2018年高考数学—导数专题

合集下载

考点10 导数的几何意义-2018版典型高考数学试题解读与变式(解析版)

考点10 导数的几何意义-2018版典型高考数学试题解读与变式(解析版)

考点十:导数的几何意义【考纲要求】(1)了解导数概念的实际背景.(2) 通过函数图像直观理解导数的几何意义. (3) 根据导数的定义求基本函数的导数.(4) 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如)(b ax f +的复合函数)的导数. 【命题规律】导数的运算是导数应用的基础,一般较少直接考查,而导数的几何意义----切线问题是高考考查的热点. 预计2017年的高考将会继续保持稳定,坚持考查导数的几何意义,命题形式会更加灵活、新颖. 【典型高考试题变式】 (一)求函数的导函数例1.【2017浙江高考改编】已知函数()()x 1fx x-2x-1e x 2-⎛⎫=≥ ⎪⎝⎭,求()f x 的导函数. 【答案】(I )()()(12121()221x x x e f x x x ----=>-';【方法技巧归纳】求函数的导函数要做到:1.基本初等函数的导函数相当熟悉;2.导函数的四则运算要熟练.另外,在求导的过程中,要注意对原式进行变形,使得便于我们求导.【变式1】【函数中含有参数,利用某函数值的导数求参数的值】【2015天津卷(文)】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .【答案】3 【解析】因为()()1ln f x a x '=+ ,所以()13f a '==.【变式2】【赋值法在求导得应用,题型变为填空题】【2017江西太原高三模考一(文)改编题】已知函数()()()2102x f f f x e x xe '=+-,则)(x f 的最小值为___________________.【答案】1(二)导数的几何意义例2.【2017天津卷(文)】已知a ∈R ,设函数()ln f x ax x =-的图像在点()()1,1f 处的切线为l ,则l 在y 轴上的截距为 . 【答案】1【解析】(1)f a =,切点为(1,)a ,1()f x a x '=-,则切线的斜率为(1)1f a '=-,切线方程为:(1)(1)y a a x -=--,令0x =得出1y =,l 在y 轴的截距为1.【方法技巧归纳】切线的斜率就是函数在切点处的导数,倾斜值的正切值就是斜率.【变式1】【已知含参函数的切线斜率,求参数的值(或取值范围)】【2017四川乐山第三次调研考试(理)】已知曲线()221x x f x e e ax =-+-存在两条斜率为3的切线,则实数a 的取值范围是( )A. ()3,+∞B. 73,2⎛⎫⎪⎝⎭ C.7,2⎛⎫-∞ ⎪⎝⎭ D. ()0,3 【答案】B 【解析】由题得()222x x f x e e a'=-+,则方程2223x x e e a -+=有两个解,令xt e =,且()2223g t t t a =-+-,则由图象可知,有()0g t >且0∆>,即30a ->且()4830a -->,解得732a <<,故选B.【变式2】【函数的切线斜率与切线的倾斜角之间的关系】【2017安徽宣城六校联考改编题】过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为A. 3π0,4⎡⎤⎢⎥⎣⎦ B.π3π0,,π24⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦ C. 3π[,π) 4 D.π3π(,24⎤⎥⎦ 【答案】B【解析】由题意得()22k f x x x ==-'=()2111x --≥-,即tan α1k =≥-,解得πα02≥≥或3παπ4≤≤.即切线倾斜角的范围为π3π0,,π24⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦.故选B. 【变式3】【两个函数的切线垂直求切点的取值范围】【2015陕西卷(理)】设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x =>上点P 处的切线垂直,则P 的坐标为 .【答案】()1,1【变式4】【两个函数的切线平行求参数的值】【2014江苏】在平面直角坐标系中,若曲线(为常数)过点,且该曲线在点处的切线与直线平行,则.【答案】【解析】曲线过点,则①,又,所以②,由①②解得所以.(三)在一点处的切线方程例3.【2017全国1卷(文)】曲线21 y xx=+在点(1,2)处的切线方程为_________________________. 【答案】1y x=+【解析】设()y f x=,则()212f x xx-'=,所以()1211f='-=,所以曲线21y xx=+在点()1,2处的切线方程为()211y x-=⨯-,即1y x=+.【方法技巧归纳】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设()00,P x y是曲线()y f x=上的一点,则以P为切点的切线方程是()()000y y f x x x'-=-.若曲线()y f x=在点()()00,P x f x处的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为0x x=.【变式1】【例题中增加函数性质】【2016全国3卷(理)】已知()f x为偶函数,当0x<时,()()ln3f x x x=-+,则曲线()y f x=在点()1,3-处的切线方程是__________.【答案】21y x=--【变式2】【增加例题中函数的参数,求参数的取值】【2017届衡水中学押题卷3(文)改编题】已知函数()()1e xf x bx a=-+(a,Rb∈).若曲线()y f x=在点()()0,0f处的切线方程为y x=,求a,b 的值分别为________.【答案】2,1【解析】函数()f x的定义域为R,()()e1ex xf x b bx=+-'()1e xbx b=+-.因为曲线()y f x=在点()()0,0f处的切线方程为y x=,所以()()00,{01,ff'==得10,{11,ab-=-=解得1,{2.ab==(四)过一点的切线方程例4.【2015全国1卷(理)改编题】已知函数,.(1)当为何值时,轴为曲线的切线.【答案】(Ⅰ);【解析】(Ⅰ)设曲线与轴相切于点,则,,即,解得.因此,当时,轴是曲线的切线.【方法技巧归纳】对于曲线)(xfy=上“过”点),(nm的切线问题,一般要先设切点),(yx,于是切线为))(('mxxfny-=-,再根据切点在曲线上得)(xfy=,切点在切线上得))(('mxxfny-=-.列方程组,可得切点的值.【变式1】【增加例题的难度,求切线的取值范围】【2017甘肃第二次高考诊断考试(理)】若P是函数()()()1ln1f x x x=++图象上的动点,点()1,1A--,则直线AP斜率的取值范围为()A. [)1,+∞B.[]0,1C.(1,e e-⎤⎦D.(1,e-⎤-∞⎦【答案】A切线过点()1,1--,则:()()()()000011ln1ln111x x x x⎡⎤--++=++--⎣⎦,解得:00x=,切线的斜率()ln111k x=++=,综上可得:则直线AP斜率的取值范围为[) 1,+∞.(五)两曲线的公切线例5.【2016全国2卷(理)】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则b = .【答案】1ln2-【解析】ln 2y x =+的切点为()11ln +2x x ,,则它的切线为111ln 1y x x x =⋅++.()ln 1y x =+的切点为()22ln +2x x ,,则它的切线为:()22221ln 111x y x x x x =++-++,所以()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,212x =-,所以1ln 11ln 2b x =+=-.【方法技巧归纳】两曲线有公共切线,一般可以分别求出两曲线的切线,然后说明这两直线重合;或者先求出其中一条曲线的切线,然后说明其也和另一曲线相切.【变式1】【例题中曲线添加参数,求参数的值】【2015全国2卷】已知曲线ln y x x =+在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则a= . 【答案】8【解析】由11y x '=+可得曲线ln y x x =+在点)1,1(处的切线斜率为2,故切线方程为21y x =-,与1)2(2+++=x a ax y 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.【变式2】【改编题目问法,两曲线存在公切线求参数范围】【2017河南六市第二次联考(理)】若曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线,则a 的取值范围为__________.【答案】2,4e ⎡⎫+∞⎪⎢⎣⎭ 【解析】由y=ax2(a>0),得y ′=2ax ,由y=ex,得y ′=ex ,曲线C1:y=ax2(a>0)与曲线C2:y=ex 存在公共切线,设公切线与曲线C1切于点(x1,ax12),与曲线C2切于点()22,x x e ,则22211212x x e ax ax e x x -==-,可得2x2=x1+2,∴11212x ea x +=,记()122x ef x x +=,则()()1222'4x e x f x x +-=,当x ∈(0,2)时,f ′(x)<0,f(x)递减;当x ∈(2,+∞)时,f ′(x)>0,f(x)递增.∴当x=2时,()2min4e f x =.∴a 的范围是2,4e ⎡⎫+∞⎪⎢⎣⎭ . 【数学思想】 无限逼近的极限思想(1)由()()'()limx f x x f x f x x ∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限,充分说明极限是人们从近似中认识精确的数学方法.极限的实质就是无限近似的量,向着有限的目标无限逼近而产生量变导致质变的结果,这是极限的实质与精髓,也是导数的思想及其内涵. (2)曲线的切线定义,充分体现了运动变化及无限逼近的思想:“两个不同的公共点→两公共点无限接近→两公共点重合(切点)”⇒“割线→切线”.(3)在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点. 【处理导数的几何意义问题注意点】对于曲线切线方程问题的求解,对函数的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.对于已知的点,应首先认真审题,对于确定切线的方程问题,要注意区分“该曲线过点P 的切线方程”与“该曲线在点P 处的切线方程”的两种情况,避免出错.从历年高考题看,“该曲线在点P 处的切线方程”问题的考查较为普遍.【典例试题演练】1.【2017宁夏银川一中高三二模(文)】已知在平面直角坐标系中,曲线()ln f x a x x=+在x a =处的切线过原点,则a =A. 1B. eC. 1e D. 0【答案】B2.【2017辽宁沈阳东北育才学校第九次模拟考试(理)】已知函数()xaf x x e=- (0)a >,且()y f x =的图象在0x =处的切线l 与曲xy e =相切,符合情况的切线 A. 有0条 B. 有1条 C. 有2条 D. 有3条 【答案】A【解析】函数f(x)= xax e -的导数为f ′(x)=1−1xa ea ,a>0.易知,曲线y=f(x)在x=0处的切线l 的斜率为1−1a,切点为(0,−1),可得切线的方程为y=(1−1a )x −1.假设l 与曲线y=ex 相切,设切点为(x0,y0),即有e x0=1−1a =(1−1a )x0−1,消去a 得e x0=e x0⋅x0−1,设h(x)=exx −ex −1, 则h ′(x)=exx,令h ′(x)>0,则x>0,所以h(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增, 当x →−∞,h(x )→−1,x →+∞,h(x )→+∞, 所以h(x)在(0,+∞)有唯一解,则e x0>1, 而a>0时,1−1a<1,与e x0>1矛盾,所以不存在. 故选:A.3.【2017湖南长沙长郡中学高三5月模考(理)】设曲线()x f x e x=--(e 为自然对数的底数)上任意一点的切线为1l,总存在曲线()32cos g x ax x=+上某点处切线2l,使得12l l ⊥,则实数a 的取值范围为( )A. []1,2-B. []3,+∞C. 21,33⎡⎤-⎢⎥⎣⎦ D.12,33⎡⎤-⎢⎥⎣⎦【答案】D【解析】因为()()1,32sin x f x e g x a x''=--=-,所以直线12,l l 的斜率分别为()11201,32sin x k e k a x =-+=-,则由题设可得()()10132sin 1x e a x -+-=-,即10132sin 1x a x e -=+,又因为对任意1x ,都有11011x e <<+,故 存在0x 使得0032sin 1a x <-<,即存在0x 使得002sin 312sin x a x <<+,故1232a -≤≤,即1233a -≤≤,应选答案D . 4.【2017安徽蚌埠高三二质检(理)】已知函数()1xf x x a e ⎛⎫=- ⎪⎝⎭,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是( )A. ()2,e -+∞B. ()2,0e - C. 21,e⎛⎫-+∞ ⎪⎝⎭ D. 21,0e ⎛⎫- ⎪⎝⎭【答案】D 【解析】曲线()y f x =上存在不同的两点,使得曲线在这两点处的切线都与y 轴垂直,()()'10x f x a x e -∴=+-=有两个不同的解,即得()1xa x e -=-有两个不同的解,设()1xy x e -=-,则()'2,2,'0,2,'0x y x e x y x y -=-∴,()1xy x e -=-在(),2-∞上递减,在()2,+∞上递增2x ∴=时,函数取得极小值2,e --又因为当2x >时总有()10xy x e -=-<,所以可得数a 的取值范围是21,0e⎛⎫- ⎪⎝⎭,故选D.5.【2017四川绵阳高三月考(理)】过点()2,1A 作曲线()33f x x x=-的切线最多有( )A .3条B .2条C .1条D .0条 【答案】A6.【2018河北石家庄二中开学考试(理)】已知函数()()21,f x g x x x ==.若直线l 与曲线()(),f x g x 都相切,则直线l 的斜率为__________. 【答案】4-【解析】因为()()21,f x g x x x ==,所以()21‘,f x x =-设曲线()f x 与l 切于点111x x ⎛⎫ ⎪⎝⎭,,则切线斜率211k x =-,故切线方程为()121111y x x x x -=--,即21112y x x x =-+,与()2g x x =联立得:2211120x x x x +-=,因为直线l 与曲线()g x 相切,所以02411221=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛x x ,解得112x =-,故斜率211k 4x =-=-.故答案为: 4-7.【2018广东茂名高三五校联盟9月联考(理)】若函数的图象在点处的切线斜率为,则函数的极小值是__________.【答案】【解析】因为,所以由导数的几何意义可得切线的斜率,故,令可得,则函数的极小值为,应填答案.8.【2017河南新乡三模(文)】若()()2f x f x +-= 33x x ++对R x ∈恒成立,则曲线()y f x =在点()()2,2f 处的切线方程为__________.【答案】1315y x =-(或13150x y --=) 【解析】()()()()()()3323,23f x f x x x f x f x x x +-=++∴-+=-+-+()()()()333233f x x x x x ⎡⎤∴=++--+-+⎣⎦()()()321,31,213f x x x f x x f ''∴=++=+=又()211f =,则曲线()y f x =在点()()2,2f 处的切线方程为()11132y x -=- ,即1315y x =-9.【2017湖南郴州市高三第四次质量检测(文)】若函数()在区间只有一个极值点,则曲线在点处切线的方程为__________.【答案】【解析】由题意可得,所以即在有唯一奇次根.根据根的存在性定理,即,,又因为,所以.,,,所以切线方程为.答案为:x-y+6=0.10.【2018河南周口市中英文学校开学考】曲线()C:sin 2x f x x e =++在0x =处的切线方程为_____.【答案】23y x =+ 【解析】由()sin 2x f x x e =++,得()cos xf x x e ='+,()03f =,切线的斜率为()02k f ='=,故切线方程为23y x =+,故答案为23y x =+.11.【2018贵州贵阳高三8月摸底考】已知函数()()1*n n f x x x n N +=-∈,曲线()y f x =在点()()2,2f 处的切线与y 轴的交点的纵坐标为nb ,则数列{}n b 的前n 项和为__________.【答案】12n n +⋅【解析】对函数求导可得: ()()1'1n nf x nx n x -=-+,则()()()11'221222n n n f n n n --=⨯-+⨯=--⨯,且:()12222n n nf -=-=-,曲线在()()2,2f 处的切线方程为()()12222nn y n x -+=--⨯⨯-,令0x =可得: ()1222n y n -=+⨯,即()1222n n b n -=+⨯,错位相减可得其前n 项和为12n n -⋅.12.【2017湖南省郴州市高三第四次质量检测(文)改编】已知函数()与函数有公共切线.则求的取值范围为_____________. 【答案】13.【2017吉林实验中学八模(理)改编】已知函数()()ln af x x a R x =+∈.(Ⅰ)若函数()f x 在1x =处的切线平行于直线20x y -=,求实数a 的值.【答案】(1)1a =-【解析】试题分析:(1)利用导数的几何意义,得()12f '=, 1a =-;试题解析:(Ⅰ)()21'a fxx x=-,函数()f x在1x=处的切线平行于直线20x y-=.()112,1f a a∴=-=∴=-'.14.【2017陕西省西安市西北工业大学附属中学第八次模拟(理)】已知函数()()1lnt xf x e t x-=-(常数0t>). (Ⅰ)求函数()f x的单调区间;(Ⅱ)若曲线()y f x=与直线y tx=相切,证明:2t<.【答案】(1)()f x的单增区间为()1,+∞,单减区间为()0,1;(2)见解析.【解析】试题分析:(Ⅰ)求出()'f x,()'0f x>得增区间,()'0f x<得减区间;(Ⅱ)设曲线()y f x=与直线y tx=的切点为()()00,x f x,由0011ln t x txx+-=,可得()0001lnxtx x x+=+,()()1lnxr xx x x+=+,其中11,1xt⎛⎫∈+⎪⎝⎭,利用导数研究函数的单调性可得()()12r x r<=,即2t<.(Ⅱ)证明:设曲线()y f x=与直线y tx=的切点为()()00,x f x,因为()()11t xf x t ex-⎛⎫=-⎝'⎪⎭,所以()()011t xf x t e tx-⎛⎫=-=⎪⎝⎭',即()111t xex-=+.因为直线y tx=经过切点()()00,x f x,所以()()01000lnt xf x e t x tx-=-=,于是,有0011ln t x txx+-=,即()0001lnxtx x x+=+.令()()111t xh x ex-=--,则()()121t xh x tex-+'=>,故()h x单增,又()110h=-<,11101th et t⎛⎫+=-->⎪+⎝⎭,所以()h x有唯一零点0x,且11,1xt⎛⎫∈+⎪⎝⎭.再令()()1lnxr xx x x+=+,其中11,1xt⎛⎫∈+⎪⎝⎭,则()()2223ln1lnx x xr xx x x----=<+',故()r x单减,所以()()12r x r<=,即2t<.。

2018版高考数学全国人教B版理大一轮复习课件:第三章

2018版高考数学全国人教B版理大一轮复习课件:第三章

减去 f(x)在[a,b]上 表示位于 x 轴上方的曲边梯形的面积______
有正有负 位于 x 轴下方的曲边梯形的面积
2.定积分的性质
a
b k f(x)dx b (1) k 为常数). kf(x)dx=___________( a b f1(x)dx± f2(x)dx b (2) f ( x )]d x = _________________. [f1(x)± a a 2
2 2 3 (2)由定积分的几何意义知, 9 - x d x 是由曲线 y = 9 - x ,

2
0
2 3 直线 x=0,x=3,y=0 围成的封闭图形的面积.故 9 - x dx

0
π·32 9π = = . 4 4
答案
9π (1)C (2) 4
规律方法 几点:
(1)运用微积分基本定理求定积分时要注意以下
①对被积函数要先化简,再求积分; ②求被积函数为分段函数的定积分,依据定积分“对区间 的可加性”,分段积分再求和;
③若被积函数具有奇偶性时,可根据奇、偶函数在对称区
间上的定积分性质简化运算. (2)运用定积分的几何意义求定积分,当被积函数的原函数 不易找到时常用此方法求定积分.
2.(教材改编)已知质点的速度 v=10t, 则从 t=0 到 t=t0 质点所 经过的路程是( A.10t2 0 10 2 C. 3 t0 ) B.5t2 0 52 D.3t0
解析 答案 B
3.直线 y=4x 与曲线 y=x3 在第一象限内围成的封闭图形的面 积为( A.2 2
解析
) B.4 2 C.2 D.4
2 0
f(x)dx 等于(
) 4 B.5 D.不存在

2018全国高考试题分类汇编-导数部分(含解析)

2018全国高考试题分类汇编-导数部分(含解析)

2018年全国高考试题分类汇编-导数部分(含解析)1.(2018·全国卷I高考理科·T5)同(2018·全国卷I高考文科·T6)设函数f=x3+-x2+ax.若f为奇函数,则曲线y=f在点处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x2.(2018·全国卷II高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为3.(2018·全国卷II高考文科·T13)曲线y=2ln x在点(1,0)处的切线方程为4.(2018·全国Ⅲ高考理科·T14)曲线y=e x在点处的切线的斜率为-2,则a=.5.(2018·天津高考文科·T10)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为.6.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是.7.(12分)(2018·全国卷I高考文科·T21)已知函数f=a e x-ln x-1.(1)设x=2是f的极值点.求a,并求f的单调区间.(2)证明:当a≥时,f≥0.8.(2018·全国Ⅲ高考理科·T21)(12分)已知函数f=ln-2x.(1)若a=0,证明:当-1<x<0时,f<0;当x>0时,f>0.(2)若x=0是f的极大值点,求a.9.(2018·全国Ⅲ高考文科·T21)(12分)已知函数f=-.(1)求曲线y=f在点-处的切线方程.(2)证明:当a≥1时,f+e≥0.10.(本小题13分)(2018·北京高考理科·T18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a.(2)若f(x)在x=2处取得极小值,求a的取值范围.11.(本小题13分)(2018·北京高考文科·T19)设函数f(x)=[ax2-(3a+1)x+3a+2]e x.(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a.(2)若f(x)在x=1处取得极小值,求a的取值范围.12.(12分)(2018·全国卷I高考理科·T21)已知函数f=-x+a ln x.(1)讨论f的单调性.(2)若f存在两个极值点x1,x2,证明:-<a-2.-13.(2018·全国卷II高考理科·T21)(12分)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1.(2)若f(x)在(0,+∞)只有一个零点,求a.14.(2018·全国卷II高考文科·T21)(12分)已知函数f=x3-a.(1)若a=3,求f(x)的单调区间.(2)证明:f(x)只有一个零点.15.(本小题满分14分)(2018·天津高考理科·T20)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)-x ln a的单调区间.(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=-.(Ⅲ)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.(本小题满分14分)(2018·天津高考文科·T20)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点,求d的取值范围.17.(本小题满分14分)(2018·江苏高考·T17)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围.(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)(2018·江苏高考·T19)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”.(2)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值.(3)已知函数f(x)=-x2+a,g(x)=,对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.19.(2018·浙江高考T22)(本题满分15分)已知函数f(x)=-ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln2.(Ⅱ)若a≤3-4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.1.【解析】选D.因为f(x)为奇函数,所以f(-x)=-f(x),即a=1,所以f(x)=x3+x,所以f′(0)=1,所以切线方程为y=x.2.【解析】y′=,k==2,所以切线方程为y-0=2(x-0),即y=2x.答案:y=2x3.【解析】y′=,k==2,所以切线方程为y-0=2(x-1)即y=2x-2.答案:y=2x-24.【解析】由y=(ax+1)e x,所以y′=a e x+(ax+1)e x=(ax+1+a)e x,故曲线y=(ax+1)e x在(0,1)处的切线的斜率为k=a+1=-2,解得a=-3.答案:-35.【解析】因为f(x)=e x ln x,所以f′(x)=(e x ln x)′=(e x)′ln x+e x(ln x)′=e x·ln x+e x·,f′(1)=e1·ln1+e1·=e.答案:e6.【解析】方法一:f′(x)=2cos x+2cos2x=4cos2x+2cos x-2=4(cos x+1)-, 所以当cos x<时函数单调减,当cos x>时函数单调增,从而得到函数的减区间为--(k∈Z),函数的增区间为-(k∈Z),所以当x=2kπ-,k∈Z时,函数f(x)取得最小值,此时sin x=-,sin2x=-,所以f(x)min=2×--=-.方法二:因为f(x)=2sin x+sin2x,所以f(x)最小正周期为T=2π,所以f′(x)=2(cos x+cos2x)=2(2cos2x+cos x-1),令f′(x)=0,即2cos2x+cos x-1=0,所以cos x=或cos x=-1.所以当cos x=,为函数的极小值点,即x=或x=π,当cos x=-1,x=π,所以f=-,f=,f(0)=f(2π)=0,f(π)=0,所以f(x)的最小值为-.答案:-7.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=a e x-.由题设知,f′(2)=0,所以a=.从而f(x)=e x-ln x-1,f′(x)=e x-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当时a≥时,f(x)≥0.8.【解析】(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f′(x)=ln(1+x)-.设函数g(x)=f′(x)=ln(1+x)-,则g′(x)=.当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0.故当x>-1时,g(x)≥g(0)=0,当且仅当x=0时,g(x)=0,从而f′(x)≥0,当且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)上单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)(i)若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.(ii)若a<0,设函数h(x)==ln(1+x)-.由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点. h′(x)=--=.如果6a+1>0,则当0<x<-,且|x|<min时,h′(x)>0,故x=0不是h(x)的极大值点.如果6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h′(x)<0,所以x=0不是h(x)的极大值点..如果6a+1=0,则h′(x)=---则当x∈(-1,0)时,h′(x)>0;当x∈(0,1)时,h′(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-.9.【解析】(1)f(x)的定义域为R,f′(x)=--,显然f(0)=-1,即点(0,-1)在曲线y=f(x)上,所求切线斜率为k=f′(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)方法一(一边为0):令g(x)=-ax2+(2a-1)x+2,当a≥1时,方程g(x)的判别式Δ=(2a+1)2>0,由g(x)=0得,x=-,2,且-<0<2,x,f′(x),f(x)的关系如下①若x∈(-∞,2],f(x)≥f-=-又因为a≥1,所以0<≤1,1<≤e,-≥-e,f(x)+e≥0,②若x∈(2,+∞),ax2+x-1>4a+2-1>0,e x>0,所以f(x)=->0,f(x)+e≥0,综上,当a≥1时,f(x)+e≥0.方法二(充要条件):①当a=1时,f(x)=-.显然e x>0,要证f(x)+e≥0只需证-≥-e, 即证h(x)=x2+x-1+e·e x≥0,h′(x)=2x+1+e·e x,观察发现h′(-1)=0,x,h′(x),h(x)的关系如下所以h(x)有最小值h(-1)=0,所以h(x)≥0即f(x)+e≥0.②当a>1时,由①知,-≥-e,又显然ax2≥x2,所以ax2+x-1≥x2+x-1,f(x)=-≥-≥-e,即f(x)+e≥0.综上,当a≥1时,f(x)+e≥0.方法三(分离参数):当x=0时,f(x)+e=-1+e≥0成立.当x≠0时,f(x)+e≥0等价于-≥-e,等价于ax2+x-1≥-e·e x,即ax2≥-e·e x-x+1等价于a≥--=k(x),等价于k(x)max≤1.k′(x)=--,令k′(x)=0得x=-1,2.x,k′(x),k(x)的关系如下又因为k(-1)=1,k(2)=-<0,所以k(x)max=1,k(x)≤1,x≠0,综上,当a≥1时,f(x)+e≥0.10.【解析】(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,所以f′(x)=[2ax-(4a+1)]e x+[ax2-(4a+1)x+4a+3]e x=[ax2-(2a+1)x+2]e x. f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0,所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0, 所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).11.【解析】(1)因为f(x)=[ax2-(3a+1)x+3a+2]e x, 所以f′(x)=[ax2-(a+1)x+1]e x,f′(2)=(2a-1)e2, 由题设知f′(2)=0,即(2a-1)e2=0,解得a=.(2)方法一:由(1)得f′(x)=[ax2-(a+1)x+1]e x=(ax-1)(x-1)e x若a>1,则当x∈时,f′(x)<0.当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).方法二:f′(x)=(ax-1)(x-1)e x.①当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.②当a>0时,令f′(x)=0得x1=,x2=1.(ⅰ)当x1=x2,即a=1时,f′(x)=(x-1)2e x≥0,所以f(x)在R上单调递增,所以f(x)无极值,不合题意.(ⅱ)当x1>x2,即0<a<1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.(ⅲ)当x1<x2,即a>1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极小值,即a>1满足题意.③当a<0时,令f′(x)=0得x1=,x2=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.综上所述,a的取值范围为(1,+∞).12.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=--1+=--.(i)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)上单调递减.(ii)若a>2,令f′(x)=0得,x=--或x=-.当x∈--∪-时,f′(x)<0;当x∈---时,f′(x)>0.所以f(x)在--,-上单调递减,在---上单调递增.(2)由(1)知,f(x)存在两个极值点,当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于--=--1+a--=-2+a--=-2+a--,所以--<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)上单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即--<a-2.13.【解析】(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,1)∪(1,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点当且仅当h(x)在(0,+∞)上只有一个零点.(i)当a≤0时,h(x)>0,h(x)没有零点;(ii)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-是h(x)在[0,+∞)上的最小值.①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点;②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点;③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)上有一个零点,由(1)知,当x>0时,e x>x2,所以h(4a)=1-=1->1-=1->0.故h(x)在(2,4a)有一个零点,因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=.14.【解析】(1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或3+2.当x∈(-∞,3-2)或(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.(2)由于x2+x+1>0,所以f(x)=0等价于-3a=0.设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)上单调递增.故g(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6--<0,f(3a+1)=>0,故f(x)有一个零点.综上,f(x)只有一个零点.15.【解析】(I)由已知,h(x)=a x-x ln a,有h′(x)=a x ln a-ln a.令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如表:所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(II)由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处的切线斜率为ln a.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线斜率为.因为这两条切线平行,故有ln a=,即x2(ln a)2=1.两边取以a为底的对数,得log a x2+x1+2log a(ln a)=0,所以x1+g(x2)=-. (III)曲线y=f(x)在点(x1,)处的切线l1:y-=ln a·(x-x1).曲线y=g(x)在点(x2,log a x2)处的切线l2:y-log a x2=(x-x2).要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(-∞,+∞),x2∈(0,+∞),使得l1和l2重合.即只需证明当a≥时,方程组有解,--由①得x2=,代入②,得-x1ln a+x1++=0③,因此,只需证明当a≥时,关于x1的方程③有实数解.设函数u(x)=a x-xa x ln a+x++,即要证明当a≥时,函数y=u(x)存在零点. u′(x)=1-(ln a)2xa x,可知x∈(-∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′[]=1-<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即1-(ln a)2x0=0.由此可得u(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减.u(x)在x=x0处取得极大值u(x0).因为a≥,故ln(ln a)≥-1,所以u(x0)=-x0ln a+x0++=+x0+≥≥0.下面证明存在实数t,使得u(t)<0.由(I)可得a x≥1+x ln a,当x>时,有u(x)≤(1+x ln a)(1-x ln a)+x++=-(ln a)2x2+x+1++,所以存在实数t,使得u(t)<0,因此,当a≥时,存在x1∈(-∞,+∞),使得u(x1)=0.所以,当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.【解析】(Ⅰ)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1,因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3-9)x-+9t2.故f′(x)=3x2-6t2x+3-9.令f′(x)=0,解得x=t2-,或x=t2+.当x变化时,f′(x),f(x)的变化情况如表:所以函数f(x)的极大值为f(t2-)=(-)3-9×(-)=6;函数极小值为f(t2+)=()3-9×=-6.(III)曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于关于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+6=0有三个互异的实数解,令u=x-t2,可得u3+(1-d2)u+6=0.设函数g(x)=x3+(1-d2)x+6,则曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于函数y=g(x)有三个零点.g′(x)=3x2+(1-d2).当d2≤1时,g′(x)≥0,这时g′(x)在R上单调递增,不合题意.当d2>1时,g′(x)=0,解得x1=--,x2=-.易得,g(x)在(-∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增,g(x)的极大值g(x1)=g-=-+6>0,g(x)的极小值g(x2)=g-=--+6.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若g(x2)<0,即(d2-1>27,也就是|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且-2|d|<x1,g(-2|d|)=-6|d|3-2|d|+6<-62+6<0,从而由g(x)的单调性,可知函数y=g(x)在区间(-2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意.所以d的取值范围是(-∞,-)∪(,+∞)17.【解析】(1)设PO的延长线交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40-40sinθ)=1600(cosθ-sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈.当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是.答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ-sinθcosθ),sinθ的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ-sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈.设f(θ)=sinθcosθ+cosθ,θ∈,则f′(θ)=cos2θ-sin2θ-sinθ=-(2sin2θ+sinθ-1)=-(2sinθ-1)(sinθ+1).令f′(θ)=0,得θ=,当θ∈时,f′(θ)>0,所以f(θ)为增函数;当θ∈时,f′(θ)<0,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.18.【解析】(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)=g′(x),得-此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数f(x)=ax2-1,g(x)=ln x,则f′(x)=2ax,g′(x)=.设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得-即-(*)得ln x0=-,即x0=-,则a=-=.当a=时,x0=-满足方程组(*),即x0为f(x)与g(x)的“S”点.因此,a的值为.(3)f′(x)=-2x,g′(x)=-,(x≠0),由f′(x0)=g′(x0),得b=-->0,得0<x0<1,由f(x0)=g(x0),得-+a==--,得a=--,令h(x)=x2---a=---,(a>0,0<x<1),设m(x)=-x3+3x2+ax-a,(a>0,0<x<1),则m(0)=-a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.19.【解析】(Ⅰ)函数f(x)的导函数f′(x,由f′(x1)=f′(x2)得-=-,因为x1≠x2,所以+=.由基本不等式得=+≥2.因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g′(x)=(-4),所以所以g(x)在(256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln2,即f(x1)+f(x2)>8-8ln2.(Ⅱ)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n-≤n<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得k=--.设h(x)=--,则h′(x)=--=--,其中g(x)=-ln x.由(Ⅰ)可知g(x)≥g(16),又a≤3-4ln2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

1 由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x, 3 5 知f′(1)=-4-a=-2,解得a=4.
x2-4x-5 x 5 3 所以f(x)=4+4x-ln x-2,则f′(x)= , 4x2 令f′(x)=0,解得x=-1或x=5, 因x=-1不在f(x)的定义域(0,+∞)内,故舍去. 当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数; 当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增 函数. 所以函数f(x)的单调递增区间为(5,+∞),单调递减区 间为(0,5).
值对不等式解集的影响进行分类讨论.
求函数的单调区间
[例2] x a 3 已知函数f(x)= 4 + x -ln x- 2 ,其中a∈R,且曲
1 线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x,求函数f(x) 的单调区间.
[解]
1 a 1 对f(x)求导得f′(x)=4-x2-x,
第二节 导数与 函数的 单调性
本节主要包括2个知识点: 1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.
突破点(一)
基础联通
利用导数讨论函数的单调性或求函数的单调区间
抓主干知识的“源”与“流”
1.函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
考点贯通
抓高考命题的“形”与“神”
证明或讨论函数的单调性
判断函数单调性的三种方法

(天津专版)2018年高考数学母题题源系列专题20应用导数研究函数的性质文

(天津专版)2018年高考数学母题题源系列专题20应用导数研究函数的性质文

母题二十 应用导数研究函数的性质【母题原题1】【2018天津,文20】设函数()()()123=()f x x t x t x t ---,其中123,,t t t R ∈,且123,,t t t 是公差为d 的等差数列. (I )若20,1,t d == 求曲线()y f x =在点()()0,0f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x = 与直线()2y x t =---d 的取值范围.【考点分析】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.【答案】(Ⅰ)0x y +=;(Ⅱ)极大值为-;(Ⅲ) ((),10,-∞-+∞【解析】试题分析:(Ⅰ)由题意可得()()3231,f x x x f x x '=-=-,结合()()0010,f f '=-=,究()g x 的性质可得d 的取值范围是((),10,-∞+∞.试题解析:(Ⅰ)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x '=-,因此()()0010,f f '=-=,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()00?0f y f x '-=-,故所求切线方程为0x y +=.(Ⅱ)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()2222 3639x t x t f x '=-+-.令()0f x '=,解得2x t =2x t =当x 变化时,()f x ',()f x 的变化如下表:∴函数()f x 的极大值为(((329f t =-⨯=;函数()f x 的极小值为(32f t =-=-.(Ⅲ)曲线()y f x =与直线()2y x t =---有三个互异的公共点等价于关于x 的方程()()()()2222 0x t d x t x t d x t -+---+-=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+=.设函数()()321gx x d x =+-+()y f x =与直线()2y x t =---价于函数()y f x =有三个零点.()()3231x x g d '=+-.()g x 的极小值())322219g x d g ⎛==--+ 若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意. 若()20,g x <即()322127d ->,也就是d >,此时2d x >,()0,g d d =+>且()312||,26|20d x g d d d --=--+<-,从而由()g x 的单调性,可知函数()y g x =在区间()()()11222,,,,,d x x x x d -内各有一个零点,符合题意.d ∴的取值范围是((),10,-∞-+∞.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 【母题原题2】【2017天津,文19】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -.(2)(ⅰ)()f x 在0x x =处的导数等于0.(ⅱ)b 的取值范围是[7],1-.试题解析:(I )由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =,或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,由(I )知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减,故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.【考点】1.导数的几何意义;2.导数求函数的单调区间;3.导数的综合应用.【名师点睛】本题本题考点为导数的应用,本题属于中等问题,第一问求导后要会分解因式,并且根据条件能判断两个极值点的大小关系,避免讨论,第二问导数的几何意义,要注意切点是公共点,切点处的导数相等的条件,前两问比较容易入手,但第三问,需分析出0x a =,同时根据单调性判断函数的最值,涉及造函数解题较难,这一问思维巧妙,有选拔优秀学生的功能. 【母题原题3】【2016天津,文20】设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈, (I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间[]02,上的最大值不小于...41. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)详见解析. 【解析】试题分析:(Ⅰ)先求函数的导数:a x x f --=2)1(3)(',再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得3)1(20a x =-,计算可得00(32)()f x f x -=再由)()(01x f x f =及单调性可得结论;(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1),,f f f f ⎛⎫- ⎪⎝⎭⎝⎭,的大小即可,分三种情况研究①当3a ≥时,33120331a a +≤<≤-,②当334a ≤<时,3321233133103321aa a a +≤<+<-<≤-,③当304a <<时,23313310<+<-<a a .当x 变化时,)('x f ,)(x f 的变化情况如下表:所以)(x f 的单调递减区间为)331,331(a a +-,单调递增区间为)331,(a --∞,),331(+∞+a . (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('200=--=a x x f ,即3)1(20a x =-,进而b a x a b ax x x f ---=---=332)1()(00300.又 b a ax x ab x a x x f --+-=----=-32)1(38)22()22()23(000300)(33200x f b ax a =---=,且|}1||,21max{||})0(||,)2(max{|b b a f f M ----==|})(1||,)(1max{|b a a b a a +--++-=⎩⎨⎧<++--≥+++-=0),(10),(1b a b a a b a b a a ,所以2||1≥++-=b a a M . (2)当343<≤a 时,3321233133103321a a a a +≤<+<-<≤-,由(Ⅰ)和(Ⅱ)知,)331()3321()0(a f a f f +=-≥,)331()3321()2(af a f f -=+≤,所以)(x f 在区间]2,0[上的取值范围为)]331(),331([af a f -+,因此|}392||,392max{||})331(||,)331(max{|b a a ab a a a a f a f M -----=-+= |})(392||,)(392max{|b a a a b a a a +-+--=414334392||392=⨯⨯⨯≥++=b a a a .|}21||,1max{||})2(||,)0(max{|b a b f f M ----==|})(1||,)(1max{|b a a b a a +--++-=41||1>++-=b a a . 综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于41. 证法2:欲证()g x 在区间[02],上的最大值不小于14,只需证在区间[02],上存在12,x x ,使得③若304a <≤时,()()102222f f a -=-≥,成立;④当34a >时,411132f f ⎛⎛-= ⎝⎝,成立. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【名师点睛】1.求可导函数单调区间的一般步骤 (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到. 【母题原题4】【2015天津,文20】已知函数4()4,,f x x x x R =-? (I )求()f x 的单调性;(II )设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.【答案】(I )()f x 的单调递增区间是(),1-∞,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析. 【解析】试题解析:(I )由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '>,即1x < 时,函数()f x 单调递增;当()0f x '<,即1x > 时,函数()f x 单调递减.所以函数()f x 的单调递增区间是(),1-∞,单调递减区间是()1,+∞.(II )设()0,0P x ,则1304x =,()012,f x '=- 曲线()y f x = 在点P 处的切线方程为()()00y f x x x '=-,即()()()00g x f x x x '=-,令()()()F x f x g x =- 即()()()()0F x f x f x x x '=-- 则()()()0F x f x f x '''=-.由于3()44f x x =-在(),-∞+∞ 单调递减,故()F x '在(),-∞+∞ 单调递减,又因为()00F x '=,所以当()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤=,对于任意的正实数x ,都有()()f x g x £.【命题意图】导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【命题规律】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等.【答题模板】解答本类题目,以2017年第10题高考题为例,一般考虑如下三步:第一步:求解导函数、因式分解、分类讨论,写出单调性 (1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.第二步:依据单调性判断零点情况 (ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点;②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 第三步: 赋值判断零点 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).【方法总结】1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.4.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论:(1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论; (3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论. 5.求可导函数单调区间的一般步骤(1)确定函数)(x f 的定义域(定义域优先); (2)求导函数()f x ';(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.6.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.7.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.8.函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.9.导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用. 10.函数的单调性问题与导数的关系(1)函数的单调性与导数的关系:设函数()y f x =在某个区间内可导,若()0f x '>,则()f x 为增函数;若/()0f x <,则()f x 为减函数. (2)用导数函数求单调区间方法求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题中含参数注意分类讨论; (3) 已知在某个区间上的单调性求参数问题先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.(4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子集.11.函数的极值与导数 (1)函数极值的概念设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值,记作y 极大值=0()f x ;设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值,记作y 极小值=0()f x .注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值不定大于极小值;极值点不能在函数端点处取.(2)函数极值与导数的关系当函数()y f x =在0x 处连续时,若在0x 附近的左侧/()0f x >,右侧/()0f x <,那么0()f x 是极大值;若在0x 附近的左侧/()0f x <,右侧/()0f x >,那么0()f x 是极小值.注意:①在导数为0的点不一定是极值点,如函数3y x =,导数为/23y x =,在0x =处导数为0,但不是极值点; ②极值点导数不定为0,如函数||y x =在0x =的左侧是减函数,右侧是增函数,在0x =处取极小值,但在0x =处的左导数0(0)(0)lim x x x -∆→-+∆--∆=-1,有导数0(0)(0)lim x x x+∆→+∆-∆=1,在0x =处的导数不存在.(3)函数的极值问题①求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;②已知极值求参数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;③已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围.12.最值问题 (1)最值的概念对函数()y f x =有函数值0()f x 使对定义域内任意x ,都有()f x ≤0()f x (()f x ≥0()f x )则称0()f x 是函数()y f x =的最大(小)值.注意:①若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值.②最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值.(2)函数最问题①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.【2018(1)若曲线(2【答案】(1)1;(2详解:(1(2【名师点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点(2) 己知斜率求切点(3) 巳知切线过不是切点)2.【2018(1)求曲线处的切线方程;(2)若函数2(3试问:正整数否存在最大值?若存在,求出这个最大值;若不存在,说明理由.【答案】【解析】分析:(1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(2p(x)a的范围即可;(3)求出h(x)的导数,根据函数的单调性求出h(x)的最值,从而求出m的范围即可.详解:(1(3)由题意因此,而是正整数,故,所以时,存在,时,对所有【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.3.【2018(1(2)求函数的单调区间;(3存在实数恒成立,求【答案】(12)见解析(3代入函数解析式,之后应用求导公式求得其导数,将其函数值和导函数值,之后应用点斜式将切线方程写出,在化为一般式即可;第二问对函数求导,对导数等于零的根的大小进行比较,分类讨论求得其单调区间;第三问从函数解析式可以发现,将问题转化为最值来处理即可求得结果.(3时,,,由(2)最大值即【名师点睛】该题考查的是有关应用导数研究函数的性质的问题,该题涉及到的知识点有函数在某个点处的切线的方程的问题,应用导数的几何意义求得其斜率,之后应用点斜式完成任务,函数的单调性,即为求其导数,大于零时单调增,小于零时单调减,需要分类讨论,关于恒成立问题需要将其向最值转化.4.【2018 a >2.(I)讨论函数f(x)的单调性;(II a的取值范围.【答案】(Ⅰ)见解析(Ⅱ)(2,5]【解析】分析:(Ⅱ)原不上恒成立,解不等式可得所求范围.g(x)在x∈(0,+∞)上为增函数.在,∵,∴实数【名师点睛】(1)注意函数的单调区间不能并在一起,若相同的单调区间有多个,中间应用“和”或“,”.(2)函数在某一区间上单调递增(减)的问题,可转化为导函数在该区间上大于等于零(或小于等于零)处理,解题时注意不要忘了等号.5.【2018(Ⅲ)【答案】在(3)不存在.两个不相等的实根,进而可得结果.详解:(1),解得时,(2)的定义域为,使得函数问题转化为关于的方程即方程,使得函数【名师点睛】本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 求出函数定义域内的所有根;(4) 列表检查 在 的根 左右两侧值的符号,如果左正右负(左增右减),那么 在 处取极大值,如果左负右正(左减右增),那么 在 处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.6.【2018天津滨海新区七模拟】已知函数()1ln xf x x ax-=+(其中0a >,e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++.【答案】(1)0y =;(2)1,2⎡⎫+∞⎪⎢⎣⎭;(3)见解析【解析】试题分析:(1)()21x f x x='-,()10f '=,()10f =,可求得切线方程.(2)即()f x '在区间[)2,+∞上()0f x '≥恒成立.(3)由(1)得()1ln x f x x x -=+ 0≥在[)1,+∞上恒成立,即1ln x x x -≥.令1nx n =-,得()1ln ln 1n n n--≥,2,3,....n =,不等式同向相加可得.试题解析:(1)()1ln x f x x x -=+,()21.x f x x-∴=' ()10f ∴'=. ()10f =,()()11f x f ∴在点(,)处的切线方程为0y =.(2)()1ln x f x x ax -=+,()21(0).ax f x a ax -∴=>' 函数()f x 在[)2,+∞上为增函数,()0f x ∴'≥对任意[)2,x ∈+∞恒成立. 10ax ∴-≥对任意[)2,x ∈+∞恒成立,即1a x≥对任意[)2,x ∈+∞恒成立. [)2,x ∈+∞时,max 112x ⎛⎫= ⎪⎝⎭,∴ 12a ≥,即所求正实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)当1a =时,()1ln x f x x x -=+,()21x f x x='-,所以23111lnln ln 12123n n n +++>+++-,即23111ln()12123n n n ⨯⨯⨯>+++-, 所以111ln 23n n >+++,即对于任意大于1的正整数n ,都有111ln 23n n>+++.【名师点睛】(1)若可导函数f (x )在(a ,b )上单调递增,则()f x '≥0在区间(a ,b )上恒成立;要检验()f x '=0.(2)若可导函数f (x )在(a ,b )上单调递减,则()f x '≤0在区间(a ,b )上恒成立;要检验()f x '=0.离散型不等式证明关键要找到恒成立不等函数,再x 用离散点列代换,利用不等式同向相加可证,恒成立不等函数一般需要在题中寻找.7.【2018天津模拟】已知函数()()32+1,0{,ln ,0xx x x f x g x x ax m e ax x -+<==-+-≥.(1)当3a =时,求函数()f x 的单调区间;(2)若不等式()()f x g x >对任意的正实数x 都成立,求实数m 的最大整数;(3)当0a >时,若存在实数[],0,2m n ∈且1m n -≥,使得()()f m f n =,求证: 21e a e e -≤≤-. 【答案】(1)单调减区间为(),ln3-∞,单调增区间为()ln3,+∞;(2)2;(3)证明见解析. 【解析】试题分析:(1)当3a =时,()321,0{3,0xx x x f x e x x -++<=-≥,通过求导得出函数的单调性;(2)由()()f x g x >可得ln x e ax x ax m ->-+对任意的正实数都成立,等价于ln x e x m ->对任意的正实数都成立,设()ln (0)x h x e x x =->,求出()min h x ,即可求出实数m 的最大整数;(3)由题意()x f x e a '=-,( 0x ≥),得出()f x 在()0,ln a 上为减函数,在()ln ,a +∞上为增函数,若存在实数[],0,2m n ∈,()()f m f n =,则ln a 介于,m n 之间,根据函数单调性列出不等式组,即可求证.∴函数()f x 在区间()0,ln3上为减函数,在区间()ln3,+∞上为增函数.且()01f =,综上,()f x 的单调减区间为(),ln3-∞,单调增区间为()ln3,+∞.(2)由()()f x g x >可得ln x e ax x ax m ->-+对任意的正实数都成立,即ln xe x m ->对任意的正实数都成立.记()ln (0)xh x e x x =->,则()min m h x <,可得()1x h x e x'=-, 令()()()211,0,x x x h x e x e x xφφ==-=+'>'则 ∴()x φ在()0,+∞上为增函数,即()h x '在()0,+∞上为增函数又∵()120,1102h h e ⎛⎫=''=-⎪⎝⎭, ∴()h x '存在唯一零点,记为000011,,102x x x e x ⎛⎫∈-=⎪⎝⎭则且,当()00,x x ∈时,()0h x '<,当()0,x x ∈+∞时,()0h x '>,∴()h x 在区间()00,x 上为减函数,在区间()0,x +∞上为增函数.∴()h x 的最小值为()000ln xh x e x =-.∵000000110,,ln xx e e x x x x -=∴==-,∴()000011,,12h x x x x ⎛⎫=+∈ ⎪⎝⎭,可得()052,2h x ⎛⎫∈ ⎪⎝⎭. 又∵()min m h x <,∴实数m 的最大整数为2.(3)由题意()xf x e a '=-,( 0x ≥),令()0,ln f x x a '==解得,由题意可得,1a >,当0ln x a <<时,()0f x '<;当ln x a >时,()0f x '>又∵()f x 在(),ln m a 上单调递减,且0ln m a ≤<,∴()()0f m f ≤,∴()()10f f ≤, 同理()()21f f ≥,则21{2e a e a e a-≤-≤-,解得21e a e e -≤≤-,∴21e a e e -≤≤-.【名师点睛】本题主要考查利用函数导数研究函数的单调性,最值,考查利用函数的导数求解不等式恒成问题.要通过求解不等式恒成立问题来求得参数的取值范围,可将不等式变形成一为零的形式,然后将另一边构造为函数,利用函数的导数求得这个函数的最值,根据最值的情况来求得参数的取值范围.8.【2018(1;(2(3的最大值.【答案】(1内单调递减;(2(3【解析】试题分析:(1)求出(2内单调递减,则有再证明当(3,的最大值,利用导数可得在单调递增,当(2解法一:时,综上实数解法二:时,内单调递减,则有当时,,有,则, 因此,即.综上实数(3有2个不相等的实数根,9.【2108天津部分区期末考】已知函数()()ln 1f x x a x =+-,a R ∈. (1)讨论()f x 的单调性;(2)当12a =-时,令()()212g x x f x =--,其导函数为()'g x ,设12,x x 是函数()g x 的两个零点,判断122x x +是否为()'g x 的零点?并说明理由. 【答案】(1)见解析;(2)见解析【解析】试题分析:(Ⅰ)先求导,再分类讨论,根据导数和函数单调性的关系即可求出,(Ⅱ)由(Ⅰ)知,g (x )=x 2﹣2lnx ﹣x ,x 1,x 2是函数g (x )的两个零点,不妨设0<x 1<x 2,可得x 12﹣2lnx 1﹣x 1=0,x 22﹣2lnx 2﹣x 2=0,两式相减化简可得x 1+x 2﹣1=()1212122ln ln 1x x x x x x -+-=-,再对g (x )求导,判断122x x g +⎛'⎫⎪⎝⎭的符号即可证明 试题解析:(1)依题意知函数()f x 的定义域为()0+∞,,且()1f x a x'=-. ①当0a ≤时,()0f x '>,所以()f x 在()0+∞,上单调递增. ②当0a >时,由()0f x '=得1x a =,则当10x a ⎛⎫∈ ⎪⎝⎭,时()0f x '>;当1x a ⎛⎫∈+∞ ⎪⎝⎭,时()0f x '<. 所以()f x 在10a ⎛⎫⎪⎝⎭,单调递增,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递减. (2)122x x +不是导函数()g x '的零点.证明如下:由(Ⅰ)知函数()22ln g x x x x =--. ∵1x ,2x 是函数()g x 的两个零点,不妨设120x x <<,∴22111111222222222ln 02ln { { 2ln 02ln x x x x x x x x x x x x --=-=⇒--=-=,两式相减得: ()()()12121212ln ln x x x x x x -+-=-又01t <<,∴()0t ϕ'>,∴()t ϕ在()0,1上是増函数, 则()()10t ϕϕ<=,即当01t <<时,()21ln 01t t t --<+,从而()()1212122ln ln 0x x x x x x ---<+,又121200x x x x <<⇒-<所以()()1212121222ln ln 0x x x x x x x x ⎡⎤--->⎢⎥-+⎣⎦, 故1202x x g +⎛⎫>⎪⎝⎭',所以122x x +不是导函数()g x '的零点. 10.【2018天津河西期中考试】已知函数()()223e xf x x ax a =+--.(1)若2x =是函数()f x 的一个极值点,求实数a 的值.(2)设0a <,当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =的上方,求实数a 的取值范围.【答案】(1)5a =-;(2)[)2,0e --. 【解析】试题分析:(1)由()'20f =解得a ,注意要检验此时2是极值点;(2)题意说明()f x 在区间[]1,2上的最大值2e ≤,因此只要求出导数()'f x ,确定()f x 在区间[]1,2上的单调性及最大值,解相应的不等式可得所求范围.当2x >时,()0f x '>,∴2x =是()f x 的极值.∴5a =-. (2)当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =上方,等价于[]1,2x ∈,()2e f x ≤恒成立,即[]1,2x ∈,()2max e f x ≤恒成立,由(1)知,()()()31e x f x x a x =++-',令()0f x '=,得13x a =--,21x =,当5a ≤-时,32a --≥,∴()f x 在[]1,2x ∈单调减,()()()2max 12e e f x f a ==--≤,e 2a ≥--与5a ≤-矛盾,舍去.当54a -<<-时,132a <--<,()f x 在()1,3x a ∈--上单调递减,在()3,2x a ∈--上单调递增,∴()maxf x 在()1f 或()2f 处取到,()()12f a e =--,()22f e =,∴只要()()212e f a e =--≤,计算得出e 24a --≤<-.当40a -≤<时,31a --≤,()f x 在[]1,2x ∈上单调增,()()max 2xf x f e ==,符合题意,∴实数a 的取值范围是[)e 2,0--.【名师点睛】利用导数研究函数的极值与最值是中学学习导数的主要内容,解题时要注意导数与极值的关系,()0'0f x =是0x 为可导函数()f x 的极值的必要条件,还必要满足在0x 两侧()'f x 的符号是异号,因此在由极值点求参数值时,必须检验,否则可能出错. 11.【2018天津滨海新区模拟】已知函数()()32ln ,ln .2f x x g x x x⎛⎫=++= ⎪⎝⎭ (1)求函数f (x )是单调区间;(2)如果关于x 的方程()12g x x m =+有实数根,求实数m 的取值集合; (3)是否存在正数k ,使得关于x 的方程()()f x kg x =有两个不相等的实数根?如果存在,求k 满足的条件;如果不存在,说明理由.【答案】(1) ()3,1,3,2⎛⎫--+∞ ⎪⎝⎭是函数的增区间;(-1,0)和(0,3)是函数的减区间; (2) 实数m 的取值范围是(],ln21-∞-;(3) 满足条件的正数k 不存在.由 ,由因此是函数的增区间; (-1,0)和(0,3)是函数的减区间(2)因为所以实数m 的取值范围就是函数的值域对令∴当x =2时取得最大值,且又当x 无限趋近于0时,无限趋近于无限趋近于0,进而有无限趋近于-∞.因此函数的值域是即实数m 的取值范围是(],ln21-∞-。

2018年全国三卷理科导数题

2018年全国三卷理科导数题

2018年全国三卷理科导数题分析一、题目背景2018年全国高考理科数学试题中,导数题一直是考生们比较关注的话题。

导数作为微积分的重要内容,涉及到函数的变化率、极值、凹凸性等概念,对学生的数学能力和思维能力有着较高的要求。

本文将对2018年全国三卷理科导数题进行分析,对题目进行解析,帮助学生更好地理解导数的相关知识。

二、题目分析1. 题目一题目描述:设函数$f(x)=x^2e^x$,求$f'(x)$的表达式。

解析:这道题主要考察了函数的导数的计算方法。

根据函数的乘积法则和指数函数的导数公式,可以得出$f'(x)=(2x+x^2)e^x$。

这道题考查了学生对函数导数的基本计算方法的掌握情况。

2. 题目二题目描述:已知函数$y=2x^3-3x^2+12x-5$,求其极值点的横坐标。

解析:这道题是一个关于函数极值的应用题。

首先需要根据导数的定义求出函数的导数$y'=6x^2-6x+12$,然后令$y'=0$,得到极值点的横坐标$x=1$。

通过求导数和极值点的横坐标,学生可以巩固对导数和极值的理解。

3. 题目三题目描述:函数$f(x)=x^3+e^x$在点$x=0$处的切线方程为$y=3x+1$,求$f(x)$在点$x=0$处的函数值和切线斜率。

解析:这道题是一个综合性的导数应用题,需要结合切线方程和函数的导数进行求解。

首先根据切线方程可以得到函数在点$x=0$处的函数值$f(0)=1$,然后根据切线方程$y=3x+1$的斜率可以得到切线斜率$k=3$。

这道题主要考察了学生对导数和切线方程的综合运用能力。

三、题目总结通过对2018年全国三卷理科导数题的分析,我们可以发现这些题目在考查学生对导数的计算、极值、切线方程等知识的掌握情况。

对于学生来说,需要通过大量的练习和题目的分析来加强对导数相关知识的理解和运用能力。

在备战高考的过程中,学生需要注重对基础知识的打牢和综合运用能力的提高,才能在考试中取得更好的成绩。

2018年高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数课件理2017041501166

2018年高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数课件理2017041501166
第8讲 指数(zhǐshù)与指数(zhǐshù) 函数
第一页,共31页。
考纲要求
考情分析
命题趋势
1.了解指数函数模型的实际背 景.
2.理解有理数指数幂的含义, 了解实数指数幂的意义,掌握 幂的运算.
3.理解指数函数的概念,理解 指数函数的单调性,掌握指数 函数图象通过的特殊点.
4.知道指数函数是一类重要的 函数模型.
零的 n 次方根是零
当 n 是偶函数时,正数的 n 次方根有 ___两__个___,这两个数互为__相__反___数_
n ± a(a>0)
负数没有偶次方根
第四页,共31页。
(2)两个重要公式
a
①n
an=|a|=
n为奇数
a -a
a≥0, a<0
n为偶数
②(n a)n=____a____(注意:a 必须使n a有意义).
第五页,共31页。
2.有理数的指数幂
(1)幂的有关概念
m
①正分数指数幂:an
=___n__a_m__(a>0,m,n∈N*,且
n>1);
1
1
m
②负分数指数幂:a-n
=___a_mn____=___n_a_m___(a>0,m,n∈N*,且 n>1).
③0 的正分数指数幂等于____0____,0 的负分数指数无幂意___义___(y__ìy.ì)
∴m21
-m-2
1
=m2
-m-2
1
m+1 m-1+1=m+m-1+1=14+1=15.
m2 -m-2
m2 -m-2
第十八页,共31页。
•二 指数函数的图象(tú xiànɡ)及应用

2018年全国高考卷数学导数解答题含答案

2018年全国高考卷数学导数解答题含答案

2018年全国I -III 文理数学卷导数解答题1、(2018年全国I 理)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2()2a a x +∈+∞时,()0f x '<; 当x ∈时,()0fx '>.所以()f x 在)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----,所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 2、(2018年全国I 文)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.解:(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0.因此,当1ea ≥时,()0f x ≥.3、(2018年全国II 理)已知函数2()e x f x ax =-. (1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .解:(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--.当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1eah =-是()h x 在[0,)+∞的最小值.学&科网 ①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.4、(2018年全国II 文)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.解:(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-3+ f ′(x )<0.故f (x )在(–∞,3-3++∞)单调递增,在(3-3+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++. 设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.学·科网又f (3a –1)=22111626()0366a a a -+-=---<,f (3a +1)=103>,故f (x )有一个零点.综上,f (x )只有一个零点.5、(2018年全国III 理)已知函数.(1)若,证明:当时,;当时,; (2)若是的极大值点,求.解:(1)当时,,. 设函数,则. 当时,;当时,.故当时,,且仅当时,,从而,且仅当时,. 所以在单调递增.学#科网又,故当时,;当时,.(2)(i )若,由(1)知,当时,,这与是的极大值点矛盾. (ii )若,设函数.()()()22ln 12f x x ax x x =+++-0a =10x -<<()0f x <0x >()0f x >0x =()f x a 0a =()(2)ln(1)2f x x x x =++-()ln(1)1xf x x x'=+-+()()ln(1)1x g x f x x x '==+-+2()(1)x g x x '=+10x -<<()0g x '<0x >()0g x '>1x >-()(0)0g x g ≥=0x =()0g x =()0f x '≥0x =()0f x '=()f x (1,)-+∞(0)0f =10x -<<()0f x <0x >()0f x >0a ≥0x >()(2)ln(1)20(0)f x x x x f ≥++->=0x =()f x 0a <22()2()ln(1)22f x xh x x x ax x ax ==+-++++由于当时,,故与符号相同. 又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点. 如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,. 6、(2018年全国III 文)已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.解:(1)2(21)2()e xax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+. 令21()1e x g x x x +≥+-+,则1()21e x g x x +'≥++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.||min{x <220x ax ++>()h x ()f x (0)(0)0h f ==0x =()f x 0x =()h x 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++610a +>6104a x a +<<-||min{x <()0h x '>0x =()h x 610a +<224610a x ax a +++=10x <1(,0)x x∈||min{x <()0h x '<0x =()h x 610a +=322(24)()(1)(612)x x h x x x x -'=+--(1,0)x ∈-()0h x '>(0,1)x ∈()0h x '<0x =()h x 0x =()f x 16a =-7、(2018•浙江)已知函数f x lnx =()﹣.(Ⅰ)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:12882f x f x ln +()()>﹣;(Ⅰ)若342a ln ≤﹣,证明:对于任意k >0,直线y kx a =+与曲线y f x =()有唯一公共点.证明:(Ⅰ)∵函数f (x )=﹣lnx ,∴x >0,f′(x )=﹣,∵f (x )在x=x 1,x 2(x 1≠x 2)处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得f (x 1)+f (x 2)==﹣ln (x 1x 2),设g (x )=,则,∴列表讨论:x (0,16)16 (16,+∞)g′(x ) ﹣ 0 + g (x )↓2﹣4ln2↑∴g (x )在[256,+∞)上单调递增, ∴g (x 1x 2)>g (256)=8﹣8ln2, ∴f (x 1)+f (x 2)>8﹣8ln2. (Ⅰ)令m=e ﹣(|a |+k ),n=()2+1,则f (m )﹣km ﹣a >|a |+k ﹣k ﹣a ≥0, f (n )﹣kn ﹣a <n (﹣﹣k )≤n (﹣k )<0,∴存在x 0∈(m ,n ),使f (x 0)=kx 0+a ,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。

2018年广东高考数学-导数

2018年广东高考数学-导数

2018年广东高考数学-导数-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2018年广东高考数学-导数一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f(x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

三、几种常见函数的导数①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln xx a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x ex '=.四、两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv += 若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。

2018版高考数学(理)题型全归纳第3章导数(基础版)(3)

2018版高考数学(理)题型全归纳第3章导数(基础版)(3)


四十九、意志薄弱的人不可能真诚。——拉罗什科

五十、梦想绝不是梦,两者之间的差别通常都有一段非常值得人们深思的距离。——古龙

五十一、得其志,虽死犹生,不得其志,虽生犹死。——无名氏

五十二、所虑时光疾,常怀紧迫情,蹒跚行步慢,落后最宜鞭。——董必武

五十三、梦想只要能持久,就能成为现实。我们不就是生活在梦想中的吗?——丁尼生

十一、一个人的理想越崇高,生活越纯洁。——伏尼契

十二、世之初应该立即抓住第一次的战斗机会。——司汤达

十三、哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅

十四、信仰,是人们所必须的。什麽也不信的人不会有幸福。——雨果

十五、对一个有毅力的人来说,无事不可为。——海伍德

十六、有梦者事竟成。——沃特

二十二、世界上最快乐的事,莫过于为理想而奋斗。——苏格拉底

二十三、“梦想”是一个多么“虚无缥缈不切实际”的词啊。在很多人的眼里,梦想只是白日做梦,可是,如果你不曾真切的拥有过梦想,你就不会理解梦想的珍贵。——柳岩

二十四、生命是以时间为单位的,浪费别人的时间等于谋财害命,浪费自己的时间,等于慢性自杀。——鲁迅

十七、梦想只要能持久,就能成为现实。我们不就是生活在梦想中的吗?——丁尼生

十八、梦想无论怎样模糊,总潜伏在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实。——林语堂

十九、要想成就伟业,除了梦想,必须行动。——佚名

二十、忘掉今天的人将被明天忘掉。──歌德

二十一、梦境总是现实的反面。——伟格利

2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)
x
则曲线 y 2ln x 在点 1,0 处的切线的斜率为 k f 1 2 , 则所求切线方程为 y 0 2 x 1 ,即 y 2x 2 .
4.(2018 全国新课标Ⅱ理)曲线 y 2 ln(x 1) 在点 (0, 0) 处的切线方程为__________.
4.【答案】 y 2x
x
,1
1
1,1a
f x
0
f x
Z
极大值
]
f x 在 x 1处取得极大值,不合题意. ③当 x1 x2 ,即 a 1时, f x , f x 随 x 的变化情况如下表:
x
,1 a
1 a
1 a
,1
f x
0
1 a 0 极小值
1 0
1 a
,
Z
1,
f x
Z
极大值
]
极小值
Z
f x 在 x 1处取得极小值,即 a 1满足题意.
1 x
1)2 k 1
4
16
0 ,得 h(x) 有两个极值点 x1, x2 (x1 x2 ) ,

1 x1
1 4
,∴ 0
x1
16 .
可知 h(x) 在 (0, x1) 递增, (x1, x2 ) 递减, (x2 , ) 递增,
∴ h(x1) kx1
x1
ln x1
a
( 2
1 x1
1) x1
(1)证明:函数 f (x) x 与 g(x) x2 2x 2 不存在“S 点”;
(2)若函数 f (x) ax2 1与 g(x) ln x 存在“S 点”,求实数 a 的值; (3)已知函数 f (x) x2 a ,g(x) bex .对任意 a 0 ,判断是否存在 b 0 ,使函数 f (x) 与 g(x)

高考数学导数专题专讲 专题14 两个经典不等式的应用(含答案)

高考数学导数专题专讲 专题14 两个经典不等式的应用(含答案)

专题14两个经典不等式的应用逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决问题,降低了思考问题的难度,优化了推理和运算过程.1.对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.2.指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0,且x ≠1).注意:选填题可直接使用,解答题必须先证明后再使用.考点一两个经典不等式的应用1.对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.证明由题意知x >0,令f (x )=x -1-ln x ,所以f ′(x )=1-1x =x -1x,所以当f ′(x )>0时,x >1;当f ′(x )<0时,0<x <1,故f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (x )有最小值f (1)=0,故有f (x )=x -1-ln x ≥f (1)=0,即ln x ≤x -1成立.2.指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.证明设f (x )=e x -x -1,则f ′(x )=e x -1,由f ′(x )=0,得x =0,所以当x <0时,f ′(x )<0;当x >0时,f ′(x )>0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f (x )≥f (0)=0,即e x -x -1≥0,所以e x ≥x +1.【例题选讲】[例1](1)已知对任意x ,都有x e 2x -ax -x ≥1+ln x ,则实数a 的取值范围是________.答案(-∞,1]解析根据题意可知,x >0,由x ·e 2x -ax -x ≥1+ln x ,可得a ≤e 2x -ln x +1x-1(x >0)恒成立,令f (x )=e 2x -ln x +1x -1,则a ≤f (x )min ,现证明e x ≥x +1恒成立,设g (x )=e x -x -1,g ′(x )=e x -1,当g ′(x )=0时,解得x =0,当x <0时,g ′(x )<0,g (x )单调递减,当x >0时,g ′(x )>0,g (x )单调递增,故当x =0时,函数g (x )取得最小值,g (0)=0,所以g (x )≥g (0)=0,即e x -x -1≥0⇔e x ≥x +1恒成立,f (x )=e 2x -ln x +1x-1=x ·e 2x -ln x -1x-1=e ln x+2x-ln x -1x -1≥ln x +2x +1-ln x -1x-1=1,所以f (x )min =1,即a ≤1.所以实数a 的取值范围是(-∞,1].(2)已知函数f (x )=e x -ax -1,g (x )=ln x -ax -1,其中0<a <1,e 为自然对数的底数,若∃x 0∈(0,+∞),使f (x 0)g (x 0)>0,则实数a 的取值范围是________.答案解析令M (x )=e x -x -1,x ∈(0,+∞),则M ′(x )=e x -1,当x ∈(0,+∞)时,M ′(x )>0,所以M (x )在(0,+∞)上单调递增,所以M (x )>M (0)=0,所以e x >x +1.由于0<a <1,所以当x ∈(0,+∞)时,f (x )=e x -ax -1>0,故若∃x 0∈(0,+∞),使f (x 0)g (x 0)>0,转化为∃x 0∈(0,+∞),g (x 0)>0,则g (x 0)=ln x 0-ax 0-1>0,即a <ln x 0x 0-1x 0.令h (x )=ln x x -1x ,h ′(x )=2-ln x x 2.当x ∈(0,e 2)时,h ′(x )>0,当x ∈(e 2,+∞)时,h ′(x )<0,所以函数h (x )在(0,e 2)上单调递增,在(e 2,+∞)上单调递减.所以h (x )≤h (e 2)=ln e 2e 2-1e 2=1e2.所以0<a <1e2,即a [例2]函数f (x )=ln(x +1)-ax ,g (x )=1-e x .(1)讨论函数f (x )的单调性;(2)若f (x )≥g (x )在x ∈[0,+∞)上恒成立,求实数a 的取值范围.解析(1)函数f (x )的定义域为x ∈(-1,+∞),f ′(x )=1x +1-a =-ax +1-a x +1.(ⅰ)当a =0时,f ′(x )>0,f (x )在(-1,+∞)上单调递增;(ⅱ)当a ≠0时,令f ′(x )=0得x =1-a a=1a -1,若a <0,则1a -1<-1,若a >0,则1a -1>-1.①当a <0时,f ′(x )=1x +1-a >0,函数f (x )在(-1,+∞)上单调递增;当a >0时,f ′(x )x 1f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减,综上可得,当a ≤0时,f (x )在(-1,+∞)上单调递增;当a >0时,f (x )1(2)设函数h (x )=f (x )-g (x )=ln(x +1)+e x -ax -1,x ≥0,则h ′(x )=1x +1+e x -a ,当a ≤2时,由e x ≥x +1得h ′(x )=1x +1+e x -a ≥1x +1+x +1-a ≥0,于是,h (x )在[0,+∞)上单调递增,所以h (x )≥h (0)=0恒成立,符合题意;当a >2时,由于x ≥0,h (0)=0,令函数m (x )=h ′(x ),则m ′(x )=-1(x +1)2+e x (x ≥0).所以m ′(x )≥0,故h ′(x )在[0,+∞)上单调递增,而h ′(0)=2-a <0.则存在一个x 0>0,使得h ′(x 0)=0,所以当x ∈[0,x 0)时,h (x )单调递减,故h (x 0)<h (0)=0,不符合题意.综上,实数a 的取值范围为(-∞,2].[例3]已知函数f (x )=e x -a .(1)若函数f (x )的图象与直线l :y =x -1相切,求a 的值;(2)若f (x )-ln x >0恒成立,求整数a 的最大值.解析(1)f ′(x )=e x ,因为函数f (x )的图象与直线y =x -1相切,所以令f ′(x )=1,即e x =1,得x =0,∴切点坐标为(0,-1),则f (0)=1-a =-1,∴a =2.(2)先证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,令F ′(x )=0,则x =0,当x ∈(0,+∞)时,F ′(x )>0;当x ∈(-∞,0)时,F ′(x )<0.所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立.∴e x ≥x +1,从而e x -2≥x -1(x =0时取等号).以ln x 代换x 得ln x ≤x -1(当x =1时,等号成立),所以e x -2>ln x .当a ≤2时,ln x <e x -2≤e x -a ,则当a ≤2时,f (x )-ln x >0恒成立.当a ≥3时,存在x ,使e x -a <ln x ,即e x -a >ln x 不恒成立.综上,整数a 的最大值为2.[例4]已知函数f (x )=x 2-(a -2)x -a ln x (a ∈R ).(1)求函数y =f (x )的单调区间;(2)当a =1时,证明:对任意的x >0,f (x )+e x >x 2+x +2.解析(1)函数f (x )的定义域是(0,+∞),f ′(x )=2x -(a -2)-a x =(x +1)(2x -a )x,当a ≤0时,f ′(x )>0对任意x ∈(0,+∞)恒成立,∴函数f (x )在区间(0,+∞)上单调递增;当a >0时,由f ′(x )>0得x >a 2,由f ′(x )<0,得0<x <a2,∴函数f (x )(2)当a =1时,f (x )=x 2+x -ln x ,要证明f (x )+e x >x 2+x +2,只需证明e x -ln x -2>0,先证明当x >0时,e x >x +1,令g (x )=e x -x -1(x >0),则g ′(x )=e x -1,当x >0时,g ′(x )>0,g (x )单调递增,∴当x >0时,g (x )>g (0)=0即e x >x +1,∴e x -ln x -2>x +1-ln x -2=x -ln x -1.∴只要证明x -ln x -1≥0(x >0),令h (x )=x -ln x -1(x >0),则h ′(x )=1-1x =x -1x (x >0),易知h (x )在(0,1]上单调递减,在[1,+∞)上单调递增,∴h (x )≥h (1)=0即x -ln x -1≥0成立,∴f (x )+e x >x 2+x +2成立.[例5]已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)证明:对于任意正整数n .解析(1)f (x )的定义域为(0,+∞),①若a ≤0,因为=-12+a ln2<0,所以不满足题意;②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0;所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增,故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )≥0,故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n ,得ln <12n .从而lnln …+ln <12+122+…+12n 1-12n <1..【对点训练】1.已知函数f (x )=e x ,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.1.解析令g (x )=f (x )2+x +e x -12x 2-x -1,x ∈R ,则g ′(x )=e x -x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立,所以g (x )在R 上为单调递增函数,且g (0)=0.所以函数g (x )有唯一零点,即两曲线有唯一公共点.2.(2018·全国Ⅰ改编)已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a 的值并求f (x )的单调区间;(2)求证:当a =1e 时,f (x )≥0.2.解析(1)f (x )的定义域为(0,+∞),f ′(x )=a ·e x -1x ,由题设知,f ′(2)=a ·e 2-12=0,所以a =12e2,从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x(x >0).因为f ′(x )=12e 2x -1x在(0,+∞)上是增函数,且f ′(2)=0,所以当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a =1e 时,f (x )=e x e -ln x -1,所以只要证明e xe-ln x -1≥0即可.设g (x )=e x -e x (x >0),则g ′(x )=e x -e(x >0),可知g (x )在(0,1]上是减函数,在[1,+∞)上是增函数,所以g (x )≥g (1)=0,即e x ≥e x ⇒e xe ≥x .又由e x ≥e x (x >0)⇒x ≥1+ln x (x >0),所以e x e -ln x -1≥x -ln x -1≥0,所以e xe -ln x -1≥0得证,所以当a =1e时,f (x )≥0.3.(2020·山东)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.3.解析f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.(1)当a =e 时,f (x )=e x -ln x +1,f ′(1)=e -1,曲线y =f (x )在点(1,f (1))处的切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.直线y =(e -1)x +2在x 轴、y 轴上的截距分别为-2e -1,2.因此所求三角形的面积为2e -1.(2)当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=e x -1-ln x ,f ′(x )=e x -1-1x .当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a e x -1-ln x +ln a >e x -1-ln x ≥1.综上,a 的取值范围是[1,+∞).4.已知函数f (x )=a e x +2x -1(其中常数e =2.71828…是自然对数的底数).(1)讨论函数f (x )的单调性;(2)证明:对任意的a ≥1,当x >0时,f (x )≥(x +a e)x .4.解析(1)由f (x )=a e x +2x -1,得f ′(x )=a e x +2.①当a ≥0时,f ′(x )>0,函数f (x )在R 上单调递增;②当a <0时,由f ′(x )>0,解得x f ′(x )<0,解得x故f (x )∞,综上所述,当a ≥0时,函数f (x )在R 上单调递增;当a <0时,f (x )∞,(2)对任意a ≥1,当x >0时,f (x )≥(x +a e)x ⇔e x x -x a -1ax +2a -e≥0.令g (x )=e x x -x a -1ax +2a -e ,则g ′(x )=(x -1)(a e x -x -1)ax 2.当a ≥1时,a e x -x -1≥e x -x -1.令h (x )=e x -x -1,则当x >0时,h ′(x )=e x -1>0.∴当x >0时,h (x )单调递增,h (x )>h (0)=0.∴a e x -x -1>0.∴当0<x <1时,g ′(x )<0;当x =1时,g ′(x )=0;当x >1时,g ′(x )>0.∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴g (x )≥g (1)=0,即e x x -x a -1ax +2a -e≥0,故f (x )≥(x +a e)x .5.已知函数f (x )=a ln x +1(a ∈R ).(1)若g (x )=x -f (x ),讨论函数g (x )的单调性;(2)若t (x )=12x 2+x ,h (x )=e x -1(其中e 是自然对数的底数),且a =1,x ∈(0,+∞),求证:h (x )>t (x )>f (x ).5.解析(1)由题意得,g (x )=x -f (x )=x -a ln x -1,其定义域为(0,+∞),g ′(x )=1-a x =x -ax,当a ≤0时,g ′(x )>0在(0,+∞)上恒成立,则函数g (x )在(0,+∞)上单调递增;当a >0时,易得函数g (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)设u (x )=h (x )-t (x )=e x -1-12x 2-x ,则u ′(x )=e x -x -1,设m (x )=u ′(x )=e x -x -1,则m ′(x )=e x -1,当x >0时,m ′(x )>0恒成立,则m (x )在(0,+∞)上单调递增,∴m (x )>m (0)=0,则u (x )在(0,+∞)上单调递增,∴u (x )>u (0)=0,∴h (x )-t (x )>0在(0,+∞)上恒成立,即h (x )>t (x ).当a =1时,设v (x )=t (x )-x =12x 2,∵当x >0时,v (x )>0,即t (x )>x .设s (x )=x -ln x -1,则s ′(x )=1-1x =x -1x .易得s (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴s (x )≥s (1)=0,∴x ≥ln x +1=f (x )∴t (x )>x ≥f (x ),即t (x )>f (x ),综上所述,h (x )>t (x )>f (x ).6.已知函数f (x )=kx -ln x -1(k >0).(1)若函数f (x )有且只有一个零点,求实数k 的值;(2)证明:当n ∈N *时,1+12+13+…+1n>ln(n +1).6.解析(1)法一:f (x )=kx -ln x -1,f ′(x )=k -1x =kx -1x(x >0,k >0),当0<x <1k 时,f ′(x )<0;当x >1k 时,f ′(x )>0.∴f (x )在(0,1k )上单调递减,在(1k ,+∞)上单调递增.∴f (x )min =fln k ,∵f (x )有且只有一个零点,∴ln k =0,∴k =1.法二:由题意知方程kx -ln x -1=0仅有一个实根,由kx -ln x -1=0,得k =ln x +1x (x >0),令g (x )=ln x +1x (x >0),g ′(x )=-ln xx2,当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )max =g (1)=1,当x →+∞时,g (x )→0,∴要使f (x )仅有一个零点,则k =1.法三:函数f (x )有且只有一个零点,即直线y =kx 与曲线y =ln x +1相切,设切点为(x 0,y 0),由y =ln x +1,得y ′=1x,=1x 00=kx 0,0=ln x 0+1,∴k =x 0=y 0=1,∴实数k 的值为1.(2)由(1)知x -ln x -1≥0,即x -1≥ln x ,当且仅当x =1时取等号,∵n ∈N *,令x =n +1n ,得1n >ln n +1n ,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n=ln(n +1),故1+12+13+…+1n >ln(n +1).考点二经典不等式的变形不等式的应用【例题选讲】[例1]证明下列不等式(1)e x -1≥x ;(2)ln(x +1)≤x ;(3)x1+x<ln(1+x )(x >0);(4)e x -ln(x +2)>0.解析(1)方法一令f (x )=e x -1-x ,则f ′(x )=e x -1-1.若x <1,则f ′(x )<0,f (x )在(-∞,1)上单调递减;若x >1,则f ′(x )>0,f (x)在(1,+∞)上单调递增.∴f(x)min=f(1)=0,∴f(x)≥0,∴e x-1≥x.方法二令t=x-1,则x=t+1.由e t≥t+1,得e x-1≥x.(2)由题意知x>-1,令f(x)=ln(x+1)-x,所以f′(x)=1x+1-1=-xx+1,所以当f′(x)>0时,-1<x<0;当f′(x)<0时,x>0,故f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,所以f(x)有最大值f(0)=0,故有f(x)=ln(x+1)-x≤f(0)=0,即ln(x+1)≤x成立.(3)方法一构造函数f(x)=ln(1+x)-x1+x,则g(0)=0.当x>0时,f′(x)=11+x-11+x-x(1+x)2=x(1+x)2>0.即当x>0时,函数f(x)单调递增.即f(x)>f(0)=0.故f(x)=ln(1+x)-x1+x >0,即x1+x<ln(1+x).方法二∵ln x≤x-1,且当x=1时等号成立.∴ln1x+1<1x+1-1(x>0),即ln1x+1<-xx+1,∴xx+1<ln(x+1).(4)令f(x)=e x-x-1,则f′(x)=e x-1,令f′(x)=0,得x=0,当x<0时,f′(x)<0,f(x)单调递减,当x>0时,f′(x)>0,f(x)单调递增,∴f(x)≥f(0)=0,即e x-x-1≥0,∴e x≥x+1(当且仅当x=0时,等号成立).①令g(x)=x+1-ln(x+2),则g′(x)=1-1x+2=x+1x+2(x>-2),易知g(x)在(-2,-1)上单调递减,在(-1,+∞)上单调递增,∴g(x)≥g(-1)=0,即x+1-ln(x+2)≥0,即x+1≥ln(x+2)(当且仅当x=-1时,等号成立).②∵①和②中的等号不能同时成立,∴由①和②得e x>ln(x+2),即e x-ln(x+2)>0.[例2](1)已知函数f(x)=1ln(x+1)-x,则y=f(x)的图象大致为()(1)答案B解析因为f(x)的定义域为{x|x>-1,且x≠0},所以排除选项D.当x>0时,由经典不等式x>1+ln x(x>0),以x+1代替x,得x>ln(x+1)(x>-1,且x≠0),所以ln(x+1)-x<0(x>-1,且x≠0),即x >0或-1<x <0时均有f (x )<0,排除A 、C ,易知B 正确.(2)函数f (x )=e x -1-12ax 2+(a -1)x +a 2在(-∞,+∞)上单调递增,则实数a 的取值范围是()A .{1}B .{-1,1}C .{0,1}D .{-1,0}答案A解析f ′(x )=e x -1-ax +(a -1)≥0恒成立,即e x -1≥ax -(a -1)恒成立,由于:e x ≥x +1,即e x-1≥x ,∴只需要x ≥ax -(a -1),即(a -1)(x -1)≤0恒成立,所以a =1.[例3]设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x <x .解析(1)由题意知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减.(2)由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .[例4]已知函数f (x )=ln(1+x ).(1)求证:当x ∈(0,+∞)时,x1+x<f (x )<x ;(2)已知e 为自然对数的底数,证明:∀n ∈N *,e<.解析(1)令g (x )=f (x )-x x +1=ln(1+x )-x x +1(x >0),则g ′(x )=1x +1-1(x +1)2=x(x +1)2>0(x >0).∴g (x )在(0,+∞)上单调递增,∴当x ∈(0,+∞)时,g (x )>g (0)=0,即f (x )>xx +1成立.令h (x )=f (x )-x =ln(1+x )-x (x >0),则h ′(x )=1x +1-1=-x x +1<0(x >0),∴h (x )在(0,+∞)上单调递减,∴当x ∈(0,+∞)时,h (x )<h (0)=0,即f (x )<x 成立.综上所述,当x ∈(0,+∞)时,x1+x<f (x )<x 成立.(2)由(1)可知,ln(1+x )<x 对x ∈(0,+∞)都成立.∴…+<1n 2+2n 2+…+n n 2,即<1+2+…+n n 2=n +12n .∵n ∈N *,∴n +12n=12+12n ≤12+12×1=1.∴..又由(1)可知,ln(1+x)>xx+1对x∈(0,+∞)都成立,∴>kn21+kn2=kn2+k(k=1,2,…,n).∴ln=ln+ln+…+ln>1n2+1+2n2+2+…+nn2+n≥1n2+n+2n2+n+…+nn2+n=1+2+…+nn2+n=12.∴>12.>e.∴e<.【对点训练】1.已知函数f(x)=ln x+ax,a∈R.(1)讨论函数f(x)的单调性;(2)当a>0时,证明:f(x)≥2a-1a.1.解析(1)f′(x)=1x-ax2=x-ax2(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;若0<x<a,则f′(x)<0,函数f(x)在(0,a)上单调递减.(2)由(1)知,当a>0时,f(x)min=f(a)=ln a+1.要证f(x)≥2a-1a,只需证ln a+1≥2a-1a,即证ln a+1a-1≥0.令函数g(a)=ln a+1a-1,则g′(a)=1a-1a2=a-1a2(a>0),当0<a<1时,g′(a)<0,当a>1时,g′(a)>0,所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(a)min=g(1)=0.所以ln a+1a-1≥0恒成立,所以f(x)≥2a-1a.2.已知函数f(x)=x ln x,g(x)=x-1.(1)求F(x)=g(x)-f(x)的单调区间和最值;(2)证明:对大于1的任意自然数n,都有12+13+14+…+1n<ln n.2.解析(1)由F(x)=x-1-x ln x,x>0,则F′(x)=-ln x,所以当x>1时,F′(x)=-ln x<0,当0<x<1时,F′(x)=-ln x>0,所以当x=1时,F(x)取最大值F(1)=0.即当x≠1时,F(x)<0,当x=1时,F(x)=0,所以F(x)在(0,1)上是单调增函数,在(1,+∞)上是单调减函数,当x=1时,F(x)取最大值F(1)=0,无最小值.(2)由(1)可知,x ln x>x-1对任意x>0且x≠1恒成立.故1-1x<ln x,取x=nn-1(n>1且n∈N)得,1-n-1n<lnnn-1⇒1n<ln n-ln(n-1),所以错误!1i<错误!ln i-ln(i-1)],即12+13+14+…+1n<ln n,综上,对大于1的任意自然数n,都有12+13+14+…+1n<ln n成立.。

2018年高考数学—导数专题

2018年高考数学—导数专题

导数(选修2-2P18A7改编)曲线y=sin xx在x=π2处的切线方程为()A.y=0B.y=2πC.y=-4π2x+4πD.y=4π2x解析∵y′=x cos x-sin xx2,∴y′|x=π2=-4π2,当x=π2时,y=2π,∴切线方程为y-2π=-4π2⎝⎛⎭⎪⎫x-π2,即y=-4π2x+4π.(2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________.解析因为f(x)=(2x+1)e x,所以f′(x)=2e x+(2x+1)e x=(2x+3)e x,所以f′(0)=3e0=3.(2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________.解析y′=a-1x+1,由题意得y′|x=0=2,即a-1=2,所以a=3.(2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0.(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析 法一 ∵y =x +ln x ,∴y ′=1+1x ,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.答案 8(2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P点的坐标为( ) A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. (2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.解析 f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0(2015·陕西卷)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析 y ′=e x ,曲线y =e x 在点(0,1) 处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1)(2016·北京卷)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值;(2)求f (x )的单调区间.解 (1)∵f (x )=x e a -x +bx ,∴f ′(x )=(1-x )e a -x +b .由题意得⎩⎨⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎨⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e.(2)由(1)得f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.当x ∈(-∞,1)时,g ′(x )<0,g (x )在(-∞,1)上递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)上递增, ∴g (x )≥g (1)=1在R 上恒成立, ∴f ′(x )>0在R 上恒成立.∴f (x )的单调递增区间为(-∞,+∞).(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =( ) A.-4B.-2C.4D.2解析 f ′(x )=3x 2-12,∴x <-2时,f ′(x )>0,-2<x <2时,f ′(x )<0,x >2时, f ′(x )>0,∴x =2是f (x )的极小值点. 答案 D(2016·全国Ⅲ卷)设函数f (x )=ln x -x +1.讨论f (x )的单调性; 解 依题意,f (x )的定义域为(0,+∞). f ′(x )=1x -1,令f ′(x )=0,得x =1, ∴当0<x <1时,f ′(x )>0,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减.(2015·北京卷)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值;解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k(负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2017·西安调研)定积分⎠⎛01(2x +e x )d x 的值为( )A.e +2B.e +1C.eD.e -1解析 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10)=1+e 1-1=e.故选C.(2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ).讨论f (x )的单调性; 解 f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.。

2018高考数学之导数

2018高考数学之导数

2018各省高考真题之导数1.(北京理18)(本小题13分) 设函数=[-(4a +1)x+4a +3] .(I )若曲线y= f (x )在点(1, )处的切线与X 轴平行,求a : (II)若在x =2处取得最小值,求a 的取值范围。

2.(北京文19)(本小题13分) 设函数.(Ⅰ)若曲线在点处的切线斜率为0,求a ;(Ⅱ)若在处取得极小值,求a 的取值范围.3.(江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .4.(全国1理,5).设函数.若为奇函数,则曲线在点处的切线方程为A .B .C .D .5.(全国1理,21).(12分)已知函数. (1)讨论的单调性;(2)若存在两个极值点,证明:.6.(全国1文21).(12分)已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥.7.(全国2理13).曲线y=2ln (x+1)在点(0,0)处的切线方程为________。

32()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =1()ln f x x a x x=-+()f x ()f x 12,x x ()()12122f x f x a x x -<--8.(全国2理21)(12分)已经函数f (x )=e x -ax 2。

(1)若a=1,证明:当x ≥ 0时,f (x )≥ 1; (2)若f (x )在(0,+∞)只有一个零点,求a 。

9.(全国2文13)曲线y=2在点(1,0)处的切线方程为_______。

10.(全国2文21.)(12分)已知道函数(x )=x 3-(x 2+x+1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数
(选修2-2P18A7改编)曲线y=sin x
x在x=
π
2处的切线方程为()
A.y=0
B.y=2π
C.y=-
4
π2
x+
4
π
D.y=
4
π2
x
解析∵y′=x cos x-sin x
x2,∴y′|x=
π
2=-
4
π2

当x=π
2时,y=
2
π

∴切线方程为y-2
π
=-
4
π2⎝




x-
π
2
,即y=-
4
π2
x+
4
π
.
(2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________.
解析因为f(x)=(2x+1)e x,
所以f′(x)=2e x+(2x+1)e x=(2x+3)e x,
所以f′(0)=3e0=3.
(2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________.
解析y′=a-
1
x+1
,由题意得y′|x=0=2,即a-1=2,
所以a=3.
(2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为()
A.x+y-1=0
B.x-y-1=0
C.x+y+1=0
D.x-y+1=0
解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).
又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,
y 0+1=(1+ln x 0)x 0,
解得x 0=1,y 0=0.
∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0.
(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.
解析 法一 ∵y =x +ln x ,∴y ′=1+1
x ,y ′|x =1=2.
∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2
+(a +2)x +1消去y ,得ax 2+ax +2=0.
由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1.
设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).
∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.
答案 8
(2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P
点的坐标为( ) A.(1,3)
B.(-1,3)
C.(1,3)和(-1,3)
D.(1,-3)
解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. (2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.
解析 f ′(x )=a ⎝ ⎛
⎭⎪⎫ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.
(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.
解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1
x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0
(2015·陕西卷)设曲线y =e x 在点(0,1)处的切线与曲线y =1
x (x >0)上点P 处的切线垂直,则P 的坐标为________.
解析 y ′=e x ,曲线y =e x 在点(0,1) 处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1)
(2016·北京卷)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值;
(2)求f (x )的单调区间.
解 (1)∵f (x )=x e a -x +bx ,∴f ′(x )=(1-x )e a -x +b .
由题意得⎩⎨⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎨⎧2e a -2
+2b =2e +2,
-e a -2+b =e -1,
解得a =2,b =e.
(2)由(1)得f (x )=x e 2-x +e x ,
由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.
当x ∈(-∞,1)时,g ′(x )<0,g (x )在(-∞,1)上递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)上递增, ∴g (x )≥g (1)=1在R 上恒成立, ∴f ′(x )>0在R 上恒成立.
∴f (x )的单调递增区间为(-∞,+∞).
(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =( ) A.-4
B.-2
C.4
D.2
解析 f ′(x )=3x 2-12,∴x <-2时,f ′(x )>0,-2<x <2时,f ′(x )<0,x >2时, f ′(x )>0,∴x =2是f (x )的极小值点. 答案 D
(2016·全国Ⅲ卷)设函数f (x )=ln x -x +1.讨论f (x )的单调性; 解 依题意,f (x )的定义域为(0,+∞). f ′(x )=1
x -1,令f ′(x )=0,得x =1, ∴当0<x <1时,f ′(x )>0,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减.
(2015·北京卷)设函数f (x )=x 2
2-k ln x ,k >0.求f (x )的单调区间和极值;
解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2
-k
x .由f ′(x )=0,解得x =k
(负值舍去).
f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:
所以,f f (x )在x =k 处取得极小值f (k )=k (1-ln k )
2.
(2017·西安调研)定积分⎠⎛01(2x +e x )d x 的值为( )
A.e +2
B.e +1
C.e
D.e -1
解析 ⎠⎛0
1(2x +e x )d x =(x 2+e x )⎪⎪⎪
1
0)=1+e 1-1=e.故选C.
(2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ).讨论f (x )的单调性; 解 f (x )的定义域为(0,+∞),f ′(x )=1
x -a .
若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛
⎭⎪⎫0,1a 时,f ′(x )>0;
当x ∈⎝ ⎛⎭
⎪⎫
1a ,+∞时,f ′(x )<0,
所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫
1a ,+∞上单调递减.
综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;
当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭
⎪⎫
1a ,+∞上单调递减.。

相关文档
最新文档