高二数学理科试题及答案

合集下载

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。

A。

5+2i B。

5-2i C。

-5+2i D。

-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。

A。

1/3+cos1 B。

11/3sin1+cos1 C。

3sin1-cos1 D。

sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。

A。

0 B。

1 C。

2 D。

-14.定积分∫1x(2x-e)dx的值为()。

A。

2-e B。

-e C。

e D。

2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。

A。

1项 B。

k项 C。

2k-1项 D。

2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。

A。

40/3 B。

13 C。

25/2 D。

157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。

A。

(3,-3) B。

(-4,11) C。

(3,-3)或(-4,11) D。

不存在8.函数f(x)=x^2-2lnx的单调减区间是()。

A。

(0,1] B。

[1,+∞) C。

(-∞,-1]∪(0,1] D。

[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。

A。

f(x)=4/(2x+2) B。

f(x)=2^(12/(x+1)) C。

f(x)=(x+1)/2 D。

f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。

A。

[-1,+∞) B。

(-1,+∞) C。

高二理科数学选修2-2测试题及答案(最新整理)

高二理科数学选修2-2测试题及答案(最新整理)
3
1
B. sin1+cos1
3
1
C. sin1-cos1
3
D.sin1+cos1
3、设 a R ,函数 f x ex aex 的导函数为 f ' x ,且 f ' x 是奇函数,则 a 为( )
A.0
B.1
C.2
D.-1
4、定积分
1
(2
x
e
x
)dx
的值为(

0
A. 2 e
B. e
C. e
2
3
3 27
为极大值,而 f (2) 2 c ,则 f (2) 2 c 为最大值,要使 f (x) c2 , x [1, 2]
恒成立,则只需要 c2 f (2) 2 c ,得 c 1,或c 2 …………12 分
21 解:(1) f (x) 6x2 6x, f (2) 12, f (2) 7, ………………………2 分
x
h x hx
0, x2

A
x2
0 极小值
x2,

A
1
依题意,
1 8a2 1,即 a2 3 ,
4
∵ a 0 ,∴ a 3 .
(2)解:对任意的 x1, x2 1,e 都有 f x1 ≥ g x2 成立等价于对任意的 x1, x2 1,e 都
有 f xmin ≥ g xmax . 当 x [1, e ]时, g x 1 1 0 .

A.f(0)+f(2) 2 f(1)
B.f(0)+f(2) 2 f(1)
C.f(0)+f(2)> 2 f(1)
D.f(0)+f(2) 2 f(12)
0

人教版高二上学期期末数学试卷(理)(有答案)

人教版高二上学期期末数学试卷(理)(有答案)

黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。

高二上期半期考试理科数学试题卷(附答案)

高二上期半期考试理科数学试题卷(附答案)

俯视图侧视图正视图高二上期半期考试数学试题卷(理科)数学试题共4页。

满分150 分。

考试时间120 分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线0122:=+-yxl的倾斜角为( )A.30°B.45°C.60°D.90°2.下列四条直线中, 哪一条是双曲线1422=-yx的渐近线?( )A.xy21-= B.xy41-=C.xy2= D.xy4=3.如图1,一个几何体的三视图是由两个矩形和一个圆所组成,则该几何体的表面积是( )A.π7B.π8C.π10 D.12+π(图1) 4.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③x、y是平面,z是直线;④x、y、z均为平面。

其中能使“yxzyzx//⇒⊥⊥且”为真命题的是( )A.③④B.①③C.②③D.①②5.直线l不经过坐标原点O, 且与椭圆1222=+yx交于A、B两点,M是线段AB的中点.那么,直线AB与直线OM的斜率之积为( )A.1- B.1 C.21- D.2BC6.已知命题:p直线2+=xy与双曲线122=-yx有且仅有一个交点;命题:q若直线l垂直于直线m,且,//α平面m则α⊥l. 下列命题中为真命题的是( )A.()()p q⌝∨⌝ B.()p q⌝∨ C.()()p q⌝∧⌝ D.p q∧7.下列有关命题的说法错误..的是( )A.对于命题p:x R∃∈,使得210x x++<. 则⌝p:x R∀∈,均有210x x++≥.B.“1=x”是“0232=+-xx”的充分不必要条件.C.命题“若12=x, 则1=x”的否命题为:“若12≠x,则1≠x”.D.命题“若5≠+yx,则32≠≠yx或”是假命题.8.(原创)如下图2, 在平行四边形ABCD中, AD=2AB=2, ∠BAC=90°. 将△ACD沿AC折起, 使得BD=5. 在三棱锥D-ABC的四个面中,下列关于垂直关系的叙述错误..的是( )A.面ABD⊥面BCDB.面ABD⊥面ACDC.面ABC⊥面ACDD.面ABC⊥面BCD(图2) (图3)9.(原创)如上图3, 四棱锥P-ABCD的底面ABCD是边长为1的正方形, 面PA B⊥面ABCD. 在面PAB内的有一个动点M, 记M到面PAD的距离为d. 若1||22=-dMC, 则动点M在面PAB内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分10.设椭圆22221(0)x ya ba b+=>>的离心率为12e=,右焦点为F(c, 0),方程20ax bx c+-=的两个实根分别为x1和x2,则点P(x1, x2)的位置( )A.必在圆222x y+=内 B.必在圆222x y+=上C.必在圆222x y+=外 D.以上三种情形都有可能俯视图侧视图二、填空题:本大题共5小题,每小题5分,共25分,把答案写在答题卡相应位置上. 11.过点P(3,1)向圆012222=+--+y x y x 作一条切线, 切点为A, 则切线段PA 的长为________12.椭圆1002x +362y =1上一点P 到它的右准线的距离是10,那么P 点到左焦点的距离是 .13.一个几何体的三视图如图4, 则这个几何体的体积为 . 14.半径为5的球内包含有一个圆台, 圆台的上、下两个底面都是 球的截面圆, 半径分别为3和4. 则该圆台体积的最大值为 .15.(原创)设A 为椭圆12222=+by a x (0>>b a )上一点, 点A 关于原点的对称点为B, F 为椭圆的右焦点, 且AF ⊥BF. 若∠ABF ∈[12π,4π], 则该椭圆离心率的取值范围为 .三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤16.(本小题13分)已知双曲线2222:1(0,0)x y Ca b a b-=>>2。

高二理科数学(1)(2-2,2-3,4-4)

高二理科数学(1)(2-2,2-3,4-4)

高二理科数学(2)一、选择题(本大题共12小题,共60.0分)1.若复数(i是虚数单位)为纯虚数,则实数a的值为()A. 2 B. C. D.2.若函数的极小值为﹣1,则函数的极大值为()A. 3 B. C. D. 23.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B. C. D.4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+cos x,则f′(2)=()A. B. C. D.5.定义在R上的函数y=f(x)满足:f(x)+f′(x)>1,f(0)=2017,则不等式e x f(x)-e x>2016(其中e为自然对数的底数)的解集为()A. B. C. D.6.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A. a,b,c都是奇数B. a,b,c都是偶数C. a,b,c中至少有两个偶数D. a,b,c中至少有两个偶数或都是奇数7.定积分的值为()A. 1 B. C. D.8.已知函数ƒ(x)=ax3+bx2+cx的图象如图所示,则有()A. ,B. ,C. ,D. ,9.利用回归分析的方法研究两个具有线性相关关系的变量时,下面说法:①相关关系r满足|r|≤1,而且|r|越接近1,变量间的相关程度越大;|r|越接近0,变量间的相关程度越小;②可以用R2来刻画回归效果,对于已获取的样本数据,R2越小,模型的拟合效果越好;③如果残差点比较均匀地落在含有x轴的水平的带状区域内,那么选用的模型比较合适;这样带状区域越窄,回归方程的预报精度越高;④不能期望回归方程得到的预报值就是预报变量的精确值;⑤随机误差e是衡量预报精确度的一个量,它满足E(e)=0.其中正确的结论为( )A. ①②③ B. ①②④ C. ③④⑤ D. ①③④⑤10.箱子里有5个黄球,4个白球,每次随机取一个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为()A. B. C. D.11.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为()A. 60B. 480C. 420D. 7012.对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为()A. ,B. ,C. ,D. ,二、填空题(本大题共4小题,共20.0分)13.圆ρ=4cosθ的圆心到直线tan()=1的距离为______ .14.(1-)4展开式中含x-3项的系数是______.15.已知,则的值是______ .16.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到.则认为选修文科与性别有关系出错的可能性为________.三、解答题(本大题共7小题,共84.0分)17.已知m∈R,复数.(1)若z是纯虚数,求m的值;(2)当m为何值时,z对应的点在直线x+y+3=0上?18.3名女生和5名男生排成一排(Ⅰ)如果女生必须全排在一起,可有多少种不同的排法?(Ⅱ)如果女生必须全分开,可有多少种不同的排法?(Ⅲ)如果两端都不能排女生,可有多少种不同的排法?(Ⅳ)如果两端不能都排女生,可有多少种不同的排法?19.在数列{a n}中,a1=2,a n+1=(n∈N+),(1)计算a2、a3、a4并由此猜想通项公式a n;(2)证明(1)中的猜想.20.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在[40,45)内的人数为X,求X的分布列及数学期望.21.某中学研究性学习小组,为了研究高中理科学生的物理成绩是否与数学成绩有关系,在本校高三年级随机调查了50名理科学生,调查结果表明:在数学成绩优秀的25人中16人物理成绩优秀,另外9人物理成绩一般;在数学成绩一般的25人中有6人物理成绩优秀,另外19人物理成绩一般.(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)以调查结果的频率作为概率,从该校数学成绩优秀的学生中任取100人,求100人中物理成绩优秀的人数的数学期望和标准差.参考公式:K2=,其中n=a+b+c+d.22.已知曲线的极坐标方程为,直线∈,直线∈.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.(1)求直线,的直角坐标方程以及曲线的参数方程;(2)已知直线与曲线交于,两点,直线与曲线交于,两点,求的面积.23.已知函数f(x)=ln(2x+a)-e2x-1.(1)若函数f(x)在x=处取得极值,求f(x)的单调区间;(2)当a≤1时,f(x)<0,求x的取值范围.高二理科数学(2)答案和解析1.【答案】A解:复数=为纯虚数,∴,≠0,解得a=2.故选A.2.【答案】A解:f′(x)=3x2-3,令f′(x)=0,解得x=±1,当x>1或x<-1时,f′(x)>0,当-1<x<1时,f′(x)<0.故f(x)在(-∞,-1),(1,+∞)上是增函数,在(-1,1)上是减函数,故f(x)在x=1处有极小值f(1)=1-3+m=-1,解得m=1.所以f(x)在x=-1处有极大值f(-1)=-1+3+1=3.故选A.3.【答案】B解:从甲、乙等5名学生中随机选出2人,基本事件总数n==10,甲被选中包含的基本事件的个数m==4,∴甲被选中的概率p===.故选:B.4.【答案】A解:∵f(x)=2xf′(2)+cosx,∴f'(x)=2f′(2)-sinx,令x=2,则f'(2)=2f′(2)-sin2,即f′(2)=sin2,故选:A.5.【答案】D解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)-e x>2016,∴g(x)>2016,又∵g(0)=e0f(0)-e0=2017-1=2016,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞),故选D.6.【答案】D解:用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设是:a,b,c中至少有两个偶数或都是奇数.故选:D.7.【答案】C解: ,因为,所以x2+y2=1,y≥0,即等于圆心在原点,半径为1的圆的面积的,所以,又,所以.故选C.8.【答案】A解:由函数f(x)的图象知f(x)先递增,再递减,再递增∴f′(x)先为正,再变为负,再变为正∵f′(x)=3ax2+2bx+c∴a>0∵在递减区间内∴f′(0)<0即c<0故选A9.【答案】D解:相关系数r是用来衡量两个变量之间线性相关关系的方法,当r=0时,表示两变量间无线性相关关系,当0<|r|<1时,表示两变量存在一定程度的线性相关.且|r|越接近1,两变量间线性关系越大.故①正确;由R2计算公式可知,R2越小,说明残差平方和越大,则模型拟合效果越差.故②错误;由残差图的定义可③正确;在利用样本数据得到回归方程的过程中,不可避免的会产生各种误差,因此用回归方程得到的预报值只能是实际值的近似值.故④正确.随机误差e是衡量预报精确度的一个量,它满足E(e)=0.正确.故答案为:D.10.【答案】B解:第四次取球之后停止表示前三次均取到黄球,第四次取到白球,由题意知本题是一个有放回的取球,是一个相互独立事件同时发生的概率,取到一个白球的概率是,去到一个黄球的概率是其概率为()3×,故选:B.11.【答案】C解:分两步,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用乘法原理可求解.由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S,A,B染好时,不妨设所染颜色依次为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C 染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法,即当S,A,B染好时,C,D还有7种染法.故不同的染色方法有60×7=420种.故选:C.12.【答案】A解:根据2×2列联表与独立性检验的应用问题,当与相差越大,X与Y有关系的可能性越大;即a、c相差越大,与相差越大;故选:A.13.【答案】解:圆ρ=4cosθ为ρ2=4ρcosθ,化为直角坐标方程为:x2+y2-4x=0,圆心坐标为C(2,0),直线tan()=1,即cotθ=1,即=1,化为直角坐标方程为:x-y=0,∴圆心C(2,0)到直线的距离d==.故答案为:.14.【答案】解:由,令-r=-3,得r=3.∴(1-)4展开式中含x-3项的系数是.故答案为:.15.【答案】()2018解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=-2,得a0=0再令x=-,得到a0+=(-+1)2(-+2)2016=()2018,∴=,故答案为:()2018,16.【答案】%解:∵根据表中数据,得到K2的观测值解,因为4.844>3.841,∴认为选修文科与性别有关系出错的可能性为5%.故答案为5%.17.【答案】解:(1)当z为纯虚数时,则,解得m=0,∴当m=0时,z为纯虚数;(2)当z对应的点在直线x+y+3=0上时,则,即,解得m=0或,∴当m=0或时,z对应的点在直线x+y+3=0上.18.【答案】解:(1)女生全部排在一起有A66A33=4320种.(2)女生必须全分开有A55A63=14400种.(3)因为两端都不能排女生,所以两端只能从5个男生中选2个排在两端,有A52种排法,其余6人有A66种排法,所以共有A52•A66=14400种排法.(4)8个人站成一排共有A88种不同的排法,排除掉两端都是女生的排法有A32•A66种,所以符合条件的排法有A88-A32•A66=36000种.19.【答案】解:(1)在数列{a n}中,∵a1=2,a n+1=(n∈N*)∴a1=2=,a2==,a3==,a4==,∴可以猜想这个数列的通项公式是a n=;(2)下面利用数学归纳法证明:①当n=1时,成立;②假设当n=k时,a k=,则当n=k+1(k∈N*)时,a k+1===,因此当n=k+1时,命题成立,综上①②可知:∀n∈N*,a n=都成立.20.【答案】解:(1)根据题意,计算平均数的估计值为=(27.5×0.01+32.5×0.04+37.5×0.07+42.5×0.06+47.5×0.02)×5=38.5≈39;中位数的估计值为:因为5×0.01+5×0.04=0.25<0.5,5×0.06+5×0.02=0.4<0.5,所以中位数位于区间[35,40)年龄段中,设中位数为x,所以0.24+0.07×(x-35)=0.5,x≈39;(2)用分层抽样的方法,抽取的20人,应有6人位于[40,45)年龄段内,14人位于[40,45)年龄段外;依题意,X的可能值为0,1,2;P(X=0)==,P(X=1)==,P(X=2)==;X数学期望为EX=0×+1×+2×=.所以K2=≈8.117>7.879,所以有99.5%把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)由题意可得,数学成绩优秀的学生中物理成绩优秀的概率为,随机变量X符合二项分布,所以数学期望E(X)=100×=64,标准差==.22.【答案】解:(1)依题意,直线l1的直角坐标方程为,直线l2的直角坐标方程为,因为为+,故ρ2=ρcosθ+2ρsinθ,故x2+y2=x+2y,故(x-)2+(y-1)2=4,故曲线C的参数方程为++(α为参数).(2)∵联立,∴得到|OA|=4,同理,又∵,∴,∴ AOB的面积为.23.【答案】解:(1)f′(x)=-2e2x-1,由已知得f′()=0,即-1=0,所以a=0,所以f(x)=ln2x-e2x-1,函数f(x)的定义域为(0,+∞),f′(x)=-2e2x-1,由于f′(x)在(0,+∞)上为减函数,而f′()=0,所以当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,所以f(x)的单调递增区间为(0,),单调递减区间为(,+∞).(2)由于a≤1,所以ln(2x+a)≤ln(2x+1),所以f(x)≤ln(2x+1)-e2x-1,令g(x)=ln(2x+1)-2x(x>-),则g′(x)=,所以,当-<x<0时,g′(x)>0,当x>0时,g′(x)<0,所以g(x)≤g(0)=0,即:ln(2x+1)≤2x令h(x)=e2x-1-2x,则h′(x)=2(e2x-1-1),所以,当x>时,h′(x)>0,当-<<时,h′(x)<0,所以h(x)≥h(),即:e2x-1≥2x.所以,对任意x>,ln(2x+1)-e2x-1<0,因此,当a≤1时,对任意x>-,ln(2x+1)-e2x-1<0,所以x的取值范围为(-,+∞)。

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

高二数学(理)下学期第二次月考试题(含答案)

高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。

四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案

四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案

高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。

2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。

3.考试结束后由监考老师将答题卡收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。

人教版高二(理科)第一学期期末考试数学试题-含答案

人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。

高二数学模拟试卷(理科)及答案.doc

高二数学模拟试卷(理科)及答案.doc

高二数学模拟试卷(理科)及答案高二数学模拟试卷(理科)时间:120分钟分值:150分一、选择题(本大题共10小题,每小题5分,共50分)1.复数(3+2i)i等于()A. -2-3iB. -2+3iC.2-3iD.2+3i2. 命题“若a<b,则a+c<b+c”的逆否命题是( )A. 若a+c<b+c,则a>bB. 若a+c>b+c,则a>bC. 若a+c≥b +c,则a≥bD. 若a+c<b+c,则a≥bx2y23. 双曲线16-9=1的渐近线方程为()A. y=±169x B. y=±916x C. y=±34x D. y=±43x4.如图是导函数y=f/(x)的图象,那么函数y=f(x)在下面哪个区间是减函数()A. (xB. (x1,x3)2,x4)C.(x4,x6)D.(x5,x6)5. 曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为()A.8753B.3C.3D.436. 5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A.A3 B.4A35232311333 C.A5-A3A3 D.A2A3+A2A3A37. 已知正方形ABCD的顶点A,B为椭圆的焦点,顶点C,D在椭圆上,则此椭圆的离心率为( )A-1 BC+1 D.28.在长方体ABCD-A1B1C1D1中,如果AB=BC=1,AA1=2,那么A到直线A1C的距离为()9. 已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1、F2分别是椭圆的左、右焦点,直线PF2的斜率为,则△PF1F2的面积是()R恒成立,且e为自然对数的底,则()A.f(1)>ef(0),f(2012)>e2012f(0)B.f(1)<ef(0),f(2012)>e2012f(0)C.f(1)>ef(0),f(2012)<e2012f(0)D.f(1)<ef(0),f(2012)<e2012f(0)二、填空题(本大题共5小题,每小题5分,共25分)11. 10(-(x-1)2-2x)dx=12. 仔细观察下面图形:图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是13. 已知方程x23+k+y22-k=1表示椭圆,则k的取值范围为___________14. 以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为正常数,| PA |+| PB|=k,则动点P的轨迹为椭圆;②双曲线x2y225-9=1与椭圆x235+y2=1有相同的焦点;③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;④和定点A(5,0)及定直线l:x=255x2y24的距离之比为4的点的轨迹方程为16-9=1.其中真命题的序号为_________.15. 对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,解答以下问题(1)函数的对称中心为______;(2)计算++f()=______三、解答题(本大题共6小题,共75分。

高二理科数学及答案

高二理科数学及答案

高二数学(理科)期末考试卷 (选修2-1)第一卷 选择题 一、 选择题(每题5分,共60分) 1.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan 1x =C .∀x ∈R ,3x >0 D .∀x ∈R, 2x>02.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB 则△BCD 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不确定3.设向量},,{c b a 是空间一个基底,则一定可以与向量b a q b a p -=+=,成空间的另一个基底的向量是( )A .cB . a C. b D .b a 或4.已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的 ( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件5. 在集合{x | m x }0122=++x 的元素中,有且仅有一个元素是负数的充要条件( )A. m 1≤ B .m<0或m=1 C .m<1 D. m 0≤或m=1 6.椭圆14222=+ay x与双曲线1222=-yax有相同的焦点,则a 的值是 ( )A 12B 1或–2C 1或12D 17.已知椭圆192522=+yx上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于 ( ) A 2B 4C 8D238.若椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为( )A.32 B. 53 C. 22 D. 639.若向量)2,1,2(),2,,1(-==b aλ,且a 与b 的夹角余弦为31,则λ等于( )A .2B .2-C .1231 D . 1231-10. 抛物线y 2= 4x 上一点P 到焦点F 的距离是10, 则P 点的坐标是 ( )A (9,±6)B (6, 9)C (±6, 9)D (9, 6)11.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( )A . 19B .78 C . 78-D .141912.空间四边形O A B C 中,O B O C =,3A OB A OC π∠=∠=,则cos <,O A BC>的值是 ( ) A .21 B .22 C .-21 D .0第二卷 非选择题 二、填空题(每题5分,共20分)13.抛物线2(0)x ay a =>的焦点坐标是 ;14.若双曲线1922=-myx的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为 ; 15.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是 ;16.下列命题①“A ∩B =A ”成立的必要条件是“A B ”; ②“若x 2+y 2=0,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.中的真命题是高二数学第一学期期末试题答案卷(理科)一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13. _____________________. 14. _____________________.15. _____________________. 16. _____________________.三、解答题(10分)斜率为1的直线l经过抛物线2417.的焦点,且与抛物线相交于,A By x两点,求线段A B的长。

高二数学第二学期期末试卷 理(含解析)-人教版高二全册数学试题

高二数学第二学期期末试卷 理(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤34.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=15.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 76.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>18.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2} 11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 812.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°考点:直线的参数方程.专题:直线与圆.分析:设直线的倾斜角为α,则α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.可得直线的斜率,即可得出.解答:解:设直线的倾斜角为α,α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.∴直线的斜率,则直线的倾斜角α=150°.故选D.点评:本题考查了把直线的参数方程化为普通方程、直线的斜率与倾斜角的关系,属于基础题.2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:因为“x2﹣x>0”可以求出x的X围,再根据充分必要条件的定义进行求解;解答:解:∵x2﹣2x<0⇔0<x<2,若0<x<2可得0<x<4,反之不成立.∴“x2﹣2x<0”是“0<x<4”的充分非必要条件,故选B.点评:此题主要考查一元二次不等式的解法,以及充分必要条件的定义,是一道基础题;3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤3考点:特称命题.分析:根据所给的特称命题写出其否定命题:任意实数x,使x2+ax+1≥0,根据命题否定是假命题,得到判别式大于0,解不等式即可.解答:解:∵命题“存在x∈R,使x2+(a﹣1)x+1<0”的否定是“任意实数x,使x2+ax+1≥0”命题否定是真命题,∴△=(a﹣1)2﹣4≤0,整理得出a2﹣2a﹣3≤0∴﹣1≤a≤3故选D.点评:本题考查命题的否定,解题的关键是写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况.4.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=1考点:简单曲线的极坐标方程;圆的切线方程.专题:直线与圆.分析:利用圆的极坐标方程和直线的极坐标方程即可得出.解答:解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.点评:正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》5.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 7考点:基本不等式.专题:计算题.分析:将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解答:解:由x+3y﹣2=0得x=2﹣3y代入3x+27y+1=32﹣3y+27y+1=+27y+1∵,27y>0∴+27y+1≥7当=27y时,即y=,x=1时等号成立故3x+27y+1的最小值为7故选D.点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.6.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]考点:绝对值不等式的解法.专题:综合题.分析:本题为含有参数的分式不等式,若直接求解,比较复杂,可直接由条件2∉M出发求解.2∉M即2不满足不等式,从而得到关于a的不等关系即可求得a的取值X围.解答:解:依题意2∉M,即2不满足不等式,得:||≤a,解得a≥,则a的取值X围为[,+∞).故选B.点评:本题考查绝对值不等式的解法和等价转化思想,属于基础题.7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>1考点:绝对值不等式的解法.专题:函数的性质及应用.分析:利用绝对值的意义求得|x﹣3|+|x﹣4|的最小值为1,再结合条件求得实数a的取值X围.解答:解:|x﹣3|+|x﹣4|表示数轴上的x对应点到3、4对应点的距离之和,它的最小值为1,故a>1,故选:D.点评:本题主要考查绝对值的意义,属于基础题.8.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再与半径比较大小即可得出.解答:解:圆ρ=2cosθ即ρ2=2ρcosθ,化为x2+y2=2x,配方为(x﹣1)2+y2=1,∴圆心C (1,0),半径r=1.直线2ρcos(θ+)=﹣1展开为=﹣1,化为x﹣y+1=0.∴圆心C到直线的距离d==1=r.∴直线与圆相切.故选:B.点评:本题考查了把极坐标方程化为直角坐标方程的方法、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题考点:命题的真假判断与应用.专题:简易逻辑.分析:由指数函数的单调性和命题的否命题,即可判断A;由含有一个量词的命题的否定,即可判断B;运用对数函数的单调性和充分必要条件的定义,即可判断C;由复合命题的真假,结合真值表,即可判断D.解答:解:A.命题“若x>y,则2x>2y”的否命题是“若x≤y,则2x≤2y”是真命题,故A错;B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1≥0”,故B错;C.设x,y为实数,x>1可推出lgx>lg1=0,反之,lgx>0也可推出x>1,“x>1”是“lgx>0”的充要条件,故C正确;D.若“p∧q”为假命题,则p,q中至少有一个为假命题,故D错.故选C.点评:本题主要考查简易逻辑的基础知识:四种命题及关系、命题的否定、充分必要条件和复合命题的真假,注意否命题与命题的否定的区别,是一道基础题.10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2}考点: Venn图表达集合的关系及运算.专题:计算题;新定义.分析:利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.解答:解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.点评:本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 8考点:平均值不等式.专题:计算题;转化思想.分析:利用题设中的等式,把n+的表达式转化成++后,利用平均值不等式求得最小值.解答:解:∵n+=++∴n+=++(当且仅当n=4时等号成立)故选C点评:本题主要考查了平均值不等式求最值.注意把握好一定,二正,三相等的原则.12.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P考点:基本不等式.专题:不等式的解法及应用.分析:由于a+b>c,a+c>b,c+b>a,可得ac+bc>c2,ab+bc>b2,ac+ab>a2,可得SP >S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,可得S≥P,即可得出.解答:解:∵a+b>c,a+c>b,c+b>a,∴ac+bc>c2,ab+bc>b2,ac+ab>a2,∴2(ac+bc+ab)>c2+b2+a2,∴SP>S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,∴S≥P>0.∴P≤S<2P.故选:D.点评:本题考查了基本不等式的性质、三角形三边大小关系,考查了变形能力与计算能力,属于中档题.二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为{x|﹣1<x<1} .考点:绝对值不等式的解法.专题:计算题;转化思想.分析:首先分析题目求不等式|2x﹣1|﹣|x﹣2|<0的解集,可以考虑平方去绝对的方法,先移向,平方,然后转化为求解一元二次不等式即可得到答案.解答:解:|2x﹣1|﹣|x﹣2|<0移向得:丨2x﹣1丨<丨x﹣2丨两边同时平方得(2x﹣1)2<(x﹣2)2即:4x2﹣4x+1<x2﹣4x+4,整理得:x2<1,即﹣1<x<1故答案为:{x|﹣1<x<1}.点评:此题主要考查绝对值不等式的解法的问题,其中涉及到平方去绝对值的方法,对于绝对值不等式属于比较基础的知识点,需要同学们掌握.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为 3 .考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为{﹣1,0,1} .考点:集合的包含关系判断及应用.专题:阅读型.分析:根据B⊆A,利用分类讨论思想求解即可.解答:解:当a=0时,B=∅,B⊆A;当a≠0时,B={﹣}⊆A,﹣=1或﹣=﹣1⇒a=1或﹣1,综上实数a的所有可能取值的集合为{﹣1,0,1}.故答案是{﹣1,0,1}.点评:本题考查集合的包含关系及应用.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为[2,4] .考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先求出命题p,q的等价条件,然后利用p是¬q的必要非充分条件,建立条件关系即可求出m的取值X围.解答:解:∵log2|1﹣|>1;∴:|x﹣3|≤2,即﹣2≤x﹣3≤2,∴1≤x≤5,设A=[1,5],由:(x﹣m+1)(x﹣m﹣1)≤0,得m﹣1≤x≤m+1,设B=[m﹣1,m+1],∵¬p是¬q的充分而不必要条件,∴q是p的充分而不必要条件,则B是A的真子集,即,∴,即2≤m≤4,故答案为:[2,4].点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题p,q的等价条件是解决本题的关键.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,代入两个圆的极坐标方程,化简后可得⊙O1和⊙O2的直角坐标方程;(2)把两个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为极坐标方程.解答:解:(1)∵圆O1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,∴化为直角坐标方程为(x﹣2)2+y2=4,∵圆O2的极坐标方程ρ=﹣sinθ,即ρ2=﹣ρsinθ,∴化为直角坐标方程为 x2+(y+)2=.(2)由(1)可得,圆O1:(x﹣2)2+y2=4,①圆O2:x2+(y+)2=,②①﹣②得,4x+y=0,∴公共弦所在的直线方程为4x+y=0,化为极坐标方程为:4ρcosθ+ρsinθ=0.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求直线的极坐标方程,属于基础题.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.考点:带绝对值的函数.专题:计算题;证明题;函数的性质及应用.分析:(I)利用绝对值不等式即可证得f(x)≥1;(II)利用基本不等式可求得≥2,要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2即可.解答:解:(Ⅰ)证明:由绝对值不等式得:f(x)=|x﹣1|+|x﹣2|≥|(x﹣1)﹣(x﹣2)|=1 …(5分)(Ⅱ)∵==+≥2,∴要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2,即,或,或,解得x≤,或x≥.故x的取值X围是(﹣∞,]∪[,+∞).…(10分)点评:本题考查带绝对值的函数,考查基本不等式的应用与绝对值不等式的解法,求得≥2是关键,属于中档题.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.考点:参数方程化成普通方程;直线与圆的位置关系.专题:直线与圆.分析:(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.解答:解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识点是参数方程与普通方程,直线与圆的位置关系,极坐标,熟练掌握极坐标方程与普通方程之间互化的公式,及直线参数方程中参数的几何意义是解答的关键.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.考点:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.专题:计算题.分析:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.解答:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.点评:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)原不等式可化为|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,从而求得a的值.(2)由题意可得|n﹣1|+|2n﹣1|+2≤m,构造函数y=|n﹣1|+|2n﹣1|+2,求得y的最小值,从而求得m的X围.解答:解:(1)原不等式可化为|2x﹣a|≤6﹣a,∴,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,∴a=1.(2)∵f(x)=|2x﹣1|+1,f(n)≤m﹣f(﹣n),∴|n﹣1|+1≤m﹣(|﹣2n﹣1|+1),∴|n﹣1|+|2n﹣1|+2≤m,∵y=|n﹣1|+|2n﹣1|+2,当n≤时,y=﹣3n+4≥,当≤n≤1时,y=n+2≥,当n≥1时,y=3n≥3,故函数y=|n﹣1|+|2n﹣1|+2的最小值为,∴m≥,即m的X围是[,+∞).点评:本题主要考查绝对值不等式的解法,带有绝对值的函数,体现了转化的数学思想,属于中档题.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.考点:简单曲线的极坐标方程;轨迹方程.专题:坐标系和参数方程.分析:设出点M的极坐标(ρ,θ),表示出OP、PB,列出的极坐标方程,再化为普通方程,求出点M的轨迹长度即可.解答:解:设M(ρ,θ),θ∈(0,),则OP=2cosθ,PB=2sinθ;∴ρ=OP+PM=OP+PB=2cosθ+2sinθ,∴ρ2=2ρcosθ+2ρsinθ;化为普通方程是x2+y2=2x+2y,∴M的轨迹方程是(x﹣1)2+(y﹣1)2=2(x>0,y>0);∴点M的轨迹长度是l=×2π×=π.点评:本题考查了极坐标的应用问题,解题时应根据题意,列出极坐标方程,再化为普通方程,从而求出解答来,是基础题.。

高二数学试题参考答案及评分标准(理科)

高二数学试题参考答案及评分标准(理科)

高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分)设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分)由于直线l 与两坐标轴围成的三角形的面积是24,∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分)∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分)17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,,由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分)⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分) 18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12P N D C =. …………(8分)又∵四边形A B C D 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =,∴PN ∥AM ,且P N A M =, ∴四边形A M N P 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面D A E ,M N ⊄平面D A E ,∴MN ∥平面D A E . …………(12分) 19.解:∵O M O N C M C N ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =,∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分) 20.解:⑴如图,取AB 的中点E ,则//DE BC . ∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+=,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z =,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩. 设11z =,可得)1n =……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅==||||. ……………(7分)(2)再设平面1ABC 的法向量为()2222n x y z =,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩. 设21z =,可得()20n =, ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分)根据法向量的方向可知,二面角1A ABC --. …………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分)∴椭圆C 的方程为 22143x y +=. …………(5分)⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=.∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*)设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则212122284123434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A AB ⊥,∴110A A A B ⋅=. 又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分)当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意.当27m k=-时,2:()7l y k x=-,所过的定点为(27,0),符合题意.综上所述,直线l经过定点(27,0). ………………(14分)命题人:和县一中贾相伟含山二中王冲审题人:庐江中学汪京怀。

高二下学期理科数学周测试题及答案(精)

高二下学期理科数学周测试题及答案(精)

高二理科数学周测卷(10班级________________姓名_______________分数______________一、填空题(每题5分,共40分1. 已知集合}1,1{-=M ,}0|{2=+=x x x N ,则M N =(A .}1,0,1{-B .}1,1{-C .{1}-D .{0}2.3a =是直线230ax y a ++=和直线3(17x a y a +-=-平行的( A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.计算:=+⎰-222(sin dx x (A .-1B .1C .8D .-84.把函数6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变,再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 ( A .2π-=x B .4π-=x C .8π=x D .4π=x5.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”. 现任意找两人玩这个游戏,则他们“心有灵犀”的概率为(A .19B .29C .718D .496.平面向量a 与b 的夹角为60︒,(2,0,||1==a b ,则|2|+a b 等于( AB .C .4D .127.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m 的值是(A . 4B .14C .14- D.-4 8.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥平面A 1B 1C 1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为(二、填空题(每题5分,共30分9.已知i 为虚数单位,复数2i 1iz +=-,则 |z | = .10.在等比数列}{n a 中,已知,21=a 164=a ,n a =__________.11.已知⎩⎨⎧>+-≤=0,11(0,cos (x x f x x x f π,则4(3f 的值为_______.12. 某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师人. 13. (6展开式中的常数项是 (用数字作答。

2022-2023学年陕西省咸阳中学高二上学期第三次月考理科数学试题(解析版)

2022-2023学年陕西省咸阳中学高二上学期第三次月考理科数学试题(解析版)

陕西省咸阳中学2022—2023学年度第一学期第三次月考高二数学理科满分: 120分时间:100分钟一单项选择题(每题5分,共12道小题,共计60分)1. 数列{a n }, 满足a 1=2,a n+1=11−a n(n ∈N ∗), 则a 2021+a 2=() A.-2 B.-1 C.2 D.122. 中国古代数学著作《算法统宗》中有这样一个问题: “三百七十八里关, 初行健步不为难, 次日脚痛减一半, 六朝才得到其关, 要见次日行里数, 请公仔细算相还. ”其大意为: “有一个人走了 378 里路, 第一天健步行走, 从第二天起因脚痛每天走的路程为前一天的一半, 走了 6 天后到达目的地. ”则此人第 4 天走了()A.60 里B.48 里C.36 里D.24 里 3. 已知{a n }为等比数列, 且a 1a 13=π6, 则tan (a 2a 12)的值为()A.−√3B.√33C.±√3D.−√33 4. △ABC 的内角A,B,C 的对边分别为a,b,c . 已知a =√6,c =2,cosA =14, 则b =()A.√2B.1C.2D.35. 在△ABC 中,a,b,c 分别为A,B,C 的对边, 如果sinA sinB−sinC =b+c b−a, 那么∠C 的度数为() A.π6 B.π4C.π3 D.π26. 在△ABC 中,BC =√17,AC =3,cosA =13, 则△ABC 的面积为()A.2B.4√2C.4D.92 7. 若实数x,y 满足约束条件{y ⩽x,x +y ⩾1,2x −y ⩽2.则z =2x +y 的最大值为()A.32B.2C.4D.68. 已知a 、b 、c 、d ∈R , 下列命题正确的是()A.若a >b , 则ac >bcB.若a >b,c >d , 则ac >bdC.若a >b , 则1a <1bD.若1|a|<1|b|, 则|a|>|b| 9. 命题“ ∃x 0∈(0,+∞), 使得e x 0<x 0” 的否定是()A.∃x 0∈(0,+∞), 使得e x 0>x 0B.∃x 0∈(0,+∞), 使得e x 0≥x 0C.∀x ∈(0,+∞), 均有e x >xD.∀x ∈(0,+∞), 均有e x ≥x10.平面向量a =(1,2),b =(2,k 2). 则“k =2”是 “a//b ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件11. 已知向量m =(1,2,λ),n =(2,2,1),p =(2,1,1), 满足条件(p −m)⊥n , 则λ的值为()A.1B.−1C.2D.−212. 如图, 在正方体ABCD −A 1B 1C 1D 1中, 异面直线D 1C 与BD 所成的角为()A.30∘B.45∘C.60∘D.90∘二填空题(每题5分,共4道小题,共计20分)13当x>0时, 不等式x2+mx+4>0恒成立, 则实数m的取值范围是___________.14已知x,y>0, 且满足x+y=2, 则xy+x+y的最大值为___________., 则S n=___________.15设S n是数列{a n}的前n项和, 且a n=2n(n+1)16命题“任意x∈[−1,2],x2−2x−a≤0”为真命题, 则实数a的取值范围是___________.三解答题(本题4道小题,共计40分,写出必要的文字说明和演算步骤)17. (本题满分10分)如图, 在四棱锥P−ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB,E,F,G分别是PC,PD,BC的中点.(1) 求证: PC⊥AD;(2) 求证: 平面PAB//平面EFG.18.(本题满分10分)已知等差数列{a n}的前n项和为S n, 且a2=3,S5=25. (1) 求数列{a n}的通项公式;(2) 设b n=a n+2n−1, 求数列{b n}的前n项和T n. 19. (本题满分10分)在锐角△ABC中,A,B,C的对边分别为a,b,c, 且√3a= 2csinA.(1) 求角C的大小;(2) 若c=√7, 且ab= 6, 求ΔABC的周长.20. (本题满分10分)如图, 某人计划用篱笆围成一个一边靠墙(墙足够长) 的矩形菜园. 设菜园的长为x米, 宽为y米.(1) 若菜园面积为36 平方米, 则x,y为何值时, 所用篱笆总长最小?(2) 若使用的篱笆总长为30 米, 求2x+y的最小值.xy陕西省咸阳中学2022—2023学年度第一学期第三次月考高二数学理科参考答案及解析一单项选择题(每题5分,共12道小题,共计60分)1. 【答案】A 【解析】根据题意, 由a 1=2, 得a 2=11−a 1=−1;a 3=11−a 2=12;a 4=11−a 3=2,……, 所以数列{a n }是以 3 为周期的周期数列, 所以a 2021+a 2=a 2+a 2=−2.故选 : A .2. 【答案】D 【解析】根据题意, 记每天走的路程里数为{a n }.可知{a n }是以12为公比的等比数列.又由S 6=378, 得S 6=a 1(1−q 6)1−q =a 1(1−126)1−12=378.解可得a 1=192.则a 4=a 1×(12)3=24. 3. 【答案】B 【解析】因为{a n }为等比数列, 所以a 2a 12=a 1a 13=π6, 所以tan (a 2a 12)=tan π6=√33. 故选: B.4. 【答案】C 【解析】由余弦定理得(√6)2=b 2+22−2×b ×2×14, 即b 2−b −2=0, 解得b =2或−1(舍去), 故选C .5. 【答案】C 【解析】因为sinA sinB−sinC =b+c b−a , 由正弦定理可得a b−c =b+c b−a , 即ab −a 2=b 2−c 2. 所以c 2=b 2+a 2−ab . 又c 2=b 2+a 2−2abcosC .所以cosC =12.因为C ∈(0,π).所以C =π3.6. 【答案】B【解析】因为BC =√17,AC =3,cosA =13,由余弦定理BC 2=AB 2+AC 2−2AB ∙ACcosA , 所以AB 2−2AB −8=0, 所以AB =4.又因为cosA =13, 所以sinA =2√23, 所以S △ABC =12AB ∙AC ∙sinA =12×4×3×2√23=4√2.7. 【答案】D 【解析】解: 画出约束条件{y ≤x,x +y ≥1,2x −y ≤2.表示的平面区域, 如图所示:目标函数z =2x +y 可化为y =−2x +z ,平移目标函数知, 直线y =−2x +z 过点A 时, 在y 轴上的截距最大, 由{y =x 2x −y =2, 解得A(2,2),所以z 的最大值为z max =2×2+2=6.8. 【答案】D【解析】对于A , 当c ≤0时不成立. 对于B , 当a =1,b =−2,c =0,b =−1时, 显然不成立. 对于C , 当a =1,b =−2时, 不成立. 对于D , 因为0<1|a|<1|b|, 所以有|a|>|b|成立, 故选 D.9. 【答案】D 【解析】命题“ ∃x 0∈(0,+∞), 使得e x 0<x 0”的否定是: “∀x ∈(0,+∞), 使得e x ≥x ”10. 【答案】A 【解析】由k =2知a//b ; 由a//b 知k 2=4, 则k =±2, 故选A . 11. 【答案】A 【解析】因为p −m =(1,−1,1−λ), 所以(p −m)∙n =1×2+(−1)×2+(1−λ)×1=0, 解得λ=1, 故选A .12. 【答案】C【解析】因为BD//B 1D 1, 则∠CD 1B 1为所求, 又△CD 1B 1是正三角形,∠CD 1B 1=60∘, 故选C .二填空题(每题5分,共4道小题,共计20分)13.【解析】∵当x >0时, 不等式x 2+mx +4>0恒成立,∴m >−(x +4x ),∵x >0,∴x +4x ⩾2√4=4(x =2时, 取等号),∴−(x +4x)⩽−4,∴m >−4,故答案为:(−4,+∞)14.因为x,y >0, 且满足x +y =2,则xy +x +y =xy +2⩽(x+y 2)2+2=3当且仅当x =y =1时取等号,所以xy +x +y 的最大值为3.故答案为:315.因为a n =2n(n+1)=2(1n −1n+1),所以S n =2(1−12+12−13+⋯+1n −1n+1)=2(1−1n+1)=2n n+1.故答案为:2n n+1. 16.任意x ∈[−1,2],x 2−2x −a ≤0恒成立⇔x 2−2x ≤a 恒成立, 故只需(x 2−2x )max ≤a , 记f(x)=x 2−2x =(x −1)2−1,x ∈[−1,2], 易知f(x)max =f(−1)=3, 所以3≤a .故答案为:[3,+∞)三解答题(本题6道小题,共计70分,写出必要的文字说明和演算步骤) 17. 【解析】(1)详解:由PD ⊥平面ABCD , 得AD ⊥PD , 又AD ⊥CD (ABCD 是正方形 ),PD ∩CD =D , 所以AD ⊥平面PDC , 所以AD ⊥PC .(2)详解:由E,F 分别是线段PC,PD 的中点, 所以EF//CD , 又ABCD 为正方形,AB//CD , 所以EF//AB , 又EF/⊂平面PAB , 所以EF//平面PAB . 因为E,G 分别是线段PC,BC 的中点, 所以EG//PB , 又EG/⊂平面PAB , 所以EG//平面PAB . 因为EF ∩EG =E,EF,EG ⊂平面EFG , 所以平面EFG//平面PAB .18.【解析】(1): 设等差数列{a n }公差为d , 首项为a 1, 由题意, 有{a 1+d =35a 1+5×42d =25, 解得{a 1=1d =2, 所以a n =1+(n −1)×2=2n −1;(2) b n =a n +2n−1=2n −1+2n−1, 所以T n =n(1+2n−1)2+1−2n 1−2 19.【解析】(1)由√3a =2csinA 及正弦定理得a c =√3=sinAsinC 因为sinA >0, 故sinC =√32. 又∵△ABC 为锐角三角形, 所以C =π3.(2)由余弦定理a 2+b 2−2abcos π3=7,∵ab =6, 得a 2+b 2=13 解得: {a =2b =3或{a =3b =2 ∴△ABC 的周长为a +b +c =5+√7.20.【解析】(1)由题意得, xy =36, 所用篱笆总长为x +2y . 因为x +2y ≥2√2xy =2×√2×36=12√2, 当且仅当x =2y 时, 即x =6√2,y =3√2时等号成立. 所以菜园的长x 为6√2m , 宽y 为3√2m 时, 所用篱笆总长最小.(2)由题意得, x +2y =30,2x+y xy =1x +2y =130(1x +2y )(x +2y)=130(5+2y x +2x y )≥130(5+2√2y x ∙2x y )=310, 当且仅当2y x =2x y , 即x =y =10时等号成立, 所以2x+y xy 的最小值是310.。

高二上学期期末考试数学(理)试题及答案

高二上学期期末考试数学(理)试题及答案

N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。

高二上学期期末考试数学(理)试题及答案 (11)

高二上学期期末考试数学(理)试题及答案 (11)

学年度高二第一学期期末学分认定考试数学试题(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(填空题和解答题)两部分。

满分150分; 考试时间120分钟.考试结束后,监考教师将答题纸和答题卡一并收回。

第Ⅰ卷(共50分)注意事项:本试卷分第I卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列双曲线中,渐近线方程为2y x =±的是( )A .2214y x -= B .2214x y -=C .2212y x -= D .2212x y -= 2.设,a b ∈R ,则“0a b >>”是“11a b<”的( )条件 A .充分而不必要 B .必要而不充分 C .充分必要 D .既不充分也不必要 3.在ABC ∆中,如果=cos cos a bB A,则该三角形是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .以上答案均不正确4.已知数列{}n a 的前n 项和21nn S =-,那么4a 的值为A .1B .2C .4D .85.在平面直角坐标系中,不等式组0400x y x y y -≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域的面积是( )A . 2B . 4C . 8D . 16 6.若不等式08322≥-+kx kx的解集为空集,则实数k 的取值范围是( ) A . )0,3(- B .)3,(--∞ C . (]0,3- D .),0[]3,(+∞--∞ 7.下列命题中,说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B.“102x <<”是“(12)0x x ->”的必要不充分条件 C .命题“0x ∃∈R ,使得20010x x ++<”的否定是:“x ∀∈R ,均有210x x ++>”D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题 8.等差数列{}n a 和{}n b 的前n 项和分别为S n 和T n ,且231n n S nT n =+,则55b a A .32 B . 149 C . 3120 D . 979.在ABC ∆中,,,4530,2===C A a 则ABC S ∆=( ) A .2 B .22 C .13+ D .()1321+10.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3(0,]4B .3(0,]2 C .3[,1)2 D .3[,1)4第Ⅱ卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分,把答案填写在答题纸中横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学理科试题及答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(原创)在复平面内,复数)21(i i z -=的共轭复数为 A .i --2 B.i -2 C.i +-2 D. i +22.(原创)若2017201722102017)21(x a x a x a a x ++++=- ,则=+++2017321a a a aA .2 B. 1 C.1- D. 2-3.用反证法证明命题“若022=+b a ,则b a ,全为0(R b a ∈,)”,假设的内容是 A.b a ,至少有一个不为0 B.b a ,至少有一个为0 C.b a ,全不为0 D.b a ,中只有一个为04.命题“有些有理数是无限循环小数,整数是有理数,所以整数是循环小数”是假命题,推理错误的原因是A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误5.(原创)已知随机变量ξ服从正态分布),3(2σN ,68.0)4(=≤ξP ,则)2(≥ξP = A.84.0 B.68.0 C.32.0 D.16.0 6.(原创)已知函数2ln )(+=x a x f ,2)('=e f ,则a 的值为 A .1- B.1 C.e 2 D.2e7.观察下列各式:1=+b a ,322=+b a ,433=+b a ,744=+b a ,1155=+b a ,…,则=+1010b aA .28 B.76 C.123 D.1998.从1、2、3、4、5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则)|(A B P 等于A.81B.41C.21D.52 9. (原创)小王有70元钱,现有面值分别为20元和30元的两种IC 电话卡,若他至少购买一张卡,则不同的买法共有A.6种B.7种C.8种D.9种 10.设甲、乙两人每次射击命中目标的概率分别为34和45,且各次射击相互独立,若按甲、乙、甲、乙…的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是 A.920 B.925 C.380 D.1940011.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A.72B.120C.144D.168 12.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表)(x f 的导函数)('x f y =的图象如图所示下列关于函数)(x f 的命题: ①函数)(x f y =是周期函数; ②函数)(x f 在[0,2]是减函数;③如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最大值为4; ④当21<<a 时,函数a x f y -=)(有4个零点. 其中真命题的个数是A .1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.(原创)4)2(y x +展开式中二项式系数最大的项的系数为 .(用数字作答)14.(原创)dx x x ⎰--222)sin 3(= .15.将甲、乙等5位同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送的方法数为 种.(用数字作答)16.给出下列命题:①用反证法证明命题“设,,a b c 为实数,且0,0,a b c ab bc ca ++>++>则0,0,0a b c >>>”时,要给出的假设是:,,a b c 都不是正数;②若函数()()2f x x x a =+在2x =处取得极大值,则2a =-或-6;③用数学归纳法证明*1111...(1,)2321n n n n N ++++<>∈-,在验证2n =成立时,不等式的左边是11123++; ④数列}{n a 的前n 项和c S n n -=3,则1=c 是数列}{n a 为等比数列的充要条件; 上述命题中,所有正确命题的序号为 .三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)(原创)当m 为何实数时,复数i m m m m m z )82(4622--+---=是 (Ⅰ)实数; (Ⅱ)纯虚数. 18.(本小题满分12分)已知函数x x x f 12)(3+-= (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)求函数[]1,3)(-∈x x f 当时的最大值与最小值.19.(本小题满分12分)(原创)中秋节吃月饼是我国的传统习俗,设一礼盒中装有9个月饼,其中莲蓉月饼2个,伍仁月饼3个,豆沙月饼 4个,这三种月饼的外观完全相同,从中任意选取3个.(Ⅰ)求三种月饼各取到1个的概率;(Ⅱ)设X 表示取到伍仁月饼的个数,求X 的分布列与数学期望. 20.(本小题满分12分)数列}{n a 满足)(2*∈-=N n a n S n n .(Ⅰ)计算4321,,,a a a a ,并由此猜想通项公式n a ; (Ⅱ)用数学归纳法证明(Ⅰ)中的猜想. 21.(本小题满分12分)某校为全面推进新课程改革,在高一年级开设了研究性学习课程,某班学生在一次研究活动课程中,一个小组进行一种验证性实验,已知该种实验每次实验成功的概率为12.(Ⅰ)求该小组做了5次这种实验至少有2次成功的概率;(Ⅱ)如果在若干次实验中累计有两次成功就停止实验,否则将继续下次实验,但实验的总次数不超过5次,求该小组所做实验的次数ξ的概率分布列和数学期望. 22.(本小题满分12分)设函数),(ln )(2x x b ax x f -+=.)1(21)(2x b x x g -+-=已知曲线)(x f y =在点(1,)1(f )处的切线与直线01=+-y x 垂直.(Ⅰ)求a 的值;(Ⅱ)求函数)(x f 的极值点;(Ⅲ)若对于任意的),,1(+∞∈b 总存在],,1[,21b x x ∈使得m x g x g x f x f +->--)()(1)()(2121成立,求实数m 的取值范围.参考答案13. 24 14. 16 15. 150 16.③④ 三.解答题17. (本小题满分10分)解:(Ⅰ)当⎩⎨⎧=--≠-082042m m m ………………………………3分即2-=m 时,z 是实数; ………………………………5分(Ⅱ)当⎪⎩⎪⎨⎧≠--=---08204622m m m m m ………………………………7分⎩⎨⎧≠-≠-=⇒4223m m m 且或 ………………………………9分3=∴m 时,z 是纯虚数. ………………………………10分 18. (本小题满分12分)解:(Ⅰ) 由x x x f 12)(3+-=可得123)(2'+-=x x f ………………………2分令0)('>x f 即得22<<-x∴)(x f 的单调递增区间为)2,2(- …………………………4分令0)('<x f 即得22>-<x x 或∴)(x f 单调递减区间为)2,(--∞,),2(+∞.综上所述:)(x f 的单调递增区间为)2,2(-,单调递减区间为)2,(--∞,),2(+∞. …………………………6分(Ⅱ) 由(Ⅰ)可知:)(x f 在[]2,3--上单调递减,在[]1,2-上单调递增 ………………………8分又9)3(12)3()3(3-=-⨯+--=-f ……………………………9分16)2(12)2()2(3-=-⨯+--=-f ……………………………10分 111121)1(3=⨯+-=f ……………………………11分∴)(x f 在[]1,3-上的最大值为11,最小值为16- ………………………12分19. (本小题满分12分)解:(Ⅰ) 设三种月饼各取到一个的概率为P ,则 7239141312==C C C C P ………………………………5分 (Ⅱ)由题意可得:X 可能的取值为3,2,1,0 ………………………………6分215)0(3936===C C X P 2815)1(392613===C C C X P 143)2(391623===C C C X P 841)3(3933===C C X P10分X 的数学期望138412143184450215)(=⨯+⨯+⨯+⨯=ξE ………………12分 20. (本小题满分12分)解:(Ⅰ) n n a n S -=21121111=⇒-⨯==∴a a S n 时,当 ……………………………1分23222222=⇒-⨯==a a S n 时,当 ……………………………2分 47323333=⇒-⨯==a a S n 时,当 ……………………………3分815424444=⇒-⨯==a a S n 时,当……………………………4分由此猜想)(2121*-∈-=N n a n n n . ……………………………6分(Ⅱ) 证明①当1=n 时,11=a ,结论成立. ……………………………7分②假设)1(*∈≥=N k k k n 且时,结论成立,即1212--=k k k a ………………8分那么1+=k n 时,111122)1(2++++-+=+--+=-=k k k k k k k a a a k a k S S a ………………10分k k a a +=∴+221kk k k k k a a 2122212222111-=-+=+=∴+-+ …………………………11分 所以当1+=k n 时,结论成立,综上所述)(2121*-∈-=N n a n n n 成立. ………………………………12分21. (本小题满分12分)解:(Ⅰ)记“该小组做了5次实验至少有2次成功”为事件A ,“只成功一次”为事件1A ,“一次都不成功”为事件2A ,则:1613)21()21(1)()(1)(1)(5055152121=--=--=+-=C C A P A P A A P A P故该小组做了5次这种实验至少有2次成功的概率为1316.………………6分 (Ⅱ)ξ的可能取值为2,3,4,5.则41)21()2(2===ξP ;41)21()3(312===C P ξ,163)21()4(413===C P ξ,165)21()21()21()5(514515505=++==C C C P ξ.………………10分 ∴ξ的分布列为:11分∴ξ的数学期望:)(ξE =113557234544161616⨯+⨯+⨯+⨯=. ………………12分 22. (本小题满分12分)解:(Ⅰ)由题可知,函数)(x f 的定义域为),0(+∞ …………………………1分)11(2)(-+='x b ax x f∴a b a f 2)111(2)1(=-+=' ………………………………3分因为曲线)(x f y =在点(1,)1(f )处的切线与直线01=+-y x 垂直,故112-=⋅a ∴21-=a ………………………………4分(Ⅱ)由(I )得x bbx x x b x x f +--=-+-='2)11()((0>x )00)(2=-+='b bx x x f 得令(*)b b 42+=∆①时或时,即当04-042><>+=∆b b b b (*)式有两个根.24,242221b b b x b b b x ++-=+--=当4-<b 时,.0,021>>x x)上单调递增,,()上单调递减,在区间,在区间(1220)(x x x x f)上单调递减,在区间(∞+1x .此时为极大值点为极小值点,12x x x x == 当0>b 时,.0,021<>x x)上单调递减,()上单调递增,在区间,在区间(∞+110)(x x x f ,此时点为极大值点,无极小值1x x = ……………………6分 ②时时,即当04-042≤≤≤+=∆b b b 无极值点。

相关文档
最新文档