全国通用2018版高考数学一轮复习第三章导数及其应用3_2_3导数与函数的综合应用课时作业文北师大版

合集下载

全国通用2018版高考数学一轮复习第三章导数及其应用3.2.3导数与函数的综合应用课件文北师大版

全国通用2018版高考数学一轮复习第三章导数及其应用3.2.3导数与函数的综合应用课件文北师大版

当 x 变化时,f(x)与 f′(x)的变化情况如下:
x
(-∞,-2) -2 -2,-23 -23 -23,+∞
f′(x)

0

0

f(x)
c
c-3227
所以,当 c>0 且 c-3227<0,存在 x1∈(-4,-2),x2∈-2,-23, x3∈-23,0,使得 f(x1)=f(x2)=f(x3)=0.由 f(x)的单调性知,当且仅 当 c∈0,3227时, 函数 f(x)=x3+4x2+4x+c 有三个不同零点.
解 (1)因为 x=5 时,y=11,所以a2+10=11,a=2. (2)由(1)可知,该商品每日的销售量为 y=x-2 3+10(x-6)2, 所以商场每日销售该商品所获得的利润为 f(x)=(x-3)x-2 3+10x-62 =2+10(x-3)(x-6)2,3<x<6. 从而,f′(x)=10[(x-6)2+2(x-3)(x-6)] =30(x-4)·(x-6),
(2)因 V(r)=5π(300r-4r3)(0<r<5 3), 故 V′(r)=π5(300-12r2), 故 V′(r)=0,解得 r=5 或-5(因 r=-5 不在定义域内,舍去). 当 r∈(0,5)时,V′(r)>0,故 V(r)在(0,5)上为增函数; 当 r∈(5,5 3)时,V′(r)<0,故 V(r)在(5,5 3)上为减函数. 由此可知,V(r)在 r=5 处取得最大值,此时 h=8. 所以当 r=5,h=8 时,该蓄水池的体积最大.
于是,当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(3,4)
4
(4,6)
f′(x) +

2018版高考数学(理)一轮复习文档:第三章导数及其应用3.1含解析

2018版高考数学(理)一轮复习文档:第三章导数及其应用3.1含解析

1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是错误! 错误!=错误!错误!,我们称它为函数y =f (x )在x =x 0处的导数,记作()00|x x f x y ''=或,即f ′(x 0)=错误! 错误!=错误! 错误!.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=04.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[错误!]′=错误!(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积.【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2。

[错误!]′=-错误!(f(x)≠0).3.[af(x)+bg(x)]′=af′(x)+bg′(x).4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡".【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ×)(2)f′(x0)与[f(x0)]′表示的意义相同.(×)(3)曲线的切线不一定与曲线只有一个公共点.(√)(4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)函数f(x)=sin(-x)的导数是f′(x)=cos x.(×)1.(教材改编)若f(x)=x·e x,则f′(1)等于()A.0 B.e C.2e D.e2答案C解析f′(x)=e x+x·e x,∴f′(1)=2e。

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

1 由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x, 3 5 知f′(1)=-4-a=-2,解得a=4.
x2-4x-5 x 5 3 所以f(x)=4+4x-ln x-2,则f′(x)= , 4x2 令f′(x)=0,解得x=-1或x=5, 因x=-1不在f(x)的定义域(0,+∞)内,故舍去. 当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数; 当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增 函数. 所以函数f(x)的单调递增区间为(5,+∞),单调递减区 间为(0,5).
值对不等式解集的影响进行分类讨论.
求函数的单调区间
[例2] x a 3 已知函数f(x)= 4 + x -ln x- 2 ,其中a∈R,且曲
1 线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x,求函数f(x) 的单调区间.
[解]
1 a 1 对f(x)求导得f′(x)=4-x2-x,
第二节 导数与 函数的 单调性
本节主要包括2个知识点: 1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.
突破点(一)
基础联通
利用导数讨论函数的单调性或求函数的单调区间
抓主干知识的“源”与“流”
1.函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
考点贯通
抓高考命题的“形”与“神”
证明或讨论函数的单调性
判断函数单调性的三种方法

【数学课件】2018版高考数学(文)一轮复习:第3章-导数及其应用(人教A版4份)

【数学课件】2018版高考数学(文)一轮复习:第3章-导数及其应用(人教A版4份)

考点突破
课堂总结
4.(2017· 豫北名校期末联考)曲线y=-5ex+3在点(0,-2) 处的切线方程为________. 解析 ∵y′=-5ex,∴所求曲线的切线斜率k=y′|x=0=
-5e0=-5,∴切线方程为y-(-2)=-5(x-0),即5x
+y+2=0. 答案 5x+y+2=0
基础诊断
考点突破
课堂总结
5.(2015· 全国 Ⅰ 卷 ) 已知函数 f(x) = ax3 +x +1 的图象在点 (1 , f(1))处的切线过点(2,7),则a=________. 解析 由题意可得f′(x)=3ax2+1,则f′(1)=3a+1,
又f(1)=a+2,
∴切线方程为y-(a+2)=(3a+1)(x-1). ∵切线过点(2,7), ∴7-(a+2)=3a+1,解得a=1. 答案 1
f′(x)g(x)-f(x)g′(x) f (x ) 2 [ g ( x ) ] (3) ′=______________________________ (g(x)≠0).
g(x)
基础诊断 考点突破 课堂总结
诊断自测 1.判断正误(在括号内打“√”或“×”) (1)f′(x0)与(f(x0))′表示的意义相同.( )
(2)求f′(x0)时,应先求f′(x),再代入求值,(2)错.
(4)f(x)=a3+2ax+x2=x2+2ax+a3,∴f′(x)=2x+2a,(4)错. 答案 (1)× (2)× (3)√ (4)×
基础诊断 考点突破 课堂总结
3 2.(选修 1-1P75 例 1 改编)有一机器人的运动方程为 s(t)=t + t (t 是时间,s 是位移),则该机器人在时刻 t=2 时的瞬时速度为 ( ) 19 17 15 13 A. 4 B. 4 C. 4 D. 4 3 解析 由题意知,机器人的速度方程为 v(t)=s′(t)=2t- 2, t 3 13 故当 t=2 时,机器人的瞬时速度为 v(2)=2×2- 2= . 2 4 答案 D

高考数学一轮总复习教学课件第三章 一元函数的导数及其应用第3节 导数与函数的极值、最值

高考数学一轮总复习教学课件第三章 一元函数的导数及其应用第3节 导数与函数的极值、最值
(3)解方程f′(x)=0,求出函数定义域内的所有根.
(4)列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.
(5)求出极值.
角度三
由函数极值(极值个数)求参数值(范围)
[例3] (1)已知函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a+b
等于(
A.-7

C.-7或0
零,所以1.5是f(x)的极小值点,所以C正确;而x=-2和x=3,左右两侧
附近的导数值同号,所以-2和3不是函数的极值点,所以B,D错误.故
选AC.
3.(选择性必修第二册P94练习T1改编)已知函数f(x)=2sin x+

sin 2x,则f(x)的最小值是
.

解析:f′(x)=2cos x+2cos 2x=2cos x+2(2cos2x-1)=
当a>0时,令f′(x)=0,所以ex=a,x=ln a,
x
f′(x)
f(x)
(-∞,ln a)

ln a
0
极小值
(ln a,+∞)
+

f(x)在x=ln a处取得极小值f(ln a)=a-aln a-1,无极大值.
运用导数求函数f(x)极值的一般步骤
(1)确定函数f(x)的定义域.
(2)求导数f′(x).
(3)解:①由已知,可得f′(x)=x2+ax-2.
因为函数f(x)的图象在点(1,f(1))处的切线与直线2x+y-1=0平行,
所以f′(1)=a-1=-2,解得a=-1.经验证,a=-1符合题意.
②求函数f(x)的极值.

全国通用2018版高考数学一轮复习第三章导数及其应用3.2.1导数与函数的单调性课件文北师大版

全国通用2018版高考数学一轮复习第三章导数及其应用3.2.1导数与函数的单调性课件文北师大版
(1)极值点与极值
设函数f(x)在点x0及附近有定义,且在x0两侧的单调性相反 或导数值 异号 ,则x0为函数f(x)的极值点,f(x0)为函数的 极值.
(2)极大值点与极小值点 ①若先增后减(导数值先正后负),则x0为 极大值 点; ②若先减后增(导数值先负后正),则x0为 极小值 点.
(3)求可导函数极值的步骤:
【训练1】 设f(x)=ex(ax2+x+1)(a>0),试讨论f(x)的单调 性.
解 f′(x)=ex(ax2+x+1)+ex(2ax+1) =ex[ax2+(2a+1)x+2] =ex(ax+1)(x+2) =aexx+1a(x+2) ①当 a=12时,f′(x)=12ex(x+2)2≥0 恒成立, ∴函数 f(x)在 R 上单调递增;
(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)
上一定有f′(x)>0.
()
(2)f′(x)>0是f(x)为增函数的充要条件.
()
(3)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件. ()
(4)函数的最大值不一定是极大值,函数的最小值也不一
定是极小值.
()
解 析 (1) 函 数 f(x) 在 (a , b) 上 单 调 递 增 , 则 在 (a , b) 上 有 f′(x)≥0,故(1)错. (2)f′(x)>0是f(x)为增函数的充分不必要条件,(2)错. (3)如f(x)=x3,当x=0时,f′(x)=0,而函数f(x)在R上为增函 数,所以x=0不是极值点,故(3)错. 答案 (1)× (2)× (3)× (4)√

()
A.-4 B.-2 C.4 D.2
解析 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,当

2018版高考数学(理)一轮复习文档:第三章导数及其应用3.3含解析

2018版高考数学(理)一轮复习文档:第三章导数及其应用3.3含解析

1.定积分的概念在ʃ错误!f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x 叫做被积式.2.定积分的性质(1)ʃ错误!kf(x)d x=kʃ错误!f(x)d x(k为常数);(2)ʃ错误![f1(x)±f2(x)]d x=ʃ错误!f1(x)d x±ʃ错误!f2(x)d x;(3)ʃb,a f(x)d x=ʃ错误!f(x)d x+ʃ错误!f(x)d x(其中a<c〈b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃ错误!f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|错误!,即ʃ错误!f(x)d x=F(x)|错误!=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃ错误!f(x)d x=2ʃ错误!f(x)d x。

(2)若f(x)为奇函数,则ʃ错误!f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃ错误!f(x)d x=ʃ错误!f(t)d t。

( √)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃ错误!f(x)d x〉0。

( √)(3)若ʃ错误!f(x)d x〈0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.( ×)(4)微积分基本定理中的F(x)是唯一的.( ×)(5)曲线y=x2与y=x所围成图形的面积是ʃ错误!(x2-x)d x。

高考数学一轮复习 第三章导数及其应用3.1导数、导数的计算教学案 理

高考数学一轮复习 第三章导数及其应用3.1导数、导数的计算教学案 理

第三章 导数及其应用3.1 导数、导数的计算考纲要求1.了解导数概念的实际背景. 2.理解导数的几何意义.3.能根据导数定义,求函数y =C (C 为常数),y =x ,y =x 2,y =x 3,y =1x,y =x 的导数.4.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.能求简单复合函数(仅限于形如f (ax +b )的复合函数)的导数.1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y =.2.导函数如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b )可导.这样,对开区间(a ,b )内每一个值x ,都对应一个确定的导数f ′(x ).于是在区间(a ,b )内____构成一个新的函数,我们把这个函数称为函数y =f (x )的导函数,记为f ′(x )或y ′.3.导数的几何意义函数y =f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________.45(1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=__________(g (x )≠0). 6.复合函数的导数设u =v (x )在点x 处可导,y =f (u )在点u 处可导,则复合函数y =f [v (x )]在点x 处可导,且f ′(x )=________,即y ′x =________.1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则ΔyΔx等于( ).A .4B .4xC .4+2ΔxD .4+2Δx 22.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( ). A .0秒 B .1秒末 C .2秒末D .1秒末和2秒末3.曲线y =x 3在点P 处的切线的斜率为3,则点P 的坐标为( ).A .(-1,1)B .(-1,-1)C .(1,1)或(-1,-1)D .(1,-1)4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ).A .-1B .-2C .2D .05.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为__________.6.y =sin 2x 的导数为__________. 一、根据导数的定义求函数的导数【例1-1】已知f ′(2)=2,f (2)=3,则lim x →2f (x )-3x -2+1的值为( ).A .1B .2C .3D .4【例1-2】用导数的定义求函数y =f (x )=1x在x =1处的导数.方法提炼1.根据导数的概念求函数的导数是求导的基本方法.确定y =f (x )在x =x 0处的导数有两种方法:一是导数的定义法,二是导函数的函数值法.2.求函数y =f (x )在x =x 0处的导数的求解步骤:请做演练巩固提升1二、利用求导公式、法则求导 【例2】求下列函数的导数:(1)y =(2x -3)2; (2)y =tan x ;(3)y =x 2+2x +5. 方法提炼一般来说,分式函数求导,要先观察函数的结构特征,可化为整式函数或较为简单的分式函数的要先化简;对数函数的求导,可先化为和、差的形式;三角函数的求导,先利用三角函数公式转化为和或差的形式.请做演练巩固提升2三、导数的几何意义【例3】已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程; (3)求斜率为1的曲线的切线方程. 方法提炼1.求曲线y =f (x )在x =x 0处的切线方程(1)求出函数y =f (x )在x =x 0处的导数f ′(x 0)即为曲线y =f (x )在x =x 0处的切线斜率;(2)由切点(x 0,f (x 0))和斜率f ′(x 0),用点斜式写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),再化为一般式即可.特别地,如果曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.2.求曲线y =f (x )过点P (x 0,y 0)的切线方程可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)解出x 1,进而确定过点P 的切线方程为y -y 0=f ′(x 1)(x -x 0),再化为一般式即可.3.“过某点”与“在某点处”的切线是不同的,过某点的切线,此点并不一定是切点,在某点处的切线才表明此点是切点.无论是求函数在某点的切线还是过某点的切线,首先都是求(或设)切点坐标得出切线的斜率,再解决问题.曲线在某点处的切线只有一条,而过某点的切线可以不止一条.请做演练巩固提升4对“在某点处”与“过某点”字眼的区分【典例】若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x-9都相切,则a 等于( ).A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:因为点(1,0)不在曲线y =x 3上,所以应从设切点入手来求切线方程,再利用切线与曲线y =ax 2+154x -9相切求a 的值.设过(1,0)的直线与y =x 3相切于点(x 0,x 03),所以切线方程为y -x 03=3x 02(x -x 0),即y =3x 02x -2x 03.又(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A .答案:A答题指导:1.在解答本题时有两个易错点:(1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系,而必须设出切点.2.解决与导数的几何意义有关的问题时,以下几点在备考时要高度关注:(1)首先确定已知点是否为曲线的切点是求解关键;(2)基本初等函数的导数和导数的运算法则要熟练掌握; (3)对于直线的方程与斜率公式的求解,要熟练掌握.1.设f (x )为可导函数,且满足lim x →0f (1)-f (1-2x )2x=-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为( ).A .2B .-1C .1D .-22.y =cos(x 2+3)的导数y ′=__________.3.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是__________.4.(2012安徽高考)设定义在(0,+∞)上的函数f (x )=ax +1ax+b (a >0).(1)求f (x )的最小值;(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =32x ,求a ,b 的值.参考答案基础梳理自测 知识梳理1.lim Δx →0f (x 0+Δx )-f (x 0)Δx 2.f ′(x )3.y -f (x 0)=f ′(x 0)(x -x 0)4.nx n -1 cos x -sin x a xln a (a >0)e x1x ln a (a >0,且a ≠1) 1x5.(1)f ′(x )±g ′(x )(2)f ′(x )g (x )+f (x )g ′(x )(3)f ′(x )g (x )-f (x )g ′(x )[g (x )]26.f ′(u )·v ′(x ) y u ′·u x ′ 基础自测1.C 解析:∵Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-1=4Δx +2(Δx )2, ∴ΔyΔx=4+2Δx . 2.D 解析:∵s =13t 3-32t 2+2t ,∴v =s ′(t )=t 2-3t +2.令v =0,得t 2-3t +2=0,t 1=1,t 2=2.3.C 解析:y ′=3x 2,∴3x 2=3. ∴x =±1.当x =1时,y =1,当x =-1时,y =-1.4.B 解析:∵f ′(x )=4ax 3+2bx 为奇函数,∴f ′(-1)=-f ′(1)=-2.5.4x -y -3=0 解析:设切点为(x 0,y 0),y ′=4x 3,4x 03=4, ∴x 0=1.∴y 0=1.∴l 的方程为4x -y -3=0. 6.y ′=2cos 2x 考点探究突破【例1-1】C 解析:令Δx =x -2,则lim x →2f (x )-3x -2+1 =lim Δx →0f (Δx +2)-f (2)Δx+1 =f ′(2)+1=2+1=3.【例1-2】解:Δy =f (1+Δx )-f (1)=11+Δx -11=1-1+Δx 1+Δx=-Δx1+Δx (1+1+Δx ).∴Δy Δx =-11+Δx (1+1+Δx ), ∴lim Δx →0Δy Δx=lim Δx →0⎣⎢⎢⎡⎦⎥⎥⎤-11+Δx (1+1+Δx ) =-12.∴f ′(1)=-12.【例2】解:(1)y ′=(4x 2-12x +9)′=8x -12.(2)y ′=⎝⎛⎭⎪⎫sin x cos x ′ =(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x=1cos 2x. (3)y ′=(x 2+2x +5)′ =12(x 2+2x +5)-12·(2x +2)=x +1x 2+2x +5.【例3】解:(1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为:y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为:y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 03+43,则切线的斜率为:0|x x y '==x 02.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 03+43=x 02(x -x 0),即y =x 02·x -23x 03+43. ∵点P (2,4)在切线上,∴4=2x 02-23x 03+43,即x 03-3 x 02+4=0,∴x 03+x 02-4x 02+4=0,∴x 02(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0. (3)设切点为(x 0,y 0),则x 02=1,x 0=±1,切点为(-1,1)或⎝⎛⎭⎪⎫1,53,∴切线方程为y -1=x +1或y -53=x -1,即x -y +2=0或3x -3y +2=0. 演练巩固提升1.B 解析:lim x →0f (1)-f (1-2x )2x=lim x →0f (1-2x )-f (1)-2x=-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1))处的切线斜率为-1.2.-2x sin(x 2+3) 解析:y ′=[cos(x 2+3)]′=2x ·[-sin(x 2+3)]=-2x sin(x 2+3).3.(-∞,0) 解析:f ′(x )=3ax 2+1x(x >0),若函数存在垂直于y 轴的切线,即3ax 2+1x =0有解,a =-13x3.∵x >0,∴-13x 3<0.∴a <0.4.解:(1)(方法一)由题设和基本不等式可知,f (x )=ax +1ax+b ≥2+b ,其中当且仅当ax =1时,等号成立,即当x =1a时,f (x )取最小值为2+b .(方法二)f (x )的导数f ′(x )=a -1ax 2=a 2x 2-1ax 2,当x >1a时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1a,+∞上递增; 当0<x <1a 时,f ′(x )<0,f (x )在⎝⎛⎭⎪⎫0,1a 上递减.所以当x =1a时,f (x )取最小值为2+b .(2)f ′(x )=a -1ax 2.由题设知,f ′(1)=a -1a =32,解得a =2或a =-12(不合题意,舍去).将a =2代入f (1)=a +1a +b =32,解得b =-1.所以a =2,b =-1.。

高考数学大一轮复习 第三章 三角函数、解三角形 3.2 导数的应用 第2课时 导数与函数的极值、最值

高考数学大一轮复习 第三章 三角函数、解三角形 3.2 导数的应用 第2课时 导数与函数的极值、最值

(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书的全部内容。

第2课时导数与函数的极值、最值题型一用导数解决函数极值问题命题点1 根据函数图象判断极值例1 (1)(2016·绍兴模拟)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是()(2)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)答案(1)C (2)D解析(1)由f′(x)图象可知,x=0是函数f(x)的极大值点,x=2是f(x)的极小值点,故选C。

(2)由题图可知,当x〈-2时,f′(x)〉0;当-2〈x〈1时,f′(x)<0;当1<x〈2时,f′(x)〈0;当x〉2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.命题点2 求函数的极值例2 (2016·台州模拟)已知函数f(x)=x-1+错误!(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)由f(x)=x-1+错误!,得f′(x)=1-错误!。

(全国通用)高考数学一轮复习 第三章 导数及其应用 3.2.3 导数与函数的综合应用课时作业 文 北

(全国通用)高考数学一轮复习 第三章 导数及其应用 3.2.3 导数与函数的综合应用课时作业 文 北

(全国通用)2018版高考数学一轮复习第三章导数及其应用3.2.3 导数与函数的综合应用课时作业文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018版高考数学一轮复习第三章导数及其应用3.2.3 导数与函数的综合应用课时作业文北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018版高考数学一轮复习第三章导数及其应用3.2.3 导数与函数的综合应用课时作业文北师大版的全部内容。

第3课时导数与函数的综合应用基础巩固题组(建议用时:40分钟)一、选择题1.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R与年产量x的年关系是R=R(x)=错误!则总利润最大时,年产量是()A.100 B.150C.200 D.300解析由题意得,总成本函数为C=C(x)=20 000+100 x,总利润P(x)=错误!又P′(x)=错误!令P′(x)=0,得x=300,易知x=300时,总利润P(x)最大.答案D2.设f(x)是定义在R上的奇函数,且f(2)=0,当x〉0时,有错误!〈0恒成立,则不等式x2f(x)>0的解集是( )A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)解析x〉0时错误!′〈0,∴φ(x)=错误!在(0,+∞)为减函数,又φ(2)=0,∴当且仅当0<x<2时,φ(x)〉0,此时x2f(x)>0。

又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数.故x2f(x)〉0的解集为(-∞,-2)∪(0,2).答案D3.若关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立,则m的取值范围是()A.(-∞,7] B.(-∞,-20]C.(-∞,0]D.[-12,7]解析令f(x)=x3-3x2-9x+2,则f′(x)=3x2-6x-9,令f′(x)=0得x=-1或x=3(舍去).∵f(-1)=7,f(-2)=0,f(2)=-20,∴f(x)的最小值为f(2)=-20,故m≤-20.答案B4.(2017·景德镇联考)已知函数f(x)的定义域为[-1,4],部分对应值如下表:x-10234f(x)12020f(x)的导函数y-a的零点的个数为()A.1 B.2C.3 D.4解析根据导函数图像,知2是函数的极小值点,函数y=f(x)的大致图像如图所示.由于f(0)=f(3)=2,1<a〈2,所以y=f(x)-a的零点个数为4.答案D5.(2014·全国Ⅰ卷)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0〉0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2) D.(-∞,-1)解析a=0时,不符合题意,a≠0时,f′(x)=3ax2-6x.令f′(x)=0,得x=0或x=错误!.若a>0,则由图像知f(x)有负数零点,不符合题意.则a<0,由图像结合f(0)=1〉0知,此时必有f错误!>0,即a×错误!-3×错误!+1>0,化简得a2〉4.又a〈0,所以a〈-2.答案C二、填空题6.某品牌电动汽车的耗电量y与速度x之间有关系y=错误!x3-错误!x2-40x(x>0),为使耗电量最小,则速度应定为________.解析由y′=x2-39x-40=0,得x=-1或x=40,由于0<x〈40时,y′〈0;x〉40时,y′>0。

高三数学一轮课件 第三章 导数及其应用 3.3 导数的综合应用

高三数学一轮课件 第三章 导数及其应用 3.3 导数的综合应用

(ⅰ)设a≥0,则当x∈(-∞,1)时,f'(x)<0;
当x∈(1,+∞)时,f'(x)>0.
所以f(x)在区间(-∞,1)内单调递减,在区间(1,+∞)内单调递增.
(ⅱ)设a<0,由f'(x)=0,得x=1或x=ln(-2a). ①若 a=-e2,则 f'(x)=(x-1)(ex-e), 所以 f(x)在区间(-∞,+∞)内单调递增. ②若 a>-e2,则 ln(-2a)<1,
内单调递减,
所以当 x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不符合题意.
④当 a>12时,0<21������<1,当 x∈
1 2������
,1
时,f'(x)>0,f(x)单调递增,
当 x∈(1,+∞)时,f'(x)<0,f(x)单调递减,
所以 f(x)在 x=1 处取极大值,符合题意.
可得函数 y 在区间(1,+∞)内单调递增,在区间(0,1)内单调递减.
故函数 y 在 x=1 处取得极小值,也是最小值 1,即有 x-ln x>0, 即 ln x<x,即有 a≤������������2-l-n2������������. 设 φ(x)=������������2-l-n2������������,则 φ'(x)=(������-1()���(������-���l+n2������-)22ln ������). 设 h(x)=x+2-2ln x,则 h'(x)=1-���2���,
0,
1 2������
内单调递增,

2018版高考数学一轮复习第三章导数及其应用第2讲导数的应用第3课时导数与函数的综合问题课件理

2018版高考数学一轮复习第三章导数及其应用第2讲导数的应用第3课时导数与函数的综合问题课件理

【训练 1】 (2016· 全国Ⅲ卷)设函数 f(x)=ln x-x+1. (1)讨论 f(x)的单调性; x-1 (2)证明当 x∈(1,+∞)时,1< ln x <x; (3)设 c>1,证明当 x∈(0,1)时,1+(c-1)x>cx.
(1)解 依题意,f(x)的定义域为(0,+∞).
1 f′(x)=x -1,令 f′(x)=0,得 x=1, ∴当 0<x<1 时,f′(x)>0,f(x)单调递增. 当 x>1 时,f′(x)<0,f(x)单调递减.
【训练 2】 (2017· 福建四地六校联考)已知 a 为实数, 函数 f(x) =aln x+x2-4x. (1)是否存在实数 a,使得 f(x)在 x=1 处取得极值?证明你 的结论; (2)设
1 g(x)=(a-2)x,若∃x0∈e ,e,使得
f(x0)≤g(x0)成立,
求实数 a 的取值范围.
(1)解
将 x=-1 代入切线方程得 y=-2,
b-a 所以 f(-1)= =-2,化简得 b-a=-4.① 1+1 a(x2+1)-(ax+b)· 2x f′(x)= , (x2+1)2 2a+2(b-a) f′(-1)= =-1.② 4 2x-2 联立①②,解得 a=2,b=-2.所以 f(x)= 2 . x +1
1 当 k>e 时, f(x)在区间(1, e)上单调递减, 且 f(1)=2>0, f( e) e-k = <0, 2 所以 f(x)在区间(1, e]上仅有一个零点. 综上可知,若 f(x)存在零点,则 f(x)在区间(1, e]上仅有一个 零点.
规律方法
函数零点问题通常可作以下适当转化来处理 .

2018版[高考总复习资料]数学一轮复习第三章导数及其应用3.3导数的综合应用真题演练集训理

2018版[高考总复习资料]数学一轮复习第三章导数及其应用3.3导数的综合应用真题演练集训理

2018版高考数学一轮复习 第三章 导数及其应用 3.3 导数的综合应用真题演练集训 理 新人教A 版1.[2015·新课标全国卷Ⅰ]设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B .⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D .⎣⎢⎡⎭⎪⎫32e ,1 答案:D解析:∵ f (0)=-1+a <0,∴ x 0=0.又x 0=0是唯一的整数,∴ ⎩⎪⎨⎪⎧f-1≥0,f 1≥0,即⎩⎪⎨⎪⎧e-1--1]+a +a ≥0,--a +a ≥0,解得a ≥32e.又a <1,∴ 32e≤a <1,故选D.2.[2014·陕西卷]如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x答案:A解析:设所求函数解析式为y =f (x ),由题意知f (5)=-2,f (-5)=2,且f ′(±5)=0,代入验证易得y =1125x 3-35x 符合题意,故选A.3.[2014·辽宁卷]当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,φ′(x )=x -x 3-x 2-4x -x 2x 6=-x 2-8x -9x=-x -x +x>0,∴φ(x )在(0,1]上单调递增, φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-x -x +x4,当x ∈[-2,-1)时,φ′(x )<0; 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上可知,a 的取值范围为[-6,-2].4.[2016·新课标全国卷Ⅰ]已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ). (ⅰ)设a =0,则f (x )=(x -2)e x,f (x )只有一个零点. (ⅱ)设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.(ⅲ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))上单调递减, 在(ln(-2a ),+∞)上单调递增.又当x ≤1时f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),又f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e 2-x 2-(x 2-2)e x2. 设g (x )=-x e2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0. 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.5.[2015·新课标全国卷Ⅱ]设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围.(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解:由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f 1-f 0≤e-1,f -1-f0≤e-1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1.①设函数g (t )=e t-t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].6.[2015·新课标全国卷Ⅰ]已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.解:(1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0,即 ⎩⎪⎨⎪⎧x 3+ax 0+14=0,3x 20+a =0,解得⎩⎪⎨⎪⎧x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)上无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0,所以只需考虑f (x )在(0,1)上的零点个数. ①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调. 而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0, -a 3上单调递减,在⎝⎛⎭⎪⎫-a3,1上单调递增,故在(0,1)上,当x = -a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫ -a 3=2a3-a3+14. a .若f ⎝ ⎛⎭⎪⎫-a 3>0,即-34<a <0,则f (x )在(0,1)上无零点.b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点.c .若f ⎝⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点. 综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.课外拓展阅读巧用导数妙解有关恒成立、存在性问题“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立问题,以免细节出错.方法一 分离参数法[典例1] [改编题]设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数.若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)[答案] A[解析] 解法一:f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时,f ′(x )≤0恒成立,即当x ∈(1,+∞)时,a ≥1x恒成立,则a ≥1.因为g ′(x )=e x-a 在(1,+∞)上单调递增, 所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e. 综上,可知a 的取值范围是(e ,+∞).解法二:f ′(x )=1x-a ,g ′(x )=e x-a .由题意得,当x ∈(1,+∞)时,f ′(x )≤0恒成立,即当x ∈(1,+∞)时,a ≥1x恒成立,则a ≥1.当a ≤0时,g ′(x )>0恒成立,从而g (x )在(1,+∞)上单调递增,故g (x )在(1,+∞)上无最值,不符合题意;当0<a ≤e 时,由g ′(x )>0得x >ln a ,又ln a ≤1,故g (x )在(1,+∞)上单调递增,故g (x )在(1,+∞)上无最值,不符合题意; 当a >e 时,由g ′(x )>0得x >ln a ,又ln a >1,故g (x )在(1,ln a )上单调递减,在(ln a ,+∞)上单调递增,此时有最小值,为g (ln a )=eln a-a ln a =a -a ln a .由题意知ln a >1,所以a >e. 综上,可知a 的取值范围是(e ,+∞). 技巧点拨在恒成立问题中有时需要取交集,有时需要取并集,本题结果取交集.一般而言,在同一“问题”中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集.方法二 构造函数法[典例2] 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2xx ,x +x >,若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][答案] D[解析] |f (x )|≥ax ⇔⎩⎪⎨⎪⎧--x 2+2x ≥ax x,①x +ax x >②(1)由①得x (x -2)≥ax 在区间(-∞,0]上恒成立. 当x =0时,a ∈R ;当x <0时,有x -2≤a 在区间(-∞,0]上恒成立,所以a ≥-2.(2)由②得ln(x +1)-ax ≥0在区间(0,+∞)上恒成立,设h (x )=ln(x +1)-ax (x >0),则h ′(x )=1x +1-a (x >0),可知h ′(x )为减函数.当a ≤0时,h ′(x )>0,故h (x )为增函数,所以h (x )>h (0)=0恒成立;当a ≥1时,因为1x +1∈(0,1),所以h ′(x )=1x +1-a <0,故h (x )为减函数,所以h (x )<h (0)=0恒成立,显然不符合题意;当0<a <1时,对于给定的一个确定值a ,总可以至少找到一个x 0>0,满足h (x 0)=ln(x 0+1)-ax 0<0成立.如当a =12时,取x 0=4,则h (x 0)=ln 5-2<0成立,可知当0<a <1时,不符合题意.故a ≤0.由(1)(2)可知,a 的取值范围是[-2,0]. 方法探究本题的切入点不同,构造的函数也是不相同的,也可以构造函数结合选项利用函数图象及排除法去完成.典例2也可以通过构造函数求解,但是在问题的求解中如果可以分离出参数,尽量用分离参数法去求解.相对而言,多数题目都可以采用分离参数法去求解,而且采用分离参数法对于问题的求解会相对容易.方法三 等价转化法[典例3] 设f (x )=a x+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. [解] (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x ⎝ ⎛⎭⎪⎫x -23.由g ′(x )>0得x <0或x >23,又x ∈[0,2],所以g (x )在⎣⎢⎡⎦⎥⎤0,23上是单调递减函数, 在⎣⎢⎡⎦⎥⎤23,2上是单调递增函数, 所以g (x )min =g ⎝ ⎛⎭⎪⎫23=-8527, g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,等价于在⎣⎢⎡⎦⎥⎤12,2上,函数f (x )min ≥g (x )max .由(1)可知在⎣⎢⎡⎦⎥⎤12,2上,g (x )的最大值为g (2)=1.在⎣⎢⎡⎦⎥⎤12,2上,f (x )=a x +x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在⎣⎢⎡⎦⎥⎤12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0. 即函数h (x )=x -x 2ln x 在⎣⎢⎡⎦⎥⎤12,1上单调递增,在[1,2]上单调递减,所以h (x )max =h (1)=1,即实数a 的取值范围是[1,+∞).温馨提示如果一个问题的求解中既有“存在性”又有“恒成立”问题,那么需要对问题作等价转化,使之变成与典例2、典例3相关的问题去求解,这里一定要注意转化的等价性、巧妙性,防止在转化中出错而使问题的求解出错.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时 导数与函数的综合应用基础巩固题组(建议用时:40分钟)一、选择题1.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的年关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,年产量是( )A .100B .150C .200D .300解析 由题意得,总成本函数为C =C (x )=20 000+100 x ,总利润P (x )=⎩⎪⎨⎪⎧300x -x 22-20 000,0≤x ≤400,60 000-100x ,x >400,又P ′(x )=⎩⎪⎨⎪⎧300-x ,0≤x ≤400,-100,x >400,令P ′(x )=0,得x =300,易知x =300时,总利润P (x )最大. 答案 D2.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,有xf ′x -f xx 2<0恒成立,则不等式x 2f (x )>0的解集是( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2)解析 x >0时⎣⎢⎡⎦⎥⎤f x x ′<0,∴φ(x )=f x x 在(0,+∞)为减函数,又φ(2)=0,∴当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0. 又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数. 故x 2f (x )>0的解集为(-∞,-2)∪(0,2). 答案 D3.若关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立,则m的取值范围是( ) A.(-∞,7] B.(-∞,-20]C.(-∞,0] D.[-12,7]解析令f(x)=x3-3x2-9x+2,则f′(x)=3x2-6x-9,令f′(x)=0得x=-1或x =3(舍去).∵f(-1)=7,f(-2)=0,f(2)=-20,∴f(x)的最小值为f(2)=-20,故m≤-20.答案 B4.(2017·景德镇联考)已知函数f(x)的定义域为[-1,4],部分对应值如下表:x -1023 4f(x)12020 f(x)为( )A.1 B.2C.3 D.4解析根据导函数图像,知2是函数的极小值点,函数y=f(x)的大致图像如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(x)-a的零点个数为4.答案 D5.(2014·全国Ⅰ卷)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)解析 a =0时,不符合题意,a ≠0时,f ′(x )=3ax 2-6x . 令f ′(x )=0,得x =0或x =2a.若a >0,则由图像知f (x )有负数零点,不符合题意. 则a <0,由图像结合f (0)=1>0知,此时必有f ⎝ ⎛⎭⎪⎫2a >0,即a ×8a 3-3×4a 2+1>0,化简得a 2>4. 又a <0,所以a <-2. 答案 C 二、填空题6.某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 解析 由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0;x >40时,y ′>0.所以当x =40时,y 有最小值. 答案 407.已知函数y =x 3-3x +c 的图像与x 轴恰有两个公共点,则c =________.解析 设f (x )=x 3-3x +c , 对f (x )求导可得,f ′(x )=3x 2-3, 令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增, 在(-1,1)上单调递减.若f (1)=1-3+c =0,可知c =2; 若f (-1)=-1+3+c =0,可得c =-2. 答案 -2或28.(2017·长沙调研)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f xex<1的解集为________.解析 构造函数g (x )=f xe x,则g ′(x )=e x·f ′x -e x ·f xex2=f ′x -f xex.由题意得g ′(x )<0恒成立,所以函数g (x )=f xex在R 上单调递减.又g (0)=f 0e=1,所以f xex<1,即g (x )<1,所以x >0,所以不等式的解集为(0,+∞). 答案 (0,+∞) 三、解答题9.据环保部门侧定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (k >0).现已知相距18 km 的A ,B 两家化工厂(污染源)的污染强度分别为a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km). (1)试将y 表示为x 的函数;(2)若a =1,且x =6时,y 取得最小值,试求b 的值. 解 (1)设点C 受A 污染源污染程度为ka x2, 点C 受B 污染源污染程度为kb18-x2,其中k 为比例系数,且k >0,从而点C 处受污染程度y =kax2+kb18-x2.(2)因为a =1,所以,y =k x2+kb18-x2,y ′=k ⎣⎢⎡⎦⎥⎤-2x 3+2b 18-x 3, 令y ′=0,得x =181+3b,又此时x =6,解得b =8,经验证符合题意,所以,污染源B 的污染强度b 的值为8. 10.(2017·榆林月考)已知函数f (x )=ln x -x -122.(1)求函数f (x )的单调递增区间; (2)证明:当x >1时,f (x )<x -1.(1)解 f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞).由f ′(x )>0得⎩⎪⎨⎪⎧x >0,x 2+x +1>0.解得0<x <1+52.故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52.(2)证明 令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x2x.当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在(1,+∞)上单调递减, 故当x >1时,F (x )<F (1)=0, 即当x >1时,f (x )<x -1. 故当x >1时,f (x )<x -1.能力提升题组 (建议用时:20分钟)11.函数f (x )=3x 2+ln x -2x 的极值点的个数是( )A .0B .1C .2D .无数个解析 函数定义域为(0,+∞), 且f ′(x )=6x +1x -2=6x 2-2x +1x,由于x >0,g (x )=6x 2-2x +1的Δ=-20<0, 所以g (x )>0恒成立,故f ′(x )>0恒成立, 即f (x )在定义域上单调递增,无极值点. 答案 A12.(2017·山东省实验中学诊断)若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( )A .3f (1)<f (3)B .3f (1)>f (3)C .3f (1)=f (3)D .f (1)=f (3)解析 由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f x x ′=xf ′x -f x x 2<0恒成立,因此f xx 在R 上是单调递减函数,∴f 33<f 11,即3f (1)>f (3).答案 B13.(2017·安徽江南名校联考)已知x ∈(0,2),若关于x 的不等式x e x <1k +2x -x2恒成立,则实数k 的取值范围为________. 解析 依题意,知k +2x -x 2>0.即k >x 2-2x 对任意x ∈(0,2)恒成立,从而k ≥0, 因此由原不等式,得k <e xx+x 2-2x 恒成立.令f (x )=e x x+x 2-2x ,则f ′(x )=(x -1)⎝ ⎛⎭⎪⎫e xx 2+2.令f ′(x )=0,得x =1,当x ∈(1,2)时,f ′(x )>0,函数f (x )在(1,2)上单调递增,当x ∈(0,1)时,f ′(x )<0,函数f (x )在(0,1)上单调递减,所以k <f (x )min =f (1)=e -1,故实数k 的取值范围是[0,e -1). 答案 [0,e -1)14.(2015·北京卷)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. (1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的情况如下:x (0,k ) k(k ,+∞)f ′(x ) -+f (x )k 1-ln k 2所以f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k 1-ln k2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k 1-ln k2.因为f (x )存在零点,所以k 1-ln k2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.。

相关文档
最新文档