2018高职高考数学模拟考试题和参考答案解析一
高职高考数学模拟试卷
---精品文档欢迎来主页下载 2018高职高考数学模拟试卷120分钟。
小题,满分150分。
考试时间本试题卷共24注意事项:、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、1铅笔将试卷类型填涂在答题卡试室号、座位号填定在答题卡上。
用2B 相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”铅笔把答题纸上对应题目的答案标号用2B2、选择题每小题选出答案后,涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
A试卷类型:75分)小题,每小题5分,共一、单项选择题(本大题共15在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
????5,44N?,3M?,0,1,23,)1.已知集合,,则下列结论正确的是( ????MM?NN?52,0,1?N?,3,4?MN?M D. C. A. B.log(x?1)2?x)f(的定义域是(2 、函数)x?2A B CD ),??(((??,0)1,2]2)21(,log2?log31a?0?”的(”是“)3.“aa A.必要非充分条件 B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .7lg7?lg B. A. 1lg3?lg7?3lg3lg37?7lg D.C. 37lg3lg?3lg7?????????xcb??1,02,a?4,5x? ( ,).5. 设向量,,且满足与,垂直则cba?11? C. D. A.B. 2?2223x?1?2的解集是()6.不等式精品文档.欢迎来主页下载---精品文档11???? B. C.(-1,3) D.(1,3) A.?1,,1????33????.)x+y-5=0的直线方程是(7、过点A(2,3),且垂直于直线2 2x+y-7=0 x-y-1=0 D、x-2y+4=0 B、y -2 x +4=0 C、2A、). 函数的最大值是( 8. )?4sinxcosx(x?Rf(x) D. C. B.A. 8412k??),则9.已知角的值是(终边上的一点?cos,?4),P(3k41216 D.A.C.. B ?3?4?55?.)平移后的图象对应的函数为(的图象按向量10、函数,1)?a=(x2y?sin6??B、A、1)?y?sin(2y?sin(2x?)?1x?63??D、、C1y?sin(2x??x?)y)?1?sin(236n???a).已知数列a 的前项和,则( 11. ?Sn5nn1n?5141 D. C. A. B. 654230x,,xx,x,xxxxxx,则的均值为,均值为,,,12. 在样本若90805314254213xxxxx ). 均值( ,,,,54231 D. C. A. B. 90848085 22yx1??. )、双曲线则它到右焦点的距离(13上的一点到左焦点的距离是6,925??D、4或16 16 C、4 4 、A16 B、或3?a?aa?10,a?}{a)且中,,则有(.等差数列14 3125n2??3a???a???a2,?a?2d?3,d33,d2,d..B .C.DA 1111的样本数据,分组后组距与频数如下表:一个容量为15.40精品文档.的频率为()则样本在区间[60,100]A.0.6 B.0.7 C.0.8 D.0.9分,共25分)二、填空题(本大题共5小题,每小题5????*a.16. 已知等比数列且,则,满足9a?a?aa?0Nn?756nn?33|?|?2,|b|a??ba. ,且b和的夹角为,则17. 已知向量a4率概是偶数的个数,则这个数五从1,2,3,4,5个数中任取一18. 。
2018年高职高考数学模拟试题.pptx
2018 年高职高考数学模拟试题
姓名:
班级:
分数:
一、选择题:本大题共 15 小题,每小题 5 分,满分 75 分. 在每小题给出的四个 选项中,只有一项是符合题目要求的.
1、已知集合 M {1,1}, N {0,1, 2}, 则 M N (
)
A.{0 }
B.{1 }
C. {0,1,2}
2、函数 y
1
的定义域为(
4 x2
D.{-1,0,1,2 } )
A. (2, 2)
B.[2, 2]
C.(, 2)
D.(2, )
3、已知向量a (3,5), b (2, x) ,且 a b ,则 x=( )
A、 6 5
B、 6 5
C、 5 6
D、 5 6
4、sin 30 (
)
A.1
B. 1
C. 3
)
A.3x y 1 0 B.3x y 1 0 C.x y 1 0 D.x y 1 0
1
学海无 涯
11、已知 f (x) log 2 (3x 11) 3 x ,则 f (9)
A.10 B.14 C.2 D.-2
12、设{an }是等比数列,如果a2 4, a4 12 ,则 a6 A.36
B.12
C.16
D.48
13、抛物线 y2 8x 的准线方程是( )
A.x 2 B.x 2
C. y 2
D.y 2
14、椭圆 x2 y2 1 的两焦点坐标是( ) 36 25
A、 0, 11 , 0, 11
B、 6,0,6, 0
C、 0,5,0,5
D、 11,0 , 11,0
(x)
2 x
最新职高高考数学模拟试卷五资料
2018年河南省普通高等学校对口招收中等职业学校毕业生模拟考试数学试题卷(一)考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分,每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1. 集合M={(x,y)|xy ≤0,x ∈R ,y ∈R}的意义是( )A. 第二、第四象限内的点B. 第二象限内的点C. 第四象限内的点D. 不在第一、第三象限内的点2. 若|m-5|= 5-m ,则m 的取值是( )A. m ﹥5B. m ≥5C. m ﹤5D. m ≤53. 函数y=x 24-的定义域是( )A.[2,+∞)B.(-∞,2]C.[0,2]D.(-∞,+∞)4. 计算()2123-⎥⎦⎤⎢⎣⎡-的结果是( ) A.3 B.33 C.-3 D.3 5. 若m =2ln ,n =5ln ,则n m e +2的值是( )A.2B.5C.20D.106. 等差数列{n a }的通项公式是n a =-3n+2,,则公差d 是( )A.-4B.-3C.3D.47. 若a =(2,1),且b =(x,-2),则a ⊥b ,那么|b |等于( ) A.2 B.2 C.11 D.58. 椭圆1422=+y m x 的焦距是2,则m 的值是( ) A. 5 B. 5或8 C. 3或 5 D. 209. 垂直于同一个平面的两个平面( )A.互相垂直B.互相平行C.相交D.前三种情况都有可能10.()62-x 的展开式中2x 的系数是( )A. 96B. -240C. -96D. 240二、填空题(每小题3分,共24分)11.若集合A={1,a},B={2,2a },且A ∩B={2},则A ∪B= .12.函数y=2x +2x+3的值域是 .13.若 ()[]0lg log log 37=x ,则x= .14.函数f(x)=5sin(x+6π)+12cos(x+6π)的最小值是 .15.等比数列{n a }中,若24,63412=-=-a a a a ,则3S = .16.若向量a =(1,-3)与向量b =(2,m)平行,则m= .17.AB 是圆0的直径,0是圆心,C 是圆0上一点,PC 与圆0所在平面垂直,则二面角B PC A --的大小为 .18.有10件产品,其中有2件是次品,不能放回地取出3件,则这三件都是正品的概率是 .三、计算题(每小题8分,共24分)19.解关于x 的不等式2a -2(a+1)x+4﹥0(a ﹥0).20.已知等差数列{n a }的前n 项和为n S ,对任意n ∈*N ,且1S =3,3a =7(1)求数列{n a }的通项;(2)求{n a }的前n 项和n S .21.在一个10人小组中,有6名男生、4名女生,现从他们中任选2名参加演讲比赛,求:(1)恰好全是女生的概率;(2)至少有1名男生的概率.四、证明题(每小题6分,共12分)22.已知在△ABC 中,角A 、B 、C 所对的边为a ,b ,c ,满足B c C b A a cos cos cos 2+=,求证:∠A=60°23.已知βαβα⊥⊥=⋂PD PC AB ,,,垂足分别为C 、D ,求证:CD AB ⊥.五、六、综合题(10分)24.25. 已知直线L 经过点(3-,4),且它的倾斜角是直线23+=x y 的倾斜角的2倍;(1)(2)求直线L 的方程;(3)求出直线L 与圆()16122=-+y x 的两个交点A 、B 的坐标,以及A 、B 两点间的距离.。
2018年高职高考数学模拟试卷(二)
试卷类型:A2018年高职高考第二次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}0,1,2,3,3A B x x ==->-则A B =( )A .{}0,1B .{}0,1,2C .{}2,3D .{}0,1,2,32.命题甲:030=α,命题乙:21sin =α,则命题甲是命题乙成立的( ) A .充要条件 B 充分不必要条件C .既不充分也不必要条件D 必要不充分条件3.函数y =( )A.(),1-∞ B.()1,10 C.(]1,+∞ D.[)1,+∞4.函数9()f x x x =+在区间()0,+∞内的最小值是 ( ) A .5 B .4 C .3 D .65.下列函数既是奇函数又是增函数的是( )。
A 、 x y 1-=B 、 x y 3=C 、x y 2log =D 、 2x y =6.设0,0x y >>,01a a >≠且 ,则正确的是( )A .()y x xy aa = B.()log log log a a a x y x y +=+ C .xy x y a a a =⋅ D.log log log a a a xy x y =⋅7.在等差数列}{n a 中, 若630a =, 则39a +a = ( )A . 20B . 40C . 60D . 808.已知角α的终边过点(1,A ,则sin α=( )A.2-B.12-C.12D.2 9.已知平面向量AC 与CB 的垂直,且AC =(k,1),CB =(2,6),则k 的值为( ) A. -31 B. 31 C. -3 D. 3 10.直线012=++y x 和圆9)1()2(22=-+-y x 的位置关系为( )A 、相离B 、相切C 、直线过圆心D 、直线与圆相交但不过圆心11.方程13922=-+-k y k x 表示焦点在x 轴上的椭圆,则k 满足( ) A .()6,3 B .()9,3 C . ()9,∞- D .()6,∞-则样本在区间]100,60[的频率为( )A .0.6B .0.7C .0.8D .0.913.函数sin(2)cos(2)44y x x ππ=++的周期是( )A.πB. 2πC.2π D. 4π14.样本12345,,,,x x x x x 中123,,x x x 的平均分是90,45,x x 的平均分是100,则样本均值是( )A.93B.94C. 95D.9615.若抛物线()022>=p px y 过点M(4,4) ,则点M 到准线的距离d=( )A 、 5B 、 4C 、 6D 、7二、填空题:本大题共5小题,每小题5分,满分25分.16.不等式5x 32-≥的解集为_____________。
(完整word版)2018年高职高考数学模拟试卷(一)
试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
2018年高职高考数学模拟试卷(一)
试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
2018年浙江省高职考数学试卷(模拟)
浙江省2018年单独文化招生考试练手试卷一说明:练手试卷雷同于模拟试卷,练手为主,体验高职考试的感觉一、单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分)。
1.已知全集为R ,集合{}31|≤<-=x x A ,则=A C uA.{}31|<<-x xB.{}3|≥x xC.{}31|≥-<x x x 或D.{}31|>-≤x x x 或 2.已知函数14)2(-=x x f ,且3)(=a f ,则=aA.1B.2C.3D.4 3.若0,0,0><>+ay a y x ,则y x -的大小是A.小于零B.大于零C.等于零D.都不正确 4.下列各点中,位于直线012=+-y x 左侧的是A.)1,0(-B.)2018,1(- C.)2018,21( D.)0,21( 5.若α是第三象限角,则当α的终边绕原点旋转7.5圈后落在A.第一象限角B.第二象限角C.第三象限角D.第四象限角 6.若曲线方程R b R a by ax ∈∈=+,,122,则该曲线一定不会是A.直线B.椭圆C.双曲线D.抛物线7.条件b a p =:,条件0:22=-b a q ,则p 是q 的A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件 8.若向量)4,2(),2,1(-==,则下列说法中正确的是A.=B.2=C.与共线D.)2,3(=+ 9.若直线过平面内两点)32,4(),2,1(+,则直线的倾斜角为A.30 B.45 C.60 D.90 10.下列函数中,在区间),0(+∞上单调递减的是A.12+=x yB.x y 2log =C.1)21(-=xy D.xy 2-= 11.已知一个简易棋箱里有象棋和军棋各两盒,从中任取两盒,则“取不到象棋”的概率为 A.32 B.31 C.53 D.5212.不等式(组)的解集与其他选项不同的是 A.0)3)(1(>+-x x B.031>+-x x C.21>+x D.⎩⎨⎧>+<-0301x x 13.在等比数列{}n a 中,公比2=q ,且30303212=⋅⋅a a a a ,则=⋅⋅30963a a a a A.102 B.202 C.162 D.152 14.下列说法中正确的是A.直线a 垂直于平面α内的无数条直线,则α⊥aB.若平面α内的两条直线与平面β都平行,则α∥aC.两两相交的三条直线最多可确定三个平面D.若平面α与平面β有三个公共点,则α与β重合15.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,24,34,60===b a A ,则角=B A.45 B.135 C.45或135 D.60或12016.2017年12月29日全国上映的《前任三》红爆网络,已知某公司同事5人买了某场次的连续5个座位,若小刘不能坐在两边的座位,则不同的坐法有 A.48种 B.60种 C.72种 D.96种 17.若抛物线y x 42=上一点),(b a P 到焦点的距离为2,则=a A.2 B.4 C.2± D.4± 18.已知2,21)sin(παπα<=+,则=αtan A.33 B.3- C.3± D.33- 19.已知函数xx f x3log 122)(+-=的定义域为A.)0,(-∞B.)1,0(C.(]1,0D.),0(+∞20.已知圆O 的方程为08622=--+y x y x ,则点)3,2(到圆上的最大距离为 A.25+ B.21+ C.34+ D.31+二、填空题(本大题共7小题,每小题4分,共28分)22.在平行四边形ABCD 中,已知n AD m AB ==,,则=OA _________.24.顶点在原点,对称轴为坐标轴的抛物线经过点)3,2(-,则抛物线的标准方程为_________.26.在等差数列{}n a 中,12,1331==a a ,若2=n a ,则=n _________.27.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为_________.三、解答题(本大题共9小题,共74分) (解答题应写出文字说明及演算步骤)29.(本题满分7分)求1003)2(xx -的展开式中有多少项是有理项.30.(本题满分8分)如图,已知四边形ABCD 的内角A 与角C 互补,2,3,1====DA CD BC AB.求:(1)求角C 的大小与对角线BD 的长;(2)四边形ABCD 的面积.31.(本题满分8分)观察下列三角形数表,假设第n 行的第二个数为),2(+∈≥N n n a n(1)依次写出第六行的所有6个数;(2)试猜想1+n a 与n a 的关系式,并求出{}n a 的通项公式.32.(本题满分8分)如图,在底面是直角梯形的四棱锥ABCD S -中, 90=∠ABC ,⊥SA 面ABCD ,21,1====AD BC SB SA .求: (1)ABCD S V -;(2)面SCD 与面SAB 所成二面角的正切值.(1))3(f ; (2)使41)(<x f 成立的x 的取值集合.34.(本题满分9分)已知中心在原点的双曲线C 的右焦点为)0,2(,实轴长为32,过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于B A ,两点.求: (1)双曲线的标准方程; (2)AB 的长.35.(本题满分9分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.36.(本题满分9分)已知椭圆12222=+b y a x 焦点在x 轴上,长轴长为22,离心率为22,O 为坐标原点.求:(1)求椭圆的标准方程;(2)设过椭圆左焦点F 的直线交椭圆与B A ,两点,并且线段AB 的中点在直线0=+y x 上,求直线AB 的方程.参考答案 21.2 22.)(21+- 23.53- 24.292-=y 或y x 342= 25.22 26.23 27.π43 28.410129.30.31.32.33.34.解:(1)⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧+===2132322222c b a b a c c a 因为焦点在x 轴上,所以标准方程为1322=-y x(2)渐近线方程为x y 33±=,334,332=∴⎪⎩⎪⎨⎧±==AB y x 35.解析:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .36.(1)1222=+y x (2)。
2018学年湖州市高职复习第一次模拟考数学参考答案
2018学年湖州市高职数学一模参考答案一、单项选择题(本大题共20小题,1-10每题2分,11-20每题3分,共50分)二、填空题(本大题共7小题,每题4分,共28分)21. 122. 1 23. 22194x y -= 24. 25. 1226. 11632π-- 27. 7-三、解答题(本大题共8小题,共72分)28.(本题满分7分) 解:原式=11202128-++-……………………………………………………………5分 =1418.………………………………………………………………………… 2分 29.(本题满分9分)解:(1)由2sin a B =,可得2sin ba B=,因为sin sin a b A B =,所以2sin aa A=, …………………………………………2分得sin 2A =,又因为A 为钝角, 所以120A =. …………………………………………………………………………2分 (2) 因为3a =,120A =,由余弦定理2222cos a b c bc A =+-,得()223b c bc =+-,将4b c +=代入得7bc =……………………………………………………………………………3分所以11sin 722S bc A ==⨯=………………………………………2分 30.(本题满分9分) 解:(1)25r x =+==,………………………………………1分3sin 5y r α∴==, …………………………………………………………………2分 4cos 5x r α∴==. (2)分(2)角β的终边为第二象限的角平分线,sin ββ∴==……………………………………………………2分 ()sin sin cos cos sin αβαβαβ∴+=+3455⎛=⨯+ ⎝⎭ 10=.………………………………………………………………2分 31.(本题满分9分)解:(1)由已知,可得AB 的中点坐标为1135,22-+⎛⎫⎪⎝⎭,即()0,4,…………2分 212153111AB y y k x x --===----,设AB 的垂直平分线的斜率为k ', 则1AB k k '⋅=-,解得1k '=,…………………………………………………………………………2分 根据点斜式,得()410y x -=⋅-,即40x y -+=.……………………………………………………………………1分 (2) 由于圆与直线l 相切,故点C 到直线的距离即为圆的半径,r d ====分所以圆的标准方程为:()()226418x y -+-=.…………………………………2分 32.(本题满分9分)解:(1)连接AC 交BD 于点O ,ABCD 是正方形,AC BD ∴⊥,又因为PA ABCD ⊥面,所以PO BD ⊥,故二面角P -BD -C 的平面角为POC ∠.…………………………………………2分2AB BC ==,AC ∴==,12AO OC AC ===, 又因为PA ABCD ⊥面,AC ABCD ⊂面 所以PA AC ⊥,得PO ==PC ==根据余弦定理得222cos 2PO OC PC POC PO OC +-∠===⨯⨯.………………………3分(2)=PBC PCD PBD BCD S S S S S ∆∆∆∆+++全1111=22222222⨯⨯⨯⨯⨯⨯⨯O.………………………………………………………………4分33.(本题满分9分)解:(1)125430N C C ==. ……………………………………………………………3分 (2)122135454580N C C C C C =++=. ………………………………………………3分 (3)1221545470N C C C C =+=……………………………………………………………3分 34.(本题满分10分) 解:(1)3AB =,113BD AB ∴==, 2AD AB BD ∴=-=,又ABC ∆为等腰直角三角形,1AF DE BD ∴===,1122a AF AD ∴=⨯=⨯=, ………………………………………………………2分同理可得289a =,……………………………………………………………………2分 33281a =. ……………………………………………………………………………2分 (2)由条件可知,每一个长方形的长和宽分别是前一个长方形长和宽的23,所以每个长方形的面积是前一个长方形面积的49,故该数列为等比数列,公比为49, ………………………………………………2分111429n n n a a q --⎛⎫∴==⋅ ⎪⎝⎭.……………………………………………………………2分35.(本题满分10分)解:(1)椭圆()222210x y a b a b +=>>的离心率为2,∴c e a ==2234a c =,又过椭圆右焦点F 与长轴垂直的直线被椭圆截得的弦长为2,∴22211c a b+=,得2223141aa b +=得24b =,……………………………………………………………………………2分 又2222344a b c a =+=+,即216a =,所以椭圆的方程为221164x y +=.………………………………………………………2分(2)联立直线:1l y x =+与椭圆方程,得2211164y x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理可得258120x x +-=,∴5AB a ===,…………………2分 设过点P 且与直线l 平行的直线方程为:m y x C =+,则l 与m 的距离就是点P 到AB 的距离,即PAB ∆的边AB 上的高,只要m 与椭圆相切,就有m 与边AB 的最大距离,即得最大面积.将:m y x C =+代入221164x y +=,消元整理可得:22584160x cx c ++-=, 令判别式()()228454160cc∆=-⨯⨯-=,化简得220c=, 故c =±所以m 与AB的最大距离max d ===,……………2分得max 112255S AB d =⨯⨯=⨯=. ……………………2分。
2018高职高考数学模拟试卷
2018高职高考数学模拟试卷本试题卷共24小题,满分150分。
考试时间120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”2、选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
试卷类型:A一、单项选择题(本大题共15小题,每小题5分,共75分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
1.已知集合{}4,3,2,1,0=M ,{}5,4,3=N ,则下列结论正确的是( )A. N M ⊆B. M N ⊆C. {}4,3=⋂N MD. {}5,2,1,0=⋃N M2、函数x x x f --=2)1(log )(2的定义域是( )A )0,(-∞B )2,1(C ]2,1(D ),2(+∞3.“01a <<”是“log 2log 3a a >”的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .A. lg 7lg31+=B. 7lg 7lg 3lg 3= C. 3lg 3lg 7lg 7= D. 7lg 37lg 3= 5. 设向量()4,5a =,()1,0b =,()2,c x =,且满足→→+b a 与→c 垂直,则x =( ).A. 2-B. 12-C. 12D. 2 6.不等式312x -<的解集是( ) A.113⎛⎫- ⎪⎝⎭, B.113⎛⎫ ⎪⎝⎭, C.(-1,3) D.(1,3) 7、过点A (2,3),且垂直于直线2x +y -5=0的直线方程是( ).A 、 x -2y +4=0B 、y -2 x +4=0C 、2x -y -1=0D 、 2x +y -7=08. 函数()4sin cos ()f x x x x R =∈的最大值是( ).A. 1B. 2C. 4D. 89.已知角α终边上的一点4cos ),4,3(k P =-α,则k 的值是( ) A .516- B .512 C .4- D .3- 10、函数sin 2y x =的图象按向量(,1)6a=π-平移后的图象对应的函数为( ).A 、sin(2)13y x π=--B 、sin(2)16y x π=++ C 、sin(2)16y x π=-- D 、sin(2)13y x π=++ 11. 已知数列{}n a 的前n 项和1n n S n =+,则5a = ( ). A. 142 B. 130C. 45D. 56 12. 在样本12345x x x x x ,,,,若1x ,2x ,3x 的均值为80,4x ,5x 均值为90,则1x ,2x ,3x ,4x ,5x 均值( ).A. 80B. 84C. 85D. 9013、双曲线192522=-y x 上的一点到左焦点的距离是6,则它到右焦点的距离( ).A 、16B 、4或-16C 、4D 、-4或1614.等差数列}{n a 中,,105=a 且3321=++a a a ,则有( )A .3,21=-=d aB .3,21==d aC .2,31=-=d aD .2,31-==d a15.一个容量为40的样本数据,分组后组距与频数如下表:则样本在区间[60,100]的频率为( )A.0.6B.0.7C.0.8D.0.9二、填空题(本大题共5小题,每小题5分,共25分)16. 已知等比数列{}n a ,满足0n a >()*n N ∈且579a a =,则6a =.17. 已知向量a 和b 的夹角为34π,且|||3==a b ,则⋅=a b . 18.从1,2,3,4,5五个数中任取一个数,则这个数是偶数的概率是 。
2018年广东省高职高考数学模拟试卷
2018年广东省高职高考数学模拟试卷1、(2018)已知集合{}0,12,4,5A =,,{}0,2B =,则A B =( )A. {}1B. {}0,1,2C. {}3,4,5D. {}0,22.(2018)函数()f x = )A 、3,4⎡⎫+∞⎪⎢⎣⎭B 、4,3⎡⎫+∞⎪⎢⎣⎭C 、 3,4⎛⎤-∞ ⎥⎝⎦D 、4,3⎛⎤-∞ ⎥⎝⎦ 3.(2018)下列等式正确的是( )A 、lg5lg3lg 2-=B 、1lg =2100- C 、lg10lg 5lg 5=D 、lg5lg3lg8+= 4.(2018)指数函数()01x y a a =<<的图像大致是( )5.(2018)“3x <-”是 “29x >”的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件6.(2018)抛物线24y x =的准线方程是( )A 、1y =-B 、1x =C 、1x =-D 、1y =7.(2018)已知ABC ∆,90BC AC C ==∠=︒,则( )A 、sin 2A =B 、cos 2A =C 、cos()1A B +=D 、tan A =/2 8.(2018)y=sin2x cos2最小正周期是( )A 、2π B 、23π C 、 π D 、2π 9.(2018)若向量()()1,2,3,4AB AC ==,则BC =( )A 、()4,6B 、()2,2C 、()1,3D 、()2,2--10.(2018)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有( )棵A 、 20B 、 15C 、25D 、3011.(2018)()23,01,0x x f x x x -≥⎧=⎨-<⎩,则()()2f f =( ) A 、1 B 、0 C 、1- D 、2-12.(2018)一个硬币抛两次,至少一次是正面的概率是( )A 、13B 、12C 、 34D 、2313.(2018)已知点()()1,4,5,2A B -,则AB 的垂直平分线是( )A 、 380x y +-=B 、390x y +-=C 、3100x y --=D 、330x y --=14.(2018)已知数列{}n a 为等比数列,前n 项和13n n S a +=+,则a =( )A 、0B 、3-C 、6-D 、315. 函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A ) 1y x -= (B ) 2y x -= (C )2y x = (D )13y x =二、填空题(共5小题,每题5分,共25分)16、(2018)双曲线221432x y -=的离心率e = ; 17、(2018)已知向量()()43,4a b x ==,,,若a b ⊥,则b = ;18、(2018)已知数据10,,11,,12,x y z 的平均数为10,则,,x y z 的平均数为 ;19、(2018)以两直线0x y +=和230x y --=的交点为圆心,且与直线220x y -+=相切的圆的标准方程是 ;20已知数列=+=n nn a n n S n a 则项和为的前,23}{2 三、解答题(50分)21、某电影院有520个座位,票价为60元时可完全售罄,后考虑提价,调查发现每涨价1元,则会少售出4张票,问当票价为几元时,电影院的盈利最大?22、(2018)已知数列{}n a 是等差数列,123566,25a a a a a ++=+=(1)求n a 的通项公式; (2)若 =n a 2 ,求数列{}n b 的前n 项和为n T .23、(2018)已知()()()sin ,0,0,0f x A x A ωϕωϕπ=+>><<,最小值为3-,最小正周期为π。
2018广东省高职高考数学试题
2018年广东省普通高校高职考试数学试题一、选择题(共15小题,每题5分,共75分)1、(2018)已知集合,,则()A.B. C. D.2.(2018)函数的定义域是()A、B、C、D、3.(2018)下列等式正确的是()A、B、C、D、4.(2018)指数函数的图像大致是()5.(2018)“”是“”的()A、必要非充分条件B、充分非必要条件C、充分必要条件D、非充分非必要条件6.(2018)抛物线的准线方程是()A、B、C、D、7.(2018)已知,,则()A、B、C、D、8.(2018)()A、B、C、D、9.(2018)若向量,则()A、B、C、D、10.(2018)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有()棵A、15B、20C、25D、3011.(2018),则()A、1B、0C、D、12.(2018)一个硬币抛两次,至少一次是正面的概率是()A、B、C、D、13.(2018)已知点,则的垂直平分线是()A、B、C、D、14.(2018)已知数列为等比数列,前项和,则()A、B、C、0 D、315.(2018)设是定义在R上的奇函数,且对于任意实数,有,若,则()A、B、3C、4 D、6二、二、填空题(共5小题,每题5分,共25分)16、(2018)双曲线的离心率;17、(2018)已知向量,若,则;18、(2018)已知数据的平均数为8,则的平均数为;19、(2018)以两直线和的交点为圆心,且与直线相切的圆的标准方程是;20已知对应边分别为的内角的对边分别为,已知,则;三、解答题(50分)21、(2018)矩形周长为10,面积为,一边长为。
(1)求与的函数关系式;(2)求的最大值;(2)设有一个周长为10的圆,面积为,试比较与的大小关系。
22、(2018)已知数列是等差数列,(1)求的通项公式;(2)若,求数列的前n项和为.23、(2018)已知,最小值为,最小正周期为。
2018年浙江省高职考数学模拟试卷1
2018年浙江省高职考数学模拟试卷(一)一、选择题1. 若{}101≤≤=x x A ,{}10<=x x B ,则B A 等于 ( ) A.{}1≥x x B. {}10≤x x C.{}10,9,8,7,6,5,4,3,2,1 D. {}101<≤=x x A 2. 若2:=x p ,06:2=--x x q ,则p 是q 的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3. 函数44)(22---=x x x f 的定义域是 ( )A.]2,2[-B.)2,2(-C.),2()2,(+∞--∞D.{}2,2-4. 在区间),0(+∞上是减函数的是 ( )A.12+=x yB. 132+=x yC.x y 2=D.122++=x x y 5. 若53sin +-=m m θ,524cos +-=m m θ,其中θ为第二象限角,则m 的值是 ( ) A.8=m B.0=m C.0=m 或8=m D. 4=m 或8=m6. 直线0=+-m y x 与圆01222=--+x y x 有两个不同交点的充要条件是 ( )A.13<<-mB.24<<-mC.10<<mD.1<m 7. 方程112222=++n y n x 所表示的曲线是 ( ) A.圆 B.椭圆 C.双曲线 D.点8. 若l 是平面α的斜线,直线⊂m 平面α,在平面α上的射影与直线m 平行,则 ( )A.l m //B.l m ⊥C.m 与l 是相交直线D. m 与l 是异面直线9. 若21cos sin cos sin =-+αααα,则αt a n 等于 ( ) A.31 B. 31- C.3 D.3- 10. 设等比数列{}n a 的公比2=q ,且842=⋅a a ,则71a a ⋅等于 ( )A.8B.16C.32D.6411. 已知64251606)21(a x a x a x a x ++++=+ ,则0a 等于 ( )A.1B.64C.32D.012. 已知一条直线经过点)2,3(-与点)2,1(--,则这条直线的倾斜角为 ( )A.︒0B.︒45C.︒60D.︒9013. 已知二次函数c bx ax y ++=2(0≠a ),其中a ,b ,c 满足039=+-c b a ,则该二次函数图像恒过定点 ( )A.)0,3(B.)0,3(-C.)3,9(D.)3,9(-14. ︒+︒15cos log 15sin log 22的值是 ( )A.1B.1-C.2D.2-15. 在ABC ∆中,已知8=a ,︒=∠60B ,︒=∠75C ,则b 等于 ( ) A.24 B. 34 C. 64 D.323 16. 若b a >,d c >,则下列关系一定成立的是 ( )A.bd ac >B.bc ac >C.d b c a +>+D.d b c a ->-17. 已知抛物线的顶点在原点,对称轴为坐标轴,且以直线01553=-+y x 与y 轴的交点为焦点,则抛物线的准线方程是 ( )A.y x 122-=B. y x 122=C.3-=xD.3-=y18. 点),(y x P 在直线04=--y x 上,O 为原点,则OP 的最小值是 ( ) A.10 B.22 C.2 D.2二、填空题19. 不等式138≥-x 的解集是 ;20. 已知点⎪⎭⎫ ⎝⎛43cos ,43sin ππP 落在角θ的终边上,且[)πθ2,0∈,则θ的值为 ;21. 5=,且),4(n =,则n 的值是 ;22. 若)2,1(-A ,)1,4(-B ,)2,(m C 三点共线,则m 的值为 ;23. 从数字1,2,3,4,5中任取2个数字组成没有重复数字的两位数,则这个两位数大于40的概率为 ;24. 已知1F 、2F 是椭圆192522=+y x 的焦点,过1F 的直线与椭圆交于M ,N 两点,则2MNF ∆的周长为 ;25. 若圆柱的母线长为a ,轴截面是正方形,则圆柱的体积为 ;26. 已知0>x ,则函数x xx f 312)(+=图像中最低点的坐标为 ; 三、解答题27. 函数1)(2+-=ax x x f ,且3)2(<f ,求实数a 的取值范围;28. 现从男、女共9名学生干部中选出1名男同学和1名女同学参加夏令营活动,已知共有20种不同的方案,若男生多于女生,求:(1)男女同学的人数各是多少?(2)共3选人且男生女生都要有的选法有多少种?29. 已知直线032:=--y x l 与圆9)3()2(22=++-y x 相交于P 、Q 两点,求(1)弦PQ 的长;(2)三角形POQ 的面积(O 为坐标原点); 30. 设三个数a ,b ,c 成等差数列,其和为6,且a ,b ,c +1成等比数列,求成等比数列的三个数; 31. 已知点)0,1(A 是双曲线122=-ny m x 上的点,且双曲线的焦点在x 轴上,(1)若*N n ∈,双曲线的离心率3<e ,求双曲线的方程;(2)过(1)中双曲线的右焦点作直线l ,该直线与双曲线交于A 、B 两点,直线l 与x 轴上的夹角为α,若弦长4=AB ,求角α的值;32. 在ABC ∆中,A ∠,B ∠都为锐角,6=a ,5=b ,21sin =B ,(1)求A si n 和C cos 的值;(2)设)2sin()(A x x f +=,求)(πf 的值;33. 如图所示,正三棱柱111C B A ABC -的底面边长为cm 4,截面ABD 与底面ABC 所成的角为︒30,求:(1)CD 的长;(2)三棱锥ABC D -的体积;34. 如图所示,在一张矩形纸的边上找一点,过这点剪下两个正方形,它的边长分别是AE ,DE ,已知12=AB ,8=AD ,问:(1)设x DE =,两正方形面积和为y ,列出y 与x 之间的函数关系式;(2)要使剪下的两个正方形的面积和最小,两正方形边长应各为多少?(3)两正方形面积和的最小值为多少?。
2018年浙江省高职考数学模拟试卷13
2018年浙江省高职考数学模拟试卷(十三)一、选择题1. 设R U =,{}1>=x x A C U ,则A 等于 ( ) A.{}1<x x B. {}1≤x x C. {}1-<x x D. {}1-≤x x2. 已知x x f 2log 1)2(-=,则)4(f 等于 ( )A.0B.1C.2D.1-3. 已知b a >,则下列不等式中成立的是 ( ) A.c b c a ->- B.ba 11< C.22bc ac > D.b a 5.05.0> 4. 在ABC ∆中,“︒=∠60A ”是“21cos =A ”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5. 若函数)(x f y =在R 上是减函数,且)2()(2m f m f >,则m 的取值范围为 ( )A.)0,(-∞B.),2(+∞C. ),2()0,(+∞-∞D.)2,0( 6. 若向量)1,2(-=,)2,1(=,则向量a 、b 的关系是 ( ) A.1=+ B.⊥ C.=- D.//7. 下列各角中,与︒-=40α终边不相同的角是 ( )A.︒-400B.︒40C.︒320D.︒6808. 数列{}n a 的通项公式nn a n 16+=,则此数列的最小项是 ( ) A.第4项 B.第8项 C.第10项 D.第16项 9. 在等比数列{}n a 中,已知32=a ,274=a ,则3a 等于 ( )A.81B.9C.9-D.9±10. 已知直线为03=+y ,则其倾斜角为 ( )A.︒0B.︒45C.︒90D.不存在11. 若直线012=-+y x 与直线02=-+a y x a 平行,则a 等于 ( )A.2B.2-C.2±D.无解 12. 双曲线1422=-y x 的渐近线方程为 ( ) A.x y 41±= B. x y 4±= C. x y 21±= D. x y 2±=13. 已知31)sin(=+απ,则α2co s 等于 ( ) A.91- B.97- C.91 D.97 14. 在函数2sin -=x y 中,以下区间单调递增的是 ( )A.],0[πB.⎥⎦⎤⎢⎣⎡ππ,2C. ⎥⎦⎤⎢⎣⎡-0,2πD.⎥⎦⎤⎢⎣⎡23,ππ 15. 播放《爸爸去哪儿》时要插播赞助商的5个广告,其中某2个广告要连在一起播出,这5个广告不同的编排方法的种数为 ( )A.24种B.48种C.96种D.120种16. 抛掷两枚不同的硬币,落地后出现一枚正面向上一枚反面向上的概率为 ( ) A.21 B.31 C.41 D.1 17. 已知点)2,3(P 是圆9)3()1(22=-+-y x 内一点,则过点P 的最短弦长为 ( )A.4B.3C.5D.218. 下列结论不正确的是 ( )A.两平行线确定一个平面B.垂直于同一个平面的两直线平行C.如果一条直线与一个平面垂直,则这条直线与这个平面内的任一直线都垂直D.如果一条直线与一个平面平行,则这条直线与这个平面内的任一直线平行二、填空题19. 求值:=-+πcos 2273log 322 ; 20. 若抛物线x y 42-=,则其焦点到准线的距离为 ;21. 已知不等式032≤+-bx ax 的解集为⎭⎬⎫⎩⎨⎧≤≤231x x ,则=a ,=b ; 22. 数列{}n a 的前n 项和12-=n S n ,则=5a ;23. 指数函数x a y =过点)16,2(,则=a ;24. 将一长为cm 10、宽为cm 6的长方形的纸卷成一个圆柱的侧面(接缝处忽略不计),则此圆柱的底面半径为 ;25. 函数21sin -=x y 的定义域为 ; 26. 如图所示,在□ABCD 中,已知a AB =,b AD =,=-b a ,并在图中作出b a -,三、解答题27. 如图所示,已知直线l ,(1)作出直线l 关于原点对称的直线m ;(2)求直线m 的方程;28. 在ABC ∆中,已知︒=∠60C ,32=c ,2=b ,求:(1)B ∠的大小;(2)ABC∆的面积;29. 若n x x ⎪⎭⎫ ⎝⎛-1展开式中的各项二项式系数之和为64,求展开式中二项式系数最大的项; 30. 已知函数x x x f sin 2sin )(⎪⎭⎫ ⎝⎛-=π,求:(1)函数的最小正周期和最大值;(2)若42)(=x f ,写出符合条件的两个x 的值; 31. 如图所示,已知四边形ABCD 是矩形,⊥PA 底面ABCD ,1=PA ,2=AB ,3=BC ,求:(1)二面角A BC P --的正切值;(2)三棱锥BCD P -的体积;32. 已知椭圆与双曲线127922=-y x 的离心率互为倒数,其中一个焦点是圆03422=+-+x y x 的圆心,求此椭圆的标准方程;33. 已知等比数列{}n a ,21=a ,2=q ,12-=n b n a ,求:(1)数列{}n a ,{}n b 的通项公式n a ,n b ;(2)若n n n b a c -=,求数列{}n c 的前6项和;34. 如图所示,把一张长为cm 12,宽为cm 6的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计),(1)要使长方体盒子32cm,那么剪掉的正方形的边长为多少?(2)求折合成的长方体盒子的的底面积为2侧面积S与剪掉的正方形的边长x的函数关系式;(3)当正方形的边长x为多少时,侧面积S有最大值?并求最大值;。
(完整版)2018年重庆高职分类考试数学模拟一卷
2018年重庆高职单招数学模拟卷一(春季高考)参考公式:如果事件,A B 互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+其中R 表示球的半径 如果事件,A B 相互独立,那么球的体积公式34π3V R =()()()P A B P A P B ⋅=⋅ 其中R 表示球的半径一、选择题:1.已知集合{},,,,A a b c d e =,{},,B b c f =,A B =( )A .{},b cB .{},,b c fC .{},,,,,a b c d e fD .{},,,,a b c d e2.不等式(1)0x x ->的解集是( )A .(),0-∞ B. ()0,1 C 。
()1,+∞ D.()(),01,-∞+∞3.已知2()log f x x x =+,则(2)(4)f f +=( )A .11B .10C .9D .8. 4.已知向量()4,2AB =,()6,CD y =,且AB ∥CD ,则y 等于( ) A .—3B .-2C .3D .25.已知椭圆方程为22143x y +=,则该椭圆的离心率为( ) A.12C6.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( )A .①是真命题,②是假命题B . ①是假命题,②是真命题C .①②都是真命题D . ①②都是假命题7.若a b >,则下列不等式中正确的是( ) A .a bc c> B .22a b > C .a c b c ->- D.a b +>8.五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )A .1444C C 种 B .1444C A 种 C .44C 种 D .44A 种 9.已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为( )A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高职高考数学模拟试题
数 学
本试卷共4页,24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考
生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的
答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题
卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并
交回。
一、选择题:本大题共15小题,每小题5分,满分75分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1、已知集合{1,1},{0,1,2},M N =-=则M N =U ( ) A .{0 } B.{1 } C.{0,1,2 } D.{-1,0,1,2 } 2
、函数y
=
的定义域为( )
.(2,2).[2,2].(,2).(2,)A B C D ---∞-+∞
3、设a ,b ,是任意实数,且a<b,则下列式子正确的是( )
22
..1.lg()0
.22a b b A a b B C a b D a
><-><
4、()sin
30︒
-=( )
11.
..2
2
A B C D -
5、=(2,4),=(4,3),+=a b a b r r r r
若向量则( )
.(6,7)
.(2,1)
.(2,1)
.(7,6)A B C D --
6、下列函数为奇函数的是( ) ..lg .sin .cos x
A y e
B y x
C y x
D y x ====
7、设函数21,1()2,1x x f x x x
⎧+≤⎪
=⎨>⎪⎩,则f(f(—1))=( )
A .-1
B .-2
C .1 D. 2 8、 “3x
>”是“5x >”的( )
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.非充分非必要条件 9、若向量a ,b 满足|a+b|=|a-b|,则必有( )
.0.0.||||.0A a B b C a b D a b ====r r r r r r r
r g
10、若直线l 过点(1, 4),且斜率k=3,则直线l 的方程为( )
.310.310.10.10
A x y
B x y
C x y
D x y --=-+=--=-+=
11、对任意x R ∈,下列式子恒成立的是( )
22121.210
.|1|0
.10.log (1)0
2x
A x x
B x
C
D x ⎛⎫ ⎪⎝⎭
⎛⎫
-+>->+>+> ⎪⎝⎭
12
a +a =( )
.2
.4
.24.24A B C D ---或或
13、抛物线2
8y
x =-的准线方程是( )
.2
.2
.2
.2A x B x C y D y ==-==-
14、已知
x 是1210,,,x x x L 的平均值,1a 为123456,,,,,x x x x x x 的平均值,2a 为
78910,,,x x x x 的平均值,则x =( )
12
12
12
12
2332..
..
5
5
2
a a a a a a A B C a a D ++++
15
)( ).0.45
.0.55.0.65.0.75A B C D
二、填空题:本大题共5小题,每小题5分,满分25分.
16、函数
()3sin 4f x x =的最小正周期为__________
17、不等式2
280x x -->的解集为________
18、若sin θ=
3
5
,tan θ< 0,则cos θ=_________ 19、已知等差数列{}n a 满足3285,30,a a a =+=则n a =_______
20、设袋子内装有大小相同,颜色分别为红,白,黑的球共100个,其中红球35个,从袋
子内任取1个球,若取出白球的概率为0.25,择取黑球的概率为____________
三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分.解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分)
,,,3
(1)(2)cos B ABC a b c ABC C a π
∆∆∠∠∠=∠=已知是中,A 、B 、C 的对边,b=1,c 求的值;求的值.
22.(本小题满分12分)
{}{}(){}(){}21-12n n n =132n 6n+3(n=2,3,)b 1b 2b n S n n n n n n a a a a a =+-⋅⋅⋅已知数列的首项,数列的通项公式b =+n :
证明数列是等比数列.求数列的前项和.
23.(本小题满分12分)
2212x=19A B AB C F (3,0)F (3,0)4D C D C D C xoy y +=-在平面直角坐标系中,直线与圆x 交于两点,,记以为直径的圆为,以点和为焦点,短半轴为的椭圆为。
(1) 求圆和椭圆的方程:
(2)证明:圆的圆心与椭圆上任意一点的距离大于圆的半径。
24.(本小题满分14分)
1212l l 60O A B |OA|=4|OB|=2l l t P Q.(1)t |OP||OQ|(2)|PQ|︒如图,两直线和相交成角,焦点是,甲,乙两人分别位于点和点, 千米,千米,现在甲,乙分别沿,朝箭头所示方向,同时以4千米/小时的速度步行,设甲和乙小时后的位置分别是点和用含的式子表示与;求两人的距离的表达方式;
参考答案:
一、选择题:
二、填空题:
16、
2π
17、 ()(),24,-∞-+∞U 18、 4
5
- 19、 510n - 20、 0.4
三、解答题:
()2222
22
2(1)=1,3
cos 21cos
321113
22==2=2(2)(1)=2b c C a b c C ab a a a a
a a a a π
π
∠=∴+-∠=+-
=
⨯⋅+-∴=∴Q 21、解: 由余弦定理得
即
解得:-1舍去 或 由知
2
2
2
2
2
2
=1,21cos 22b c a c b B ac ∴+-+-∠====
Q 又 由余弦定理得
()()()()
2-12
122
2
+1+1132n 6n+3(n=2,3,) 32n+16n+1+3 =3221 n n n n n n n n n a a a a a n n a a +=+-⋅⋅⋅∴=+-+--∴Q Q 22、解:又b =+n b =+n+1()()()
()(){}()(){}2
222
+1221 3221 33 3 213 = n n n n n n n n n n a n n a n a n b b a b b q a a =+---=++∴==∴=Q n+1常数+n
数列是等比数列。
由可知数列是以公比的等比数列又b =+n 1()()()2
111 =+=1213 3
1
113
n n
n
n a b q S q
∴--∴---b =+111 2 =
= =
(
)()2
2
1,
18
D 4,3 C C r C x y x b c a =∴-+===∴圆的圆心坐标为半径圆的方程为:在椭圆中,焦点在轴上, ()()()2222
22
5
1
2516
21 1
2516
16
=1625
,
D x y x y
D x y D P x
y ==
=∴+=+=-
椭圆的方程为:
由可知椭圆的方程为:则在椭圆上任取一点() 1,0 3
C D C C C P d =
=
≥=>∴则圆的圆心到点的距离为 圆的圆心与椭圆上任意一点的距离大于圆的半径。
()()2
2
4,444,0144,144=24,0 201= 44AP t BQ t
OA AP t t OP AP OA t t
OP t t
OQ OB BQ t t
t OPQ PQ t ==⎧-=-≤≤⎪=⎨
-=-≤⎪⎩=-≤+=+≤≤≤∆- 则 即,0 当时,在中,由余弦定理得: ()()()()()()()()2
022
2
2
2
2
02+2424424cos60= 4824121=24, 1= 44+2424424cos120 = 4824t t t t t t PQ t t PQ t t t t t t +--+⋅-+=+>-+--+⋅-+ 当时,当时,
()()
2
2212
= 4824120,= 4824120PQ t t t PQ t t t -+≥-+≥ 综上所得, 即,。