2012中考数学试题及答案分类汇编:三角形

合集下载

2012年全国各地中考数学解析汇编16三角形

2012年全国各地中考数学解析汇编16三角形

2012年全国各地中考数学解析汇编16 三角形16.1与三角形中的边角关系16.2命题与证明16.3全等三角形16.4等腰三角形(2012广东肇庆,9,3)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为A.16 B.18C.20 D.16或20【解析】先利用等腰三角形的性质:两腰相等;再由三角形的任意两边和大于第三边,确定三角形的第三边长,最后求得其周长.【答案】C【点评】本题将两个简易的知识点:等腰三角形的两腰相等和三角形的三边关系组合在一起.难度较小.(2012广东肇庆,3,3)如图1,已知D、E在△ABC的边上,DE∥BC,∠B = 60°,∠AED = 40°,则∠A 的度数为AD EB C图1A.100°B.90°C.80°D.70°【解析】结合两直线平行,同位角相等及三角形内角和定理,把已知角和未知角联系起来,即可求出角的度数.【答案】C【点评】本题考查了三角形的内角和定理,及平行线的性质。

(2012山东省滨州,1,3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【解析】三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.【答案】选D.【点评】本题考查三角形内角和定理:三角形的内角和是180°.再由三个角的大小之比可求出三个角的大小.( 2012年四川省巴中市,3,3)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【解析】根据中线的定义,”连接三角形一个顶点和它对边中点的线段叫做三角形的中线”,知三角形的中线把三角形分成等底同高的两个三角形,它们的面积相等.故选A.【答案】A【点评】本题考查三角形中线及三角形面积的有关概念,比较容易.(2012广东汕头,7,3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()21世纪教育网A BCD A . 5 B . 6 C . 11 D . 16分析: 设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可. 解答: 解:设此三角形第三边的长为x ,则10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件. 故选C . 点评: 本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.(2012年广西玉林市,8,3)如图在菱形ABCD 中,对角线AC 、DB 相交于点O ,且AC ≠BD ,则图中全等三角形有A .4对B .6对C .8对D .10对分析:根据菱形四边形等,对角线互相垂直且平分,结合全等三角形的判定即可得出答案. 解:图中全等三角形有:△ABO ≌△ADO 、△ABO ≌△CDO ,△ABO ≌△CBO ;△AOD ≌△COD ,△AOD ≌△COB ;△DOC ≌△BOC ;△ABD ≌△CBD ,△ABC ≌△ADC ,共8对.故选C .点评:此题考查了全等三角形的判定及菱形的性质,注意掌握全等三角形的几个判定定理,在查找时要有序的进行,否则很容易出错.10. ( 2012年四川省巴中市,10,3)如图3,已知AD 是△ABC 的 BC 边上的高,下列能使△ABD ≌△ACD 的条件是( ) A.AB=AC B.∠BAC=900 C.BD=AC D.∠B=450【解析】由条件A,与直角三角形全等的判定“斜边、直角边”可判定△ABD ≌△ACD ,其它条件均不能使 △ABD ≌△ACD ,故选A 【答案】A【点评】本题考查直角三角形全等的判定“斜边、直角边”应用.(2012四川泸州,11,3分)若下列各组值代表线段的长度,则不能构成三角形的是( ) A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8解析:根据三角形两边之和大于第三边或两边边之差小于第三边进行判断.由于3+4<8,所以不能构成三角形;因为4+6>9,所以三线段能构成三角形;因为8+15>20,所以三线段能构成三角形;因为9+8>15,所以三线段能构成三角形.故选A. 答案:A点评:判断三条线段能否构成三角形的边,可以从三条线段中选较小两边之和与剩下一边比较,和大于这边,就能够组成三角形的边.(2012黑龙江省绥化市,4,3分)等腰三角形的两边长是3和5,它的周长是 .【解析】 解:题中给出了等腰三角形的两边长,因没给出具体谁是底长,故需分类讨论:①当3是底边长时,周长为5+5+3=13;②当5是底边长时,周长为3+3+5=11. 【答案】 11或13.【点评】 本题考查了等腰三角形中的常见分类讨论思想,已知两边求第三边长或周长面积等,解决本题的关键是注意要分类讨论,但注意有时其中一种情况不能构造出三角形,考生稍不留神也会写出这种不合题意的答案.难度中等.(2012深圳市 6 ,3分)如图1所示,一个60o角的三角形纸片,剪去这个60o角后,得到一个四边形,则∠+∠12 的度数为( )A. 120oB. 180oC. 240oD. 300o【解析】:考查多边形的内角和,根据公式()n -1802o 来算即可。

三角形2012年贵州中考数学题(带答案)

三角形2012年贵州中考数学题(带答案)

三角形2012年贵州中考数学题(带答案)贵州各市2012年中考数学试题分类解析汇编专题9:三角形一、选择题1.(2012贵州贵阳3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是【】A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF【答案】B。

【考点】全等三角形的判定。

190187。

【分析】应用全等三角形的判定方法逐一作出判断:A、由AB=DE,BC=EF和∠BCA=∠F构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;B、由AB=DE,BC=EF和∠B=∠E构成SAS,符合全等的条件,能推出△ABC≌△DEF,故本选项正确;C、∵BC∥EF,∴∠F=∠BCA。

由AB=DE,BC=EF和∠F=∠BCA构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;D、由AB=DE,BC=EF和∠A=∠EDF构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误。

故选B。

2.(2012贵州贵阳3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是【】A.3B.2C.D.1【答案】B。

【考点】线段垂直平分线的性质,含30度角的直角三角形的性质,等腰三角形的判定。

【分析】连接AF,∵DF是AB的垂直平分线,∴AF=BF。

∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°。

∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°。

∵DE=1,∴AE=2DE=2。

∵∠FAE=∠AFD=30°,∴EF=AE=2。

故选B。

3.(2012贵州安顺3分)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是【】A.1.25mB.10mC.20mD.8m【答案】C。

广东省2012年中考数学试题分类解析汇编 专题9 三角形

广东省2012年中考数学试题分类解析汇编 专题9 三角形

某某2012年中考数学试题分类解析汇编 专题9:三角形 一、选择题1. (2012某某某某3分)在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是【 】A .B .C .D .【答案】A 。

【考点】勾股定理,点到直线的距离,三角形的面积。

【分析】根据题意画出相应的图形,如图所示。

在Rt△ABC 中,AC=9,BC=12,根据勾股定理得:2222AB=AC +BC 9+1215==。

过C 作CD⊥AB,交AB 于点D ,则由S △ABC =12AC•BC=12AB•CD,得AC BC 91236CD AB 155⋅⨯===。

∴点C 到AB 的距离是365。

故选A 。

2. (2012某某某某3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】A.(63)+米B.12米C.(423)+米 D .10米【答案】A 。

【考点】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质。

【分析】延长AC交BF延长线于E点,则∠CFE=30°。

作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°=23,在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4。

∴BD=BF+EF+ED=12+23。

∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt△ABD中,AB=12BD=()112+236+32=。

故选A。

3. (2012某某某某3分)如图,已知:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为【】A.6 B.12 C.32 D.64【答案】C。

2012年浙江省三角形中考数学试题专题解析

2012年浙江省三角形中考数学试题专题解析

2012年浙江省三角形中考数学试题专题解析浙江11市2012年中考数学试题分类解析汇编专题9:三角形一、选择题1.(2012浙江杭州3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则【】A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°【答案】C。

【考点】平行线的性质,点到直线的距离,锐角三角形函数定义。

【分析】由已知,根据锐角三角形函数定义对各选项作出判断:A、由于在Rt△ABO中∠AOB是直角,所以B到AO 的距离是指BO的长。

∵AB∥OC,∴∠BAO=∠AOC=36°。

在Rt△BOA中,∵∠AOB =90°,AB=1,∴BO=ABsin36°=sin36°。

故本选项错误。

B、由A可知,选项错误。

C、如图,过A作AD⊥OC于D,则AD的长是点A到OC的距离。

在Rt△BOA中,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°。

∴AO=AB• sin54°= sin54°。

在Rt△ADO中,AD=AO•sin36°=AB•sin54°•sin36°=sin54°•sin36°。

故本选项正确。

D、由C可知,选项错误。

故选C。

3.(2012浙江湖州3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是【】A.20B.10C.5D.【答案】C。

【考点】直角三角形斜边上的中线性质。

【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长:∵在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,∴CD= AB=5。

江苏省泰州市2001-2012年中考数学试题分类解析 专题9 三角形

江苏省泰州市2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题9:三角形一、选择题1.(江苏省泰州市2002年4分)Rt△ABC中,∠C=90°,a:b=3:4,运用计算器计算,∠A的度数是【】(精确到1°)A、30°B、37°C、38°D、39°【答案】B。

【考点】三角函数定义,计算器的应用。

【分析】根据题中所给的条件,在直角三角形中应用正切函数解题:∵Rt△ABC中,∠C=90°,,∴tan A= a:b=3:4=0.75。

运用计算器得,∠A≈37°。

故选B。

2.(江苏省泰州市2003年4分)如图,某防洪大坝的横断面是梯形,斜坡AB的坡度i=1∶2.5,则斜坡AB的坡角 为【】(精确到1°)A.24° B.22° C.68° D.66°【答案】B。

【考点】解直角三角形的应用(坡度坡角问题),正切函数定义,计算器的应用。

【分析】算出坡角的正切值,用计算器即可求得坡角:如图,∵坡度tanα=铅直高度AC:水平距离BC=1:2.5=0.4,∴α=21.8°≈22°。

故选B。

3.(江苏省泰州市2003年4分)在Rt△ABC的直角边AC边上有一点P(点P与点A、C不重合),过点P作直线截△ABC,使截得的三角形与△ABC相似,满足条件的直线共有【】A.1条 B.2条 C.3条 D.3条或4条【答案】D。

【考点】相似三角形的判定。

【分析】过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC 的另一个角即可:(1)若AC <BC (如图1),过点P 作PD 1⊥AB,或作PD 2⊥AC,或作PD 3∥AB,或作∠PD 4C=∠A,这样截得的三角形与△ABC 相似。

即满足条件的直线共有4条。

(2)若AC >BC 且PC BC >(如图2),同(1)有PD 1,PD 2,PD 3。

中考数学模拟试题分类汇编三角形全等

中考数学模拟试题分类汇编三角形全等

三角形全等一、选择题 1、(2012年江西南昌十五校联考)如图,在下列条件中,不能..证明△ABD ≌△ACD 的是条件( ).A. ∠B =∠C ,BD =DCB.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. BD =DC , AB =AC 答案:A2、 3、二、填空题1、(2012年,辽宁省营口市)如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为 。

答案: 42(2012荆州中考模拟).如图, (甲)是四边形纸片ABCD ,其中∠B =120︒,∠D =50︒。

若将其右下角向内折出 PCR ,恰使CP∥AB ,RC∥AD ,如图(乙)所示,则∠C = °.答案:95︒三、解答题1、(2012年福建福州质量检查)(每小题7分,共14分)(1) 如图,在平行四边形ABCD 中,E 为BC 中点,AE 和延长线与DC 的延长线相交于点F .证明:△AB E ≌△FCE .ABCDEF第17(1)题图第17(2)题图AC DR图(乙) AD图(甲)(2) 如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角α为45°,看这栋高楼底部的俯角β为60°,热气球与高楼的水平距离AD =80m ,这栋高楼有多高(3≈1.732,结果保留小数点后一位)?答案:(1)证明:∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD , ······························································································· 2分 ∴∠F =∠F AB . ·························································································· 4分 ∵E 是BC 的中点, ∴BE =CE , ······························································ 5分 又∵ ∠AEB =∠FEC , ·············································································· 6分 ∴ △ABE ≌△FCE . ·················································································· 7分 (2)解:如图,α=45°,β=60°,AD =80.在Rt △ADB 中, ∵tan α=BDAD,∴BD =AD ·tan α=80×tan45°=80.………2分 在Rt △ADC 中, ∵tan β=CD AD,∴CD =AD ·tan β=80×tan60°=803.……5分∴BC =BD +CD =80+803≈218.6.答:这栋楼高约为218.6m . ………………7分2、(2012昆山一模)已知:如图所示,在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G.(1)求证:BF=AC(2)猜想CE与BG的数量关系,并证明你的结论.答案:3、(2012兴仁中学一模)(10分)如图,在□ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.D CE【答案】解:由□ABCD 得AB ∥CD , ∴∠CDF =∠F ,∠CBF =∠C . 又∵E 为BC 的中点, ∴△DEC ≌△FEB . ∴DC =FB .由□ABCD 得AB =CD , ∵DC =FB ,AB =CD , ∴AB =BF .4.(2012温州市泰顺九校模拟)(本题6分) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分DCEB DC AE F B D CAEF∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分5. (2012年江苏海安县质量与反馈)如图,ABC △和ECD △都是等腰直角三角形,90ACB DCE ==︒∠∠,D 为AB 边上一点. (1)求证:ACE BCD △≌△;(2)设AC 和DE 交于点M ,若AD =6,BD =8,求ED 与AM 的长.答案:(1)证明全等;(2) DE=10; AM=2724. 6、(2012温州市泰顺九校模拟) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明. 答案:解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分 ∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分7(河南省信阳市二中)(9分)已知:如图,四边形ABCD 是平行四边形,延长BC 到E ,使AE =AB ,连接AC 、DE .(1)写出图中三对你认为全等的三角形(不再添加其他字母和辅助线); (2)选择你在(1)中写出的任意一对全等三角形进行证明. A D B CE M第1题图 B D CAEF、答案:( 1)①△ABC ≌△CDA ;②△ACE ≌△DEC ;③△CAD ≌△EDA ;④△ABC ≌△EAD .……………………………………………………………………3分 (2)证明:△ABC ≌△CDA . ………………………………………………………4分 ∵四边形ABCD 是平行四边形,∴AD =BC ,∠DAC =∠BCA .…………………………………………………………6分 又∵AC =CA ,∴△ABC ≌△CDA (SAS ).…………………………………………………………9分 8、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB ,C EDB∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.9、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .10、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD .∴AB =AF .11、(2012双柏县学业水平模拟考试)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:OB =OD .答案 :证明:在△ABC 和≌△ADC 中∵ ∠1=∠2 AC =AC ∠3=∠4 ∴ △ABC ≌△ADC ∴ AB =AD∴ △ABD 是等腰三角形,且∠1=∠2 ∴ OB =OD12、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB , DCB A O 12 3 4∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.13、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .14、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD . ∴AB =AF .15、(杭州市2012年中考数学模拟)如图,已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证: BE =CF . 答案:证明:∵AC ∥DF ∴∠ACB =∠F在△ABC 与△DEF 中ACB F A DAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△DEF ∴ BC = EF∴ BC –EC = EF –EC 即BE = CF 16.(杭州市2012年中考数学模拟)如图,在边长为6的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点,Q 连接.BQ⑴ 试证明:无论点P 运动到AB 上何处时,都有;ADQ ABQ ∆≅∆⑵ 当ADQ ∆的面积与正方形ABCD 面积之比为1:6时,求BQ 的长度,并直接写出....此时点P 在AB 上的位置. C D Q答案:(1) 证明:在正方形ABCD 中,AD AB DAQ BAQ AQ AQ =⎧⎪∠=∠⎨⎪=⎩∴ADQ ABQ ∆≅ (2) 解:∵ADQ ∆的面积与正方形ABCD 面积之比为1:6且正方形面积为36∴ADQ ∆的面积为6过点Q 作QE AD ⊥于,E QF AB ⊥于,F ∵ADQ ABQ ∆≅ ∴QE QF = ∴162AD QE ⋅= ∴2QE QF ==∵90BAD QEA QFA ∠=∠=∠=∴四边形AEQF 为矩形 ∴2AF QE ==∴624BF =-=在Rt QBF ∆中,BQ ===此时P 在AB 的中点位置(或者回答此时3AP =)17. (杭州市2012年中考数学模拟)如图:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A 和点C ,与抛物线2y ax ax b =++交于点B ,其中点A (0,2),点B (– 3,1),抛物线与y 轴交点D (0,– 2).(1) 求抛物线的解析式; (2) 求点C 的坐标;(3) 在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.答案:解:(1) 将(–3,1),(0,–2)代入得:1193222a a b a b b ⎧=-+=⎧⎪⎪⎨⎨-=⎪⎪⎩=-⎩解得 ABCD PQEF∴ 抛物线的解析式为:211222y x x =+- (2) 过B 作BE ⊥x 轴于E ,则E (–3,0),易证△BEC ≌△COA∴ BE = AO = 2 CO = 1 ∴ C (–1,0)(3) 延长BC 到P ,使CP = BC ,连结AP ,则△ACP 为以AC 为直角边的等腰直角三角形 过P 作PF ⊥x 轴于F ,易证△BEC ≌△DFC ∴ CF = CE = 2 PF= BE = 1 ∴ P (1,– 1)将(1,– 1)代入抛物线的解析式满足 若90CAP ∠=︒,AC = AP 则四边形ABCP 为平行四边形过P 作PG ⊥y 轴于G ,易证△PGA ≌△CEB ∴ PG = 2 AG = 1 ∴ P (2,1)在抛物线上∴ 存在P (1,– 1),(2,1)满足条件18.(海南省2012年中考数学科模拟)(本题满分11分)如图,在正方形ABCD 中,E 是AB 边上任意一点,BG ⊥CE ,垂足为点O,交AC 于点F ,交AD 于点G 。

【中考12年】安徽省2001-2012年中考数学试题分类解析 专题9 三角形

【中考12年】安徽省2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年安徽省中考数学试题分类解析汇编专题9:三角形一、选择题1. (2001安徽省4分)如图,已知AC=BD,要使△ABC≌△DCB,只需添加的一个条件是▲ 。

【答案】AB=CD(答案不独一)。

【考点】开放型,全等三角形的判定。

【分析】要使△ABC≌△DCB,根据三角形全等的判定方法添加合适的条件即可:∵AC=BD,BC=BC,∴可添加∠ACB=∠DBC或AB=CD分别利用SAS,SSS判定△ABC≌△DCB。

2. (2002安徽省4分)在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC 的度数是▲ .【答案】15°。

【考点】线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理。

【分析】∵AB=AC,∠A=50°,∴∠ABC=∠C=(180°-50°)÷2=65°。

∵DE为AB的中垂线。

∴AD=BD。

∴∠ABD=∠A=50°。

∴∠CBD=∠ABC-∠ABD=15°。

3. (2005安徽省大纲4分)如图,在△ABC中,∠A=30°,tanB=32,AC=23,则AB=【】A、4B、5C、6D、7【答案】B。

【考点】解直角三角形,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,作CD⊥AB于点D,由题意知,CD=ACsinA=ACsin30°=3,∴AD=ACcos30°=3。

∵tanB=CD3BD2,∴BD=2。

∴AB=AD+BD=2+3=5。

故选B。

4. (2006安徽省大纲4分)在Rt△ABC中,∠C=90°,若AB=5,BC=3,则cosB=【】A.45B.35C.43D.43【答案】B。

【考点】锐角三角函数的定义。

【分析】根据余弦的定义知,BC3cosBAB5==。

故选B。

5. (2007安徽省4分)如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP=【】A.4011B.407C.7011D.704【答案】A。

三角形2012年四川中考数学题(含答案和解释)

三角形2012年四川中考数学题(含答案和解释)

三角形2012年四川中考数学题(含答案和解释)四川各市2012年中考数学试题分类解析汇编专题9:三角形选择题1. (2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。

【考点】锐角三角函数定义,特殊角的三角函数值。

【分析】∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA= 。

∴∠A=30°。

∴∠B=60°。

∴sinB= 。

故选C。

2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。

【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。

【分析】①连接CD(如图1)。

∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。

∵AE=CF,∴△ADE≌△CDF(SAS)。

∴ED=DF,∠CDF=∠EDA。

∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。

∴△DFE是等腰直角三角形。

故此结论正确。

②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。

∴四边形CEDF是平行四边形。

又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF 是菱形。

又∵∠C=90°,∴四边形CEDF是正方形。

故此结论错误。

③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,由②,知四边形CMDN是正方形,∴DM=DN。

2012年中考数学试题分类解析汇编专题9:三角形

2012年中考数学试题分类解析汇编专题9:三角形

2012年中考数学试题分类解析汇编专题9:三角形一、选择题1. (2012湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A.B.C.D.【答案】B。

【考点】网格问题,勾股定理,相似三角形的判定。

【分析】根据勾股定理,AB=22,BC=2,AC=10,∴△ABC的三边之比为2:22:10=1:2:5。

A、三角形的三边分别为2,10,32,三边之比为2:5:3,故本选项错误;B、三角形的三边分别为2,4,25,三边之比为1:2:5,故本选项正确;C、三角形的三边分别为2,3,13,三边之比为2:3:13,故本选项错误;D、三角形的三边分别为5,13,4,三边之比为5:13:4,故本选项错误.故选B。

2.(2012湖北荆门3分)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为【】A. 2 B.2C.D.3【答案】C。

【考点】等边三角形的性质,角平分线的定义,锐角三角函数,特殊角的三角函数值,线段垂直平分线的性质。

【分析】∵△ABC是等边三角形,点P是∠ABC的平分线,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF•cos30°=2×3=32。

∵FQ是BP的垂直平分线,∴BP=2BQ=23。

在Rt△BEF中,∵∠EBP=30°,∴PE=12BP=3。

故选C。

3. (2012湖北天门、仙桃、潜江、江汉油田3分)如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为【】A.2 B.3 C.3D.3+1【答案】A。

【考点】全等三角形的判定和性质,等腰三角形的性质,平行线分线段成比例,等边三角形的性质。

2012中考数学试题及答案

2012中考数学试题及答案

2012中考数学试题及答案第一节:选择题1. 若 a + b = 8,且 a - b = 4,则 a 的值是多少?A. 12B. 6C. 4D. 2答案:C. 4解析:将两个等式相加得到 2a = 12,因此 a = 6。

将 a = 6 代入第一个等式得到 6 + b = 8,从而可以得到 b = 2。

因此 a 的值是 4。

2. 已知一个等腰直角三角形的两条直角边分别为 5 cm。

那么斜边的长是多少?A. 5 cmB. 10 cmC. 7.07 cmD. 4.24 cm答案:C. 7.07 cm解析:根据勾股定理,斜边的长可以计算为√(a^2 + a^2),其中 a 代表直角边的长度。

代入 a = 5 cm,得到斜边的长约为 7.07 cm。

3. 若 3x - 4 = 7,则 x 的值是多少?A. 2B. 3C. 4D. 5答案:D. 5解析:将等式两边同时加上 4,得到 3x = 11。

接着将等式两边同时除以 3,得到 x = 11/3 或约等于 3.67。

因此 x 的值是 5。

第二节:填空题1. 若 f(x) = 2x^2 + 3x - 5,则 f(-1) 的值是多少?答案:-6解析:将 x = -1 代入函数 f(x) = 2x^2 + 3x - 5,得到 f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 - 3 - 5 = -6。

2. 在一个等差数列中,首项为 3,公差为 4。

第 n 项为多少?答案:3 + 4(n-1)解析:在一个等差数列中,第 n 项可以通过首项加上 (n-1) 倍的公差得到。

代入首项为 3,公差为 4,得到第 n 项为 3 + 4(n-1)。

第三节:解答题1. 请用因数分解法求解方程 x^2 + 6x + 8 = 0 的解。

解答:首先,我们可以尝试将方程进行因数分解。

将方程右侧的 8 进行因式分解得到 8 = 2 * 2 * 2 或者 8 = 1 * 2 * 4。

2012年年全国各地中考数学真题分类详解:直角三角形与勾股定理

2012年年全国各地中考数学真题分类详解:直角三角形与勾股定理

2012年全国各地中考数学真题分类汇编第24章直角三角形与勾股定理一.选择题1.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积。

专题:计算题。

分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.2.(2012毕节)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E式垂足,连接CD,若BD=1,则AC 的长是( ) A.23B.2C.43D. 4解析:求出∠ACB ,根据线段垂直平分线求出AD=CD ,求出∠ACD 、∠DCB , 求出CD 、AD 、AB ,由勾股定理求出BC ,再求出AC 即可.解答:解:∵∠A=30°,∠B=90°,∴∠ACB=180°-30°-90°=60°,∵DE 垂直平分斜边AC ,∴AD=CD ,∴∠A=∠ACD=30°,∴∠DCB =60°-30°=30°, ∵BD=1,∴CD=2=AD ,∴AB=1+2=3,在△BCD 中,由勾股定理得:CB=3,在△ABC 中,由勾股定理得:AC=22BC AB =32,故选A .点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.3.(2012湖州)如图,在Rt △ABC 中,∠ACB=900,AB=10,CD 是AB 边上的中线,则CD 的长是( ) A.20 B.10 C.5 D.25【解析】直角三角形斜边上的中线等于斜边的一半,故CD=21AB=21×10=5. 【答案】选:C .【点评】此题考查的是直角三角形的性质,属于基础题。

2012年全国中考数学试题分类解析汇编(159套63专题)专题37-三角形全等

2012年全国中考数学试题分类解析汇编(159套63专题)专题37-三角形全等

2012年全国中考数学试题分类解析汇编(159套63专题) 专题37:三角形全等一、选择题1. (2012海南省3分)图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【 】A .△ABD≌△CBD B.△ABC≌△ADC C .△AOB≌△COB D.△AOD≌△COD 【答案】B 。

【考点】全等三角形的判定,轴对称的性质。

【分析】根据轴对称的性质,知△ABD≌△CBD,△AOB≌△CO B,△AOD≌△COD。

由于AB≠AD,从而△ABC 和△ADC 不全等。

故选B 。

2。

(2012四川巴中3分)如图,已知AD是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件 是【 】A 。

AB=ACB 。

∠BAC=90°C. BD=ACD. ∠B=45° 【答案】A.【考点】全等三角形的判定。

【分析】添加AB=AC ,符合判定定理HL 。

而添加∠BAC=90°,或BD=AC ,或∠B=45°,不能使△ABD≌△ACD。

故选A 。

3。

(2012贵州贵阳3分)如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是【 】A .∠BCA=∠F B.∠B=∠EC .BC∥EF D.∠A=∠EDF 【答案】B 。

【考点】全等三角形的判定。

190187. 【分析】应用全等三角形的判定方法逐一作出判断:A 、由AB=DE ,BC=EF 和∠BCA=∠F构成SSA ,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;B 、由AB=DE ,BC=EF 和∠B=∠E 构成SAS,符合全等的条件,能推出△ABC≌△DEF,故本选项正确;C 、∵BC∥EF,∴∠F=∠BCA。

由AB=DE ,BC=EF 和∠F=∠BCA构成SSA ,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;D、由AB=DE,BC=EF和∠A=∠EDF构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误。

2012年数学中考试题分类汇编 直角三角形

2012年数学中考试题分类汇编 直角三角形

2012年数学中考试题分类汇编 直角三角形姓名一、选择题1、(2012•湖州)如图,在Rt △ABC 中,∠ACB=90°,AB=10,CD 是AB 边上的中线,则CD 的长是( )A .20B .10C .5D .(第1题图) (第2题图) (第3题图) (第6题图)2、(2012•威海)如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=90°,AB=AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°3、(2012•黔东南州)如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A .(2,0)B .)1,0C .)1,0D .)4、(2012•广州)在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )A .365B .1225C .94 D5、(2012•广西)已知三组数据:①2,3,4;②3,4,5;③12.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A .②B .①②C .①③D .②③6、(2012•潍坊)轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔A 的距离是( )海里.A .B .C .50D .257、(2012•毕节)如图.在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若BD=1,则AC 的长是( )A .B .2C .D .4(第7题图) (第8题图) (第9题图) (第10题图)8、(2012•乐山)如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论: ①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形; ③四边形CEDF 的面积随点E 位置的改变而发生变化; ④点C 到线段EF 的最大距离为 2. 其中正确结论的个数是( )A .1个B .2个C .3个D .4个9、(2012•日照)如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1C 1D 1;在等腰直角三角形OA 1B 1中,作内接正方形A 2B 2C 2D 2;在等腰直角三角形OA 2B 2中,作内接正方形A 3B 3C 3D 3;…;依次作下去,则第n 个正方形A n B n C n D n 的边长是( )A .n 113- B .n 13 C .n 113+ D .n 213+ 10、(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .90B .100C .110D .121二、填空题11、(2012•河北)如图,AB 、CD 相交于点O ,AC ⊥CD 于点C ,若∠BOD=38°,则∠A= .(第11题图) (第12题图) (第14题图) (第15题图)12、(2012•吉林)如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD= .13、(2012•巴中)已知a 、b 、c 是△ABC 的三边长,且满足关系式 a b 0-=,则△ABC 的形状为14、(2012•新疆)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S 1=258π,S 2=2π,则S 3是 . 15、(2012•黔西南)如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC=2,CE=4,则四边形ACEB 的周长为 .16、(2012•鸡西)Rt △ABC 中,∠A=90°,BC=4,有一个内角为60°,点P 是直线AB 上不同于A 、B 的一点,且∠ACP=30°,则PB 的长为 .三、解答题17、(2012•淮安)如图,△ABC 中,∠C=90°,点D 在AC 上,已知∠BDC=45°,BD=,AB=20.求∠A 的度数.18、(2012•南宁)如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE 和AB 的位置关系,并给予证明.19、(2012•广元)如图,A 、B 两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB ).经测量,森林保护区中心P 点在A 城市的北偏东30°方向,B 城市的北偏西45°方向上.已知森林保护区的范围在以P 为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?20、(2012•北京)如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC=90°,∠CED=45°,∠DCE=30°,BE=.求CD 的长和四边形ABCD 的面积.21、(2012•绍兴)小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.【思考题】如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B 将向外移动x 米,即BB 1=x ,则B 1C=x+0.7,11A C AC AA 0.42=-==而A 1B 1=2.5,在Rt △A 1B 1C 中,由B 1C 2+A 1C 2=A 1B 1 2得方程 ,解方程得x 1= ,x 2= , ∴点B 将向外移动 米.(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.22、(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.23、(2012•山西)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA 的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.24、(2012•桂林)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.2012年数学中考试题分类汇编 直角三角形姓名一、选择题1、(2012•湖州)如图,在Rt △ABC 中,∠ACB=90°,AB=10,CD 是AB 边上的中线,则CD 的长是( )A .20B .10C .5D .(第1题图) (第2题图) (第3题图)2、(2012•威海)如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=90°,AB=AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°3、(2012•黔东南州)如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A .(2,0)B .)1,0C .)1,0D .)4、(2012•广州)在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )A .365B .1225C .94 D5、(2012•广西)已知三组数据:①2,3,4;②3,4,5;③12.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A .②B .①②C .①③D .②③6、(2012•潍坊)轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔A 的距离是( )海里.A .B .C .50D .25(第6题图) (第7题图) (第8题图)7、(2012•毕节)如图.在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若BD=1,则AC 的长是( )A .B .2C .D .48、(2012•乐山)如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形; ②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化; ④点C 到线段EF 的最大距离为 2. 其中正确结论的个数是( )A .1个B .2个C .3个D .4个9、(2012•日照)如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1C 1D 1;在等腰直角三角形OA 1B 1中,作内接正方形A 2B 2C 2D 2;在等腰直角三角形OA 2B 2中,作内接正方形A 3B 3C 3D 3;…;依次作下去,则第n 个正方形A n B n C n D n 的边长是( )A .n 113- B .n 13 C .n 113+ D .n 213+10、(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.121二、填空题11、(2012•河北)如图,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A= .(第11题图)(第12题图)(第14题图)(第15题图)12、(2012•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD= .13、(2012•巴中)已知a、b、c是△ABC的三边长,且满足关系式a b0-=,则△ABC的形状为14、(2012•新疆)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=258π,S2=2π,则S3是.15、(2012•黔西南)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为.16、(2012•鸡西)Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB 上不同于A、B的一点,且∠ACP=30°,则PB的长为.三、解答题17、(2012•淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=,AB=20.求∠A的度数.18、(2012•南宁)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.19、(2012•广元)如图,A、B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B 城市的北偏西45°方向上.已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?20、(2012•北京)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,BE=.求CD的长和四边形ABCD的面积.21、(2012•绍兴)小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.【思考题】如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B 将向外移动x 米,即BB 1=x ,则B 1C=x+0.7,11A C AC AA 0.42=-==而A 1B 1=2.5,在Rt △A 1B 1C 中,由B 1C 2+A 1C 2=A 1B 1 2得方程 ,解方程得x 1= ,x 2= , ∴点B 将向外移动 米.(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.22、(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.23、(2012•山西)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA 的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.24、(2012•桂林)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012中考数学试题及答案分类汇编三角形2.选择题1. (天津3分)sin45°的值等于(A) 12(B) 22(C) 32(D) 1【答案】B。

【考点】特殊角三角函数。

【分析】利用特殊角三角函数的定义,直接得出结果。

2.(河北省3分)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为A、B、2 C、3 D、4【答案】B。

【考点】翻折变换(折叠问题),相似三角形的判定和性质。

【分析】∵△ABC沿DE折叠,使点A落在点A′处,∴∠EDA=∠EDA′=90°,AE=A′E,∴△ACB∽△AED。

∴ED AEBC AC=。

又∵A′为CE的中点,∴AE=A′E=A′C。

∴ED163=。

∴ED=2。

故选B。

3.(山西省2分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为A.33cm B.4cm C.23cm D.25cm【答案】D。

【考点】等腰三角形的性质,三角形中位线定理,正方形的性质,勾股定理。

【分析】根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理可求出CE=5,即可得出AC=25。

故选D。

4.(内蒙古呼和浩特3分)如果等腰三角形两边长是6cm和3cm,那么它的周长是A、9cmB、12cmC、15cm或12cmD、15cm【答案】D。

【考点】等腰三角形的性质,三角形三边关系。

【分析】求等腰三角形的周长,即要确定等腰三角形的腰与底的长,根据三角形三边关系知当6为腰,3为底时,6﹣3<6<6+3,能构成等腰三角形,周长为6+6+3=15;当3为腰,6为底时,3+3=6,不能构成三角形。

故选D。

5.(内蒙古呼伦贝尔3分)如图,△ACB≌△A1CB1, ∠BCB1=30°,则∠ACA1的度数为A.20° B. 30° C. 35° D. 40°【答案】B。

【考点】全等三角形的性质。

【分析】根据全等三角形对应角相等的性质,得∠ACB=∠A1CB1,所以∠ACB-∠BCA1=∠A1CB1-∠BCA1,即∠ACA1=∠BCB1=35°。

故选B。

3.填空题1. (山西省3分)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是▲。

【答案】132【考点】平行的性质,相似三角形的判定和性质,勾股定理。

【分析】过点E作EG⊥AB,垂足为点G,AB与DC交于点F,则DA∥GE∥BC。

∵点E 是CD 的中点,AB=12,∴根据平行的性质,得AG=6。

∵DA∥BC,∴△ADF∽△BCF。

∴DA AFCB BF =。

∵AB=12,即BF=12-AF 。

∴DA AF CB 12AF =-。

又∵AD=5,BC=10,∴5AF 1012AF =-,解得,AF=4,FB=8。

FG=6-4=2。

∵GE∥BC,∴△FGE∽△FBC。

∴FG GE FB BC =,即2GE 810=,解得,GE=52。

∴在Rt△AGE 中,由勾股定理,得AE=2222513GE +AG 622⎛⎫=+= ⎪⎝⎭。

2.(内蒙古巴彦淖尔、赤峰3分)如图,AD 是△ABC的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C ′处,连接BC ′,那么BC ′的长为 ▲ .【答案】3。

【考点】翻折变换(折叠问题),轴对称的性质,平角定义,等边三角形的判定与性质。

【分析】根据题意:BC=6,D 为BC 的中点;故BD=DC=3。

由轴对称的性质可得:∠ADC=∠ADC′=60°,∴DC=DC′=2,∠BDC′=60°。

故△BDC′为等边三角形,故BC′=3。

3.(内蒙古巴彦淖尔、赤峰3分)如图,EF是△ABC的中位线,将△AEF 沿AB方向平移到△EBD的位置,点D在BC上,已知△AEF的面积为5,则图中阴影部分的面积为▲.【答案】10。

【考点】三角形中位线定理,相似三角形的判定和性质,平移的性质。

【分析】∵EF是△ABC的中位线,∴EF∥BC,∴△AEF∽△ABC。

∴EF:BC=1:2,∴S△AEF:S△ABC=1:4。

∵△AEF的面积为5,∴S△ABC=20。

∵将△AEF沿AB方向平移到△EBD的位置,∴S△EBD=5。

∴图中阴影部分的面积为:S△ABC﹣S△EBD﹣S△AEF=20﹣5﹣5=10。

DF EAB C4.(内蒙古包头3分)如图,△ABD 与△AEC 都是等边三角形,AB≠AC,下列结论中:①BE=DC;②∠BOD=60°;③△BOD∽△COE.正确的序号是▲ .【答案】①②。

【考点】等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,相似三角形的判定。

【分析】∵△ABD、△AEC 都是等边三角形,∴AD=AB,AE=AC ,∠DAB=∠CAE=60°。

∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°。

∴∠DAC=∠BAE。

∴△DAC≌△BAE(SAS )。

∴BE=DC。

【①正确】∴∠ADC=∠ABE。

∵∠BOD+∠BDO+∠DBO=180°,∴∠BOD=180°﹣∠BDO﹣∠DBO=60°。

【②正确】∵由△DAC≌△BAE 和AB≠AC,得∠ADC≠∠AEB,∴∠ODB≠∠OEC。

A DB CE O又∵∠ODB<60°,∠OCE>60°,∴∠ODB≠∠OCE。

而∠DOB=∠EOC,∴△BOD 和△COE 不相似。

【③错误】5.(内蒙古呼和浩特3分)如图所示,在梯形ABCD中,AD∥BC,CE 是∠BCD 的平分线,且CE⊥AB,E为垂足,BE=2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为 ▲ . 【答案】157。

【考点】角平分线和垂直的定义,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,三角形的面积,梯形的面积,一元一次方程的应用。

【分析】延长BA 与CD ,交于F ,∵CE 是∠BCD 的平分线,∴∠BCE=∠FCE。

∵CE⊥AB,∴∠BEC=∠FEC=90°。

∵EC=EC,∴△BCE≌△FCE(ASA )。

∴BE=EF。

∵BE=2AE,∴BF=4AF。

又∵AD∥BC,∴△FAD∽△FBC。

∴2FAD FBC S AF 1S BF 16∆∆⎛⎫= ⎪⎝⎭=。

设S △FAD =x ,S △FBC =16x ,S △BCE =S △FEC =8x ,∴S 四边形AECD =7x 。

∵四边形AECD 的面积为1,∴7x=1,∴x=17。

∴梯形ABCD 的面积为:S △BCE +S 四边形AECD =15x=157。

6.(内蒙古乌兰察布4分)如图,在Rt△ABC 中,∠ABC = 900,AB = 8cm , BC = 6cm , 分别以A,C 为圆心,以AC 2的长为半径作圆, 将 Rt△ABC 截去两个扇形,则剩余(阴影)部分的面积为 ▲ cm 2(结果保留π) 【答案】25244π-。

【考点】直角三角形两锐角的关系,勾股定理,扇形的面积。

【分析】由题意可知,阴影部分的面积为三角形面积减去两个扇形面积。

三角形面积为168242=⨯⨯。

由勾股定理,得AC=10,圆半径为5。

∵在Rt△ABC 中,∠ABC = 900,∴∠A+∠C =900。

∴两个扇形的面积的和为半径5,圆心角900的扇形的面积,即四分之一圆的面积254π。

∴阴影部分的面积为25244π- cm 2。

7.(内蒙古乌兰察布4分)某厂家新开发的一种电动车如图,它的大灯A 射出的光线AB,AC 与地面MN 所夹的锐角分别为 80和 100,大灯A 与地面离地面的距离为lm 则该车大灯照亮地面的宽度BC 是 ▲ m .(不考虑其它因素)【答案】75。

【考点】解直角三角形的应用,锐角三角函数定义。

【分析】过点A 作AD⊥BC,垂足为点D 。

由锐角三角函数定义,得BC =BD -CD =00AD AD 2877AD 71tan8tan10555===⎛⎫--⨯ ⎪⎝⎭。

4.解答题1.(北京5分)如图,点A 、B 、C 、D 在同一条直线上,BE∥DF,∠A=∠F,AB=FD .求证:AE=FC .【答案】证明:∵BE∥DF,∴∠ABE=∠D。

在△ABC 和△FDC 中ABE D AB FD A F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△FDC(ASA )。

∴AE=FC.【考点】平行线的性质,全等三角形的判定和性质。

【分析】利用平行线同位角相等的性质可得∠ABE=∠D,由已知用ASA 判定△ABC≌△FDC,再由全等三角形对应边相等的性质证得AE=FC 。

2.(北京5分)如图,在△ABC,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF=12∠CAB. (1)求证:直线BF 是⊙O 的切线;(2)若AB=5,sin∠CBF=55,求BC 和BF的长.【答案】解:(1)证明:连接AE 。

∵AB 是⊙O 的直径,∴∠AEB=90°。

∴∠1+∠2=90°。

∵AB=AC,∴∠1=12∠CAB。

∵∠CBF=12∠CAB,∴∠1=∠CBF。

∴∠CBF+∠2=90°。

即∠ABF=90°。

∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线。

(2)过点C 作CG⊥AB 于点G 。

∵sin∠CBF=55,∠1=∠CBF,∴sin∠1=55。

∵∠AEB=90°,AB=5,∴BE=AB•sin∠1=5。

∵A B=AC ,∠AEB=90°,∴BC=2BE=25。

在Rt△ABE 中,由勾股定理得AE=25,∴sin∠2=255,cos∠2=55。

在Rt△CBG 中,可求得GC=4,GB=2,∴AG=3。

∵GC∥BF,∴△AGC∽△BFA。

∴GC AG BF AB =。

∴GC AB 20BF AG 3⋅==。

【考点】切线的判定和性质,勾股定理,圆周角定理,相似三角形的判定和性质,解直角三角形。

【分析】(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABE=90°。

(2)利用已知条件证得∴△AGC∽△BFA,利用对应边的比求得线段的长即可。

3.(北京5分)阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD 的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,BE,CF.(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三.角形的面积等于34【答案】解:△BDE的面积等于1。

相关文档
最新文档