解题的关键是两乘积函数的导数运算法则,属于基础题.6. 已知函数,若对任意两个不等的正数,都有成立,则实数的取值范围是(A)(B)(C)(D)参考答案:B即在上单增,即恒成立,也就是恒成立,,故选B7. 要描述一个工厂某种产品的生产步骤, 应用A.程序框图B.工序流程图C.知识结构图D.组织结构图参考答案:B略8. 设,则,,()A.都不大于2 B.都不小于2C.至少有一个不大于2 D.至少有一个大于2参考答案:D因为与都不大于2矛盾,所以A错误.若所以B错误.若则a>2,b>2,c>2,所以C错误. 故答案为:D9. 过长方体一个顶点的三条棱长分别为1,2,3,则长方体的一条对角线长为()A. B. C. D. 6参考答案:B10. 若直线与互相垂直,则a等于()A. 3B. 1C. 0或D. 1或-3参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知则.参考答案:-1/9略12. (原创)_____________.参考答案:13. 若曲线在点(1,a)处的切线平行于x轴,则a=__________.参考答案:14. 设向量,.其中.则与夹角的最大值为________.参考答案:【分析】由两向量中的已知坐标和未知坐标间的关系,得出两向量的终点的轨迹,运用向量的夹角公式求解.【详解】向量的终点都在以为圆心,1为半径的圆上;向量的终点都在以为圆心,1为半径的圆上;且为圆与圆的距离为1,如图所示,两向量的夹角最大,为.【点睛】本题考查动点的轨迹和空间直角坐标系中向量的夹角,属于中档题.15. 直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN=2,则实数k的值是.参考答案:0或略16. 定义在R上的函数满足:,且对于任意的,都有,则不等式的解集为 __________________参考答案:略17. (原创)已知函数,则.参考答案:1略三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厦门六中2014级高二(理)上学期期中考试卷命题人:杨瑞华 时间:2015、11、10 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。

每小题给出的四个选项中,只有一项是符合题目要求的)1. 不等式2560x x --+<的解集为 ( ) A.{|61}x x -<< B.{|16}x x x ><-或 C.{|61}x x x ><-或D.{|32}x x -<<2、已知等差数列{a n }的公差为2,且a 9=22,则a 1的值是( ) A 3 B -3 C 6 D -63.在△ABC 中,已知8=a ,B=060,C=075,则b 等于 ( )A.64B.54C.34D.322 4、在等差数列{a n }中,S n 为前n 项和,已知a 8=6-a 2,则S 9的值为( )A 25B 27C 21D 235. 若1,a >则11a a +-的最小值是 ( ) A. 2 B. a C.3 D.6.已知点(3,1)在直线3x -2y +a =0的左上侧,则a 的取值范围是( ) A. a <3 B. a >3 C. a >-7 D. a<-7 7.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A . 2B . 4C .215D .2178.设等比数列{a n }的前n 项为S n ,若201620152015201426,26,a S a S =+=+则数列{ a n }的公比为q 为 ( ) A . 2 B . 3 C . 4D . 59. 如果a>b ,给出下列不等式:(1)a1<b1 (2) a 3>b 3 (3) a 2+1>b 2+1 (4) 2a >2b 其中成立的是( )A) (2)(3) B) (1)(3) C) (3)(4) D) (2)(4)10.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为 ( )A.223 B.233 C.23 D.3311、已知点M 是△ABC 内的一点,且AB AC ⋅=BAC =600,若△MBC 、△MCA 、△MAB 的面积分别为12,x,y ,则14x y+的最小值为( ) A 10 B 9 C 8 D 712、已知函数f(x)=log a (2x +b-1)(a>0且a ≠1)在R 上单调递增,且2a+b ≤4,则ba的取值范围为( )A 2[,2)3B 2[,2]3C 2(,2]3D 2(,2)3第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n }是由正数组成的等比数列,其前n 项和为S n ,若a 2a 4=1,S 3=7,则a 1=14.在ABC ∆中, 若1,A 6a π==,其面积为9,则ABC ∆周长的最小值为_____.15、数列{a n }的首项为1,数列{b n }为等差数列,且1n n n b a a +=-,若b 10+b 11=2,则a 21=16、已知点P 的坐标(x,y)满足41x y y x x +≤⎧⎪≥⎨⎪≥⎩,过点P 的直线l 与圆x 2+y 2=14相交于A 、B 两点,则AB 的最小值为三、解答题(本大题共6小题,共70分。

解答应写出必要的文字说明、证明过程或演算步骤)17(本题10分)已知等差数列{a n }中,a 3+a 5=6,a 4·a 6=15. (1)求数列{a n }的通项公式a n 和前n 项和S n ; (2)记b n =2n a ,求数列{b n }的前n 项和T n ;18(本题12分)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a=3,B =3π,S △ABC=(1) 求△ABC 的周长; (2)求sin2A 的值;19(本题12分)设f(x)=ax 2-ax+3(1)当a=-4时,设集合A ={()0}x R f x ∈<,求A ;(2)若不等式()1()42f x <的解集为R ,求实数a 的取值范围;C20(本题12分)如图,公园有一块边长为2的等边△ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等 的两部分,D 在AB 上,E 在AC 上.(1) 求AD 与AE 所满足的关系式;(2)设AD =x (x≥0),ED =y ,求用x 表示y 的函数关系式; (3)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?请说明理由.21(本题12分)设数列{a n }的前n 项和为S n ,且2S n =4a n -1(n =1,2,3,…), (1) 求数列{a n }的通项公式; (2) 记b n = 2log 2n a +,T n =12231111......n n b b b b b b ++++⋅⋅⋅,求T n 的取值范围。

22(本题12分)在数列{a n }中,a 1=1, 11nn n a a c a +=⋅+ (c 为常数,n ∈N *)且a 1.a 5=a 22,(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)求c 的值;(3)若a 1,a 2 ,a 5彼此不相等,数列{a n ·b n }是首项为1,公比为12的等比数列,数列{b n }的前n 项和为S n ,证明:1n S ≥厦门六中2014级高二(理)上学期期中考试卷 参考答案1、B2、C3、A4、B5、C6、D7、C8、B9、D 10、B 11、B 12、A 13、4 14、13 15、21 16、417.(1)由已知得1111(2)(4)6(3)(5)15a d a d a d a d +++=⎧⎨++=⎩………2分得122113381515a d a a d d +=⎧⎨++=⎩101a d =⎧⇒⎨=⎩……4分 ∴ a n =0+(n-1).1=n-1 ……………………..5分S n =2(01)22n n n n+--=………………..6分(2)122na n nb -==11222nn n n b b +-==∴ {b n }为等比数列,且b 1=1,q=2 ……8分∴ 122112nn n T -==-- ………………..10分 18.(1)由1sin 2423ABC S ac ac π∆====………2分 ∵ a=3 ∴ c =8 ……………………3分 由b 2=a 2+c 2-2acCOSB=9+64-2.3.8.12=49 ∴ b =7 ……………………………………..5分 ∴三角形的周长为18 ……………………………….6分(2)由4964913cos cos 27814A A +-=⇒=⋅⋅ ……….8分sin 14A ∴==………………………10分∴ sin2A=2sinAcosA=13214⋅=.12分19(1)当a =-4时,由f(x)<0得-4x 2+4x+3<0∴ 12x <-或32x > ……………3分∴ A =1322x x x ⎧⎫<->⎨⎬⎩⎭或 …………………………4分(2)由()1()42f x <得f(x)211()()22-<()2f x ⇒>-由已知有 ax 2-ax+5>0在R 上恒成立 ……………6分 当a=0时,5>0在R 上恒成立,符合题意 …………7分当a ≠0时,由题意得2200a a a >⎧⎨-<⎩020a ⇒<<………..11分 综上所述,实数a 的取值范围是:0≤a<20 ……12分 20.解:(1)又S △ADE =21 S △ABC =23a 2=21AD ·AE·sin60° ⇒AD ·AE=2. ……………4分(2)由(1)得2AE x=在△ADE 中,y 2=x 2+22()x-2x·2x ·cos60°⇒y 2=x 2+22()x -2(y >0),8分(无定义域扣1分)(2)如果DE 是水管y =……10分当且仅当x 2=24x ,即x =2时“=”成立,故DE∥BC, 且DE =2. …………………………12分21、(1)已知有2a 1=4a 1-1,得a 1=12………………1分 ∵ 2S n =4a n -1, 2S n-1=4a n-1-1两式相减得:2a n =4a n -4a n-1 (n ≥2)∴ 12nn a a -=∴{a n }是首项为12,公比为2的等比数列。

……5分∴ a n =2n-2 …………………………………6分(2) b n =log 2a n +2=n,……………………………………7分∴11111(1)1n n b b n n n n +==-⋅++ ∴ 111111......2231n T n n =-+-++-+ 111n =-+……10分∵ n ∈N *, 11n +递减∴11(0,]12n ∈+ ∴1[,1)2n T ∈……………….12分22解:(1)a n ≠0,由11n n n a a c a +=⋅+,得1111n n n nc a c a a a +⋅+==-∴111n nc a a +-= ∴ {1na }是等差数列 ……………………..4分(2)∵a 1=1,a 1a 5=a 22 21521111,a a a ∴== ∴ 214(1)c c +=+ c =0或c=2…….6分(3)c=2,111(1)221n n n a a n =+-⋅⇒=- ……7分 已知a n b n =11()2n -,得11b (21)()2n n n -=-∴ 21211111135()(21)()22211111= 3() ++(23)()(21)()22222n n n n n S n S n n --=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅⋅⋅⋅-- 1 +两式相减得2111111=2[() ++()]-(21)()22222n n n S n -+⋅⋅⋅- 1+ ….9分=13-(23)()2nn + S n =116-(23)()2n n -+ 令n n-12n 3b =2+,n 1n b 2n 5=<b 4n 6+++ 1∴ b n 递减故b n 的最大值为b 1=5 …………………………11分 ∴S n ≥6-5=1 ………………………….12分。

相关文档
最新文档