黄冈高考二轮复习专题七--直线与圆锥曲线的轨迹与方程[1].

合集下载

高考高三二轮复习计划策略模板(7篇)

高考高三二轮复习计划策略模板(7篇)

高考高三二轮复习计划策略模板(7篇)高考高三二轮复习计划策略模板篇1一二轮复习指导思想:高三第一轮复习一般以知识技能方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质定理及其一般应用,但知识较为零散,综合应用存在较大的问题。

而第二轮复习承上启下,是知识系统化条理化,促进灵活运用的关键时期,是促进学生素质能力发展的关键时期,因而对讲练检测等要求较高。

二二轮复习形式内容:以专题的形式,分类进行。

具体而言有以下几大专题。

(1)集合函数与导数。

此专题函数和导数应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况在客观题中考查的导数的几何意义和导数的计算属于容易题;二在解答题中的考查却有很高的综合性,并且与思想方法紧密结合,主要考查用导数研究函数的性质,用函数的单调性证明不等式等。

(预计5课时)(2)三角函数平面向量和解三角形。

此专题中平面向量和三角函数的图像与性质,恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点,我们可以关注。

平面向量具有几何与代数形式的“双重性”,是一个重要的只是交汇点,它与三角函数解析几何都可以整合。

(预计2课时)(3)数列。

此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。

例如,主要是数列与方程函数不等式的结合,概率向量解析几何为点缀。

数列与不等式的综合问题是近年来的热门问题,而数列与不等式相关的大多是数列的前n项和问题。

(预计2课时)(4)立体几何。

此专题注重几何体的三视图空间点线面的关系,用空间向量解决点线面的问题是重点(理科)。

(预计3课时)(5)解析几何。

此专题中解析几何是重点,以基本性质基本运算为目标。

直线与圆锥曲线的位置关系轨迹方程的探求以及最值范围定点定值对称问题是命题的主旋律。

黄冈第二轮复习数学新思维专题七 直线与圆锥曲线轨迹与方程

黄冈第二轮复习数学新思维专题七 直线与圆锥曲线轨迹与方程

高考攻略 黄冈第二轮复习新思维 数学专题七 直线与圆锥曲线的轨迹与方程双曲线抛物线两条直线圆的轨迹是动点,则为直角顶点作等腰直角为直角边、点为坐标原点,以上,在直线设动点轨迹方程是的的中点两点,则线段、分别交抛物与作两条互相垂直的直线的顶点过抛物线迹方程是中点的轨在圆上运动时,,当内接与圆,且,点已知圆是的轨迹方程,则点所成的比为分,点上任意一点,定点是抛物线设动点抛物线双曲线椭圆圆点的轨迹为,则垂足为的外角平分线引垂线,顶点一焦点向是椭圆上任一点,从任是椭圆的两个焦点,、的轨迹方程为,则交于与的垂直平分线为圆周上一动点,线段是圆内一定点,的圆心为设圆的右支的左支轨迹方程是的则动点且满足条件为定点,、为动点,中,迹方程为的轨为原点,则点,其中轴上,且不在),动点,(),,(已知两点一、选择题....1.882.82.82.82.4.7)41(41.)21(21.41.21.60)0,1(,1.6316.13.313.316.2)1,0(12.5.....41214254.1214254.1254214.1254214.)0,1(,25)1(.3)0(131616.)0(131616.)0(131616.)0(131616.,sin 21sin sin )0,2(),0,2(.2)0(1)1.()0(4)2.()0(1)1.()0(4)2.(0102.12222222222222222222221212222222222222222222222222222222222D C B A Q OPQ O OP O x P y D x y C x y B x y A P AB B A O x y x y x D x y x C y x B y x A BC BC BAC ABC A y x x y D x y C x y B x y A M M A x y P D C B A P P M MF F M F F y x D y x C y x B y x A M M CQ AQ Q A C y x y ay a y D y a y a x C x a x a y B y a y a x A A A B C a C a B C B A ABC y y x D y y x C y y x B y y x A P O BPO APO x P B A ∆=+-=+=-=--==<=+<=+=+=+︒=∠∆=+-=--=+=-=+=∆=+=-=+=-=++≠=-≠=-≠=-≠=-=--∆≠=+-≠=+-≠=++≠=++∠=∠-||02||.00)0(1.16214)0,02.151222.144.131916.12)1(0101.11)0(04.)0(04.)0(0.)0(0.21.10....|,1243|)2()1(5),(.92221121222222222212221222≠=⋅=->>=+∆=-<<-=+=∆=-±≠=--=++≠=+≠=+≠=≠=++==++=-+-TF TF PT Q F T Q F P a Q F Q c F c F b a b y a x ABC m l B A P y x l m M m M AB B A y x P M AB O OB OA O x y G P F F y x F F P a ay x y ax x y x D x y x C y x B x y A F c x ax y ac D C B A P y x y x y x P ,上,并且满足在线段与该椭圆的交点,点是线段,点是椭圆外的动点,满足),()、,(的左、右焦点分别是已知的重心的轨迹方程变化时,求)当(的方程)求直线(两点、于而与双曲线的渐近线交,有唯一的交点与双曲线的直线(过点,在直角坐标系中,通设三、解答题的轨迹方程是的中点两点,则、交于)为圆心的圆与椭圆,(设以程是的轨迹方上的射影在,则抛物线顶点、作相互垂直的弦的顶点过抛物线的轨迹方程是的重心上运动,则为焦点的双曲线、在以点的交点的轨迹方程是和两条直线二、填空题的轨迹方程的焦点,则抛物线若椭圆双曲线抛物线两条相交直线点的轨迹是则满足已知动点程平分的弦所在直线的方)且被,()求过点(方程被截得的弦的中点轨迹与椭圆相交,求)的直线,()过(程的平行弦的中点轨迹方求斜率为已知明理由切值;若不存在,请说的正若存在,求的面积,使上,是否存在点的轨迹)试问:在点(的轨迹方程求点的横坐标,证明为点设P P l l A y x MF F b S MF F M C T T x ac a P F P x 212131222)1(12.17,3)2(||)1(22212211=+∆=∆+=专题七 直线与圆锥曲线的轨迹与方程一、1.C 2.D 3.D 4.A 5.A 6.D 7.B 8.B 9.B 10.C二、)(042.14)0(04.131169.120.11222222椭圆内的部分=-+≠=-+=-=+-+y x xy x x y x y x y x y x三、⎪⎩⎪⎨⎧=⋅=+==+=+∴==∆=⊥=⋅≠≠-=+=>+-≥+-≥+=-++=++=≠<=-<<=----=><=-⎪⎪⎩⎪⎪⎨⎧--=+==+=-+-+-----=-=--=--±=-±==∆=+-+-=--=②①的充要条件是使上存在点的方程是的轨迹综上所述,点中,的中点,在为线段所以,又,得时,由且的轨迹上,和点时当作的坐标为设点所以知则在椭圆上,得:由点的坐标为设点解:且程为综上所述,所求轨迹方时,同理可得当得消去由重心公式联立,得和时,分别与:所以,有因为中,有代入不垂直,设其方程为与显然,解:202202020022222212122222122222221222222222222222222222||221),()3(,||21|||,|||00||0||)0,()0,(,0||),,()2(||,0,,)()()(||),,()1(.16)00(916)0,0(916)(42)0,0(9163443383),422,422(),422,422()(42)2()(42420,0)4(2)1(4).()1(.15b y c a y x b S y x M C a y x C T a y x a Q F OT F QF Q F T PF PQ TF PT TF PT TF a a y x T x ac a P F a c x a c a a x x a c a x ab bc x y c x F P y x P y x y x y x y x m x m y y x y x m m my y y m x x x m m m m B mmm m A x y x y m x m y m x m y l m k m k x mk x k y x m x k y x l B A B A342,21)()(,0))((2))((1,1)3()(02220222,0212,21)()(0)()(2,0)(4)(2,2,2,0))((2))((,12,12),,(),,(),,()2()3232(025,952,922,329432,94928,0)22(94)8(),,(),,(02289122.22)1(.172|1|tan ,90,2||,,,;,0))((,||212121212121212122222121212121212121212121212222212122112121212222112222212121212100201222222242202021=-+-=--=-++-+=+=+=--+∴=--+=--⋅+--=--=--⋅+∴=-+-∴=+=+=-++-+=+=+<<-=+∴=+=-=+<-<--=⨯-=+>-⨯-=-++⎪⎩⎪⎨⎧=++=+==+-=∠∴︒<∠<-==+==≥〈=≥≥+-=-==y x x x y y y y y y x x x x y y x x y x y x y x y x x y y x x y x x y y y x y y y x y y y x x x y y y x x x y y y y x x x x y x y x y x y x y x l x y x b y y y b x x b b b x x b b y x y x b bx x y x b x y b x y k k k k MF F MF F a F F cx y k k c x y k k c b a M c b a b S M c b a c b a c b a cb a xc b y MF c M F 故所求的直线方程为得代入将夹在椭圆内的部分所求轨迹方程为化简得代入①得由题意知①又整理得两式相减并则弦的中点为与椭圆的焦点为设为所求轨迹方程即则点坐标为,设平行弦的端得由的直线的方程为设斜率为解:知由设时当点时,不存在满足条件的当,使时存在点于是,当将上式代入①得:由②得。

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

直线、圆锥曲线知识点

直线、圆锥曲线知识点

直线方程与圆方程一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角,取值范围是0°≤α<180°特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

(2)直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即tan k α=。

斜率反映直线与轴的倾斜程度。

当 [)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意: 当直线的斜率为0°时, k=0,直线的方程是1y y =。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因直线上每一点的横坐标都等于1x ,所以它的方程是1x x =。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x ya b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)对1-5直线方程形式注意: ○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 具有共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

高考数学二轮复习考点十六《直线与圆锥曲线综合问题》课件

高考数学二轮复习考点十六《直线与圆锥曲线综合问题》课件
考点十六 直线与圆锥曲线综合问题
一、选择题(在每小题给出的四个选项中,只有一项符合题目要求) 1.已知双曲线ax22-by22=1(a>0,b>0)的离心率为 3,右焦点到一条渐近 线的距离为 2,则此双曲线的焦距等于( ) A. 3 B.2 3 C.3 D.6
答案 B
|bc+0| 解析 由题意,得焦点 F(c,0)到渐近线 bx+ay=0 的距离为 d= a2+b2 =bcc=b= 2,又ac= 3,c2=a2+b2,解得 c= 3,所以该双曲线的焦距为 2c=2 3,故选 B.
A.若 x1+x2=6,则|PQ|=8 B.以 PQ 为直径的圆与准线 l 相切 C.设 M(0,1),则|PM|+|PP1|≥ 2 D.过点 M(0,1)与抛物线 C 有且仅有一个公共点的直线至多有 2 条 答案 ABC
解析 对于 A,因为 p=2,所以 x1+x2+2=|PQ|,则|PQ|=8,故 A 正 确;对于 B,设 N 为 PQ 的中点,点 N 在 l 上的射影为 N1,点 Q 在 l 上的射 影为 Q1,则由梯形性质可得|NN1|=|PP1|+2 |QQ1|=|PF|+2 |QF|=|P2Q|,故 B 正 确;对于 C,因为 F(1,0),所以|PM|+|PP1|=|PM|+|PF|≥|MF|= 2,故 C 正确;对于 D,显然直线 x=0,y=1 与抛物线只有一个公共点,设过 M 斜 率存在的直线的方程为 y=kx+1,联立yy= 2=k4xx+,1,可得 k2x2+(2k-4)x+1 =0,令 Δ=0,则 k=1,所以直线 y=x+1 与抛物线也只有一个公共点,此 时有三条直线符合题意,故 D 错误.故选 ABC.
三、填空题 9.若直线 2x+4y+m=0 经过抛物线 y=2x2 的焦点,则 m=________.

高三二轮复习:圆锥曲线(教师)

高三二轮复习:圆锥曲线(教师)

高三数学二轮复习——圆锥曲线的综合一、直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.二、有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.三、圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有: ①|PF |≥p2.②A (m ,n )为一定点,则|PA |+|PF |有最小值. 小题一览例1、(2013·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 答案 D 解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18. 例2、 (2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33D .-3答案 B解析 ∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33).例3、 (2013·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线PA 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线PA 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38. 同理,当直线PA 2的斜率为-1时,直线PA 2方程为y =-(x -2), 代入椭圆方程, 消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.例4、 (2012·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△FAB的周长最大时,△FAB 的面积是________.答案 3解析 直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △FAB =12×2×3=3.例5、(2012·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______.答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0.∴x =13或x =3. 又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.综合题演练:题型一 圆锥曲线中的范围、最值问题例6、已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为3.(1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎪⎨⎪⎪⎧1-3k 2≠0,Δ=361-k 2>0,x A +x B=62k1-3k2<0,x A x B=-91-3k 2>0,解得33<k <1.所以当33<k <1时,直线l 与双曲线的左支有两个交点.(3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-22.∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练(2013·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x , 设A (x 1,y 1),B (x 2,y 2),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线PA 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1=y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5 =2⎝⎛⎭⎪⎫y 0+122+92,∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例7、(2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q , 证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 2-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*) 由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立, 所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 2,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎪⎫0,-74.故若满足条件的点M 存在,只能是M (0,1).以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, 所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 变式训练 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等.(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2.由题意得⎩⎪⎨⎪⎧ca =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2, 则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例8、如图,椭圆的中心为原点O ,离心率e =22,且a 2c=22.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上. 解 (1)由e =c a=22,a 2c=22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4, 故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率, 由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2252+y 2102=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =252-102=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM→+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0), 所以DQ →=(x -x 0,y ),DP →=(0,y 0), 又DQ →=23DP →,故⎩⎪⎨⎪⎧x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y ,因为P 在圆O 上,故有x 20+y 20=9, 所以x 2+⎝ ⎛⎭⎪⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1. (2)假设椭圆x 29+y 24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点,且有⎩⎪⎨⎪⎧ x 1+x 22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎪⎨⎪⎧x 219+y 214=1,x 229+y224=1,两式相减,得x 1-x 2x 1+x 29+y 1-y 2y 1+y 24=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.例9、抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分] 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2, y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·-2--2-2|22+-12=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-42-4·-4=410. 于是,△ABP 面积的最大值为12×410×455=82.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值. 课后练习:1. 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于( )A .1B .2C .3D .4 答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM . ∴M 为焦点,即p 2=1,∴p =2.2. 已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ) A .-2B .-8116C .1D .0 答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2.3. 设AB 是过椭圆x 2a 2+y 2b 2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为 ( ) A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4. 已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|PA |=m |PB |,则m 的最大值为( ) A .3B .2C.3D.2答案 C解析 据已知设P (x ,y ), 则有m =|PA ||PB |=x +12+y 2x -12+y 2=x +12+2x x -12+2x=x 2+4x +1x 2+1=1+4xx 2+1=1+4x +1x,据基本不等式有m = 1+4x +1x≤ 1+42x ×1x=3,即m 的最大值为 3.故选C.5. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6. 过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b 2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23. 7. 已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2, 所以|AB |·|CD |=x 1x 2=y 214·y 224=y 1y 2216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.8. 设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎥⎤0,22B.⎝ ⎛⎦⎥⎥⎤0,33C.⎣⎢⎢⎡⎭⎪⎪⎫22,1D.⎣⎢⎢⎡⎭⎪⎪⎫33,1解析 设P ⎝ ⎛⎭⎪⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2,当kQF 2存在时,则kF 1P =cya 2+c 2,kQF 2=cyb 2-2c 2,由kF 1P ·kQF 2=-1,得y 2=a 2+c 2·2c 2-b 2c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c-c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎢⎢⎡⎭⎪⎪⎫33,1.9. 已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝ ⎛⎭⎪⎫-95,15解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x +27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝ ⎛⎭⎪⎫-95,15.10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎪⎫-1,14解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝ ⎛⎭⎪⎫-1,14即为所求点P 的坐标,此时|PF |+|PA |最小.11. 斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥l ′, 抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交 A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.答案 32 解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.13.(2013·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值. 解 (1)设F (-c,0),由c a=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c , 代入椭圆方程有-c 2a 2+y 2b 2=1,解得y =±6b3, 于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k x +1,x 23+y22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. 解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =x -02+y -22=x 2+y -22=3b 2-3y 2+y -22=-2y +12+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2.∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2≤⎝ ⎛⎭⎪⎫1m 2+n2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝ ⎛⎭⎪⎪⎫62,22,⎝ ⎛⎭⎪⎪⎫62,-22,⎝ ⎛⎭⎪⎪⎫-62,22或⎝ ⎛⎭⎪⎪⎫-62,-22,此时△OAB 的面积为12.。

黄冈高考二轮复习专题直线与圆锥曲线的几何性质旧人教

黄冈高考二轮复习专题直线与圆锥曲线的几何性质旧人教

黄冈高考第二轮复习专题直线与圆锥曲线的几何性质 命题人;董德松 易赏222222222221.1(0)..2.3.42.(0,2)14.1.2.3.4113.1(0)x y H a b x H l a be l k A eB eC eD ey A l x l A B C D x y a b A B O a b OA O +=>>±±±±-=+=>>+一、选择题是椭圆的准线与轴的交点,经过作椭圆的切线,若椭圆的离心率是,则的斜率是经过点作直线,使它与双曲线有且只有一个公共点,则这样的直线一共有条条条条椭圆上两点、与中心的连线互相垂直,则222222222222222121222222211....4.1(0)1215. (2)2355.1,1443.4.2..36.B a b a b A B C D a b a ba b a bx y a b F F F F a bA B C D x y kx k y A B C D x P a ++++=>>=++=的值为已知椭圆:的左、右焦点分别为、,以为顶点,为焦点的抛物线经过椭圆短轴的两端点,则椭圆的离心率为直线当变化时,此直线被椭圆截得的最大弦长是不能确定是双曲线212212221212121(00)2....7.10,4||||.2.22.4.88.2110y a b F F bc PF F A aB bC cD a b cx F F y P PF PF PF PF A B C D x y -=>>∆+--=⋅=⋅++=u u u r u u u u r u u u r u u u u r,右支上一点,、分别是左、右焦点,且焦距为,则的内切圆圆心的横坐标为设、是双曲线的两个焦点,点在双曲线上,且则的值等于抛物线的焦点是(,),准线方程是,则抛物.(0,0).(1,0).(0,1).(1,1)9.10121k k k k k k k k A B C D B OA AB n OA k A AB k B k n A x l OB l P P -≤≤线顶点是已知点(,),(,)将线段、各等分,设上从左至右的第个分点为,上从下至上的第个分点为(),过点且垂直与轴的直线为,交于,则点在同一22222....10.1(0)....11.A B C D x y a b F AB a bM x MF AMB M M A x B C x D x m n m n m n mn +=>>∆+圆上椭圆上双曲线上抛物线上过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点在轴上,且使得为的一条内角平分线,则称点为该椭圆的“左特征点”,那么“左特征点”一定是椭圆左准线与轴的交点坐标原点椭圆右准线与轴的交点右焦点二、填空题已知、、成等差数列,、、成等比数列,则椭圆22212221222222112.113.2314.10y m nx y P F F O a bOQ PF PF Q y x x y A B F a bFA FB +=+==⋅=-=⋅=u u u r u u u r u u u u ru u u r u u u r的离心率为是椭圆上的任意一点,、是它的两个焦点,为坐标原点,,则动点的轨迹方程是有一个正三角形的两个顶点在抛物线上,另一个顶点是原点,则这个三角形的边长为双曲线的右准线与两条渐近线交与、两点,右焦点为,且,则双曲线的2121211215.4||4||31||52||3C C y x F F x CD C A B C C D AB C PQ F l C M N C P Q MN l ===离心率为三、解答题设椭圆的中心在原点,其右焦点与抛物线:的焦点重合,过点与轴垂直的直线与交与、两点,与交于、两点,已知()求椭圆的方程()过点的直线与交与、两点,与交与、两点,若,求直线的方程2222216.10,012417.20x y a b A P a bA OP Q R P OP OQ OR abP AQR P OA OC -=>>=⋅∆=u u u u r u u u r u u u r u u u r u ur 设双曲线()的右顶点为,是双曲线右支上异于顶点的一个动点,过作双曲线的两条渐近线的平行线与直线分别交于和两点()证明:不论点在什么位置,总有;()在双曲线上是否存在一点,使的面积等于?若存在,写出点坐标;若不存在,请说明理由。

专题七 解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮

专题七 解析几何  第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮

③|F1A|+|F1B|=
2 p
;④以弦
AB
为直径的圆与准线相切.
[典型例题]
1.已知椭圆 T : x2 y2 1(a b 0) 的长半轴为 2,且过点 M 0,1 .
a2 b2 若过点 M 引两条互相垂直的直线 l1 , l2 ,P 为椭圆上任意一点,
记点 P 到 l1 , l2 的距离分别为 d1 , d2 ,则 d12 d22 的最大值为( B )
C. x2 y
D. x2 1 y 2
[解析]
本题考查抛物线的定义、标准方程. 抛物线 C : x2 2 py( p 0) 的准线方程为 y p .因为 | AF | 4 ,
2 所以由抛物线的定义得 p 3 4 ,解得 p 2 ,
2 所以抛物线 C 的方程为 x2 4 y .故选 A.
因为 | BC | 2 | BF | ,所以 | BC | 2 | BN | ,所以 BC 2 ,所以 BN 2 ,
CF 3
p3
所以 BN BF 4 , BC 8 ,
3
3
[解析]
所以 CF 4 ,因为 p CF , AM CA
所以 2 CF 4 4 , AM CF AF 4 AF 4 AM 4
则 d12 d22 x2 (1 y)2 ,因为 P 在椭圆上,所以 x2 4 4 y2 ,
所以
d12
d
2 2
5
3y2
2y
5
3
y
1 2 3
1 3

y [1,1],
[解析]
所以当
y
1 3
时,
பைடு நூலகம்d12
d22
有最大值
16 3
,所以

高三数学一轮复习课件:直线与圆锥曲线 (共15张PPT)

高三数学一轮复习课件:直线与圆锥曲线 (共15张PPT)

y1 y2 y1 y2 2 4 y1 y2
1 k2 4
AB
1
1 k
2
y1
y2
1 k2
1
1 k2
4
M
N
Ox
B
d k 1 k2
1
1
SOAB 2 AB d 2
1 k 2 4 10
k 1. 6

x2
4.(1)在双曲线 16
y2 4
1 ,求经过点 P(8,1) 且被
解:设点 P(x0, y0 ) 是抛物线上任一点,d 是点 P 到直线 L 的距离.
则y02 64x0
d
4x0 3y0 46 42 32
y02 16
3 y0
46
因为y0 R
5
( y0 24)2 160 y 80
当y0 24时, dmin 2 此时P(9,24)
另解:设直线L : 4x 3y m 0与抛物线相切
3x 3或 y
3 2
x
3

例 1. 过点 (0, 3) 的直线 l 与下列曲线只有一个公共点,求直线 l 的方程:
(3)抛物线 x2 y 。
解: 当 k 不存在时,直线 l 为抛物线的对称轴,与抛物线有一个交点,
合题意。
设直线 l 的方程为 y kx 3
y x2
kx 3 y
x2
1
SAOB 2 AB d
2b 3
6 b2
2 3
b2 3 2 9
b 6, 6 当b 3时, Smax 2, l : y x 3
例 3. 已知抛物线 y2=-x 与直线 y=k(x+1)相交于 A、B 两点.
(1)求证:OA⊥OB;

2010年湖北黄冈中学高三数学《专题七 曲线的性质和轨迹问题》

2010年湖北黄冈中学高三数学《专题七 曲线的性质和轨迹问题》

【课前导引】
【课前导引】
x y 1. 已知F1、F2是双曲线 2 2 1 a b
2 2
(a 0, b 0) 的两焦点,以线段F1F2为边
作正三角形MF1F2,若边MF1的中点在
双曲线上,则双曲线的离心率是(
A. 4 2 3
)
3 1 B. 3 1 C. D. 3 1 2
∴∠AFP=∠PFB.
P
方法2:(1)当x1 x0 0时,由于x1 x0 , 不妨 x1 设x0 0, 则y0 0, 所以P点坐标为 ,0), ( 2 | x1 | 则P点到直线 的距离为: d 1 AF ;而 2 1 2 x1 1 4 x,即 直线BF的方程为: y 4 x1 1 1 2 ( x1 ) x x1 y x1 0. 4 4
B
l
x
同 理 有cos BFP
FP FB | FP || FB |
x0 x1 1 2 1 x1 ( x0 x1 )( x1 ) 2 4 4 1 2 2 2 | FP | x1 ( x1 ) 4 y 1 F x0 x1 A 4 | FP | O
B
l
x
[解答] 设H点的坐标为(x,y),对应的A的坐标为 (x1, y1), 则D的坐标为(x1, 0), 由H分有向线段
x x1 1 AD所成的比为 知 8 8 y 9 y1 y y1 1 又 BH AC x 3 x1 3 9 2 2 y y 8 1, 即 x y 1( y 0), 故 9 8 x3 x3
x y 圆C : 2 2 1的左右焦点, A、 分别是椭 B a b y 圆C的右顶点和上顶点, B P P是椭圆C上一点, O为 坐标原点,已知PF1 PF2 0, | OA || OB || OP | .

2024届高考一轮复习数学课件(新教材人教A版):直线与圆锥曲线的位置关系

2024届高考一轮复习数学课件(新教材人教A版):直线与圆锥曲线的位置关系

跟踪训练1 (1)(2023·梅州模拟)抛物线C:y2=4x的准线为l,l与x轴交于
点A,过点A作抛物线的一条切线,切点为B,则△OAB的面积为
√A.1
B.2
C.4
D.8
∵抛物线C:y2=4x的准线为l, ∴l的方程为x=-1,A(-1,0), 设过点A作抛物线的一条切线为x=my-1,m>0, 由xy=2=m4yx-,1, 得 y2-4my+4=0, ∴Δ=(-4m)2-4×4=0,解得m=1, ∴y2-4y+4=0,解得y=2,即yB=2, ∴△OAB 的面积为12×1×2=1.
跟踪训练 3 (1)(2022·石家庄模拟)已知倾斜角为π4的直线与双曲线 C: ay22-bx22=1(a>0,b>0),相交于 A,B 两点,M(1,3)是弦 AB 的中点,则 双曲线的渐近线方程为__y_=__±__3_x__.
设A(x1,y1),B(x2,y2), 则x1+2 x2=1,y1+2 y2=3,yx11- -yx22=1, 由aayy222122--bbxx222122==11,, 两式相减可得y1-y2a2y1+y2-x1-x2b2x1+x2=0,
化简得3(k2-1)2=0,所以k=±1,
k=1,
k=-1,
所以m=- 2 或m= 2,
所以直线 MN:y=x- 2或 y=-x+ 2,
所以直线 MN 过点 F( 2,0),M,N,F 三点共线,充分性成立,
所以 M,N,F 三点共线的充要条件是|MN|= 3.
思维升华
(1)弦长公式不仅适用于圆锥曲线,任何两点的弦长都可以用弦长公 式求. (2)抛物线的焦点弦的弦长应选用更简捷的弦长公式|AB|=x1+x2+p. (3)设直线方程时应注意讨论是否存在斜率.

湖北省黄冈中学高考数学二轮复习 直线与圆锥曲线作业

湖北省黄冈中学高考数学二轮复习 直线与圆锥曲线作业

班级_________ 姓名__________1.设抛物线22y x =与过焦点的直线交于,A B 两点,则OA OB 的值 ( )A34 B 34- C .3 D 3- 2.直线3y x =+与曲线14||92=-x x y ( ) A.没有交点 B.有一个交点 C.有两个交点 D.有三个交点3.已知对k R ∈,直线10y kx --=与椭圆2215x y m+=恒有公共点,则实数m 的取值范围是 ( ) A (0,1) B (0,5) C [1,)+∞ D [1,5)4.若双曲线221x y -=的右支上一点(,)P a b 到直线y x =的距离为2,则a b +的值为A -21 B 21 C ±21D ±2 ( ) 5.已知双曲线中心在原点且一个焦点为(7,0)F 直线1y x =-与其相交于M N 、两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) A 14322=-y x B 13422=-y x C 12522=-y x D 15222=-y x 6.椭圆221mx ny +=与直线1y x =-交于,M N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn的值是 ( ) A 22B 233C 922D 23277.抛物线24y x =截直线2y x b =+得弦AB ,若35AB =,F 是抛物线的焦点,则FAB ∆的周长等于__________.8.直线:90l x y -+=,以椭圆22412x y +=的焦点为焦点作另一椭圆与直线l 有公共点且使所作椭圆长轴最短时,公共点坐标是___________.9.在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.10.已知椭圆的两个焦点分别为12(0,-22),(0,22)F F ,离心率23e =.(1)求椭圆方程; (2)一条不与坐标轴平行的直线l 与椭圆交于不同的两点M N 、,且组段MN 中点的横坐标为12-,求直线l 倾斜角的取值范围11.已知中心在原点,顶点12A A 、在x 21的双曲线经过点(6,6)P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点,M N ,问是否存在直线l 使G 平分线段MN 试证明你的结论12.(2006湖南卷)已知椭圆1C :13422=+y x ,抛物线2C :)0(2)(2>=-p px m y ,且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(1)当x AB ⊥轴时,求p m 、的值,并判断抛物线2C 的焦点是否在直线AB 上; (2)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.参考答案 1-6 BDCBDA7、735+、(5,4)-9、设B 、C 关于直线y=kx+3对称,直线BC 方程为x=-ky+m 代入y 2=4x 得: y 2+4ky-4m=0, 设B (x 1,y 1)、C (x 2,y 2),BC 中点M (x 0,y 0),则y 0=(y 1+y 2)/2=-2k 。

黄冈中学高考数学典型例题22---轨迹方程的求法

黄冈中学高考数学典型例题22---轨迹方程的求法

*第 1 页 * 共 11 页*黄冈中学高考数学典型例题详解轨迹方程的求法每临大事, 必有静气; 静则神明, 疑难冰释; 积极准备, 坦然面对; 最佳发挥, 舍我其谁?敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好体会绝妙解题思路建立强大数学模型感受数学思想魅力品味学习数学快乐求曲线的轨迹方程是解析几何的两个基本问题之一. 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系. 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.*第 2 页 * 共 11 页*●难点磁场(★★★★已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ, 求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0 是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x , y ,则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2又|AR |=|PR |=224(yx +-所以有(x -4 2+y 2=36-(x 2+y 2, 即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x , y ,R (x 1, y 1 ,因为R 是PQ 的中点,所以x 1=20, 241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244 2(24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.*第 3 页 * 共 11 页*[例2]设点A 和B 为抛物线 y 2=4px (p >0 上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目.知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1, y 1,(x 2, y 2 时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1, y 1, B (x 2, y 2, M (x , y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x yy x y x y x y px y px y①-②得(y 1-y 2(y 1+y 2=4p (x 1-x 2 若x 1≠x 2, 则有2121214y y p x x y y +=-- ⑥①³②, 得y 12²y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2 ⑦⑥代入④,得yx y y p -=+214⑧①②③④⑤*第 4 页 * 共 11 页*⑥代入⑤,得py x y y x x y y y y p 442111121--=--=+所以211214 (44y px y y p y y p --=+即4px -y 12=y (y 1+y 2 -y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0 仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0 它表示以(2p ,0 为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x , y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y , 得k 2x 2+(2kb -4p x +b 2=0 所以x 1x 2=2 2kb , 消x , 得ky 2-4py +4pb =0 所以y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以kpk 4=-22kb , b =-4kp故y =kx +b =k (x -4p , 用k =-yx代入,得x 2+y 2-4px =0(x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0 ,它表示以(2p ,0 为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答*第 5 页 * 共 11 页*此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q , 使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r , 则 |PA |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为322541(1622y x ++=1 ①同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -2 12+34y 2=1 ②由①、②可解得 1412, 149(, 1412, 149(-Q P ,∴r =731412(149(2322=+-故所求圆柱的直径为76cm.●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法. (1直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等,可用定义直接探求.(3相关点法根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4参数法若动点的坐标(x , y 中的x , y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性. 要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练一、选择题1.(★★★★已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是(A. 圆B. 椭圆C. 双曲线的一支D. 抛物线2.(★★★★设A 1、A 2是椭圆4922yx+=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( A. 14922=+y x B. 14922=+x y C. 14922=-yxD.14922=-xy二、填空题3.(★★★★△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0, C (2a ,0 ,且满足条件sin C -sin B =21sin A , 则动点A 的轨迹方程为_________.4.(★★★★高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A (-5,0 、B (5,0 ,则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★双曲线2222by ax -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★已知双曲线2222ny mx -=1(m >0, n >0 的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1求直线A 1P 与A 2Q 交点M 的轨迹方程;(2当m ≠n时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★已知椭圆2222by ax +=1(a >b >0, 点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R.(1当P 点在椭圆上运动时,求R 形成的轨迹方程; (2设点R 形成的曲线为C ,直线l :y =k (x +2a 与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示,设|AB |=2a , 则A (-a ,0), B (a ,0. 设M (x , y )是轨迹上任意一点. 则由题设,得||||MB MA =λ, 坐标代入,得2222( (ya x y a x +-++=λ, 化简得(1-λ2 x 2+(1-λ2 y 2+2a (1+λ2 x +(1-λ2 a 2=0(1当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴.(2当λ≠1时,点M 的轨迹方程是x 2+y 2+221 1(2λ-λ+a x +a 2=0.点M 的轨迹是以(-221 1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆.歼灭难点训练一、1. 解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a , ∴动点Q 到定点F 1的距离等于定长2a , 故动点Q 的轨迹是圆. 答案:A2. 解析:设交点P (x , y ), A 1(-3,0, A 2(3,0,P 1(x 0, y 0, P 2(x 0, -y 0 ∵A 1、P 1、P 共线,∴300+=--x y x x y y∵A 2、P 2、P 共线,∴30-=-+x y x x y y解得x 0=149, 149, 3, 92220200=-=-=yxy x xy y x 即代入得答案:C二、3. 解析:由sin C -sin B = 21sin A , 得c -b =21a ,∴应为双曲线一支,且实轴长为2 a, 故方程为4(1316162222a x ay ax >=-.答案:4(1316162222a x ay ax >=-4. 解析:设P (x , y ),依题意有22225(3 5(5yx yx +-=++, 化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5. 解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P . 由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122yx+=1(y ≠06. 解:设P (x 0, y 0)(x ≠±a , Q (x , y . ∵A 1(-a ,0, A 2(a ,0. 由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y ax y a x x x a x y a xy a x y ax y220000000( 11得而点P (x 0, y 0 在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2-a 2(ya x22- 2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a .7. 解:(1设P 点的坐标为(x 1, y 1 ,则Q 点坐标为(x 1, -y 1, 又有A 1(-m ,0,A 2(m ,0,则A 1P 的方程为:y =(11m x mx y ++①A 2Q 的方程为:y =-(11m x mx y -- ②①³②得:y 2=-(2222121m x mx y --③又因点P 在双曲线上,故.(, 12212221221221m x mn y ny mx -==-即代入③并整理得2222ny mx +=1.此即为M 的轨迹方程.(2当m ≠n 时,M 的轨迹方程是椭圆. (ⅰ当m >n 时,焦点坐标为(±22nm-,0 ,准线方程为x =±222nmm-, 离心率e =mn m 22-;(ⅱ当m <n 时,焦点坐标为(0,±22nm-, 准线方程为y =±222mn n-, 离心率e =nm n 22-.8. 解:(1∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0, y 0), Q (x 1, y 1, F 1(-c ,0, F 2(c ,0.|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a , 则(x 1+c 2+y 12=(2a 2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x得x 1=2x 0-c , y 1=2y 0.∴(2x 0 2+(2y 0 2=(2a 2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0 (2如右图,a2 sinAOB 2 1 当∠AOB=90°时,S△AOB 最大值为 a2. 2 ∵S△AOB=|OA||OB|sinAOB= 1 2 此时弦心距|OC|= | 2 ak | 1+ k2 . 在 Rt△AOC 中,∠AOC=45°,∴ | OC | | 2ak | 2 3 = = cos 45° = ,∴ k = ± . | OA | a 1 + k 2 2 3 *第 11 页 * 共 11 页*。

湖北省黄冈中学高考数学 典型例题24 直线与圆锥曲线

湖北省黄冈中学高考数学 典型例题24 直线与圆锥曲线

高考数学典型例题详解 直线与圆锥曲线直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.●难点磁场(★★★★★)已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.●案例探究[例1]如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4π的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.命题意图:直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题.本题考查处理直线与圆锥曲线相交问题的第一种方法——“韦达定理法”.属★★★★★级题目.知识依托:弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思想. 错解分析:将直线方程代入抛物线方程后,没有确定m 的取值范围.不等式法求最值忽略了适用的条件.技巧与方法:涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算.解:由题意,可设l 的方程为y =x +m ,-5<m <0.由方程组⎩⎨⎧=+=xy m x y 42,消去y ,得x 2+(2m -4)x +m 2=0①∵直线l 与抛物线有两个不同交点M 、N , ∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0) 设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2=2(2-2m )·(5+m )(5+m )≤2(35522m m m ++++-)3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.[例2]已知双曲线C :2x 2-y 2=2与点P (1,2)(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点.(2)若Q (1,1),试判断以Q 为中点的弦是否存在.命题意图:第一问考查直线与双曲线交点个数问题,归结为方程组解的问题.第二问考查处理直线与圆锥曲线问题的第二种方法——“差分法”,属★★★★★级题目.知识依托:二次方程根的个数的判定、两点连线的斜率公式、中点坐标公式. 错解分析:第一问,求二次方程根的个数,忽略了二次项系数的讨论.第二问,算得以Q 为中点弦的斜率为2,就认为所求直线存在了.技巧与方法:涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率,弦的中点坐标联系起来,相互转化.解:(1)当直线l 的斜率不存在时,l 的方程为x =1,与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=k (x -1),代入C 的方程,并整理得(2-k 2)x 2+2(k 2-2k )x -k 2+4k -6=0(*)(ⅰ)当2-k 2=0,即k =±2时,方程(*)有一个根,l 与C 有一个交点(ⅱ)当2-k 2≠0,即k ≠±2时Δ=[2(k 2-2k )]2-4(2-k 2)(-k 2+4k -6)=16(3-2k ) ①当Δ=0,即3-2k =0,k =23时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程(*)有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程(*)无解,l 与C 无交点. 综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.(2)假设以Q 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12-y 12=2,2x 22-y 22=2两式相减得:2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2)又∵x 1+x 2=2,y 1+y 2=2 ∴2(x 1-x 2)=y 1-y 1 即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.[例3]如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该弦椭圆的方程; (2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.命题意图:本题考查直线、椭圆、等差数列等基本知识,一、二问较简单,第三问巧妙地借助中垂线来求参数的范围,设计新颖,综合性,灵活性强,属★★★★★级题目.知识依托:椭圆的定义、等差数列的定义,处理直线与圆锥曲线的方法. 错解分析:第三问在表达出“k =3625y 0”时,忽略了“k =0”时的情况,理不清题目中变量间的关系.技巧与方法:第一问利用椭圆的第一定义写方程;第二问利用椭圆的第二定义(即焦半径公式)求解,第三问利用m 表示出弦AC 的中点P 的纵坐标y 0,利用y 0的范围求m 的范围.解:(1)由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1. (2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2), 由|F 2A |、|F 2B |、|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2×59,由此得出:x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0),则x 0=221x x +=4.(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9(x 12-x 22)+25(y 12-y 22)=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0(x 1≠x 2) 将k x x y y y y y x x x 1,2,422121021021-=--=+==+ (k ≠0)代入上式,得9×4+25y 0(-k1)=0 (k ≠0) 即k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0. 由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59,所以-516①②<m <516. 解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为y -y 0=-k1(x -4)(k ≠0) ③将③代入椭圆方程92522y x +=1,得 (9k 2+25)x 2-50(ky 0+4)x +25(ky 0+4)2-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.(当k =0时也成立)(以下同解法一).●锦囊妙计1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.●歼灭难点训练 一、选择题1.(★★★★)斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为( )A.2B.554 C.5104 D.51082.(★★★★)抛物线y =ax 2与直线y =kx +b (k ≠0)交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A.x 3=x 1+x 2B.x 1x 2=x 1x 3+x 2x 3C.x 1+x 2+x 3=0D.x 1x 2+x 2x 3+x 3x 1=0二、填空题3.(★★★★)已知两点M (1,45)、N (-4,-45),给出下列曲线方程:①4x +2y -1=0, ②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.(★★★★★)正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.(★★★★★)在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________.三、解答题6.(★★★★★)已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .(1)求a 的取值范围.(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.7.(★★★★★)已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6).(1)求双曲线方程.(2)动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.(★★★★★)已知双曲线C 的两条渐近线都过原点,且都以点A (2,0)为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.(1)求双曲线C 的方程.(2)设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.参考答案 难点磁场解:设椭圆方程为mx 2+ny 2=1(m >0,n >0),P (x 1,y 1),Q (x 2,y 2)由⎩⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0, Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0, 由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0,∴n m nn m n --+-2)1(2+1=0,∴m +n =2 ①又2)210()(4=+-+n m mn n m 2, 将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.歼灭难点训练一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎩⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=a k ,x 1x 2=-a b ,x 3=-k b ,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2).即⇒+=--21212116y y x x y y k AB =8.故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:(1)设直线l 的方程为:y =x -a ,代入抛物线方程得(x -a )2=2px ,即x 2-2(a +p )x +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a ≤-4p . (2)设A (x 1,y 1)、B (x 2,y 2),AB 的中点 C (x ,y ), 由(1)知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p . ∴线段AB 的垂直平分线的方程为y -p =-(x -a -p ),从而N 点坐标为(a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 2. 7.解:(1)如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1. (2)P 、A 1、A 2的坐标依次为(6,6)、(3,0)、(-3,0), ∴其重心G 的坐标为(2,2)假设存在直线l ,使G (2,2)平分线段MN ,设M (x 1,y 1),N (x 2,y 2).则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34 ∴l 的方程为y =34(x -2)+2, 由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0. ∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:(1)设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为(0,2). ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.(2)设直线l :y =k (x -2)(0<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2.②把l ′代入双曲线方程得(k 2-1)x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4(k 2-1)(m 2-2)=0.可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk,y =10.故B (22,10).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考攻略 黄冈第二轮复习新思维 数学
专题七 直线与圆锥曲线的轨迹与方程 命题人;董德松 易赏
双曲线
抛物线
两条直线

的轨迹是动点,则
为直角顶点作等腰直角为直角边、点为坐标原点,以上,在直线设动点轨迹方程是的的中点两点,则线段、分别交抛物与作两条互相垂直的直线的顶点过抛物线迹方程是
中点的轨在圆上运动时,,当内接与圆,且,点已知圆是
的轨迹方程
,则点所成的比为分,点上任意一点,定点是抛物线设动点抛物线
双曲线
椭圆
圆点的轨迹为,则垂足为的外角平分线引垂线,顶点一焦点向是椭圆上任一点,从任是椭圆的两个焦点,、的轨迹方程为
,则交于与的垂直平分线为圆周上一动点,线段是圆内一定点,的圆心为设圆的右支的左支轨迹方程是的
则动点且满足条件为定点,、为动点,中,迹方程为
的轨为原点,则点,其中轴上,且不在),动点,(),,(已知两点一、选择题
....1.88
2.8
2.8
2.82.4.7)
4
1
(41.)21(21.41.21.60)0,1(,1.63
1
6.13.313.316.2)1,0(12.5.....41214254.1214254.1254214.1254214.)0,1(,25)1(.3)0(131616.)0(131616.)0(131616.)0(131616.,sin 2
1
sin sin )0,2(),0,2(.2)
0(1)1.()
0(4)2.()0(1)1.()0(4)2.(0102.12222222222222222222221212
22222222
22
22222
222
22222
2222222222D C B A Q OPQ O OP O x P y D x y C x y B x y A P AB B A O x y x y x D x y x C y x B y x A BC BC BAC ABC A y x x y D x y C x y B x y A M PA M A x y P D C B A P P M MF F M F F y x D y x C y x B y x A M M CQ AQ Q A C y x y a
y a y D y a y a x C x a x a y B y a y a x A A A B C a C a B C B A ABC y y x D y y x C y y x B y y x A P O BPO APO x P B A ∆=+-=+=-=--==<=+<=+=+=+︒=∠∆=+-
=--=+=-=+=∆=+=-=+=-=++≠=-≠=-≠=-≠=-=--∆≠=+-≠=+-≠=++≠=++∠=∠-
||02||.00)0(1.16214)0,02.151222.144.1319
16.12)1(0101.11)
0(04.)
0(04.)
0(0.)0(0.21.10....|,1243|)2()1(5),(.9222112122
2222222
212
221222≠=⋅=->>=+∆=-<<-=+=∆=-±≠=--=++≠=+≠=+≠=≠=++==++=-+-TF TF PT Q F T Q F P a Q F Q c F c F b a b y a x ABC m l B A P y x l m M m M AB B A y x P M AB O OB OA O x y G P F F y x F F P a ay x y ax x y x D x y x C y x B x y A F c x ax y ac D C B A P y x y x y x P ,上,并且满足在线段与该椭圆的交点,点是线段,点是椭圆外的动点,满足),
()、,(的左、右焦点分别是已知的重心的轨迹方程
变化时,求)当(的方程
)求直线(两点、于而与双曲线的渐近线交,有唯一的交点与双曲线的直线(过点,在直角坐标系中,通设三、解答题
的轨迹方程是的中点两点,则、交于)为圆心的圆与椭圆,(设以程是
的轨迹方上的射影在,则抛物线顶点、作相互垂直的弦的顶点过抛物线的轨迹方程是
的重心上运动,则为焦点的双曲线、在以点的交点的轨迹方程是
和两条直线二、填空题
的轨迹方程
的焦点,则抛物线若椭圆
双曲线抛物线两条相交直线点的轨迹是则满足已知动点

平分的弦所在直线的方)且被,()求过点(方程
被截得的弦的中点轨迹与椭圆相交,求)的直线,()过(程
的平行弦的中点轨迹方求斜率为明理由
切值;若不存在,请说的正若存在,求的面积,使上,是否存在点的轨迹)试问:在点(的轨迹方程
求点的横坐标,证明为点设P P l l A y MF F b S MF F M C T T x a
c a P F P x 2
1
21312221
.17,3)2(||)1(2212211=+∆=∆+
=专题七 直线与圆锥曲线的轨迹与方程
一、1.C 2.D 3.D 4.A 5.A 6.D 7.B 8.B 9.B 10.C
二、)
(042.14)0(04.13116
9.120.1122222
2
椭圆内的部分=-+≠=-+=-=+-+y x xy x x y x y x y x y x
三、
⎪⎩⎪
⎨⎧=⋅=+==+=+∴==∆=⊥=⋅≠≠-=+=>+-≥+-≥+
=
-++=++=-<-><=-⎪⎪⎩

⎪⎨⎧
--=+==+=-+-+-----=-=--=
--±=-±==∆=+-+-=--=②
①的充要条件是使上存在点的方程是的轨迹综上所述,点中,的中点,在为线段所以,又,得时,由且的轨迹上,和点时当作的坐标为设点所以知则在椭圆上,得:由点的坐标为设点解:程为综上所述,所求轨迹方时,同理可得得消去由重心公式联立,得和时,分别与:所以,有因为中,有代入不垂直,设其方程为与显然,解:2
02
20202002
222
2212122222122
222
2
2
1222
222222
2
2
2
2
2222222||22
1),()3(,||2
1
|||,|||00||0||)0,()0,(,0||),,()2(||,0,,)()()(||),,()1(.16)
0))
0,0(9
16
3443383),422,422(),
422,
422()(42)2()
(42420,0)4(2)1(4).()1(.15b y c a y x b S y x M C a y x C T a y x a Q F OT F QF Q F T PF PQ TF PT TF PT TF a a y x T x a
c a P F a c x a c a a x x a c a x a
b b
c x y c x P F P y x P y x y x m y x y x m m m
y y y m x x x m m m m B m
m m
m A x y x y m x m
y m x m
y l m k m k x m k x k y x m x k y x l B A B A
342,
2
1
)()(,0))((2))((1,1)3()
(0220
222,2,0
)
()
(2,0)(4)(2,2,2,
0))((2))((,12
,12),,(),,(),,()2()3
2
32(025,952,922,
3
2
9432,94928,0)22(94)8(),,(),,(0228912
2.22)1(.172
|1|
tan ,
90,2||,,,;,0))((,||2121212121212121222212121212121212121212
22221212211212121222211222
22
12
121212100
201222
222242
202021=-+-=--=-++-+=+=+=--∴=--++=--⋅+∴=-+-∴=+=+=-++-+=+=+<<-=+∴=+=-=+<-<--=⨯-=+>-⨯-=-++⎪⎩⎪
⎨⎧=++=+==+-=∠∴︒<∠<-=
=+==≥〈=≥≥+-=-==y x x x y y y y y y x x x x y y x x y x y x y x y x y x y y y x y y y x x x y y y x x x y y y y x x x x y x y x y x y x y x l x y x b y y y b x x b b b x x b b y x y x b bx x y x b x y b x y k k k k MF F MF F a F F c
x y k k c
x y k k c b a M c b a b S M c b a c b a c b a c
b a x
c b y M
F c M F 故所求的直线方程为得代入将夹在椭圆内的部分所求轨迹方程为化简得代入①得由题意知

又整理得两式相减并
则弦的中点为与椭圆的焦点为设为所求轨迹方程即则点坐标为,设平行弦的端得由的直线的方程为设斜率为解:知由设时当点时,不存在满足条件的当,使时存在点
于是,当将上式代入①得:由②得。

相关文档
最新文档