2013上海高考数学模拟题1

合集下载

高考数学模拟试题(一)

高考数学模拟试题(一)

一、选择题1.已知集合A ={}x |x 2-3x -10<0,集合B ={x |-1≤x <6},则A ⋂B 等于().A.{}x |-1<x <5B.{}x |-1≤x <5C.{}x |-2<x <6 D.{}x |-2<x <52.已知复数z =2-1+i,则().A.||z =2B.z 的实部为1C.z 的虚部为-1D.z 的共轭复数为1+i3.已知a =(1,3),b =(2,2),c =(n ,-1),若(a -c )⊥b ,则n 等于().A.3B.4C.5D.64.设tan α=12,cos(π+β)=-45,β∈(0,π),则tan(2α-β)的值为().A.-724B.-524C.524D.7245.某程序框图如图1所示,若该程序运行后输出的值是95,则a =().图1A.7B.6C.5D.46.连接双曲线C 1:x 2a2-y 2b 2=1及C 2:y 2b 2-x 2a2=1的4个顶点的四边形面积为S 1,连接4个焦点的四边形的面积为S 2,则当S 1S 2取得最大值时,双曲线C 1的离心率为().A.B. C.3 D.27.在区间[]-3,3上随机取一个数x ,使得3-x x -1≥0成立的概率为等差数列{}a n 的公差,且a 2+a 6=-4,若a n >0,则n 的最小值为().A.8B.9C.10D.118.已知函数f ()x =ìíî()a -1x +4,x ≤7,a x -6,x >7,是R 上的减函数,当a 最小时,若函数y =f (x )-kx -4恰有两个零点,则实数k 的取值范围是().A.(-12,0)B.(-2,12)C.(-1,1)D.(12,1)9.某几何体的三视图如图2所示,则该几何体的体积是().图2A.5π3B.4π3C.2+2π3D.4+2π310.函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的部分图象如图3所示,若AB =5,点A 的坐标为(-1,2),若将函数f (x )向右平移m (m >0)个单位后函数图象关于y 轴对称,则m 的最小值为().图357高考链接A.12 B.1 C.π3 D.π211.在等腰直角三角形BCD 与等边三角形ABD中,∠C =90°,BD =6,现将△ABD 沿BD 折起,则当直线AD 与平面BCD 所成角为45°时,直线AC 与平面ABD().A.B.C.D.12.已知函数f (x )=13ax 3+x 2(a >0).若存在实数x 0∈(-1,0),且x 0≠-12,使得f (x 0)=f (-12),则实数a 的取值范围为().A.(23,5)B.(23,3)⋃(3,5)C.(187,6)D.(187,4)⋃(4,6)二、填空题13.已知C 4n =C 6n ,设(3x -4)n =a 0+a 1(x -1)+a 2(x -1)2+⋯+a n ()x -1n,则a 1+a 2+⋯+a n =_____.14.已知数列{a n }的各项均为正数,满足a 1=1,a k +1-a k =a i .(i ≤k ,k =1,2,3,⋯,n -1),若{a n }是等比数列,数列{a n }的通项公式a n =_______.15.实数x ,y 满足ìíîïïy ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-2,则yx的最小值为_______.16.已知M 是抛物线y 2=2x 上一点,N 是圆x 2+(y -2)2=1关于直线x -y =0对称的曲线C 上任意一点,则||MN 的最小值为_______.三、解答题17.已知在△ABC 中,a 、b 、c 分别为角A ,B ,C 的对边,且b =a sin A -c sin Csin B -sin C.(1)求角A 的值;(2)若a =3,设角B =θ,△ABC 周长为y ,求y =f (θ)的最大值.18.如图4,已知三棱柱ABC -A 1B 1C 1中,△ABC 与△B 1BC 是全等的等边三角形.(1)求证:BC ⊥AB 1;(2)若cos ∠BB 1A =14,求二面角B -B 1C -A 的余弦值.图419.移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到2×2列联表如下:使用移动支付不使用移动支付合计35岁以下(含35岁)4035岁以上40合计50100(1)将上2×2列联表补充完整,并请说明在犯错误的概率不超过0.10的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为X ,求X 的分布列及期望.(参考公式:K 2=n ()ad -bc 2()a +b ()c +d ()a +c ()b +d (其中n =a +b +c +d )20.已知椭圆x2a 2+y 2b2=1()a >b >0右焦点F ()1,0,离心率为,过F 作两条互相垂直的弦AB ,CD ,设AB ,CD 中点分别为M ,N .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.21.已知函数f (x )=bx 2-2ax +2ln x .(1)若曲线y =f (x )在(1,f (1))处的切线为y =2x +4,试求实数a ,b 的值;(2)当b =1时,若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,a ≥52,若不等式f (x 1)≥mx 2恒成立,试求实数m 的取值范围.四、选做题22.过点P ()-1,0作倾斜角为α的直线与曲线C :ìíîx =3cos θ,y =2sin θ,(θ为参数)相交于M 、N 两点.(1)写出曲线C 的一般方程;(2)求||PM ∙||PN 的最小值.23.已知函数f (x )=16-||2x -1.(1)解不等式f (x )≤||x +2;(2)若函数y =f (x )-a 存在零点,求a 的求值范围.58参考答案以及解析一、选择题1-12BCCDD DDAAB AD二、填空题13.1023;14.2n-1;15.17;16.3-1.三、解答题17.解:(1)由已知b=a sin A-c sin Csin B-sin C可得b sin B-b sin c=a sin A-c sin C,由正弦定理可得b2+c2=a2+bc,∴cos A=b2+c2-a22bc=12,又A∈()0,π,∴A=π3.(2)由a=3,A=π3及正弦定理得bsin B=c sin C=a sin A=2,∴b=2sin B=2sinθ,c=2sin C=2sinæèöø2π3-B=2sinæèöø2π3-θ,∴y=a+b+c=3+2sinθ+2sinæèöø2π3-θ,即y=23sinæèöøθ+π6+3,由0<θ<2π3得π6<θ+π6<5π6,∴当θ+π6=π2,即θ=π3时,y max=33.18.解:(1)取BC的中点O,连接AO,B1O,由于△ABC与△B1BC是等边三角形,所以有AO⊥BC,B1O⊥BC,且AO⋂B1O=O,所以BC⊥平面B1AO,AB1⊂平面B1AO,所以BC⊥AB1.(2)设AB=a,△ABC与△B1BC是全等的等边三角形,所以BB1=AB=BC=AC=B1C=a,又cos∠BB1A=14,由余弦定理可得AB21=a2+a2-2a∙a×14=32a2,在△AB1C中,有AB21=AO2+B1O2,所以以OA,OB,OB1分别为x,y,z轴建立空间直角坐标系,如图5所示,则Aèöø÷,0,0,Bæèöø0,a2,0,B1æèçø,设平面ABB1的一个法向量为n =()x,y,z,则ìíîn ∙ AB=0,n ∙ AB1=0,即ìíîïïïï+12ay=0,2+=0,令x=1,则n =()1,3,1,又平面BCB1的一个法向量为m =()1,0,0,所以二面角B-B1C-A的余弦值为cosθ=n ∙m ||n ∙||m=.图519.解:(1)根据题意及2×2列联表可得完整的2×2列联表如下:使用移动支付不使用移动支付合计35岁以下(含35岁)40105035岁以上104050合计5050100根据公式可得K2=100()40×40-10×10250×50×50×50=36>6.635,所以在犯错误的概率不超过0.10的前提下,认为支付方式与年龄有关.(2)根据分层抽样,可知35岁以下(含35岁)的人数为8人,35岁以上的有2人,所以获得奖励的35岁以下(含35岁)的人数为X,则X的可能为1,2,3,P()X=1=C18C22C310=8120,P()X=2=C28C12C310=5610,P()X=3=C38C310=56120,其分布列为XP1812025612035612059高考链接EX =1×8120+2×56120+3×56120=125.20.解:(1)由题意得c =1,c a 则a =2,b =c =1,所以椭圆的方程为x 22+y 2=1.(2)①当两直线一条斜率不存在一条斜率为0时,S =12||AB ·||CD =12×22×2=2,②当两直线斜率存在且都不为0时,设直线AB 方程为y =k ()x -1,A ()x 1,y 1,B ()x 2,y 2,将其代入椭圆方程整理得:()1+2k 2x2-4k 2x +2k 2-2=0,x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2,||AB =1+k 2||x 1-x 2=22()k 2+11+2k 2,同理可得||CD =22()k 2+1k 2+2,S =12||AB ·||CD =2-22æèöøk +1k 2+1∈éëöø169,2,当k =±1时,S =169,综上所述四边形面积范围是éëùû169,2.21.解:(1)由题可知f ()1=2×1+4=6=b -2a ,f ′()x =2bx -2a +2x,∴f ′()1=2b -2a +2=2,联立可得a =b =-6.(2)当b =1时,f ()x =x 2-2ax +2ln x ,∴f ′()x =2x -2a +2x =2()x 2-ax +1x,∵f ()x 有两个极值点x 1,x 2,且x 1<x 2,∴x 1,x 2是方程x 2-ax +1=0的两个正根,∴x 1+x 2=a ≥52,x 1∙x 2=1,不等式f ()x 1≥mx 2恒成立,即m ≤f ()x 1x 2恒成立,∴f (x 1)x 2=x 21-2ax 1+2ln x 1x 2=-x 31-2x 1+2x 1ln x 1,由∴x 1+x 2=a ≥52,x 1∙x 2=1,得x 1+1x 1≥52,∴0<x 1≤12,令h ()x =-x 312,h ′()x =-3x 2+2ln x <0,∴h ()x 在æèùû0,12上是减函数,∴h ()x ≥h æèöø12=-98-ln 2,故m ≤-98-ln 2.四、选做题22.解:(1)由曲线C 的参数方程ìíîx =3cos θ,y =2sin θ,(θ是参数),可得x 23+y 22=cos 2θ+sin 2θ=1,即曲线C 的一般方程为x 23+y 22=1.(2)直线MN 的参数方程为{x =-1+t cos α,y =t sin α,(t 为参数),将直线MN 的参数方程代入曲线x 23+y 22=1,得()3-cos 2α∙t 2-4cos α∙t -4=0,设M ,N 对应的对数分别为t 1,t 2,则||PM ∙||PN =||t 1∙t 2=43-cos 2α,当cos α=0时,||PM ∙||PN 取得最小值为43.23.解:(1)不等式可化为||x +2+||2x -1≥16,当x ≤-2时,原不等式可化为-x -2-2x +1≥16,解得x ≤-173;当-2<x ≤12时,原不等式可化为x +2-2x +1≥16,解得x ≤-13,不满足,舍去;当x >12时,原不等式可化为x +2+2x -1≥16,解得x ≥5,所以不等式的解集为{}x |x ≤-173或x ≥5.(2)因为f ()x =ìíîïï17-2x ,x ≥12,15+2x ,x <12,所以若函数y =f ()x -a 存在零点则可转化为函数y =f ()x 与y =a 的图象存在交点,函数f (x )在(-∞,12]上单调增,在[12,+∞)上单调递减,且f (12)=16.数形结合可知a ≤16.60。

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置.参考公式:样本数据x1,x2,x n的标准差s222(x1x)(xx)(xx)2nn其中x为样本平均数球的面积公式S 24R第Ⅰ卷(选择题共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数112ii(i是虚数单位)的虚部是A.32B.12C.3D.122.已知R是实数集,Mx1,Nyyx11,则NC R M3.xA.(1,2)B.0,2C.D.1,24.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是A.1B.2C.3D.45.设S n为等比数列{a n}的前n项和,8a2a50 ,则S4 S 2A.5B.8C.8D.156.已知函数f(x)sin(2x),若存在a(0,),使得f(xa)f(xa)恒成立,则 a6的值是-1-/112013年高考数学全国卷1(完整版试题+答案+解析) A.B.C.D.63427.已知m、n表示直线,,,表示平面,给出下列四个命题,其中真命题为(1)m,n,nm,则(2),m,n,则nm(3)m,m,则∥(4)m,n,mn,则A.(1)、(2)B.(3)、(4)C.(2)、(3)D.(2)、(4)8.已知平面上不共线的四点O,A,B,C,若|AB| OA3OB2OC,则等于|BC|A.1B.2C.3D.49.已知三角形ABC的三边长成公差为2的等差数列,且最大角的正弦值为32,则这个三角形的周长是A.18B.21C.24D.1510.函数f 1(x)lgx的零点所在的区间是xA.0,1B.1,10C.10,100D.(100,)11.过直线yx上一点P引圆22670xyx的切线,则切线长的最小值为A.22B.322C.102D.2 212.已知函数f(x)xax2b .若a,b都是区间0,4内的数,则使f(1)0成立的概率是A.34B.14C.38D.582y2x13.已知双曲线的标准方程为1916,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A的任意一点,直线A1P,A2P与直线xa分别交于两点M,N,若2FMFN0,则a的值为A.169B.95C.259D.165-2-/112013年高考数学全国卷1(完整版试题+答案+解析)第Ⅱ卷(非选择题共90分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.3.第Ⅱ卷共包括填空题和解答题两道大题.二、填空题:本大题共4小题,每小题4分,共16分.开始14.如图所示的程序框图输出的结果为__________.a2,i1否15.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在i10一个球面上,则该球的表面积为__________.是1aa1输出1a11第14题图ii1结束第13题图216.地震的震级R与地震释放的能量E的关系为R(lgE11.4).2011年3月11日,日3本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的倍.17.给出下列命题:①已知a,b都,m是正数,且ab 11ab,则ab;②已知f(x)是f(x)的导函数,若xR,f(x)0,则f(1)f(2)一定成立;③命题“xR,使得2210xx”的否定是真命题;④“x1,且y1”是“xy2”的充要条件.其中正确命题的序号是.(把你认为正确命题的序号都填上)-3-/112013年高考数学全国卷1(完整版试题+答案+解析)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)xxx已知向量a(1,cos)与b(3sincos,y)共线,且有函数yf(x).2222(Ⅰ)若f(x)1,求cos(2x)的值;3(Ⅱ)在ABC中,角A,B,C,的对边分别是a,b,c,且满足2acosCc2b,求函数f(B)的取值范围.18.(本小题满分12分)已知等差数列a n的前n项和为S n,公差d0,且S3S550,a1,a4,a13成等比数列.(Ⅰ)求数列a的通项公式;n(Ⅱ)设bnan是首项为1,公比为3的等比数列,求数列b的前n项和Tn.n-4-/112013年高考数学全国卷1(完整版试题+答案+解析)18.(本小题满分12分)已知四棱锥ABCDE,其中ABBCACBE1,CD2,CD面ABC,BE∥CD,F为AD的中点.D(Ⅰ)求证:EF∥面ABC;(Ⅱ)求证:面ADE面ACD;F (III)求四棱锥ABCDE的体积.ECAB19.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y与腐蚀时间x之间对应的一组数据:时间x(秒)51015203040深度y(微米)61010131617现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y关于x的线性回归方程4139y?x,规定由线性回归方程得到的估计数据与所选出的检验数据的误1326差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.-5-/112013年高考数学全国卷1(完整版试题+答案+解析) 20.(本小题满分12分)已知函数axbf(x)在点(1,f(1))的切线方程为xy30.2x1(Ⅰ)求函数f(x)的解析式;(Ⅱ)设g(x)lnx,求证:g(x)f(x)在x[1,)上恒成立.21.(本小题满分14分)实轴长为43的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且A FAF,△AF1F2的面积为3.12(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若AC2AB,求直线l的斜率k.yAF1BoF2xC-6-/112013年高考数学全国卷1(完整版试题+答案+解析)参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)BDBADBBDBCCB二.填空题(本大题共4小题,每小题4分,共16分.)13.214. 19322.310216.①③三.解答题17.(本小题满分12分)解:(Ⅰ)∵a与b共线∴3sin1x2xcos2xcos2yy3sin x2cosx22x3xxx1cossin(1cos)sin(2226)12⋯⋯⋯⋯3分1∴f(x)sin(x)1,即62 sin(x )612⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分2 cos(3 2x)cos2(x)32x2x2cos()12sin(36) 112⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ)已知2acosCc2b由正弦定理得:2sinAcosCsinC2sinB2sin(AC)2sinAcosCsinC2sinAcosC2cosAsinC∴f1cosA,∴在ABC中∠21(B)sin(B)62 A3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵∠A∴320B,3B6656⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分1∴sin(B)1,26 1f(B)323 ∴函数f(B)的取值范围为](1,2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 -7-/112013年高考数学全国卷1(完整版试题+答案+解析)18.(本小题满分12分) 解:(Ⅰ)依题意得3a132 2d45 5ad1250⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(a 1 3d) 2 a ( 1 a 12d 1)解得a 1 d 3 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分2a n a 1(n1)d32(n1)2n1,即a n 2n1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ) b na nn 3 1 , n1(21)3nb n a3nn1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分2(21)3nT n 53n337123n1n3T n 335373(2n1)3(2n1)3⋯⋯⋯⋯⋯⋯⋯⋯9分 2n1n2T n 3232323(2n1)332 3(1 1 n 3 3 1 ) (2n n 1)32n n 3∴n T n n3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是A D,AC 的中点12∴FG ∥CD,且FG=DC=1.D ∵BE ∥CD ∴FG 与BE 平行且相等F∴EF ∥BG .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分EEF 面ABC,BG 面ABC ∴EF ∥面ABCGC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分AB (Ⅱ)∵△ABC为等边三角形∴BG⊥AC又∵DC⊥面ABC,BG面ABC∴DC⊥BG-8-/112013年高考数学全国卷1(完整版试题+答案+解析)∴BG垂直于面ADC的两条相交直线AC,DC,∴BG⊥面ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∵EF∥BG∴EF⊥面ADC∵EF面ADE,∴面ADE⊥面ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分(Ⅲ)连结EC,该四棱锥分为两个三棱锥E-ABC和E-ADC.1313333V A VV11.BCDEEABCEACD34321264⋯⋯⋯⋯⋯⋯⋯⋯⋯12分另法:取BC的中点为O,连结A O,则A OBC,又CD平面ABC,∴CDAO,BCCDC,∴AO平面BCDE,∴AO为V ABCDE的高,3(12)131333AO,S BCDE,V.ABCDE222322420.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A包含的基本事件有10种.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分所以102P(A).所以选取的2组数据恰好不相邻的概率是15323.⋯⋯⋯⋯⋯⋯⋯⋯⋯6分4139219219(Ⅱ)当x10时,y?10,|10|2;13262626⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分4139379379y?30,|当x30时,16|2;13262626所以,该研究所得到的回归方程是可靠的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分21.(本小题满分12分)解:(Ⅰ)将x1代入切线方程得y2ba∴f(1)2,化简得ba4.11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分f(x) a(2x 1)(1(axb)222x)x-9-/112013年高考数学全国卷1(完整版试题+答案+解析)2a2(ba)2bbf(1)1. 442⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分解得:a2,b2 ∴2x2 f(x).2 x1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 (Ⅱ)由已知得 ln2x2x 在[1,)上恒成立2 x12xx 化简得(1)ln22x 即x 2lnxlnx2x 20在[1,)上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分设h(x)x 2lnxlnx2x2,h(x)2xlnxx1 x2 1∵x1∴2xlnx0,x2,即h(x)0.x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 ∴h(x)在[1,)上单调递增,h (x)h(1)0 ∴g(x)f(x)在x[1,)上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 22.(本小题满分14分) 22xy解(1)设椭圆方程为221(0)abab,AF 1m,AF 2n m 2 2 n 2 4c由题意知 m n43⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 mn6解得c 29,∴b 21293.2y 2x∴椭圆的方程为1123⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵y A c3,∴y A 1,代入椭圆的方程得x A 22,2将点A 坐标代入得抛物线方程为x 8y.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设直线l的方程为y1k(x22),B(x1,y1),C(x2,y2)-10-/112013年高考数学全国卷1(完整版试题+答案+解析)由AC2AB 得2222(x22)x ,1 化简得2x 1x22 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 联立直线与抛物线的方程y x 2 1 8 k (x2 y 2) , 得x 28kx162k80∴x 1228k ①⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 联立直线与椭圆的方程y x 1 k (22y4x 22 12 ) 2x 2kkxkk 22得(14k)(8162)3216280 ∴ 2162k8kx22② 2214k⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 2162k8k ∴22222xx2(8k22)1k 22142k整理得:)0(16k42)(1214k∴ 22 k ,所以直线l 的斜率为 44 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14分-11-/11。

2013年上海部分重点中学高考模拟考试数学(理)试卷(含答案)

2013年上海部分重点中学高考模拟考试数学(理)试卷(含答案)

2013年上海部分重点中学高考模拟考试数学(理)试卷考生注意:1.答卷前,考生务必在答题纸上将姓名、准考证号填写清楚. 2.本试卷共有23道试题,满分150分. 考试时间120分钟.一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数21x y =+的反函数为 . 2. 平面上的点(3,4)A 绕原点顺时针旋转π2后, 所得点B 的坐标为 . 3. 设m 是实数. 若复数1iim +-的实部为0(i 表示虚数单位), 则m = . 4. 若复数z 是方程2240x x -+=的一个根, 则||z = . 5. 在右边所示流程图中, 若输入的x 值是3, 则最后输出的n的值为 .6. 设m 是正实数. 若椭圆2221691x y m ++=的焦距为8, 则 m = . 7. 设k 是实数. 若方程22144x y k k -=-+表示的曲线是双曲线, 则k 的取值范围为 .8. 已知命题“a A ∈”是命题“132110111aa =”的充分非必要条件, 请写出一个满足条件的非空集合A , 你写的非空集合A 是 .9. 设全集U R =. 若集合11A xx ⎧⎫=≥⎨⎬⎩⎭, 则U A =ð . 10. 设A 是三角形的内角. 若1sin cos 5A A -=, 则tan 2A = . 11. 设a 是实数. 若函数()|||1|f x x a x =+--是定义在R 上的奇函数, 但不是偶函数, 则函数()f x 的递增区间为 . 12. 在数列{}n a 中, 10a ≠, 当*n N ∈时, 111n n a a n +⎛⎫=+⎪⎝⎭. 数列{}n a 的前n 项和为n S , 则2limnn nS S →∞= .13. 若平面向量,a b满足||2a = , (2)12a b b +⋅= , 则||b 的取值范围为 .14. 设1,,,,ab S a bcd b c c d R ⎧⎫⎛⎫⎪⎪=∈=⎨⎬⎪⎝⎭⎪⎪⎩⎭, 2,,,,0a b S a b c d a d b c c d R ⎧⎫⎛⎫⎪⎪=∈==+=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. 已知矩阵2468A B ⎛⎫=+ ⎪⎝⎭, 其中1A S ∈, 2B S ∈. 那么A B -= .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案. 考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得 5分,否则一律得零分. 15. 根据以下各组条件解三角形, 解不唯一...的是 [答] ( )(A) 60A ︒=, 75B ︒=, 1c =.(B) 5a =, 10b =, 15A ︒=.(C) 5a =, 10b =, 30A ︒=. (D) 15a =, 10b =, 30A ︒=.16. 对于数列{}n a , 如果存在正实数M , 使得数列中每一项的绝对值均不大于M , 那么称该数列为有界的, 否则称它为无界的. 在以下各数列中, 无界的数列为 [答] ( )(A) 12a =, 123n n a a +=-+. (B) 12a =, 112nn a a +=+.(C) 12a =, 1arctan 1n n a a +=+.(D) 12a =, 11n a +=.17. 设,,a b k 是实数, 二次函数2()f x x ax b =++满足: (1)f k -与()f k 异号, (1)f k +与()f k 同号. 在以下关于()f x 的零点的命题中, 假命题的序号为[答] ( )① 该二次函数的两个零点之差一定大于2; ② 该二次函数的零点都小于k ; ③ 该二次函数的零点都大于1k -. (A) ①②.(B) ②③.(C) ①③.(D) ①②③. 18. 将图中的正方体标上字母, 使其成为正方体1111ABCD A B C D -, 不同的标字母方式共有[答] ( )(A) 24种. (B) 48种.(C) 72种.(D) 144种.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19. (本题满分12分)已知a 是实数, 三条直线250x y -+=, 40x y a -++=, 0x a +=中任意两条的交点均不在椭圆22211x y +=上, 求a 的取值范围.20. (本题满分12分)某学生解下面的题目时, 出现了错误. 指出该学生从哪一个步骤开始犯了第一个错误, 并从该步骤开始改正他的解答.【题目】有一块铁皮零件, 它的形状是由边长为40cm 的正方形CDEF 截去一个三角形ABF 所得的五边形ABCDE , 其中AF 长等于12cm, BF 长等于10cm, 如图所示. 现在需要截取矩形铁皮, 使得矩形相邻两边在,CD DE 上. 请问如何截取, 可以使得到的矩形面积最大? (图中单位: cm)【错解】在AB 上取一点P , 过P 作,CD DE 的平行线, 得矩形PNDM . 延长,NP MP , 分别与,EF CF 交于点,Q S .设PQ x =cm(010x ≤≤), 则40PN x =-. 由APQ ∽ABF , 得1.2AQ x =,28 1.2PM EQ EA AQ x ==+=+.……………步骤①如果矩形PNDM 的面积用y cm 2表示, 那么(40)(28 1.2)y PN PM x x =⋅=-+,其中010x ≤≤.因为PN , PM 均大于零, 所以由基本不等式, 得222PN PM PN PM +⋅≤,因此y PN PM =⋅的最大值为222PN PM +.……………步骤②y 取到最大值, 即等号成立当且仅当PN NM =, 即4028 1.2x x -=+, 解得6011x =. ……………步骤③当60[0,10]11x =∈时, 144400(40)(28 1.2)121y x x =-+=, 所以当6011x =cm 时, 面积的最大值为144400121cm 2.……………步骤④21. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数1π()sincos sin 2222x x f x x ⎛⎫=++ ⎪⎝⎭. (1) 写出()f x 的最小正周期以及单调区间; (2) 若函数5π()cos 4h x x ⎛⎫=+ ⎪⎝⎭, 求函数22log ()log ()y f x h x =+的最大值, 以及使其取得最大值的x 的集合.22. (本题满分18分) 本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.可以证明, 对任意的*n N ∈, 有2333(12)12n n +++=+++ 成立. 下面尝试推广该命题:(1) 设由三项组成的数列123,,a a a 每项均非零, 且对任意的{1,2,3}n ∈有23331212()n na a a a a a +++=+++ 成立, 求所有满足条件的数列; (2)设数列{}n a 每项均非零, 且对任意的*n N ∈有23331212()n n a a a a a a +++=+++ 成立, 数列{}n a 的前n 项和为n S . 求证: 2112n n na a S ++-=, *n N ∈; (3) 是否存在满足(2)中条件的无穷数列{}n a , 使得20122011a =-? 若存在, 写出一个这样的无穷数列(不需要证明它满足条件); 若不存在, 说明理由.23. (本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()2f x x x m =-, 常数m R ∈. (1) 设0m =. 求证: 函数()f x 递增;(2) 设0m >. 若函数()f x 在区间[0,1]上的最大值为2m , 求正实数m 的取值范围; (3) 设20m -<<. 记1()()f x f x =, 1()(())k k f x f f x +=, *k N ∈. 设n 是正整数, 求关于x 的方程()0n f x =的解的个数.一.(第1至14题)每一题正确的给4分,否则一律得零分。

2013年上海高考数学模拟试卷 (文科)02

2013年上海高考数学模拟试卷 (文科)02

2013届高三模拟数学(文)试题一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若全集,集合,则.2..3.若函数的反函数为,则.4.函数的最大值为.5.若直线过点,且是它的一个法向量,则的方程为.6.不等式的解为.7. 阅读右面的程序框图,则输出的=8.在相距2千米的、两点处测量目标,若,,则、两点之间的距离是千米.9.若变量、满足条件,则的最大值为.10.课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为、、.若用分层抽样抽取个城市,则丙组中应抽取的城市数为.11.行列式()所有可能的值中,最大的是.12.在正三角形中,是上的点,,,则.13.随机抽取9个同学中,至少有2个同学在同一月出生的概率是(默认每月天数相同,结果精确到).14.设是定义在上.以1为周期的函数,若在上的值域为,则在区间上的值域为.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.下列函数中,既是偶函数,又是在区间上单调递减的函数为().;.;.;..16.若,且,则下列不等式中,恒成立的是().;.;.;..17.若三角方程与的解集分别为和,则().;.;.;..18.设,,,是平面上给定的4个不同的点,则使成立的点的个数为().0;.1;.2;. 4.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.已知正方体,,为棱的中点.(1)求异面直线与所成角的大小(结果用反三角表示);(2)求点到平面的距离,并求出三棱锥的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分.已知,其中是的内角.(1)当时,求的值(2)若,当取最大值时,求大小及边长.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数,其中常数,满足.(1)若,判断函数的单调性;(2)若,求时的取值范围.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆(常数),点是上的动点,是的右顶点,定点的坐标为.(1)若与重合,求的焦点坐标;(2)若,求的最大值与最小值;(3)若的最小值为,求的取值范围.23. (本题满分18分)本题共有3个小题,第1小题满分8分,第2小题满分10分已知数列{a n}的前n项和为S n,且S n n5a n85,n N*.(1) 证明:{a n1}是等比数列;(2) 求数列{S n}的通项公式,并指出n为何值时,S n取得最小值,并说明理由.参考答案一、填空题(本题满分56分,本大题共有14题,每题4分)1.;2.;3.;4.;5.;6.或;7.30;8.;9.;10.;11.;12.;13.;14..二. 选择题(本题满分20分,本大题共有4题,每题5分)题号15161718代号A D A B三. 解答题:(本题满分74分)19.解:(1)是异面直线与所成角 ----------1分求解得----------3分所以异面直线与所成角是----------4分(2)利用等体积----------5分----------6分求解得----------8分利用-------9分-------11分=----------12分20.解:(1)当时,----------5分(2)----------7分----------9分时,取到最大值----------10分由条件知, ---------11分由余弦定理------------12分------------13分求解得----------14分21.解:(1)当时,因为都单调递增,所以函数单调递增;(3分)当时,因为都单调递减,所以函数单调递减. (6分)(2).(i)当时,,解得;(10分)(ii)当时,,解得.(14分)22.解:(1)∵与重合,∴.(2分)∴椭圆方程为.∴半焦距,∴焦点坐标为和. (4分)(2)∵,∴椭圆方程为,设动点,则.(6分)当时,取得最小值;当时,取得最小值. (10分)(3)设动点,则.(12分)∵的最小值在时取到,且,∴. (14分)∴且,解得.∴的取值范围为. (16分)23. (1) 当n1时,a114;当n≥2时,a n S n S n15a n5a n11,所以,又a1115≠0,所以数列{a n1}是等比数列;…… 10分(2) 由(1)知:,得,从而(n N*);解不等式S n<S n1,得,,当n≥15时,数列{S n}单调递增;同理可得,当n≤15时,数列{S n}单调递减;故当n15时,S n取得最小值.…… 18分。

2013年上海市高考数学试卷(文科)-含答案详解

2013年上海市高考数学试卷(文科)-含答案详解

第1页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2013年普通高等学校招生全国统一考试(上海卷)数学(文科)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 函数f(x)= x 2−1(x ≥0)的反函数为f −1(x),则f −1(2)的值是( ) A.B.C.D.2. 设常数a ∈R ,集合A ={x|(x −1)(x −a)≥0},B ={x|x ≥a −1},若A ∪B =R ,则a 的取值范围为( )A. ( −∞,2)B. ( −∞,2]C. ( 2,+∞ )D. [2,+∞ )3. 钱大姐常说“好货不便宜”,她这句话的意思是“好货”是“不便宜”的( ) A. 充分条件 B. 必要条件C. 充分必要条件D. 既非充分又非必要条件4. 记椭圆=1围成的区域(含边界)为Ωn (n =1,2,…),当点(x ,y)分别在Ω 1,Ω 2,…上时,x + y 的最大值分别是M 1,M 2,…,则=( ) A. 0 B. ‘ C. 2 D.第II 卷(非选择题)第2页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………二、填空题(本大题共14小题,共56.0分)5. 不等式<0的解为______.6. 在等差数列{a n }中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3=______.7. 设m R ,m 2+ m −2+(m 2−1)i 是纯虚数,其中i 是虚数单位,则m =______. 8. 已知=0,=1,则y =______.9. 已知△ ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ ab + b 2− c 2=0,则角C 的大小是______.10. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______.11. 设常数a R.若的二项展开式中x 7项的系数为−10,则a =______.12. 方程=3 x 的实数解为______.13. 若cos x cos y +sin x sin y =,则cos(2x −2 y)=______.14. 已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为,则=______.15. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示).16. 设AB 是椭圆Γ的长轴,点C 在Γ上,且∠ CBA =.若AB =4,BC =,则Γ的两个焦点之间的距离为______.17. 设常数a >0.若9 x +≥ a +1对一切正实数x 成立,则a 的取值范围为______.第3页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. 已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为a 1、a 2、a 3;以C 为起点,其余顶点为终点的向量分别为c 1、c 2、c 3.若i ,j ,k ,l {1,2,3}且i ≠ j ,k ≠ l ,则(a i + a j )·( c k + c l )的最小值是______.三、解答题(本大题共5小题,共74.0分。

2013年上海高考数学(理科)试卷及答案

2013年上海高考数学(理科)试卷及答案

、填空题 1.计算:艸聽 2013年上海市秋季高考理科数学【解答】根据极限运算法则, lim n n 2013n 1332.设m R , 2 m m 2 (m 22 m m 2 0 【解答】 m2 m1 02 23.若x yx x5则x1 1 y y21)i 是纯虚数,其中i 是虚数单位,则 m【解答】 x 2 2xy 4.已知△ ABC 的内角A 、 2C 所对应边分别为a 、b 、C ,若3a2ab 3b 2 3c 20,则角C 的大小是 (结果用反三角函数值表示) 3a 2 2ab 3b 2 3c 2 0 c 2 a 2 b 2 fab ,cosC 3,C 1 arccos —.3 5•设常数5 若x 2 a 的二项展开式中xx 7项的系数为10,则 a【解答】T r 1C 5(x 2)5r (-)r ,2(5x r) r 7r 1,故 c 5a10 a 2 .6.方程J- 3x 1 1 -3x 1的实数解为 3 【解答】原方程整理后变为 32x3x 80 3x 4 x log 3 4 .7.在极坐标系中,曲线 coscos1的公共点到极点的距离为【解答】联立方程组得1)—,又0,故所求为口2 2&盒子中装有编号为 个球的编号之积为偶数的概率是 1, 3, 4,6, 7, 8, 9的九个球,从中任意取出两个,则这两 ____ (结果用最简分数表示)【解答】9个数5个奇数,4个偶数,根据题意所求概率为13189•设AB 是椭圆 的长轴,点C 在 上,且 CBA -,若AB=4 , BC .2,贝U 的4两个焦点之间的距离为 __________2爲 1,于是可算得C(1,1),得b b 2 4,2c 辽•3 310 •设非零常数d 是等差数列X i ,X 2,X 3,|||,X i9的公差,随机变量 等可能地取值X l ,X 2, X 3,川,为9 ,则方差D _________2a12•设a 为实常数,y f (x)是定义在R 上的奇函数,当x 0时,f(x) 9x7 ,x若f(x) a 1对一切X 0成立,则a 的取值范围为 ________________2aa 1 ;当 x 0 时,f(x) 9x 7 a 1x8 即 6|a| a 8,又 a 1,故 a72 213.在xOy 平面上,将两个半圆弧(x 1) y 1(x1)和(x 3)2 y 2 1(x 3)、两条直线y 1和y 1围成的封 闭图形记为D ,如图中阴影部分•记 D 绕y 轴旋转一周而成 的几何体为,过(0, y)(| y| 1)作的水平截面,所得截面面积为4『1 y 2 8 ,试利用祖暅原理、一个平放的圆 柱和一个长方体,得出的体积值为 ____________【解答】根据提示,一个半径为 1,高为2的圆柱平放,一个高为 2,底面面积8的长方 体,这两个几何体与 放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故 它们的体积相等,即的体积值为12 22 8 2【解答】不妨设椭圆 2的标准方程为—4 【解答】EXio ,DJ ^9(92 82 川 12 °2 12M 92) V30|d| •11•若 cosxcosy sinxsiny ,sin2x sin2y 2 -,则 sin(x3y) ________【解答】cos(x y),sin2x 2sin2y2sin(x y)cos(x y)I ,故sin(xy)【解答】f (0)0 ,故0 a 1 1614•对区间I上有定义的函数g(x),记g(l) {y|y g(x),x 1},已知定义域为[0,3]的函数y f (x)有反函数y f 1(x),且f 1([0,1)) [1,2), f 1((2, 4]) [0,1),若方程f (x) x 0有解x0,则x0 ____【解答】根据反函数定义,当x [0,1)时,f(x) (2,4] ;x [1,2)时,f(x) [0,1),而y f(x)的定义域为[0,3],故当x [2,3]时,f(x)的取值应在集合(,0) [1,2] (4,),故若f(x。

上海市奉贤区2013届高三二模数学理 解析版

上海市奉贤区2013届高三二模数学理 解析版

2013年上海市奉贤区高考数学二模试卷(理科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2013•奉贤区二模)函数f(x)=2sin2x的最小正周期是π.=2.(4分)(2013•奉贤区二模)在的二项展开式中,常数项是70.解:在=703.(4分)(2013•奉贤区二模)已知正数x,y满足x+y=xy,则x+y的最小值是4.≤4.(4分)(2013•奉贤区二模)执行如图所示的程序框图,输出的S值为30.5.(4分)(2013•奉贤区二模)已知直线y=t与函数f(x)=3x及函数g(x)=4•3x的图象分别相交于A、B两点,则A、B两点之间的距离为log34.,=log6.(4分)(2013•奉贤区二模)用铁皮制作一个无盖的圆锥形容器,已知该圆锥的母线与底面所在的平面所成角为45°,容器的高为10cm,制作该容器需要100cm2的铁皮.,rl=故答案为:7.(4分)(2013•奉贤区二模)若实数t满足f(t)=﹣t,则称t是函数f(x)的一个次不动点.设函数f(x)=lnx与反函数的所有次不动点之和为m,则m=0.8.(4分)(2013•奉贤区二模)关于x的方程x2+mx+2=0(m∈R)的一个根是1+ni(n∈R+),在复平面上的一点Z对应的复数z满足|z|=1,则|z﹣m﹣ni|的取值范围是[,].=,故﹣+1[[,9.(4分)(2013•奉贤区二模)在极坐标系中,直线的位置关系是相离.解:直线﹣,即=10.(4分)(2013•奉贤区二模)已知函数f(x)=lg(a x﹣b x)(a>1>b>0),且a2=b2+1,则不等式f(x)>0的解集是(2,+∞).11.(4分)(2013•奉贤区二模)设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1),,则函数f(x)在(1,2)上的解析式是y=.=12.(4分)(2013•奉贤区二模)设正项数列{a n}的前n项和是S n,若{a n}和{}都是等差数列,且公差相等,则a1+d=.}与,},两边平方得:②②﹣①得:.时,代入③解得故答案为13.(4分)(2013•奉贤区二模)椭圆上的任意一点M(除短轴端点除外)与短轴两个端点B1,B2的连线交x轴于点N和K,则|ON|+|OK|的最小值是2a.==|ON|=|=|ON|=|=2a14.(4分)(2013•奉贤区二模)如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f(x),当x∈[0,]时y=f(x)=.,轨迹方程为(点的最大横坐标为)为圆心,以(..二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.[,[,]16.(5分)(2013•奉贤区二模)设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为(),,17.(5分)(2013•淄博一模)数列{a n}前n项和为S n,已知,且对任意正整数m,n,B,同理令所以此数列是首项为公比,以==18.(5分)(2013•奉贤区二模)直线x=2与双曲线的渐近线交于A,B两点,设P为双曲线C上的任意一点,若(a,b∈R,O为坐标原点),则下列的坐标,根据,确定坐标之间的关系,可得,利用基,则∵三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2013•奉贤区二模)长方体ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=2,AB=1,E是DD1上的一点.(1)求异面直线AC与B1D所成的角;(2)若B1D⊥平面ACE,求三棱锥A﹣CDE的体积.,所成的角为,则..20.(14分)(2013•奉贤区二模)位于A处的雷达观测站,发现其北偏东45°,与A相距20海里的B处有一货船正以匀速直线行驶,20分钟后又测得该船只位于观测站A北偏东45°+θ(0°<θ<45°)的C处,.在离观测站A的正南方某处E,cos∠EAC=﹣(1)求cosθ;(2)求该船的行驶速度v(海里/小时).)∵.海里,21.(14分)(2013•奉贤区二模)三阶行列式,元素b(b∈R)的代数余子式为H(x),P={x|H(x)≤0},(1)求集合P;(2)函数的定义域为Q,若P∩Q≠∅,求实数a的取值范围.,元素)值,使成立,,则只需时,,22.(16分)(2013•奉贤区二模)已知数列{a n}中,a2=1,前n项和为S n,且.(1)求a1,a3;(2)求证:数列{a n}为等差数列,并写出其通项公式;(3)设,试问是否存在正整数p,q(其中1<p<q),使b1,b p,b q成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.)在)由①,得②,两式作差=,则,即①,得.时,{<23.(18分)(2013•奉贤区二模)动圆C过定点F,且与直线相切,其中p>0.设圆心C的轨迹Γ的程为F(x,y)=0(1)求F(x,y)=0;(2)曲线Γ上的一定点P(x0,y0)(y0≠0),方向向量的直线l(不过P 点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为k PA,k PB,计算k PA+k PB;(3)曲线Γ上的两个定点P0(x0,y0)、,分别过点P0,Q0作倾斜角互补的两条直线P0M,Q0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.的方程为作直线与定直线为焦点,为准线,方程为得=,,∴,得,)计算得.是定值,命题得证。

2013年上海高考数学试卷(标准答案)——高考必备

2013年上海高考数学试卷(标准答案)——高考必备

2013年全国普通高等学校招生统一考试上海 数学试卷一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.计算:20lim______313n n n →∞+=+2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m = 3.若2211x xx y y y=--,则______x y +=4.已知△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =6.方程1313313x x-+=-的实数解为________ 7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________ 8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =Γ的两个焦点之间的距离为________10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能取值12319,,,,x x x x ,则方差_______D ξ= 11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++, 若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________13.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48ππ,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。

2013年上海市高考数学模拟试卷(含答案)题目和答案和评分要点

2013年上海市高考数学模拟试卷(含答案)题目和答案和评分要点

2013年上海市普通高等学校春季招生考试数 学 试 卷考试注意: 1.答卷前,考生务必将姓名、高考座位号、校验码等填写清楚。

2.本试卷共有31道试题,满分150分。

考试时间120分钟。

3.请考生用钢笔或圆珠笔按要求在试卷相应位置上作答。

一. 填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分。

1. 函数2log (2)y x =+的定义域是2. 方程28x=的解是 3. 抛物线28y x =的准线方程是 4. 函数2sin y x =的最小正周期是5. 已知向量(1 )a k =,,(9 6)b k =- ,。

若//a b ,则实数 k = 6. 函数4sin 3cos y x x =+的最大值是 7. 复数23i +(i 是虚数单位)的模是8. 在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B ===,,,则b= 9. 在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为 10. 从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的 概率为 (结果用数值表示)。

11. 若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S 12. 36的所有正约数之和可按如下方法得到: 因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。

考生必须把真确结论的代码写在题后的括号内,D 1C 1B 1A 1D C AB选对得3分,否则一律得0分。

13.展开式为ad-bc 的行列式是( )(A )a bd c (B)acb d(C)a d bc(D)b a dc14.设-1()f x为函数()f x = )(A) 1(2)2f-= (B) 1(2)4f -= (C) 1(4)2f-= (D) 1(4)4f -=15.直线2310x y -+=的一个方向向量是( )(A) (2 3)-, (B) (2 3), (C) (3 2)-, (D) (3 2), 16函数12()f x x-=的大致图像是()17.如果0a b <<,那么下列不等式成立的是( ) (A)11a b < (B) 2ab b < (C) 2ab a -<- (D) 11a b-<- 18.若复数12 z z 、满足21z z =,则12 z z 、在复数平面上对应的点12 Z Z 、( ) (A) 关于x 轴对称 (B)关于y 轴对称(C) 关于原点对称 (D)关于直线y x =对称 19. 10(1)x +的二项展开式中的一项是( )(A )45x (B )290x (C ) 3120x (D )4252x 20.既是偶函数又在区间(0 )π,上单调递减的函数是( )(A )sin y x = (B )cos y x = (C )sin 2y x = (D )cos 2y x = 21.若两个球的表面积之比为1:4,则这两个球的体积之比为( ) (A )1:2 (B )1:4 (C )1:8 (D )1:16 22.设全集U R =,下列集合运算结果为R 的是( ) (A )u Z N ð (B )u N N ð (C )()u u ∅痧 (D ){0}u ð23.已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 24.已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是( )(A )圆 (B ) 椭圆 (C ) 抛物线 (D )双曲线三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤。

2013届高考数学知识点复习测试题1

2013届高考数学知识点复习测试题1

第2讲 等差数列★ 知 识 梳理 ★1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或dn n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项. 即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a ) ⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.★ 重 难 点 突 破 ★1.重点:理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质.2.难点:利用等差数列的性质解决实际问题.3.重难点:正确理解等差数列的概念,灵活运用等差数列的性质解题.⑴求等差数列的公差、求项、求值、求和、求n S 最值等通常运用等差数列的有关公式及其性质.问题1:已知n m ≠,且n a a a m ,,,,321和n b b b b m ,,,,,4321都是等差数列,则=--2313b b a a分析:问题转化为:在n m ,插入若干个数,使其成等差,利用等差数列公差的求法公式解答. 解析:设等差数列n a a a m ,,,,321和n b b b b m ,,,,,4321的公差分别是21,d d 则1132d a a =-,14d m n =-,∴213m n a a -=-,同理,得5223m n d b b -==-,∴=--2313b b a a 25.⑵求“首末项和为常数”的数列的和,一般用倒序相加法.问题2:已知函数.424)(xxx f +=则 ①=+)32()31(f f ; ②=+++)20092008()20092()20091(f f f .分析:①可以直接代入计算,也可以整体处理;②寻找规律,整体处理. 解析: xx x f 424)(+=,经计算,得1)1()(=-+x f x f ,∴=+++)20092008()20092()20091(f f f 100411004=⨯.★ 热 点 考 点 题 型 探 析★考点1等差数列的通项与前n 项和 题型1已知等差数列的某些项,求某项【例1】已知{}n a 为等差数列,20,86015==a a ,则=75a 【解题思路】可以考虑基本量法,或利用等差数列的性质 【解析】方法1: 154,156420598141160115==⇒⎩⎨⎧=+==+=d a d a a d a a ∴2415474156474175=⨯+=+=d a a 方法2: 1544582015601560=-=--=a a d,∴241541520)6075(6075=⨯+=-+=d a a方法3:令b an a n+=,则38,45162060815==⇒⎩⎨⎧=+=+b a b a b a ∴24384516757575=+⨯=+=b a a方法4: {}n a 为等差数列,∴7560453015,,,,a a a a a 也成等差数列,设其公差为1d ,则15a 为首项,60a 为第4项. ∴438203111560=⇒+=⇒+=d d d a a ∴2442016075=+=+=d a a方法5: {}n a 为等差数列,∴),75(),,60(),,15(756015a a a 三点共线∴2415204582060751560757560751560=⇒-=-⇒--=--a a a a a a【名师指引】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法.题型2已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n . 【解题思路】⑴利用等差数列的通项公式d n a a n )1(1-+=求出1a 及d ,代入n S 可求项数n ; ⑵利用等差数列的前4项和及后4项和求出n a a +1,代入n S 可求项数n .【解析】⑴设等差数列的首项为1a ,公差为d ,则3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a∴7,663)1(231821==⇒=--=n n n n n S n⑵ 124,363214321=+++=+++---n n n n a a a a a a a a3423121---+=+=+=+n n n n a a a a a a a a∴40160)(411=+⇒=+n n a a a a ∴39780207802)(1=⇒=⇒=+=n n a a n S n n【名师指引】解决等差数列的问题时,通常考虑两种方法:⑴基本量法;⑵利用等差数列的性质.题型3求等差数列的前n 项和【例3】已知n S 为等差数列{}n a 的前n 项和,212n n S n -=.⑴求321a a a ++;⑵求10321a a a a ++++ ; ⑶求n a a a a ++++ 321.【解题思路】利用n S 求出n a ,把绝对值符号去掉转化为等差数列的求和问题. 【解析】4. 212n n S n -=,∴当1=n 时,1111211=-==S a ,当2≥n 时,n n n n n S S a n n n 213)1()1(12)12(221-=-+---=-=-,当1=n 时,1111213a ==⨯-, ∴n a n 213-=. 由0213≥-=n a n ,得213≤n ,∴当61≤≤n 时,0>n a ;当7≥n 时,0<n a .⑴27331223321321=-⨯==++=++S a a a a a a ;⑵)(10987632110321a a a a a a a a a a a a +++-++++=++++ 52)101012()6612(2222106=-⨯--⨯=-=S S ;⑶当61≤≤n 时,232132112n n a a a a a a a a n n -=++++=++++ ,当7≥n 时,)(876321321n n a a a a a a a a a a a +++-++++=++++ .7212)12()6612(222226+-=---⨯=-=n n n n S S n【名师指引】含绝对值符号的数列求和问题,要注意分类讨论. 【新题导练】1.已知{}n a 为等差数列,q a p a n m ==,(k n m ,,互不相等),求k a . 【解析】nm k m q n k p a nk q a nm q p nk a a nm a a k k n k n m --+-=⇒--=--⇒--=--)()(2.已知n S 为等差数列{}n a 的前n 项和,100,7,141===n S a a ,则=n . 【解析】设等差数列的公差为d ,则23171414=-=--=a a d101002)1(21=⇒=⨯-+=n n n n S n .3.已知5个数成等差数列,它们的和为5,平方和为165,求这5个数. 【解析】设这5个数分别为.2,,,,2d a d a a d a d a ++--则⎩⎨⎧=+=⇒⎩⎨⎧=+++++-+-=+++++-+-1651051165)2()()()2(5)2()()()2(2222222da a d a d a a d a d a d a d a a d a d a解得4,1±==d a当4,1==d a 时,这5个数分别为:9,5,1,3,7--; 当4,1-==d a 时,这5个数分别为:.7,3,1,5,9--4.已知n S 为等差数列{}n a 的前n 项和,10,10010010==S S ,求110S .【解析】方法1:设等差数列的公差为d ,则⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=+100109950111049501001004510111d a d a d a ∴110109110211101110-=⨯⨯+=d a S ;方法2: 2902)(90100111001110100-=+⇒-=+=-a a a a S S ∴1102)(1102)(110100*********-=+=+=a a a a S .考点2 证明数列是等差数列【例4】已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b n n .求证:数列{}n b 是等差数列.【解题思路】利用等差数列的判定方法⑴定义法;⑵中项法.【解析】方法1:设等差数列{}n a 的公差为d ,d n n na S n )1(211-+=,∴d n a nS b n n )1(211-+==∴2)1(2121111d d n a nd a b b n n =---+=-+(常数)∴数列{}n b 是等差数列.方法2: d n a nS b n n )1(211-+==, ∴nd a b n 2111+=+,d n a b n )1(2112++=+ ∴1111222)1(21)1(21++=+=-++++=+n n n b nd a d n a d n a b b ,∴数列{}n b 是等差数列.【名师指引】判断或证明数列是等差数列的方法有: ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列; ⑶通项公式法:b kn a n +=(b k ,是常数)⇔{}n a 是等差数列;⑷前n 项和公式法:Bn An S n +=2(B A ,是常数,0≠A )⇔{}n a 是等差数列.【新题导练】5.设n S 为数列{}n a 的前n 项和,)(+∈=N n pna S n n ,.21a a = ⑴求常数p 的值;⑵求证:数列{}n a 是等差数列.【解析】⑴ n n pna S =,21a a =,∴111=⇒=p pa a ⑵由⑴知:n n na S =,当2≥n 时,0))(1()1(111=--⇒--=-=---n n n n n n n a a n a n na S S a ,∴)2(01≥=--n a a n n ,∴数列{}n a 是等差数列.考点3 等差数列的性质【例5】⑴已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; ⑵已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .【解题思路】利用等差数列的有关性质求解. 【解析】⑴11001122112)(116611111==⨯=+=a a a a S ;⑵方法1:令Bn AnS n +=2,则n m m n B m n A nBm Am m Bn An -=-+-⇒⎩⎨⎧=+=+)()(2222. m n ≠,∴1)(-=++B m n A ,∴)()()(2n m n m B n m A S n m +-=+++=+;方法2:不妨设n m >m n a a n m a a a a a S S m n m m n n n n m -=+-=+++++=-+-+++2))((11321 .∴211-=+=+++m n n m a a a a , ∴)(2))((1n m a a n m S n m n m +-=++=++;方法3: {}n a 是等差数列,∴⎭⎬⎫⎩⎨⎧n S n 为等差数列 ∴⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+n m S n m m S m n S n nm m n ,,,,,三点共线. ∴)(n m S nm nn m S n m n mm nnm nm +-=⇒-+=--++. 【名师指引】利用等差数列的有关性质解题,可以简化运算.【新题导练】6.含12+n 个项的等差数列其奇数项的和与偶数项的和之比为( ).A nn 12+ .B nn 1+ .C nn 1- .D nn 21+【解析】(本两小题有多种解法) 2))(1(12112531++++=++++=n n a a n a a a a S 奇2)(222642n n a a n a a a a S +=++++= 偶,n n a a a a 22121+=++∴nn S S 1+=偶奇.∴选B.7.设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .【解析】12652525514225143)12(2)12(7551212=+⨯-⨯=⇒+-=+-+-==--b a n n n n T S b a n n nn ∴填1265.考点4 等差数列与其它知识的综合【例6】已知n S 为数列{}n a 的前n 项和,n n S n 211212+=;数列{}n b 满足:113=b ,n n n b b b -=++122,其前9项和为.153⑴求数列{}n a 、{}n b 的通项公式; ⑵设n T 为数列{}n c 的前n 项和,)12)(112(6--=n n n b a c ,求使不等式57k T n >对+∈∀N n 都成立的最大正整数k 的值.【解题思路】⑴利用n a 与n S 的关系式及等差数列的通项公式可求;⑵求出n T 后,判断n T 的单调性. 【解析】⑴ n n S n 211212+=,∴当1=n 时,611==S a ;当2≥n 时,5)1(211)1(2121121221+=----+=-=-n n n n n S S a n n n当1=n 时,1651a ==+,∴5+=n a n ;222112+++++=⇒-=n n n n n n b b b b b b ,∴{}n b 是等差数列,设其公差为d .则3,5153369112111==⇒⎩⎨⎧=+=+d b d b d b ,∴23)1(35+=-+=n n b n .⑵ [][]1)23(211)5(26)12)(112(6-+-+=--=n n b a c n n n121121)12)(12(2+--=+-=n n n n∴1211)121121()7151()5131()311(+-=+--++-+-+-=n n n T n+∈N n ,∴n T 是单调递增数列. ∴当1=n 时,()323111min =-==T T n∴57k T n >对+∈∀N n 都成立()38573257min <⇔>⇔>⇔k k k T n∴所求最大正整数k 的值为37.【名师指引】本题综合考察等差数列、通项求法、数列求和、不等式等知识,利用了函数、方程思想,这是历年高考的重点内容. 【新题导练】8.已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由.【解析】⑴当2≥n 时,)(22111----=⇒=n n n n n n n S S S S a S S∴21111-=--n n S S ,且3111=S ,∴{}n a 是以21-为公差的等差数列,其首项为31.∴nS n n S S n n356635)1(21111-=⇒-=--=∴当2≥n 时,)53)(83(18211--==-n n S S a n n n当1=n 时,11018)53)(83(18a ≠=--,∴⎪⎩⎪⎨⎧≥--=)2()53)(83(18)1(3n n n n ; ⑵0)23)(53)(83(181>---=-+k k k a a k k ,得3532<<k 或38>k ,∴当3≥k 时,1+>k k a a 恒成立,所求最小的正整数.3=k★ 抢 分 频 道 ★基础巩固训练1.(2009广雅中学)设数列{}n a 是等差数列,且28a =-,155a =,n S 是数列{}n a 的前n 项和,则A .1011S S =B .1011S S >C .910S S =D .910S S <【解析】C .1091521015216292)(,22S S a d a S da a a a S =⇒++=++=+=另法:由28a =-,155a =,得713815)8(5=---=d ,76921=-=d a a ,计算知910S S =2.在等差数列{}n a 中,1205=a ,则=+++8642a a a a . 【解析】480 .480458642==+++a a a a a3.数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n . 【解析】24 由492-=n a n 知{}n a 是等差数列,.250>⇒>n a n ∴.24=n4.已知等差数列{}n a 共有10项,其奇数项之和为10,偶数项之和为30,则其公差是 . 【解析】4 已知两式相减,得.4205=⇒=d d5.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = . 【解析】1)1(21++n n 利用迭加法(或迭代法),也可以用归纳—猜想—证明的方法.6.从正整数数列 ,5,4,3,2,1中删去所有的平方数,得到一个新数列,则这个新数列的第1964项是 . 【解析】2008综合拔高训练7.(2009广雅中学)已知等差数列{}n a 中,21920,28a a a =-+=-. ⑴求数列{}n a 的通项公式;⑵若数列{}n b 满足2log n n a b =,设12n n T b b b = ,且1n T =,求n 的值.【解析】⑴设数列{}n a 的公差为d ,则2,22288220111=-=⇒⎩⎨⎧-=+-=+d a d a d a ∴242)1(222-=-+-=n n a n⑵ 242log2-=n b n ,∴2422-=n n b∴nn n nn n n b b b b T 24)1(24)321(232122-+-++++===令(1)240n n n +-=,得23=n ∴当23n =时,.1=n T 8.已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a ⑴当n 为何值时,n S 取得最大值; ⑵求208642a a a a a +++++ 的值;⑶求数列{}na 的前n 项和.nT【解析】⑴ 等差数列{}n a 中,.16,2541==a a ∴公差31414-=--=a a d∴283+-=n a n ,令90283≤⇒>+-=n n a n∴当9≤n 时,0>n a ;当9>n 时,0<n a .∴当9=n 时,n S 取得最大值;⑵ 数列{}n a 是等差数列∴208642a a a a a +++++ 20)9325(10102)(1011202-=⨯-==+=a a a ;⑶由⑴得,当9≤n 时,0>n a ;当9>n 时,0<n a .∴n n n S S a a a a a a T -=+++-+++=911109212)(⎥⎦⎤⎢⎣⎡---⨯-⨯=)1(2325)336259(2n n n 234253232+-=n n 9.(2009执信中学)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111*44...4(1)(),n n b bb b n a n N ---=+∈证明{}n b 是等差数列.【解析】⑴证明:2132,n n n a a a ++=-∴)(2112n n n n a a a a -=-+++, 3,121==a a ,∴)(2112++++∈=--N n a a a a nn n n{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。

2013年高考数学模拟题(文)(附详细答案,打印版)

2013年高考数学模拟题(文)(附详细答案,打印版)

()图27 98 6 3 89 3 9 8 8 4 1 5 10 3 1 11 4侧视图(第4题图1)(第4题图2)(第8题图)≤≥12013年高考数学模拟题(文)一、选择题(本大题共10小题,每小题5分,共50分.1.已知命题:p 所有指数函数都是单调函数,则p ⌝为( )A .所有的指数函数都不是单调函数B .所有的单调函数都不是指数函数C .存在一个指数函数,它不是单调函数D .存在一个单调函数,它不是指数函数 2.已知{}2,M a a =≥{}2(2)(3)0,A a a a a M =--=∈则集合A 的子集共有( ) A .1个B .2个C .4个D .8 个3.“10<<a ”是“0122>++ax ax 的解集是实数集R ”的( ) A .充分而非必要条件 B .必要而非充分条件C .充要条件D .既非充分也非必要条件4.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为1214,,,.A A A 图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图。

那么算法流程图输出的结果是( ) A .7 B .8C .9D .105.已知,A B 是单位圆上的动点,且AB =O ,则OA AB ∙=( )A.B C .32-D .326.两个正数,a b 的等差中项是92,一个等比中项是a b >,则抛物线2b y x a=-的焦点坐标为( )A .5(,0)16-B .1(,0)5-C .1(,0)5D .2(,0)5-7.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天起每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A .12B .815C .1631D .16298.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为1V ,直径为4的球的体积为2V ,则12:V V =( ) A .1:2 B .2:1C .1:1D .1:49.定义:曲线C上的点到直线l 的距离的最小值称为 曲线C 到直线l 的距离;已知曲线1:C y a =到直线:20l x y -=a 的值为( )A . 3或-3B .23或-C .2D .-310.已知x ∈R ,用符号[]x 表示不超过x 的最大整数。

2013年上海市高考数学试卷(理科)附送答案

2013年上海市高考数学试卷(理科)附送答案

2013年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)计算:=.2.(4分)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=.3.(4分)若=,x+y=.4.(4分)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2﹣3c2=0,则角C的大小是.5.(4分)设常数a∈R,若(x2+)5的二项展开式中x7项的系数为﹣10,则a=.6.(4分)方程+=3x﹣1的实数解为.7.(4分)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.8.(4分)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).9.(4分)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.10.(4分)设非零常数d是等差数列x1,x2,…,x19的公差,随机变量ξ等可能地取值x1,x2,…,x19,则方差Dξ=.11.(4分)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=.12.(4分)设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x++7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为.13.(4分)在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为.14.(4分)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0=.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)16.(5分)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件17.(5分)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i行第j列的元素c ij=a i•a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18 B.28 C.48 D.6318.(5分)在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.20.(14分)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100(5x+1﹣)元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.21.(14分)已知函数f(x)=2sin(ωx),其中常数ω>0(1)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R,且a<b)满足:y=g(x)在[a,b]上至少含有30个零点.在所有满足上述条件的[a,b]中,求b﹣a的最小值.22.(16分)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点”(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”23.(18分)给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足a n+1=f(a n),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,a n﹣a n≥c;+1(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.2013年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2013•上海)计算:=.【分析】由数列极限的意义即可求解.【解答】解:==,故答案为:.2.(4分)(2013•上海)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.【分析】根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.【解答】解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.3.(4分)(2013•上海)若=,x+y=0.【分析】利用行列式的定义,可得等式,配方即可得到结论.【解答】解:∵=,∴x2+y2=﹣2xy∴(x+y)2=0∴x+y=0故答案为04.(4分)(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2﹣3c2=0,则角C的大小是.【分析】把式子3a2+2ab+3b2﹣3c2=0变形为,再利用余弦定理即可得出.【解答】解:∵3a2+2ab+3b2﹣3c2=0,∴,∴==.∴C=.故答案为.5.(4分)(2013•上海)设常数a∈R,若(x2+)5的二项展开式中x7项的系数为﹣10,则a=﹣2.【分析】利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.【解答】解:的展开式的通项为T r=C5r x10﹣2r()r=C5r x10﹣3r a r+1令10﹣3r=7得r=1,∴x7的系数是aC51∵x7的系数是﹣10,∴aC51=﹣10,解得a=﹣2.故答案为:﹣2.6.(4分)(2013•上海)方程+=3x﹣1的实数解为log34.【分析】化简方程+=3x﹣1为=3x﹣1,即(3x﹣4)(3x+2)=0,解得3x=4,可得x的值.【解答】解:方程+=3x﹣1,即=3x﹣1,即8+3x=3x﹣1(3x+1﹣3),化简可得32x﹣2•3x﹣8=0,即(3x﹣4)(3x+2)=0.解得3x=4,或3x=﹣2(舍去),∴x=log34,故答案为log34.7.(4分)(2013•上海)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.【分析】联立ρ=cosθ+1与ρcosθ=1消掉θ即可求得ρ,即为答案.【解答】解:由ρ=cosθ+1得,cosθ=ρ﹣1,代入ρcosθ=1得ρ(ρ﹣1)=1,解得ρ=或ρ=(舍),所以曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为,故答案为:.8.(4分)(2013•上海)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).【分析】利用组合知识求出从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数,再求出从5个奇数中任意取出2个奇数的取法种数,求出取出的两个球的编号之积为奇数的概率,利用对立事件的概率求出取出两个球的编号之积为偶数的概率.【解答】解:从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数为种.取出的两个球的编号之积为奇数的方法种数为种.则取出的两个球的编号之积为奇数的概率为.所以取出两个球的编号之积为偶数的概率是.故答案为9.(4分)(2013•上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.【分析】由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.【解答】解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.10.(4分)(2013•上海)设非零常数d是等差数列x1,x2,…,x19的公差,随机变量ξ等可能地取值x1,x2,…,x19,则方差Dξ=30d2.【分析】利用等差数列的前n项和公式可得x1+x2+…+x19=和数学期望的计算公式即可得出Eξ,再利用方差的计算公式即可得出Dξ=即可得出.【解答】解:由题意可得Eξ===x1+9d.∴x n﹣Eξ=x1+(n﹣1)d﹣(x1+9d)=(n﹣10)d,∴Dξ=+…+(﹣d)2+0+d2+(2d)2+…+(9d)2]===30d2.故答案为:30d2.11.(4分)(2013•上海)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=.【分析】利用两角差的余弦公式及cosxcosy+sinxsiny=,可得cos(x﹣y)=,再利用和差化积公式sin2x+sin2y=,得到2sin(x+y)cos(x﹣y)=,即可得出sin(x+y).【解答】解:∵cosxcosy+sinxsiny=,∴cos(x﹣y)=.∵sin2x+sin2y=,∴sin[(x+y)+(x﹣y)]+sin[(x+y)﹣(x﹣y)]=,∴2sin(x+y)cos(x﹣y)=,∴,∴sin(x+y)=.故答案为.12.(4分)(2013•上海)设a为实常数,y=f(x)是定义在R上的奇函数,当x <0时,f(x)=9x++7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为..【分析】先利用y=f(x)是定义在R上的奇函数求出x≥0时函数的解析式,将f(x)≥a+1对一切x≥0成立转化为函数的最小值≥a+1,利用基本不等式求出f(x)的最小值,解不等式求出a的范围.【解答】解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x﹣+7因为y=f(x)是定义在R上的奇函数,所以f(x)=9x+﹣7;因为f(x)≥a+1对一切x≥0成立,所以当x=0时,0≥a+1成立,所以a≤﹣1;当x>0时,9x+﹣7≥a+1成立,只需要9x+﹣7的最小值≥a+1,因为9x+﹣7≥2=6|a|﹣7,所以6|a|﹣7≥a+1,解得,所以.故答案为:.13.(4分)(2013•上海)在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为2π2+16π.【分析】由题目给出的Ω的水平截面的面积,可猜想水平放置的圆柱和长方体的量,然后直接求出圆柱的体积与长方体的体积作和即可.【解答】解:因为几何体为Ω的水平截面的截面积为4+8π,该截面的截面积由两部分组成,一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4,看作是把一个半径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即Ω的体积为π•12•2π+2•8π=2π2+16π.故答案为2π2+16π.14.(4分)(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0=2.【分析】根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.【解答】解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),所以对于函数f(x),当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,又因为方程f(x)﹣x=0有解x0,且定义域为[0,3],故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f(x0)=x0,只有x0=2,故答案为:2.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x ≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)【分析】当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.【解答】解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选B.16.(5分)(2013•上海)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B17.(5分)(2013•上海)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i行第j列的元素c ij=a i•a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18 B.28 C.48 D.63【分析】由于该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j﹣1(i=1,2,…,7;j=1,2,…,12),要使a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12).则满足2i+j﹣1=2m+n﹣1,得到i+j=m+n,由指数函数的单调性可得:当i+j≠m+n 时,a ij≠a mn,因此该矩阵元素能取到的不同数值为i+j的所有不同和,即可得出.【解答】解:该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j﹣1(i=1,2,…,7;j=1,2,…,12),当且仅当:i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12),因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3, (19)共18个不同数值.故选A.18.(5分)(2013•上海)在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0【分析】利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.【解答】解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)•(++)的最小值、最大值,∴m<0,M<0故选D.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2013•上海)如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.【分析】解法一:证明ABC′D′为平行四边形,可得BC′∥AD′,再利用直线和平面平行的判定定理证得直线BC′平行于平面D′AC.所求的距离即点B到平面D′AC 的距离,设为h,再利用等体积法求得h的值.解法二:建立空间直角坐标系,求出平面D′AC的一个法向量为=(2,1,﹣2),再根据=﹣0,可得⊥,可得直线BC′平行于平面D′AC.求出点B 到平面D′AC的距离d=的值,即为直线BC′到平面D′AC的距离.【解答】解:解法一:因为ABCD﹣A′B′C′D′为长方体,故AB∥C′D′,AB=C′D′,故ABC′D′为平行四边形,故BC′∥AD′,显然BC′不在平面D′AC内,于是直线BC′平行于平面D′AC.直线BC′到平面D′AC的距离即为点B到平面D′AC的距离,设为h,考虑三棱锥D′﹣ABC的体积,以ABC为底面,可得三棱锥D′﹣ABC的体积为V=•()=,而△AD′C中,AC=D′C=,AD′=,故△CAD′的底边AD′上的高为,=••=,故△CAD′的面积S△CAD′所以,V==⇒h=,即直线BC′到平面D′AC的距离为.解法二:以D′A′所在的直线为x轴,以D′C′所在的直线为y轴,以D′D所在的直线为z轴,建立空间直角坐标系.则由题意可得,点A(1,0,1 )、B(1,2,1)、C(0,2,1)、C′(0,2,0)、D′(0,0,0).设平面D′AC的一个法向量为=(u,v,w),则由⊥,⊥,可得,.∵=(1,0,1),=(0,2,1),∴,解得.令v=1,可得u=2,w=﹣2,可得=(2,1,﹣2).由于=(﹣1,0,﹣1),∴=﹣0,故有⊥.再由BC′不在平面D′AC内,可得直线BC′平行于平面D′AC.由于=(1,0,0),可得点B到平面D′AC的距离d===,故直线BC′到平面D′AC的距离为.20.(14分)(2013•上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.【分析】(1)求出生产该产品2小时获得的利润,建立不等式,即可求x的取值范围;(2)确定生产900千克该产品获得的利润函数,利用配方法,可求最大利润.【解答】解:(1)生产该产品2小时获得的利润为100(5x+1﹣)×2=200(5x+1﹣)根据题意,200(5x+1﹣)≥3000,即5x2﹣14x﹣3≥0∴x≥3或x≤﹣∵1≤x≤10,∴3≤x≤10;(2)设利润为y元,则生产900千克该产品获得的利润为y=100(5x+1﹣)×=90000()=9×104[+]∵1≤x≤10,∴x=6时,取得最大利润为=457500元故甲厂应以6千克/小时的速度生产,可获得最大利润为457500元.21.(14分)(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R,且a<b)满足:y=g(x)在[a,b]上至少含有30个零点.在所有满足上述条件的[a,b]中,求b﹣a的最小值.【分析】(1)已知函数y=f(x)在上单调递增,且ω>0,利用正弦函数的单调性可得,且,解出即可;(2)利用变换法则“左加右减,上加下减”即可得到g(x)=2.令g(x)=0,即可解出零点的坐标,可得相邻两个零点之间的距离.若b﹣a最小,则a和b都是零点,此时在区间[a,mπ+a](m∈N*)恰有2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,即可得到a,b满足的条件.进一步即可得出b﹣a的最小值.【解答】解:(1)∵函数y=f(x)在上单调递增,且ω>0,∴,且,解得.(2)f(x)=2sin2x,∴把y=f(x)的图象向左平移个单位,再向上平移1个单位,得到,∴函数y=g(x)=,令g(x)=0,得,或x=(k∈Z).∴相邻两个零点之间的距离为或.若b﹣a最小,则a和b都是零点,此时在区间[a,π+a],[a,2π+a],…,[a,mπ+a](m∈N*)分别恰有3,5,…,2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,∴.另一方面,在区间恰有30个零点,因此b﹣a的最小值为.22.(16分)(2013•上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点”(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”【分析】(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1﹣C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.【解答】(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1﹣C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.因为|k|>1,所以1﹣2k2≠0,因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,即b2≥2k2﹣1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1﹣C2型点”.23.(18分)(2013•上海)给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足a n+1=f(a n),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;﹣a n≥c;(2)求证:对任意n∈N*,a n+1(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【分析】(1)对于分别取n=1,2,a n=f(a n),n∈N*.去掉绝对值符合即可得+1出;(2)由已知可得f(x)=,分三种情况讨论即可证明;≥a n,即{a n}为无穷递增数列.分以下三种情况讨(3)由(2)及c>0,得a n+1论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.【解答】解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=10+c.(2)由已知可得f(x)=当a n≥﹣c时,a n+1﹣a n=c+8>c;当﹣c﹣4≤a n<﹣c时,a n+1﹣a n=2a n+3c+8≥2(﹣c﹣4)+3c+8=c;当a n<﹣c﹣4时,a n+1﹣a n=﹣2a n﹣c﹣8>﹣2(﹣c﹣4)﹣c﹣8=c.﹣a n≥c;∴对任意n∈N*,a n+1(3)假设存在a1,使得a1,a2,…,a n,…成等差数列.由(2)及c>0,得a n≥a n,即{a n}为无穷递增数列.+1又{a n}为等差数列,所以存在正数M,当n>M时,a n≥﹣c,从而a n+1=f(a n)=a n+c+8,由于{a n}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{a n}为递增数列,故a n≥a2=0>﹣c,=f(a n)=a n+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{a n}为无穷等差数列,∴a n+1符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由a n≥a1得到a n+1=f(a n)=a n+c+8,从而{a n}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).。

2013年上海市金山区高考数学一模试卷含详解

2013年上海市金山区高考数学一模试卷含详解

2013年上海市金山区高考数学一模试卷一、填空题(本大题共有14小题,满分42分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(3分)函数f(x)=3x﹣2的反函数f﹣1(x)=.2.(3分)若全集U=R,集合A={x|﹣2≤x≤2},B={x|0<x<1},则A∩∁B=.U3.(3分)函数y=2sin(2x+)的最小正周期T=.4.(3分)计算极限:=.5.(3分)已知,,若,则实数x=.6.(3分)若复数(1+2i)(1+ai)是纯虚数,则实数a的值是.7.(3分)在的二项展开式中,常数项等于.8.(3分)已知矩阵A=,矩阵B=,计算:AB=.9.(3分)若直线l:y=kx经过点P(sin,cos),则直线l的倾斜角为α=.10.(3分)某市有A、B、C三所学校共有高三文科学生1500人,且A、B、C 三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取人.11.(3分)双曲线C:x2﹣y2=a2的中心在原点,焦点在x轴上,C与抛物线y2=16x 的准线交于A、B两点,,则双曲线C的方程为.12.(3分)把一颗骰子投掷两次,第一次出现的点数记为m,第二次出现的点数记为n,方程组只有一组解的概率是.13.(3分)若函数y=f(x)(x∈R)满足:f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=|x|,函数y=g(x)是定义在R上的奇函数,且x∈(0,+∞)时,g(x)=log 3x,则函数y=f(x)的图象与函数y=g(x)的图象的交点个数为.14.(3分)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:.二、选择题(本大题有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律的零分.15.(5分)若,则下列结论不正确的是()A.a2<b2B.ab<b2C.D.16.(5分)如图是某程序的流程图,则其输出结果为()A.B.C.D.17.(5分)已知f(x)=x2﹣2x+3,g(x)=kx﹣1,则“|k|≤2”是“f(x)≥g (x)在R上恒成立”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件18.(5分)给定方程:()x+sinx﹣1=0,下列命题中:(1)该方程没有小于0的实数解;(2)该方程有无数个实数解;(3)该方程在(﹣∞,0)内有且只有一个实数解;(4)若x0是该方程的实数解,则x0>﹣1.则正确命题的个数是()A.1B.2C.3D.4三、解答题(本大题共有5个小题,满分36分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(6分)已知集合A={x||x﹣a|<2,x∈R },B={x|<1,x∈R }.(1)求A、B;(2)若A⊆B,求实数a的取值范围.20.(8分)已知函数f(x)=sin(2x+)+sin(2x﹣)+cos2x﹣m,x∈R,且f(x)的最大值为1.(1)求m的值,并求f(x)的单调递增区间;(2)在△ABC中,角A、B、C的对边a、b、c,若f(B)=﹣1,且a=b+c,试判断△ABC的形状.21.(8分)已知函数f(x)=,x∈(0,2],其中常数a>0.(1)当a=4时,证明函数f(x)在(0,2]上是减函数;(2)求函数f(x)的最小值.22.(6分)设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.(1)求该椭圆的标准方程;(2)若PB2⊥QB2,求直线l的方程;(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,],求△B2PQ的面积S的取值范围.23.(8分)已知数列{a n}满足,1+a1+a2+…+a n﹣λa n+1=0(其中λ≠0且λ≠﹣1,n∈N*),S n为数列{a n}的前n项和.(1)若,求λ的值;(2)求数列{a n}的通项公式a n;(3)当时,数列{a n}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.2013年上海市金山区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有14小题,满分42分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(3分)函数f(x)=3x﹣2的反函数f﹣1(x)=.【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注意反函数的定义域(即原函数的值域).【解答】解:设y=3x﹣2,∵y=3x﹣2,∴x=,故反函数为f﹣1(x)=.故答案为:.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.2.(3分)若全集U=R,集合A={x|﹣2≤x≤2},B={x|0<x<1},则A∩∁U B= {x|﹣2≤x≤0或1≤x≤2}.【考点】1H:交、并、补集的混合运算.【专题】11:计算题.【分析】直接利用补集与交集的运算求解.【解答】解:由B={x|0<x<1},U=R,所以∁U B={x|x≤0或x≥1}.又A={x|﹣2≤x≤2},所以A∩∁U B={x|﹣2≤x≤2}∩{x|x≤0或x≥1}={x|﹣2≤x≤0或1≤x≤2}.故答案为{x|﹣2≤x≤0或1≤x≤2}.【点评】本题考查了交、并、补集的混合运算,是基础的概念题.3.(3分)函数y=2sin(2x+)的最小正周期T=π.【考点】H1:三角函数的周期性.【专题】57:三角函数的图像与性质.【分析】由周期公式结合题意可得最小正周期T==π,即可得答案.【解答】解:∵函数,∴由周期公式可得最小正周期T==π,故答案为:π【点评】本题考查三角函数的周期公式,属基础题.4.(3分)计算极限:=2.【考点】6F:极限及其运算.【专题】11:计算题.【分析】首先把极限符号后面的分式化简,使得分子的指数小于分母的指数,或者直接分子分母同时除以n2,然后进行取n→∞时的极限运算.【解答】解:===.故答案为2.【点评】本题考查了极限及其运算,对于n→∝时的极限运算,如果分式的分子和分母n的最高次项的次数相同,极限值为最高次项的系数比,是基础题.5.(3分)已知,,若,则实数x=﹣2.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】5A:平面向量及应用.【分析】根据两个向量垂直,它们的数量积等于零,解方程求得x的值.【解答】解:∵已知,,若,则=4+2x=0,解得x=﹣2,故答案为﹣2.【点评】本题主要考查两个向量垂直的性质,两个向量的数量积公式,属于基础题.6.(3分)若复数(1+2i)(1+ai)是纯虚数,则实数a的值是.【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的乘除运算法则,求出(1+2i)(1+ai)=(1﹣2a)+(2+a)i,再由(1+2i)(1+ai)是纯虚数,能求出实数a.【解答】解:(1+2i)(1+ai)=1+2i+ai+2ai2=(1﹣2a)+(2+a)i,∵(1+2i)(1+ai)是纯虚数,∴,解得a=.故答案为:.【点评】本题考查复数的代数形式的乘除运算的应用,是基础题.解题时要认真审题,仔细解答.7.(3分)在的二项展开式中,常数项等于﹣160.【考点】DA:二项式定理.【专题】11:计算题.【分析】研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.【解答】解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣160【点评】本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.8.(3分)已知矩阵A=,矩阵B=,计算:AB=.【考点】O1:二阶矩阵.【专题】11:计算题.【分析】利用矩阵的乘法法则及其意义进行求解,即可得到答案.【解答】解:∵已知矩阵A=,矩阵B=,∴AB===,故答案为:.【点评】本题主要考查了矩阵的乘法的意义,是一道考查基本运算的基础题.9.(3分)若直线l:y=kx经过点P(sin,cos),则直线l的倾斜角为α=.【考点】IB:直线的点斜式方程.【专题】11:计算题;5B:直线与圆.【分析】求三角函数值化简P点坐标,把P的坐标代入直线方程求k,由倾斜角的正切值等于斜率结合倾斜角的范围可求直线l的倾斜角.【解答】解:P(sin,cos)=P(),因为y=kx经过点P,所以,解得则,又0≤α<π,所以.故答案为.【点评】该题考查了直线的点斜式方程,考查了直线的倾斜角与斜率的关系,训练了学生对三角函数的灵活运用,是基础题.10.(3分)某市有A、B、C三所学校共有高三文科学生1500人,且A、B、C 三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取40人.【考点】B3:分层抽样方法.【专题】11:计算题.【分析】由题意和分层抽样的定义知从A、B、C三校的高三文科学生中抽取的人数也成等差数列,故设为x﹣d,x,x+d;再由样本的容量为120求出x.【解答】解:由题意知A、B、C三校的高三文科学生人数成等差数列,因用分层抽样,故设从A、B、C三校的高三文科学生中抽取的人数分别为:x﹣d,x,x+d;∵样本的容量为120,∴(x﹣d)+x+(x+d)=120,解得x=40.故答案为:40.【点评】本题是等差数列的性质和分层抽样的定义,即样本和总体的结构一致性,抽到的人数也对应成等差数列,用等差数列的性质求值.11.(3分)双曲线C:x2﹣y2=a2的中心在原点,焦点在x轴上,C与抛物线y2=16x 的准线交于A、B两点,,则双曲线C的方程为.【考点】K8:抛物线的性质;KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线方程,求出抛物线的准线方程,利用|AB|=4,即可求得结论.【解答】解:∵抛物线y2=16x,2p=16,p=8,∴=4.∴抛物线的准线方程为x=﹣4.设等轴双曲线与抛物线的准线x=﹣4的两个交点A(﹣4,y),B(﹣4,﹣y)(y >0),则|AB|=|y﹣(﹣y)|=2y=4 ,∴y=2 .将x=﹣4,y=2 代入双曲线C:x2﹣y2=a2,得(﹣4)2﹣(2 )2=a2,∴a2=4∴等轴双曲线C的方程为x2﹣y2=4,即.故答案为:.【点评】本题考查抛物线,双曲线的几何性质,考查学生的计算能力,属于基础题.12.(3分)把一颗骰子投掷两次,第一次出现的点数记为m,第二次出现的点数记为n,方程组只有一组解的概率是.【考点】CB:古典概型及其概率计算公式.【专题】11:计算题.【分析】利用分布计数原理求出骰子投掷2次所有的结果,通过解二元一次方程组判断出方程组有唯一解的条件,先求出不满足条件结果个数,再求出方程组有唯一解的结果个数,利用古典概型的概率公式求出方程组只有一个解的概率.【解答】解:骰子投掷2次所有的结果有6×6=36种由得(n﹣m)y=3﹣m当n﹣m≠0时,方程组有唯一解当n﹣m=0时包含的结果有:当n=3时,m=2,当n=6时,m=4,共2种所以方程组只有一个解包含的基本结果有36﹣2=34∴方程组只有一组解的概率是=故答案为:【点评】本题主要考查了古典概型及其概率计算公式,以及解方程组,概率问题往往同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点,属于基础题.13.(3分)若函数y=f(x)(x∈R)满足:f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=|x|,函数y=g(x)是定义在R上的奇函数,且x∈(0,+∞)时,g(x)=log 3x,则函数y=f(x)的图象与函数y=g(x)的图象的交点个数为4.【考点】3Q:函数的周期性;4T:对数函数图象与性质的综合应用.【专题】51:函数的性质及应用.【分析】函数f(x)满足f(x+2)=f(x)知f(x)是周期函数,当x∈[﹣1,1]时,f(x)=|x|,可以画出f(x)的图象;又函数g(x)是R上的奇函数,且x∈(0,+∞),g(x)=log 3x,讨论x>0,x=0,x<0时,f(x)与g(x)图象交点的情况.【解答】解:函数y=f(x)(x∈R)满足:f(x+2)=f(x),∴f(x)是以2为周期的函数;当x∈[﹣1,1]时,f(x)=|x|,可以画出f(x)的图象如下;又函数y=g(x)是定义在R上的奇函数,且x∈(0,+∞)时,g(x)=log 3x,∵x=3时,g(3)=1,∴当x>0时,f(x)与g(x)的图象有两个交点;当x=0时,f(0)=g(0)=0,∴f(x)与g(x)的图象有一个交点;当x<0时,g(x)是R上的奇函数,∴g(x)=﹣g(﹣x)=﹣log3(﹣x)=log3,与y=f(x)的图象有一个交点;∴g(x)=;如图所示:所以,函数y=f(x)与y=g(x)的图象的交点有4个.故答案为:4.【点评】本题考查了函数的周期性,奇偶性,对数函数以及函数图象的综合应用,是一个容易出错的题目.14.(3分)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:4﹣.【考点】83:等差数列的性质;IT:点到直线的距离公式.【专题】54:等差数列与等比数列.【分析】由题意可得动直线l:ax+by+c=0过定点Q(1,﹣2),PMQ=90°,点M在以PQ为直径的圆上,求出圆心为PQ的中点C(0,﹣1),且半径为.求得点N到圆心C的距离,再减去半径,即得所求.【解答】解:因为a,b,c成等差数列,故有2b=a+c,即a﹣2b+c=0,对比方程ax+by+c=0可知,动直线恒过定点Q(1,﹣2).由于点P(﹣1,0)在动直线ax+by+c=0上的射影为M,即∠PMQ=90°,所以点M在以PQ为直径的圆上,该圆的圆心为PQ的中点C(0,﹣1),且半径为=,再由点N到圆心C的距离为NC=4,所以线段MN的最小值为NC﹣r=4﹣,故答案为:4﹣.【点评】本题主要考查等差数列的性质,直线过定点问题、圆的定义,以及点与圆的位置关系,属于中档题.二、选择题(本大题有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律的零分.15.(5分)若,则下列结论不正确的是()A.a2<b2B.ab<b2C.D.【考点】71:不等关系与不等式.【专题】1:常规题型.【分析】先由得到a与b大小关系,再逐个验证,即得正确答案.【解答】解:由于,得到b<a<0,则得a2<b2,ab<b2,故A、B正确,再看C选项,由于(当且仅当即a=b时,取“=”)而由已知得到b<a<0,则有,故C正确,由于b<a<0,则,故D错误.故选:D.【点评】本题考查不等式的性质,是基础题.16.(5分)如图是某程序的流程图,则其输出结果为()A.B.C.D.【考点】EF:程序框图.【专题】27:图表型.【分析】首先根据程序框图,理解其意义,然后按照程序顺序进行执行循环,当满足跳出循环的条件时输出结果.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=++…+的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=++…+=1﹣=.故选:C.【点评】本题考查程序框图,通过对程序框图的认识和理解按照程序框图的顺序进行执行.通过按照循环体的执行,考查运算能力.属于基础题17.(5分)已知f(x)=x2﹣2x+3,g(x)=kx﹣1,则“|k|≤2”是“f(x)≥g (x)在R上恒成立”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】51:函数的性质及应用.【分析】将不等式f(x)≥g(x)在R上恒成立化简,再与条件|k|≤2比较,然后根据充分性与必要性的定义进行判断即可得出所要的答案.【解答】解:由二次函数的性质知,由f(x)≥g(x)得x2﹣(2+k)x+4≥0故“f(x)≥g(x)在R上恒成立”成立⇔△=(2+k)2﹣16≤0⇔﹣6≤k≤2;而|k|≤2⇔﹣2≤k≤2.∴|k|≤2可推出“f(x)≥g(x)在R上恒成立”,而“f(x)≥g(x)在R上恒成立”不能保证|k|≤2.则“|k|≤2”是“f(x)≥g(x)在R上恒成立”成立的充分但不必要条件.故选:A.【点评】本题考查充分条件与必要条件的判断,以不等式的大小比较为载体,属于简单题型.18.(5分)给定方程:()x+sinx﹣1=0,下列命题中:(1)该方程没有小于0的实数解;(2)该方程有无数个实数解;(3)该方程在(﹣∞,0)内有且只有一个实数解;(4)若x0是该方程的实数解,则x0>﹣1.则正确命题的个数是()A.1B.2C.3D.4【考点】2K:命题的真假判断与应用.【专题】13:作图题.【分析】问题等价于函数y=1﹣()x与y=sinx的图象交点的横坐标,作出函数的图象,逐个选项验证可得答案.【解答】解:由题意可知方程()x+sinx﹣1=0的解,等价于函数y=1﹣()x与y=sinx的图象交点的横坐标,作出它们的图象:由图象可知:(1)该方程没有小于0的实数解,错误;(2)该方程有无数个实数解,正确;(3)该方程在(﹣∞,0)内有且只有一个实数解,正确;(4)若x0是该方程的实数解,则x0>﹣1,正确.故选:C.【点评】本题考查命题真假的判断,涉及函数图象的作法,属基础题.三、解答题(本大题共有5个小题,满分36分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(6分)已知集合A={x||x﹣a|<2,x∈R },B={x|<1,x∈R }.(1)求A、B;(2)若A⊆B,求实数a的取值范围.【考点】1C:集合关系中的参数取值问题.【专题】21:阅读型.【分析】(1)通过解绝对值不等式与分式不等式求出集合A、B即可;(2)利用数轴表示集合,再根据集合关系分析求解即可.【解答】解:(1)由|x﹣a|<2,得a﹣2<x<a+2,∴A={x|a﹣2<x<a+2},由<1,得<0,即﹣2<x<3,∴B={x|﹣2<x<3}.(2)若A⊆B,∴⇒0≤a≤1,∴0≤a≤1.【点评】本题考查集合关系中的参数取值问题,利用数形结合思想分析求解,直观、形象.20.(8分)已知函数f(x)=sin(2x+)+sin(2x﹣)+cos2x﹣m,x∈R,且f(x)的最大值为1.(1)求m的值,并求f(x)的单调递增区间;(2)在△ABC中,角A、B、C的对边a、b、c,若f(B)=﹣1,且a=b+c,试判断△ABC的形状.【考点】GL:三角函数中的恒等变换应用;GZ:三角形的形状判断;HM:复合三角函数的单调性.【专题】11:计算题.【分析】(1)由和差角公式可得f(x)=1=,从而可得f(x)max=2﹣m,可求m,要求函数的单调递增区间,只要令,即可求解(2)因为,可求B,A+C,由已知结合正弦定理可可求sinA,即可求解A,从而可判断【解答】解:(1)f(x)=1=…(3分)f(x)max=2﹣m,所以m=1,…(4分)令,单调增区间为…(6分)(2)因为,则,∵0<B<π∴…(8分)又,则,∴=…(10分)∴∴,∴,所以,故△ABC为直角三角形…(12分)【点评】本题主要考查了三角函数的辅助角公式、两角和与差的三角函数、正弦定理等知识的综合应用,属于三角函数的中档试题21.(8分)已知函数f(x)=,x∈(0,2],其中常数a>0.(1)当a=4时,证明函数f(x)在(0,2]上是减函数;(2)求函数f(x)的最小值.【考点】3E:函数单调性的性质与判断.【专题】53:导数的综合应用.【分析】(1)定义法:任取0<x1<x2≤2,通过作差证明f(x1)<f(x2)即可;(2)由基本不等式得,,当且仅当时等号成立,分,两种情况进行讨论即可;【解答】解:(1)当a=4时,,任取0<x1<x2≤2,则f(x1)﹣f(x2)==,因为0<x1<x2≤2,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以函数f(x)在(0,2]上是减函数;(2),当且仅当时等号成立,当,即0<a≤4时,f(x)的最小值为;当,即a>4时,f(x)在(0,2]上单调递减,所以当x=2时,f(x)取得最小值为,综上所述:.【点评】本题考查函数单调性的判断、函数在闭区间上的最值,考查基本不等式的应用,考查分类讨论思想.22.(6分)设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.(1)求该椭圆的标准方程;(2)若PB2⊥QB2,求直线l的方程;(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,],求△B2PQ的面积S的取值范围.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)设所求椭圆的标准方程为,右焦点为F2(c,0).已知△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90°,可得c=2b,在Rt△AB1B2中,,从而a2=b2+c2=20.即可得到椭圆的方程.(2)由(1)得B1(﹣2,0),可设直线l的方程为x=my﹣2,代入椭圆的方程,得到根与系数的关系,利用PB2⊥QB2,⇔,即可得到m.(3)当斜率不存在时,直线l:x=﹣2,此时|MN|=4,,当斜率存在时,设直线l:y=k(x+2),利用点到直线的距离公式可得圆心O到直线l的距离,可得t=,得k的取值范围;把直线l的方程代入椭圆的方程点到根与系数的关系,代入|B1B2|×|y1﹣y2|,再通过换元,利用二次函数的单调性即可得出S的取值范围.【解答】解:(1)设所求椭圆的标准方程为,右焦点为F2(c,0).因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90°,得c=2b,在Rt△AB1B2中,,从而a2=b2+c2=20.因此所求椭圆的标准方程为:.(2)由(1)得B1(﹣2,0),可设直线l的方程为x=my﹣2,代入椭圆的方程.化为(5+m2)y2﹣4my﹣16=0.设P(x1,y1)、Q(x2,y2),则,,又,B2P⊥B2Q,所以=(m2+1)y1y2﹣4m(y1+y2)+16===0,∴m2=4,解得m=±2;所以满足条件的直线有两条,其方程分别为:x+2y+2=0和x﹣2y+2=0.(3)当斜率不存在时,直线l:x=﹣2,此时|MN|=4,,当斜率存在时,设直线l:y=k(x+2),则圆心O到直线l的距离,因此t=,得,联立方程组:得(1+5k2)y2﹣4ky﹣16k2=0,由韦达定理知,,所以,因此.设,所以,所以,综上所述:△B2PQ的面积.【点评】本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式、三角形的面积计算公式、点到直线的距离公式、二次函数的单调性等基础知识与基本技能,考查了推理能力、计算能力.23.(8分)已知数列{a n}满足,1+a1+a2+…+a n﹣λa n+1=0(其中λ≠0且λ≠﹣1,n∈N*),S n为数列{a n}的前n项和.(1)若,求λ的值;(2)求数列{a n}的通项公式a n;(3)当时,数列{a n}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.【考点】83:等差数列的性质;84:等差数列的通项公式;8E:数列的求和.【专题】11:计算题;16:压轴题;54:等差数列与等比数列.【分析】(1)由已知递推公式可求出a2,a3,结合已知,可求λ的值(2)由题意1+a1+a2+…+a n﹣λa n+1=0,则1+a1+a2+…+a n+a n+1﹣λa n+2=0,两式相减可得a n+1与a n+2的递推关系,结合等比数列的通项公式可求(3)假设存在任意三项a m,a k,a p成等差数列.由此入手能够导出数列{a n}存在a1,a2,a3或a3,a2,a1成等差数列.【解答】解:∵,1+a1+a2+…+a n﹣λa n+1=0∴1+a1﹣λa2=0即∴a2=同理可求,a3=∵∴∴(2):由题意1+a1+a2+…+a n﹣λa n+1=0①1+a1+a2+…+a n+a n+1﹣λa n+2=0②由②﹣①得(1+λ)a n+1﹣λa n+2=0,又λ≠0,λ≠﹣1,n∈N*,∴故数列{a n}从第二项开始为等比数列∵a2=∴n≥2时,∴数列{a n}的通项(3))∵λ=,∴∵假设存在任意三项a m,a k,a p成等差数列①不防设当m>k>p≥2,∵当n≥2时,数列{a n}单调递增,∴2a k=a m+a p,∴2•()•4k﹣2=()•4m﹣2+()•4p﹣2,∴2•4k﹣p=4m﹣p+1,由上式知:左边=偶数≠右边=奇数∴当n≥2时,数列{a n}不存在三项成等差数列.②假设存在成等差数列的三项中包含a1时不妨设m=1,k>p≥2且a k>a p,∵当n≥2时,a n>a1,∴2a p=a1+a k,∴2•()•4p﹣2=﹣+()•4k﹣2,∴2•4p﹣2=﹣2+4k﹣2,∴2(2p﹣3)=22(k﹣2)﹣2,∵k>p≥2,∴当且仅当k=3,p=2时成立,∴数列{a n}存在a1,a2,a3或a3,a2,a1成等差数列.【点评】本题考查数列的通项公式的求法,探索数列{a n}中是否存在三项成等差数列.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.。

2013年上海高考数学试题(理科)含详细解析解答

2013年上海高考数学试题(理科)含详细解析解答

2013年上海市秋季高考理科数学一、填空题 1.计算:20lim______313n n n →∞+=+【解答】根据极限运算法则,201lim3133n n n →∞+=+.2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩. 3.若2211x xx y y y=--,则______x y +=【解答】2220x y xy x y +=-⇒+=.4.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示) 【解答】2222222323303a ab b c c a b ab ++-=⇒=++,故11cos ,arccos 33C C π=-=-. 5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【解答】2515()(),2(5)71rrr r a T C x r r r x-+=--=⇒=,故15102C a a =-⇒=-. 6.方程1313313x x-+=-的实数解为________ 【解答】原方程整理后变为233238034log 4x x x x -⋅-=⇒=⇒=.7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________【解答】联立方程组得1(1)12ρρρ-=⇒=,又0ρ≥,故所求为12. 8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)【解答】9个数5个奇数,4个偶数,根据题意所求概率为252913118C C -=.9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =Γ的两个焦点之间的距离为________【解答】不妨设椭圆Γ的标准方程为22214x y b +=,于是可算得(1,1)C ,得24,23b c ==. 10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=【解答】10E x ξ=,22221019)30||D d ξ=++++++=.11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 【解答】1cos()2x y -=,2sin 2sin 22sin()cos()3x y x y x y +=+-=,故2sin()3x y +=.12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x =++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________【解答】(0)0f =,故011a a ≥+⇒≤-;当0x >时,2()971a f x x a x=+-≥+ 即6||8a a ≥+,又1a ≤-,故87a ≤-. 13.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48ππ,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【解答】根据提示,一个半径为1,高为2π的圆柱平放,一个高为2,底面面积8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为221228216πππππ⋅⋅+⋅=+.14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【解答】根据反函数定义,当[0,1)x ∈时,()(2,4]f x ∈;[1,2)x ∈时,()[0,1)f x ∈,而()y f x =的定义域为[0,3],故当[2,3]x ∈时,()f x 的取值应在集合(,0)[1,2](4,)-∞⋃⋃+∞,故若00()f x x =,只有02x =.二、选择题15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞【解答】集合A 讨论后利用数轴可知,111a a ≥⎧⎨-≤⎩或11a a a≤⎧⎨-≤⎩,解答选项为B .16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件 【解答】根据等价命题,便宜⇒没好货,等价于,好货⇒不便宜,故选B .17.在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28 (C)48(D)63【解答】,21i ji j i j i j a a a a a +=⋅++=-,而2,3,,19i j +=,故不同数值个数为18个,选A .18.在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( ). (A) 0,0m M =>(B) 0,0m M <>(C) 0,0m M <=(D) 0,0m M <<【解答】作图知,只有0AF DE AB DC ⋅=⋅>,其余均有0i r a d ⋅≤,故选D . 三、解答题19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.【解答】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =, 故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C ;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=C 11A而1ADC ∆中,11AC DC AD ==132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.20.(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润. 【解答】(1)根据题意,33200(51)30005140x x x x+-≥⇒--≥ 又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+ 故6x =时,max 457500y =元.21.(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值. 【解答】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”. 【解答】:(1)C 1的左焦点为(F ,过F的直线x =C 1交于(±,与C 2交于(1))±,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x = (2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”。

2013年上海市徐汇区高考数学一模试卷(理科)含详解

2013年上海市徐汇区高考数学一模试卷(理科)含详解

2013年上海市徐汇区高考数学一模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)方程组的增广矩阵是.2.(4分)已知幂函数f(x)的图象过点(8,),则此幂函数的解析式是f(x)=.3.(4分)若θ为第四象限角,且sin()=,则sin2θ.4.(4分)若抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,则实数p的值是.5.(4分)函数的部分图象如图所示,则f(x)=.6.(4分)若是直线l的一个方向向量,则l的倾斜角的大小为(结果用反三角函数值表示)7.(4分)不等式≥0的解为.8.(4分)高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是.(结果用最简分数表示)9.(4分)如图所示的程序框图,输出b的结果是.10.(4分)已知各项均为正数的等比数列{a n}的首项a1=1,公比为q,前n项和为S n,若,则公比为q的取值范围是.11.(4分)(理)若平面向量满足||=1(i=1,2,3,4)且=0(i=1,2,3),则||可能的值有个.12.(4分)在△ABC中,∠A=60°,M是AB的中点,若|AB|=2,|BC|=2,D在线段AC上运动,则的最小值为.13.(4分)(理)函数f(x)=min{2,|x﹣2|},其中min{a,b}=,若动直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3,则x1•x2•x3是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”.14.(4分)已知线段A0A10的长度为10,点A1,A2,…A9依次将线段A0A10十等分在A0处标0,往右数1点标1,再往右数2点标2,再往右数3点标3…(如图),遇到最右端或最左端返回,按照A0→A10→A0→A10→…的方向顺序,不断标下去,那么标到10这个数时,所在点上的最小数为.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)下列排列数中,等于(n﹣5)(n﹣6)…(n﹣12)(n≥13,n∈N*)的是()A.B.C.D.16.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件17.(5分)函数在区间(0,+∞)上单调递增,那么实数a的取值范围是()A.a≥0B.a>0C.a≤0D.a<018.(5分)对于直角坐标平面xOy内的点A(x,y)(不是原点),A的“对偶点”B是指:满足|OA||OB|=1且在射线OA上的那个点.若P,Q,R,S是在同一直线上的四个不同的点(都不是原点),则它们的“对偶点”P′,Q′,R′,S′()A.一定共线B.一定共圆C.要么共线,要么共圆D.既不共线,也不共圆三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)已知集合A={x|},实数a使得集合B={x|(x﹣a)(x﹣5)>0}满足A⊆B,求a的取值范围.20.(14分)已知函数f(x)=log2.(1)判断函数f(x)的奇偶性,并证明;(2)求f(x)的反函数f﹣1(x),并求使得函数g(x)=f﹣1(x)﹣log2k有零点的实数k的取值范围.21.(14分)某种型号汽车四个轮胎半径相同,均为R=40cm,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为l=280cm (假定四个轮胎中心构成一个矩形).当该型号汽车开上一段上坡路ABC(如图(1)所示,其中∠ABC=a (),且前轮E已在BC段上时,后轮中心在F位置;若前轮中心到达G处时,后轮中心在H处(假定该汽车能顺利驶上该上坡路).设前轮中心在E和G处时与地面的接触点分别为S和T,且BS=60cm,ST=100cm.(其它因素忽略不计)(1)如图(2)所示,FH和GE的延长线交于点O,求证:OE=40cot(cm);(2)当a=π时,后轮中心从F处移动到H处实际移动了多少厘米?(精确到1cm)22.(16分)已知椭圆C:(a>b>0)的一个焦点为F(1,0),点(﹣1,)在椭圆C上,点T满足(其中O为坐标原点),过点F作一直线交椭圆于P、Q两点.(1)求椭圆C的方程;(2)求△PQT面积的最大值;(3)设点P′为点P关于x轴的对称点,判断与的位置关系,并说明理由.23.(18分)对于数列{x n},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为正整数a,公比为正整数q(q>0)的无穷等比数列{a n}的子数列问题.为此,他任取了其中三项a k,a m,a n(k<m<n).(1)若a k,a m,a n(k<m<n)成等比数列,求k,m,n之间满足的等量关系;(2)他猜想:“在上述数列{a n}中存在一个子数列{b n}是等差数列”,为此,他研究了a k+a n与2a m的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;(3)他又想:在首项为正整数a,公差为正整数d的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.2013年上海市徐汇区高考数学一模试卷(理科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)方程组的增广矩阵是.【考点】O1:二阶矩阵;ON:二阶行列式与逆矩阵.【专题】21:阅读型.【分析】理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【解答】解:由题意,方程组的增广矩阵为其系数及常数项构成的矩阵故方程组的增广矩阵是.故答案为:.【点评】本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.2.(4分)已知幂函数f(x)的图象过点(8,),则此幂函数的解析式是f(x)=.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11:计算题.【分析】设f(x)=xα,将点(8,)的坐标代入可求得α,从而可得答案.【解答】解:设f(x)=xα,∵幂函数f(x)的图象过点(8,),∴8α=,即23α=2﹣1,∴3α=﹣1,∴α=﹣.∴f(x)=.故答案为:.【点评】本题考查幂函数的概念与解析式的求法,属于基础题.3.(4分)若θ为第四象限角,且sin()=,则sin2θ﹣.【考点】GE:诱导公式;GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】56:三角函数的求值.【分析】利用诱导公式化简已知等式的左边求出cosθ的值,再由θ为第四象限角得到sinθ小于0,利用同角三角函数间的基本关系求出sinθ的值,所求式子利用二倍角的正弦函数公式化简后,将各自的值代入计算即可求出值.【解答】解:∵sin(+θ)=cosθ=,θ为第四象限角∴sinθ=﹣=﹣,则sin2θ=2sinθcosθ=﹣.故答案为:﹣【点评】此题考查了二倍角的正弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式及基本关系是解本题的关键.4.(4分)若抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,则实数p的值是8.【考点】K8:抛物线的性质;KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的方程,可得c==4,从而得到双曲线的右焦点为F(4,0),再根据抛物线的简单几何性质,可得=4,解之即可得到实数p 的值.【解答】解:∵双曲线的方程为,∴a2=6,b2=10,可得c==4因此双曲线的右焦点为F(4,0)∵抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合∴=4,解之得p=8故答案为:8【点评】本题给出抛物线以原点为顶点,双曲线的右焦点为焦点,求抛物线方程,着重考查了双曲线、抛物线的标准方程与简单几何性质等知识,属于基础题.5.(4分)函数的部分图象如图所示,则f(x)=.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】57:三角函数的图像与性质.【分析】由函数的图象顶点的纵坐标求出A,根据半个周期==6﹣2=4,求出ω,根据(×0+φ)=0求出φ值.【解答】解:根据图象顶点的纵坐标可得A=2,==6﹣2=4,∴ω=,故函数为y=2sin(x+φ),由五点法作图可得(×0+φ)=0,∴φ=0,故f(x)=2sin x,故答案为2sin x.【点评】本题考查由函数y=Asinn(ωx+φ)的部分图象求出其解析式的方法,体现了数形结合的数学思想.6.(4分)若是直线l的一个方向向量,则l的倾斜角的大小为arctan (结果用反三角函数值表示)【考点】9J:平面向量的坐标运算.【专题】11:计算题.【分析】根据直线的方向向量的坐标一般为(1,k)可得直线的斜率,根据tan α=k,最后利用反三角可求出倾斜角.【解答】解:∵是直线l的一个方向向量∴直线l的斜率为即tanα=则l的倾斜角的大小为arctan故答案为:arctan【点评】本题主要考查了直线的方向向量,解题的关键是直线的方向向量的坐标一般为(1,k),同时考了反三角的应用,属于基础题.7.(4分)不等式≥0的解为x≤0.【考点】7E:其他不等式的解法;OY:三阶矩阵.【专题】59:不等式的解法及应用.【分析】将三阶矩阵化为普通运算,利用指数函数的性质即可求出不等式的解集.【解答】解:不等式化为﹣2x(2x+1)+6﹣2(2x+1)≥0,整理得:(2x﹣1)(2x+4)≤0,∵2x+4≥0,∴2x﹣1≤0,即2x≤20,∴x≤0.故答案为:x≤0【点评】此题考查考查了其他不等式的解法,指数函数的性质,以及三阶矩阵,是一道中档题.8.(4分)高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是.(结果用最简分数表示)【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;5I:概率与统计.【分析】在7人中选取3人,所有基本事件的个数为=35,符合至少有一名女生的基本事件个数为﹣=31.由此结合古典概型计算公式,即可得到至少选到一名女生的概率.【解答】解:从4名男生和3名女生中选3人,共有=35种不同的取法,而其中至少有一个女生的取法有:﹣=31种因此,选出的人中至少有一名女生的概率是P=故答案为:【点评】本题在4名男生和3名女生共7人中选取3人,求至少取到一名女生的概率,着重考查了古典概型及其概率计算公式的知识,属于基础题.9.(4分)如图所示的程序框图,输出b的结果是16.【考点】E7:循环结构.【专题】27:图表型.【分析】要求程序框图的运行结果,我们可以模拟程序的运算结果,根据循环变量a的初值为1,进入循环的条件为a≤3,循环体内步长为1,我们可得程序运行过程中a的值可以为1,2,3,分析程序的运行过程即可得到结果.【解答】解:当a=1时,b=4当a=2时,b=8当a=3时,b=16故答案为:16【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模10.(4分)已知各项均为正数的等比数列{a n}的首项a1=1,公比为q,前n项和为S n,若,则公比为q的取值范围是(0,1].【考点】8J:数列的极限.【专题】11:计算题.【分析】根据等比数列的前n项和公式S n,S n+1列出关于q的表达式,利用条件,分类讨论然后求解即可得到答案.【解答】解:当q=1的情况,S n+1=(n+1)a1,所以成立,当q≠1是的情况,,所以可以看出当q为小于1的分数的时候成立,故答案为(0,1].【点评】本题的考点是数列的极限,此主要考查极限及其运算,其中涉及到等比数列前n项和的求法,要分类讨论求解.属于综合题目有一定的计算量.11.(4分)(理)若平面向量满足||=1(i=1,2,3,4)且=0(i=1,2,3),则||可能的值有3个.【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由=0可得,分类作图可得结论.【解答】解:由=0可得,若四向量首尾相连构成正方形时(图1),||=0,当四向量如图2所示时,||=2,当四向量如图3所示时,||=2,故答案为:3【点评】本题考查平面向量的模长,涉及分类讨论的思想,属中档题.12.(4分)在△ABC中,∠A=60°,M是AB的中点,若|AB|=2,|BC|=2,D在线段AC上运动,则的最小值为.【考点】9O:平面向量数量积的性质及其运算;HR:余弦定理.【专题】5A:平面向量及应用.【分析】把向量用,表示,可化简数量积的式子为,由余弦定理可得AC的长度,进而可得的范围,由二次函数区间的最值可得答案.【解答】解:∵=,==,故=()•()====,设AC=x,由余弦定理可得,整理得x2﹣2x﹣8=0,解得x=4或x=﹣2(舍去),故有∈[0,4],由二次函数的知识可知当=时,取最小值故答案为:【点评】本题考查平面向量的数量积的运算,涉及余弦定理和二次函数的最值,属中档题.13.(4分)(理)函数f(x)=min{2,|x﹣2|},其中min{a,b}=,若动直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3,则x1•x2•x3是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”1.【考点】51:函数的零点;57:函数与方程的综合运用.【专题】23:新定义.【分析】由f(x)表达式作出函数f(x)的图象,由图象可求得符合条件的m 的取值范围,不妨设0<x1<x2<2<x3,通过解方程可用m把x1,x2,x3分别表示出来,利用基本不等式即可求得x1•x2•x3的最大值.【解答】解:作出函数f(x)的图象如下图所示:由解得A(4﹣2,2﹣2),由图象可得,当直线y=m与f(x)图象有三个交点时m的范围为:0<m<2﹣2.不妨设0<x1<x2<2<x3,则由2=m得x1=,由|x2﹣2|=2﹣x2=m,得x2=2﹣m,由|x3﹣2|=x3﹣2=m,得x3=m+2,且2﹣m>0,m+2>0,所以x1•x2•x3=×(2﹣m)×(2+m)=•m2•(4﹣m2)≤•=1,当且仅当m2=4﹣m2即m=时取得等号,所以x1•x2•x3存在最大值为1.故答案为:1.【点评】本题考查函数与方程的综合运用,考查基本不等式在求函数最值中的应用,考查数形结合思想,考查学生综合运用知识分析解决新问题的能力,难度较大.14.(4分)已知线段A0A10的长度为10,点A1,A2,…A9依次将线段A0A10十等分在A0处标0,往右数1点标1,再往右数2点标2,再往右数3点标3…(如图),遇到最右端或最左端返回,按照A0→A10→A0→A10→…的方向顺序,不断标下去,那么标到10这个数时,所在点上的最小数为5.【考点】82:数列的函数特性.【专题】29:规律型.【分析】分析可得:按照A0→A10→A0→A10→…的方向顺序,不断标下去,故标到10这个数时,所在点上有三个数:5,9,10,那么即可得到所在点上的最小数.【解答】解:按照A0→A10→A0→A10→…的方向顺序,不断标下去:,.那么标到10这个数时,所在点上有三个数:5,9,10,点上的最小数为5.故答案为:5.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的动手能力.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)下列排列数中,等于(n﹣5)(n﹣6)…(n﹣12)(n≥13,n∈N*)的是()A.B.C.D.【考点】D4:排列及排列数公式.【专题】11:计算题;29:规律型.【分析】分析给出的乘积数的项数和最大数,结合排列数公式可得正确结论.【解答】解:数(n﹣5)(n﹣6)…(n﹣12)(n≥13,n∈N*)是8个连续正的自然数的乘积,且最大数是n﹣5,由排列数公式=n(n﹣1)(n﹣2)…(n﹣m+1)可知,等于(n﹣5)(n﹣6)…(n﹣12)(n≥13,n∈N*)的数是.故选:C.【点评】本题考查了排列数公式,解答的关键是掌握排列数公式的特征,的展开,是从左到右由最大数n开始,一直乘到最小数m,此题是基础题.16.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】14:证明题.【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选:B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.17.(5分)函数在区间(0,+∞)上单调递增,那么实数a的取值范围是()A.a≥0B.a>0C.a≤0D.a<0【考点】3E:函数单调性的性质与判断.【专题】11:计算题.【分析】先求函数的导数,根据函数的增区间上导数大于0,可知,若函数在区间(0,+∞)上单调递增,则x∈(0,+∞)时,f′(x)>0恒成立,再通过分类讨论a为何值时f′(x)>0恒成立即可求出a 的范围.【解答】解:f′(x)==,∵函数在区间(0,+∞)上单调递增,∴当x∈(0,+∞)时,f′(x)>0恒成立.即当x∈(0,+∞)时,ax2+1>0恒成立,当a>0时,y=ax2+1的图象为开口向上,最低点为(0,1)的抛物线,∴当x∈(0,+∞)时,ax2+1>0恒成立.当a=0时,1>0恒成立.当a<0时,y=ax2+1的图象为开口向下,最高点为(0,1)的抛物线,∴当x∈(0,+∞)时,ax2+1>0不恒成立.∴实数a的取值范围是a≥0,故选:A.【点评】本题主要考查函数的单调性与导数之间的关系,在函数的单调增区间上导数大于0恒成立.18.(5分)对于直角坐标平面xOy内的点A(x,y)(不是原点),A的“对偶点”B是指:满足|OA||OB|=1且在射线OA上的那个点.若P,Q,R,S是在同一直线上的四个不同的点(都不是原点),则它们的“对偶点”P′,Q′,R′,S′()A.一定共线B.一定共圆C.要么共线,要么共圆D.既不共线,也不共圆【考点】F2:合情推理的含义与作用;I6:三点共线.【专题】23:新定义.【分析】直接利用已知条件|OA||OB|=1,分类讨论:当P,Q,R,S是在过坐标原点的同一直线上的四个不同的点时,则说明它们的“对偶点”P′,Q′,R′,S′都在射线OA上;当P,Q,R,S是在不过坐标原点的同一直线上的四个不同的点时,则说明它们的“对偶点”P′,Q′,R′,S′都在一个圆上,推出结果.【解答】解:因为对于直角坐标平面xOy内的点A(x,y)(不是原点),①当P,Q,R,S是在过坐标原点的同一直线上的四个不同的点时,则说明它们的“对偶点”P′,Q′,R′,S′都在射线OA上;故排除选项B、D.②当P,Q,R,S是在不过坐标原点的同一直线上的四个不同的点时,如图,因为满足:“|OA||OB|=1”,则说明它们的“对偶点”P′,Q′,R′,S′一定不共线,都在一个圆上,排除选项A.故选:C.【点评】本题考查新定义的应用,圆的定义的应用,充分理解题意是解题的关键,就是抓住|OA||OB|=1是关键点.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)已知集合A={x|},实数a使得集合B={x|(x﹣a)(x﹣5)>0}满足A⊆B,求a的取值范围.【考点】18:集合的包含关系判断及应用;7E:其他不等式的解法.【专题】11:计算题;59:不等式的解法及应用.【分析】可求得集合A,对于集合B,需对a分a≥5与a<5讨论,利用A⊆B,通过解不等式即可求得a的取值范围.【解答】解:A=(3,4)…..(2分)a≥5时,B=(a,+∞)∪(﹣∞,5),满足A⊆B;…..(6分)a<5时,B=(5,+∞)∪(﹣∞,a),由A⊆B,得a≥4,故4≤a<5,…..(10分)综上,得实数a的取值范围为a≥4.…..(12分)【点评】本题考查分式不等式与一元二次不等式的解法,考查集合的包含关系判断及应用,考查分类讨论思想化归思想的综合运用,属于中档题.20.(14分)已知函数f(x)=log2.(1)判断函数f(x)的奇偶性,并证明;(2)求f(x)的反函数f﹣1(x),并求使得函数g(x)=f﹣1(x)﹣log2k有零点的实数k的取值范围.【考点】3K:函数奇偶性的性质与判断;4R:反函数;51:函数的零点.【专题】51:函数的性质及应用.【分析】对(1)先求函数的定义域,再利用奇、偶函数的定义证明即可.对(2)先求出反函数,再求反函数的值域,然后利用函数思想分析求K的取值范围.【解答】解:(1)f(x)的定义域为:(﹣∞,﹣1)∪(1,+∞)∵f(﹣x)===﹣f(x),∴f(x)为奇函数.(2)由y=,得x=,∴f﹣1(x)=,x≠0.∵函数g(x)=f﹣1(x)﹣log2K有零点,∴log2k==1+∈(﹣∞,﹣1)∪(1,+∞)∴k∈(2,+∞)∪(0,).∴k的取值范围是(2,+∞)∪(0,).【点评】本题考查函数的奇偶性,反函数的求法及函数思想的应用.21.(14分)某种型号汽车四个轮胎半径相同,均为R=40cm,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为l=280cm (假定四个轮胎中心构成一个矩形).当该型号汽车开上一段上坡路ABC(如图(1)所示,其中∠ABC=a (),且前轮E已在BC段上时,后轮中心在F位置;若前轮中心到达G处时,后轮中心在H处(假定该汽车能顺利驶上该上坡路).设前轮中心在E和G处时与地面的接触点分别为S和T,且BS=60cm,ST=100cm.(其它因素忽略不计)(1)如图(2)所示,FH和GE的延长线交于点O,求证:OE=40cot(cm);(2)当a=π时,后轮中心从F处移动到H处实际移动了多少厘米?(精确到1cm)【考点】5C:根据实际问题选择函数类型;HR:余弦定理.【专题】11:计算题;51:函数的性质及应用.【分析】(1)依题意,∠EOH=α,由Rt△OMB Rt△ONB,可求得∠BOM=,在Rt△OMB中,可求得OM=40cot,从而可证得结论;(2)由(1)结论得OE=+60,设OH=x,OF=y,在△OHG中,由余弦定理可求得x,在△OEF中,由余弦定理可求得y,而FH=y﹣x,从而可得答案.【解答】解:(1)由OE∥BC,OH∥AB,得∠EOH=α,…..(2分)过点B作BM⊥OE,BN⊥OH,则Rt△OMB Rt△ONB,从而∠BOM=.…..(4分)在Rt△OMB中,由BM=40得OM=40cot,从而,OE=OM+ME=OM+BS=40cot+60.…..(6分)(2)由(1)结论得OE=+60.设OH=x,OF=y,在△OHG中,由余弦定理得,2802=x2+(+60+100)2﹣2x(+60+100)cos150°,解得x≈118.8cm.…..(9分)在△OEF中,由余弦定理得,2802=y2+(+60)2﹣2y(+60)cos150°,解得y≈216.5cm.…..(12分)所以,FH=y﹣x≈98cm,即后轮中心从F处移动到H处实际移动了约98cm.…(14分)【点评】本题考查余弦定理,考查根据实际问题选择函数类型,着重考查分析理解与运算能力,属于中档题.22.(16分)已知椭圆C:(a>b>0)的一个焦点为F(1,0),点(﹣1,)在椭圆C上,点T满足(其中O为坐标原点),过点F作一直线交椭圆于P、Q两点.(1)求椭圆C的方程;(2)求△PQT面积的最大值;(3)设点P′为点P关于x轴的对称点,判断与的位置关系,并说明理由.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】15:综合题;5D:圆锥曲线的定义、性质与方程.【分析】(1)由椭圆C:(a>b>0)的一个焦点为F(1,0),点(﹣1,)在椭圆C上,知,由此能求出椭圆方程.(2)由,得(m2+2)y2+2my﹣1=0,设P(x1,y1),Q(x2,y2),=|FT||y1﹣y2|,由此能推导出S△PQT的最大由条件可知,点T(2,0).S△PQT值.(3)与共线,P′(x1,﹣y1),=(x2﹣x1,y2+y1),=(x2﹣2,y2),由(x2﹣x1)y2﹣(x2﹣2)(y1+y2)=0,得到与共线.【解答】(理)解:(1)∵椭圆C:(a>b>0)的一个焦点为F(1,0),点(﹣1,)在椭圆C上,∴,解得a2=2,b2=1,…..(2分)所以,椭圆方程为.…..(4分)(2)由,得(m2+2)y2+2my﹣1=0,设P(x1,y1),Q(x2,y2),由条件可知,点T(2,0).S△PQT=|FT||y1﹣y2|=•=,…..(6分)令t=,则t∈(0,],则S==≤,△PQT当且仅当t=,即m=0(此时PQ垂直于x轴)时等号成立,所以S的最大值是.…..(10分)△PQT(3)与共线…..(11分)P′(x1,﹣y1),=(x2﹣x1,y2+y1),=(x2﹣2,y2),…..(12分)由(x2﹣x1)y2﹣(x2﹣2)(y1+y2)=﹣x1y2﹣x2y1+2(y1+y2)=﹣(my1+1)y2﹣(my2+1)y1+2(y1+y2)=﹣2my1y2+(y1+y2)=﹣2m•+=0,所以,与共线…..(16分)【点评】本题考查椭圆方程的求法,考查三角形面积最大值的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.23.(18分)对于数列{x n},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为正整数a,公比为正整数q(q>0)的无穷等比数列{a n}的子数列问题.为此,他任取了其中三项a k,a m,a n(k<m<n).(1)若a k,a m,a n(k<m<n)成等比数列,求k,m,n之间满足的等量关系;(2)他猜想:“在上述数列{a n}中存在一个子数列{b n}是等差数列”,为此,他研究了a k+a n与2a m的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;(3)他又想:在首项为正整数a,公差为正整数d的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.【考点】83:等差数列的性质;87:等比数列的性质;RG:数学归纳法.【专题】55:点列、递归数列与数学归纳法.【分析】(1)依题意,由=a k•a n,即可求得k,m,n之间满足的等量关系;(2)利用作差法判断(a k+a n)﹣2a m的结果是否为0即可判断上述猜想是否正确;(3)命题:对于首项为正整数a,公差为正整数d的无穷等差数列{a n},总可以找到一个无穷子数列{b n},使得{b n}是一个等比数列,此命题是真命题,;证法一:利用二项式定理(1+d)n=(1+d+d2+…+d n),即可证明a(Md+1)=a+aMd是{a n}中的第aM+1项(M=+d+…+d n﹣1为正整数);证法二:先猜想,再利用数学归纳法证明即可.【解答】解:(1)由已知可得:a k=aq k﹣1,a m=aq m﹣1,a n=aq n﹣1,…(1分)则=a k•a n,即有(aq m﹣1)2=(aq k﹣1)(aq n﹣1),….(3分)2(m﹣1)=(k﹣1)+(n﹣1),化简可得.2m=k+n.…..(4分)(2)a k+a n=aq k﹣1+aq n﹣1,又2a m=2aq m﹣1,故(a k+a n)﹣2a m=aq k﹣1+aq n﹣1﹣2aq m﹣1=aq k﹣1(1+q n﹣k﹣2q m﹣k),…..(6分)由于k,m,n是正整数,且n>m,则n≥m+1,n﹣k≥m﹣k+1,又q是满足q>1的正整数,则q≥2,1+q n﹣k﹣2q m﹣k≥1+q m﹣k+1﹣2q m﹣k=1+q•q m﹣k﹣2q m﹣k≥1+2q m﹣k﹣2q m﹣k=1>0,所以,a k+a n>2a m,从而上述猜想不成立.…..(10分)(3)命题:对于首项为正整数a,公差为正整数d的无穷等差数列{a n},总可以找到一个无穷子数列{b n},使得{b n}是一个等比数列.…(13分)此命题是真命题,下面我们给出证明.证法一:只要证明对任意正整数n,b n=a(1+d)n,n≥1都在数列{a n}中.因为b n=a(1+d)n=a(1+d+d2+…+d n)=a(Md+1),这里M=+d+…+d n﹣1为正整数,所以a(Md+1)=a+aMd是{a n}中的第aM+1项,证毕.…..(18分)证法二:首项为a,公差为d(a,d∈N*)的等差数列为a,a+d,a+2d,…,考虑数列{a n}中的项:a+ad,a+(2a+ad)d,a+(3a+3ad+d2)d,…依次取数列{b n}中项b1=a+ad=a(1+d),b2=a+(2a+ad)d=a(1+d)2,b3=a+(3a+3ad+d2)d=a(1+d)3,则由a<2a+ad<3a+3ad+d2,可知=,并由数学归纳法可知,数列b n=a(1+d)n,n≥1为列{a n}的无穷等比子数列…(18分)【点评】本题考查等差与等比关系的确定,考查数学归纳法与分析法证明问题的能力,考查考查创新思维与逻辑思维能力及综合运算的能力,属于难题.。

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2013•上海)计算:=.考点:数列的极限.专题:计算题.分析:由数列极限的意义即可求解.解答:解:==,故答案为:.点评:本题考查数列极限的求法,属基础题.2.(4分)(2013•上海)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.考点:复数的基本概念.专题:计算题.分析:根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.解答:解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.点评:本题主要考查复数的基本概念,得到m2+m﹣2=0,m2﹣1≠0,是解题的关键,属于基础题.3.(4分)(2013•上海)若=,x+y=0.考点:二阶行列式的定义.专题:常规题型.分析:利用行列式的定义,可得等式,配方即可得到结论.解答:解:∵=,∴x2+y2=﹣2xy∴(x+y)2=0∴x+y=0故答案为0点评:本题考查二阶行列式的定义,考查学生的计算能力,属于基础题.4.(4分)(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2﹣3c2=0,则角C的大小是.考点:余弦定理.专题:解三角形.分析:把式子3a2+2ab+3b2﹣3c2=0变形为,再利用余弦定理即可得出.解答:解:∵3a2+2ab+3b2﹣3c2=0,∴,∴==.∴C=.故答案为.点评:熟练掌握余弦定理及反三角函数是解题的关键.5.(4分)(2013•上海)设常数a∈R,若的二项展开式中x7项的系数为﹣10,则a=﹣2.考点:二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.解答:解:的展开式的通项为T r+1=C5r x10﹣2r()r=C5r x10﹣3r a r令10﹣3r=7得r=1,∴x7的系数是aC51∵x7的系数是﹣10,∴aC51=﹣10,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(4分)(2013•上海)方程+=3x﹣1的实数解为log34.考点:函数的零点.专题:函数的性质及应用.分析:化简方程+=3x﹣1为=3x﹣1,即(3x﹣4)(3x+2)=0,解得3x=4,可得x的值.解答:解:方程+=3x﹣1,即=3x﹣1,即8+3x=3x﹣1(3x+1﹣3),化简可得32x﹣2•3x﹣8=0,即(3x﹣4)(3x+2)=0.解得3x=4,或3x=﹣2(舍去),∴x=log34,故答案为log34.点评:本题主要考查指数方程的解法,指数函数的值域,一元二次方程的解法,属于基础题.7.(4分)(2013•上海)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.考点:点的极坐标和直角坐标的互化;两点间的距离公式.专题:计算题.分析:联立ρ=cosθ+1与ρcosθ=1消掉θ即可求得ρ,即为答案.解答:解:由ρ=cosθ+1得,cosθ=ρ﹣1,代入ρcosθ=1得ρ(ρ﹣1)=1,解得ρ=或ρ=(舍),所以曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为,故答案为:.点评:本题考查两点间距离公式、极坐标与直角坐标的互化,属基础题.8.(4分)(2013•上海)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:利用组合知识求出从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数,再求出从5个奇数中任意取出2个奇数的取法种数,求出取出的两个球的编号之积为奇数的概率,利用对立事件的概率求出取出两个球的编号之积为偶数的概率.解答:解:从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数为种.取出的两个球的编号之积为奇数的方法种数为种.则取出的两个球的编号之积为奇数的概率为.所以取出两个球的编号之积为偶数的概率是.故答案为点评:本题考查了古典概型及其概率计算公式,考查了简单的排列组合知识,考查了对立事件的概率,解答的关键是明确取到的两数均为奇数时其乘积为奇数,是基础题.9.(4分)(2013•上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.考点:椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.解答:解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.点评:本题考查椭圆的定义、解三角形,以及椭圆的简单性质的应用.10.(4分)(2013•上海)设非零常数d是等差数列x1,x2,…,x19的公差,随机变量ξ等可能地取值x1,x2,…,x19,则方差Dξ=30d2.考点:极差、方差与标准差.专题:概率与统计.分析:利用等差数列的前n项和公式可得x1+x2+…+x19=和数学期望的计算公式即可得出Eξ,再利用方差的计算公式即可得出Dξ=即可得出.解答:解:由题意可得Eξ===x1+9d.∴x n﹣Eξ=x1+(n﹣1)d﹣(x1+9d)=(n﹣10)d,∴Dξ=+…+(﹣d)2+0+d2+(2d)2+…+(9d)2]===30d2.故答案为:30d2.点评:熟练掌握等差数列的前n项和公式、数学期望和方差的计算公式是解题的关键.11.(4分)(2013•上海)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=.考点:三角函数的和差化积公式;两角和与差的余弦函数.专题:三角函数的求值.分析:利用两角差的余弦公式及cosxcosy+sinxsiny=,可得cos(x﹣y)=,再利用和差化积公式sin2x+sin2y=,得到2sin(x+y)cos(x﹣y)=,即可得出sin(x+y).解答:解:∵cosxcosy+sinxsiny=,∴cos(x﹣y)=.∵sin2x+sin2y=,∴sin[(x+y)+(x﹣y)]+sin[(x+y)﹣(x﹣y)]=,∴2sin(x+y)cos(x﹣y)=,∴,∴sin(x+y)=.故答案为.点评:熟练掌握两角和差的正弦余弦公式及和差化积公式是解题的关键.12.(4分)(2013•上海)设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f (x)=9x++7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为..考点:函数奇偶性的性质;基本不等式.专题:函数的性质及应用.分析:先利用y=f(x)是定义在R上的奇函数求出x≥0时函数的解析式,将f(x)≥a+1对一切x≥0成立转化为函数的最小值≥a+1,利用基本不等式求出f(x)的最小值,解不等式求出a的范围.解答:解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x﹣+7因为y=f(x)是定义在R上的奇函数,所以f(x)=9x+﹣7;因为f(x)≥a+1对一切x≥0成立,所以当x=0时,0≥a+1成立,所以a≤﹣1;当x>0时,9x+﹣7≥a+1成立,只需要9x+﹣7的最小值≥a+1,因为9x+﹣7≥2=6|a|﹣7,所以6|a|﹣7≥a+1,解得,所以.故答案为:.点评:本题考查函数解析式的求法;考查解决不等式恒成立转化成求函数的最值;利用基本不等式求函数的最值.13.(4分)(2013•上海)在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y 轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为2π2+16π.考点:进行简单的合情推理.专题:计算题;压轴题;阅读型.分析:由题目给出的Ω的水平截面的面积,可猜想水平放置的圆柱和长方体的量,然后直接求出圆柱的体积与长方体的体积作和即可.解答:解:因为几何体为Ω的水平截面的截面积为4+8π,该截面的截面积由两部分组成,一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4,看作是把一个半径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即Ω的体积为π•12•2π+2•8π=2π2+16π.故答案为2π2+16π.点评:本题考查了简单的合情推理,解答的关键是由几何体Ω的水平截面面积想到水平放置的圆柱和长方体的有关量,是中档题.14.(4分)(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0=2.考点:反函数;函数的零点.专题:压轴题;函数的性质及应用.分析:根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f (x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.解答:解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),所以对于函数f(x),当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,又因为方程f(x)﹣x=0有解x0,且定义域为[0,3],故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f(x0)=x0,只有x0=2,故答案为:2.点评:本题考查函数的零点及反函数,考查学生分析解决问题的能力,属中档题.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)考点:集合关系中的参数取值问题;并集及其运算;一元二次不等式的解法.专题:不等式的解法及应用;集合.分析:当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a 的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.解答:解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选B.点评:此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.16.(5分)(2013•上海)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.分析:因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.解答:解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B点评:本题考查互为逆否命题的真假一致;考查据命题的真假判定条件关系,属于基础题.17.(5分)(2013•上海)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i行第j 列的元素c ij=a i•a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18 B.28 C.48 D.63考点:数列的函数特性.专题:压轴题.分析:由于该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j ﹣1(i=1,2,…,7;j=1,2,…,12),要使a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12).则满足2i+j﹣1=2m+n﹣1,得到i+j=m+n,由指数函数的单调性可得:当i+j≠m+n时,a ij≠a mn,因此该矩阵元素能取到的不同数值为i+j的所有不同和,即可得出.解答:解:该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j ﹣1(i=1,2,…,7;j=1,2,…,12),当且仅当:i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12),因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3,…,19,共18个不同数值.故选A.点评:由题意得出:当且仅当i+j=m+n时,a ij=a mn(i,m=1,2,...,7;j,n=1,2, (12)是解题的关键.18.(5分)(2013•上海)在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)•(++)的最小值、最大值,∴m<0,M<0故选D.点评:本题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2013•上海)如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.考点:点、线、面间的距离计算;直线与平面平行的判定.专题:空间位置关系与距离.分析:解法一:证明ABC′D′为平行四边形,可得BC′∥AD′,再利用直线和平面平行的判定定理证得直线BC′平行于平面D′AC.所求的距离即点B到平面D′AC的距离,设为h,再利用等体积法求得h的值.解法二:建立空间直角坐标系,求出平面D′AC的一个法向量为=(2,1,﹣2),再根据=﹣0,可得⊥,可得直线BC′平行于平面D′AC.求出点B到平面D′AC的距离d=的值,即为直线BC′到平面D′AC的距离.解答:解:解法一:因为ABCD﹣A′B′C′D′为长方体,故AB∥C′D′,AB=C′D′,故ABC′D′为平行四边形,故BC′∥AD′,显然BC′不在平面D′AC内,于是直线BC′平行于平面D′AC.直线BC′到平面D′AC的距离即为点B到平面D′AC的距离,设为h,考虑三棱锥D′﹣ABC的体积,以ABC为底面,可得三棱锥D′﹣ABC的体积为V==,而△AD′C中,AC=D′C=,AD′=,故△CAD′的底边AD′上的高为,故△CAD′的面积S△CAD′=••=,所以,V==⇒h=,即直线BC′到平面D′AC的距离为.解法二:以D′A′所在的直线为x轴,以D′C′所在的直线为y轴,以D′D所在的直线为z轴,建立空间直角坐标系.则由题意可得,点A(1,0,1 )、B(1,2,1)、C(0,2,1)、C′(0,2,0)、D′(0,0,0).设平面D′AC的一个法向量为=(u,v,w),则由⊥,⊥,可得,.∵=(1,0,1),=(0,2,1),∴,解得.令v=1,可得u=2,w=﹣2,可得=(2,1,﹣2).由于=(﹣1,0,﹣1),∴=﹣0,故有⊥.再由BC′不在平面D′AC内,可得直线BC′平行于平面D′AC.由于=(1,0,0),可得点B到平面D′AC的距离d===,故直线BC′到平面D′AC的距离为.点评:本题主要考查直线和平面平行的判定定理的应用,利用向量法证明直线和平面平行,求直线到平面的距离的方法,体现了转化的数学思想,属于中档题.20.(14分)(2013•上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.考点:函数模型的选择与应用.专题:应用题.分析:(1)求出生产该产品2小时获得的利润,建立不等式,即可求x的取值范围;(2)确定生产900千克该产品获得的利润函数,利用配方法,可求最大利润.解答:解:(1)生产该产品2小时获得的利润为100(5x+1﹣)×2=200(5x+1﹣)根据题意,200(5x+1﹣)≥3000,即5x2﹣14x﹣3≥0∴x≥3或x≤﹣∵1≤x≤10,∴3≤x≤10;(2)设利润为y元,则生产900千克该产品获得的利润为y=100(5x+1﹣)×=90000()=9×104[+]∵1≤x≤10,∴x=6时,取得最大利润为=457500元故甲厂应以6千克/小时的速度生产,可获得最大利润为457500元.点评:本题考查函数模型的建立,考查解不等式,考查函数的最值,确定函数的模型是关键.21.(14分)(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R,且a<b)满足:y=g(x)在[a,b]上至少含有30个零点.在所有满足上述条件的[a,b]中,求b﹣a的最小值.考点:正弦函数的单调性;根的存在性及根的个数判断;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)已知函数y=f(x)在上单调递增,且ω>0,利用正弦函数的单调性可得,且,解出即可;(2)利用变换法则“左加右减,上加下减”即可得到g(x)=2.令g(x)=0,即可解出零点的坐标,可得相邻两个零点之间的距离.若b﹣a最小,则a 和b都是零点,此时在区间[a,mπ+a](m∈N*)恰有2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,即可得到a,b满足的条件.进一步即可得出b﹣a的最小值.解答:解:(1)∵函数y=f(x)在上单调递增,且ω>0,∴,且,解得.(2)f(x)=2sin2x,∴把y=f(x)的图象向左平移个单位,再向上平移1个单位,得到,∴函数y=g(x)=,令g(x)=0,得,或x=(k∈Z).∴相邻两个零点之间的距离为或.若b﹣a最小,则a和b都是零点,此时在区间[a,π+a],[a,2π+a],…,[a,mπ+a](m∈N*)分别恰有3,5,…,2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,∴.另一方面,在区间恰有30个零点,因此b﹣a的最小值为.点评:本题综合考查了三角函数的单调性、周期性、函数的零点等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.22.(16分)(2013•上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点”(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质.专题:压轴题;新定义;圆锥曲线的定义、性质与方程.分析:(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1﹣C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.解答:(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1﹣C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.因为|k|>1,所以1﹣2k2≠0,因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,即b2≥2k2﹣1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1﹣C2型点”.点评:本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.23.(18分)(2013•上海)给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足a n+1=f(a n),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,a n+1﹣a n≥c;(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.考点:数列的函数特性;等差关系的确定;数列与函数的综合.专题:压轴题;等差数列与等比数列.分析:(1)对于分别取n=1,2,a n+1=f(a n),n∈N*.去掉绝对值符合即可得出;(2)由已知可得f(x)=,分三种情况讨论即可证明;(3)由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.分以下三种情况讨论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.解答:解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=10+c.(2)由已知可得f(x)=当a n≥﹣c时,a n+1﹣a n=c+8>c;当﹣c﹣4≤a n<﹣c时,a n+1﹣a n=2a n+3c+8≥2(﹣c﹣4)+3c+8=c;当a n<﹣c﹣4时,a n+1﹣a n=﹣2a n﹣c﹣8>﹣2(﹣c﹣4)﹣c﹣8=c.∴对任意n∈N*,a n+1﹣a n≥c;(3)假设存在a1,使得a1,a2,…,a n,…成等差数列.由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.又{a n}为等差数列,所以存在正数M,当n>M时,a n≥﹣c,从而a n+1=f(a n)=a n+c+8,由于{a n}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{a n}为递增数列,故a n≥a2=0>﹣c,∴a n+1=f(a n)=a n+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{a n}为无穷等差数列,符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由a n≥a1得到a n+1=f(a n)=a n+c+8,从而{a n}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).点评:本题综合考查了分类讨论的思方法、如何绝对值符号、递增数列、等差数列等基础知识与方法,考查了推理能力和计算能力.。

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)答案与解析

2013年上海市高考数学试卷(理科)答案与解析2013年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.(4分)计算:$\lim\limits_{n\rightarrow\infty}\frac{1}{n^2}\sum\limits_{k=1} ^{n}k\sqrt{n^2+k^2}$考点:数列的极限。

专题:计算题。

分析:根据数列极限的定义即可求解。

解答:$\lim\limits_{n\rightarrow\infty}\frac{1}{n^2}\sum\limits_{k=1}^{n}k\sqrt{n^2+k^2}=\lim\limits_{n\rightarrow\infty}\frac{1}{n}\sum\limits_{k=1}^{n}\frac{k}{n}\sqrt{1+\frac{k^2}{n^2}}$int_{0}^{1}x\sqrt{1+x^2}dx=\frac{2}{3}(1+\sqrt{2})$故答案为:$\frac{2}{3}(1+\sqrt{2})$。

点评:本题考查数列极限的求法,属基础题。

2.(4分)设$m\in R$,$m^2+m^{-2}+(m^2-1)i$是纯虚数,其中$i$是虚数单位,则$m=-2$。

考点:复数的基本概念。

专题:计算题。

分析:根据纯虚数的定义可得$m^2-1=0$,$m^2-1\neq0$,由此解得实数$m$的值。

解答:$\because$复数$z=(m^2+m^{-2})+(m-1)i$为纯虚数。

therefore m^2+m^{-2}=0$,$m^2-1\neq0$,解得$m=-2$。

故答案为:$-2$。

点评:本题主要考查复数的基本概念,得到$m^2+m^{-2}=0$,$m^2-1\neq0$,是解题的关键,属于基础题。

2013年高考数学模拟题(文)(打印版附详细答案)

2013年高考数学模拟题(文)(打印版附详细答案)

2013年高考数学模拟题(文)(二)一、选择题:本大题12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2320A x x x =-+=,{}log 42x B x ==,则A B =A .{}2,1,2-B .{}1,2C .{}2,2-D .{}22.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是 A .1 B .3-或1 C .3 或1- D .3-3.下列有关命题的说法正确的是 A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .若q p ∨为真命题,则p 、q 均为真命题; .C .命题“存在x ∈R ,使得210x x ++<”的否定是:“对任意x ∈R ,均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.4.设,a b 是平面α内两条不同的直线,l 是平面α外的一条直线,则“l a ⊥,l b ⊥”是“l α⊥”的 A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件5.如果不共线向量,a b满足2a b = ,那么向量22a b a b +- 与的夹角为A .6πB .3πC .2πD .23π6.若函数))(12()(a x x xx f -+=为奇函数,则a 的值为A .21B .32 C .43 D .17.若函数321(02)3xy x x =-+<<的图象上任意点处切线的倾斜角为α,则α的最小值是A .4πB .6πC .34π D .56π8.若利用计算机在区间(0,1)上产生两个不等的随机数a 和b,则方程2b x x=有不等实数根的概率为A .14B .12C .34D .259.执行如右图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是A .(42,56]B .(56,72]C .(72,90]D .(42,90)10.若函数21()log ()f x x a x=+-在区间1(,2)2内有零点,则实数a 的取值范围是 A . 25(log ,1]2-- B .25(1,log )2C .25(0,log )2D .25[1,log )211.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB 的中点M在其准线上的射影为M ',则ABM M '的最大值为A .22 B .23 C .1 D .312.已知函数1)(-=x e x f ,34)(2-+-=x x x g .若有)()(b g a f =,则b 的取值范围为 A .]3,1[ B .]22,22[+- C .)3,1( D .)22,22(+-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上. 13.已知α是第二象限角,)5,(x P 为其终边上一点,且x 42cos =α,则x 的值是 .14.一个体积为123的正三棱柱的三视图如右图所示,则该三棱柱的侧视图的面积为 .15.设F 是抛物线C 1:y 2=2px (p >0)的焦点,点A 是抛物线与双曲线C 2:22221x y ab-= (a >0,b >0)的一条渐近线的一个公共点, 且AF ⊥x 轴,则双曲线的离心率为 .16.若c b a ,,是A B C ∆三个内角的对边,且1sin sin sin 2a Ab Bc C +=,则圆22:9M x y +=被直线:0l ax by c -+=所截得的弦长为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数23cos sin sin3)(2-+=x x x x f ()R x ∈.(Ⅰ)若)2,0(π∈x ,求)(x f 的最大值;(Ⅱ)在ABC ∆中,若B A <,21)()(==B f A f ,求ABBC 的值.18.(本小题满分12分)在等差数列{}n a 中,满足8553a a =,n S 是数列{}n a 的前n 项和. (Ⅰ)若01>a ,当n S 取得最大值时,求n 的值; (Ⅱ)若461-=a ,记na Sb nn n -=,求n b 的最小值.19.(本小题满分12分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样. (Ⅰ)若第1组抽出的号码为2,写出所有被抽出职工的号码;(Ⅱ)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(Ⅲ)在(Ⅱ)的条件下,从体重不轻于73公斤(≥73公斤)的职工中抽取2人,求体重为76公斤的职工被抽取到的概率. 20.(本题满分12分)如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABC D .四边形ABC D 为正方形,且P 为AD的中点,Q 为SB 的中点. (Ⅰ)求证:CD ⊥平面SAD ; (Ⅱ)求证://PQ 平面SCD ;(Ⅲ)若SA SD =,M 为B C 中点,在棱S C 上是否存在点N,使得平面D M N ⊥平面A B C D ,并证明你的结论.21.(本小题满分12分)已知函数x ax x f ln 1)(--=()a ∈R .(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立, 求实数b 的取值范围. 22.(本小题满分14分)已知曲线)0()0,0(1:222222221≥=+≥>>=+x r y x C x b a by ax C :和曲线都过点A )1,0(-,且曲线1C 所在的圆锥曲线的离心率为23.(Ⅰ)求曲线1C 和曲线2C 的方程;(Ⅱ)设点B,C 分别在曲线1C ,2C 上,21,k k 分别为 直线AB,AC 的斜率,当124k k =时,问直线BC 是否过定点? 若过定点,求出定点坐标;若不过定点,请说明理由.MSD CA P Q·2013年高考数学模拟题(文)(二)参考答案及评分标准一、选择题(每小题5分,共60分) BADCC ACBBD AD二、填空题(每小题4分,共16分) 13.3-14.6 3 1516.三、解答题:17. 解:(Ⅰ)2)2cos 1(3)(x x f -=+232sin 21-xx x 2cos 232sin 21-=)32sin(π-=x . ……………3分 20π<<x , 32323πππ<-<-∴x .∴当232x ππ-=时,即125π=x 时,)(x f 的最大值为1. …………6分(Ⅱ) )32sin()(π-=x x f ,若x 是三角形的内角,则π<<x 0,∴35323π<π-<π-x .令21)(=x f ,得21)32sin(=π-x ,∴632π=π-x 或6532π=π-x ,解得4π=x 或127π=x . ……………8分由已知,B A ,是△ABC 的内角,B A <且21)()(==B f A f ,∴4π=A ,127π=B ,∴6π=--π=B A C . ……………10分 又由正弦定理,得221226sin4sin sin sin ==ππ==CA ABBC . ……………12分18.解:(Ⅰ)设{a n }的公差为d ,则由3a 5=5a 8,得3(a 1+4d )=5(a 1+7d ),∴d -=223a 1.…………2分∴S n =na 1+n (n -1)2×(-223a 1) -=123a 1n 2+2423a 1n -=123a 1(n -12)2+14423a 1.…………4分∵a 1>0,∴当n =12时,S n 取得最大值.……………………6分 (Ⅱ)由(Ⅰ)及a 1=-46,得d =-223-46)=4, ∴a n =-46+(n -1)×4=4n -50, S n =-46n +n (n -1)2×4=2n 2-48n .……………8分 ∴b n =S n -a n n =2n 2-52n +50n =2n +50n-52≥22n ×50n-52-=32,……………10分当且仅当2n =50n,即n =5时,等号成立. 故b n 的最小值为32-.……………………………………12分19.(本小题满分12分)解:(Ⅰ)抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.……4分 (Ⅱ)因为10名职工的平均体重为=x 110(81+70+73+76+78+79+62+65+67+59)=71, ……………6分 所以样本方差为:=2S110(102+12+22+52+72+82+92+62+42+122)=52.…8分 (Ⅲ)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).…………10分 故所求概率为P (A )=410=25.……12分20.证明:(Ⅰ)因为四边形A B C D 为正方形,则CDAD⊥. …………………1分又平面SAD⊥平面ABC D ,且面SA D 面ABCD AD=,所以CD⊥平面SAD . …………………3分(Ⅱ)取SC 的中点R ,连QR, DR .由题意知:PD ∥BC 且PD =12BC .……………4分MSDCAPQ· R (N ) O在SBC ∆中,Q 为SB 的中点,R 为SC 的中点, 所以QR ∥BC 且QR =12BC . 所以QR ∥PD 且QR=PD ,则四边形PDRQ 为平行四边形. ……………………………7分所以PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD ,所以PQ ∥平面SCD . ………………………………………9分(Ⅲ)存在点N 为S C 中点,使得平面D M N ⊥平面A B C D . ……………10分连接P C D M 、交于点O ,连接PM 、SP , 因为//P D C M ,并且P D C M =,所以四边形P M C D 为平行四边形,所以P O C O =. 又因为N 为S C 中点,所以//N O SP .……………………………………………11分因为平面S A D ⊥平面A B C D ,平面S A D 平面A B C D =A D ,并且SP A D ⊥, 可得SP ⊥平面A B C D ,所以N O ⊥平面A B C D .又因为⊂NO 平面OMN ,所以平面D M N ⊥平面A B C D .……………………12分 21.(本小题满分12分)解:(Ⅰ)xax x a x f 11)(-=-=',…………1分当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞单调递减, ∴)(x f 在),0(+∞上没有极值点;……………2分 当0>a 时,()0f x '<得10x a<<,()0f x '>得1x a>,∴)(x f 在(10,)a 上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值.………4分∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点.………………5分(Ⅱ)∵函数)(x f 在1=x 处取得极值,∴1=a , ∴bxx xbx x f ≥-+⇔-≥ln 112)(,………………6分令xx xx g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增,…………10分 ∴22min 11)()(ee g x g -==,即211b e≤-.………………12分22.(本小题满分14分) 解:(Ⅰ)由已知得21b =,24a =,21r =. ……2分所以曲线1C 的方程为2214xy +=(0x ≥). ……3分 曲线2C 的方程为221x y +=(0x ≥). ……4分 (Ⅱ)将11y k x =-代入2214x y +=,得()22111480k xk x +-=.……5分设()11,A x y ,()22,B x y ,则10x =,1221841k x k =+,212122141141k y k x k -=-=+.所以2112211841,4141k k B k k ⎛⎫- ⎪++⎝⎭. ……7分 将21y k x =-代入221x y +=,得()2222120k x k x +-=. 设()33,C x y ,则232221k x k =+,2232322111k y k x k -=-=+,所以)11,12(2222222+-+kk kk C . ……8分因为214k k =,所以21122118161,161161k k C k k ⎛⎫- ⎪++⎝⎭, ……9分 则直线B C 的斜率2211221111122111614116141188416141BC k k k k k k k k k k ---++==--++, ……11分所以直线B C 的方程为:21122111418141441k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,即1114y x k =-+.…13分 故B C 过定点()0,1. ……14分。

上海2013年高考数学试卷及解析

上海2013年高考数学试卷及解析

2013年上海市秋季高考理科数学一、填空题 1.计算:20lim______313n n n →∞+=+【解答】根据极限运算法则,201lim3133n n n →∞+=+.2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩. 3.若2211x xx y y y=--,则______x y +=【解答】2220x y xy x y +=-⇒+=.4.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示) 【解答】2222222323303a ab bc c a b ab++-=⇒=++,故11cos ,arccos 33C C π=-=-.5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【解答】2515()(),2(5)71r r r r aT C x r r r x-+=--=⇒=,故15102C a a =-⇒=-.6.方程1313313x x-+=-的实数解为________ 【解答】原方程整理后变为233238034log 4x x x x -⋅-=⇒=⇒=.7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________【解答】联立方程组得1(1)12ρρρ-=⇒=,又0ρ≥,故所求为12+. 8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)【解答】9个数5个奇数,4个偶数,根据题意所求概率为252913118C C -=.9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________【解答】不妨设椭圆Γ的标准方程为22214x y b +=,于是可算得(1,1)C ,得24,23b c ==. 10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=【解答】10E x ξ=,|D d ξ=.11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 【解答】1cos()2x y -=,2sin 2sin 22sin()cos()3x y x y x y +=+-=,故2s i n ()3x y +=. 12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________【解答】(0)0f =,故011a a ≥+⇒≤-;当0x >时,2()971a f x x a x=+-≥+ 即6||8a a ≥+,又1a ≤-,故87a ≤-. 13.在x O y 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48ππ,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【解答】根据提示,一个半径为1,高为2π的圆柱平放,一个高为2,底面面积8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为221228216πππππ⋅⋅+⋅=+.14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y fx -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【解答】根据反函数定义,当[0,1)x ∈时,()(2,4]f x ∈;[1,2)x ∈时,()[0,1)f x ∈,而()y f x =的定义域为[0,3],故当[2,3x ∈时,()f x 的取值应在集合(,0)[1,2](4,)-∞⋃⋃+∞,故若00()f x x =,只有02x =.二、选择题15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为()(A)(,2)-∞(B)(,2]-∞ (C)(2,)+∞(D)[2,)+∞【解答】集合A 讨论后利用数轴可知,111a a ≥⎧⎨-≤⎩或11a a a≤⎧⎨-≤⎩,解答选项为B .16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件 【解答】根据等价命题,便宜⇒没好货,等价于,好货⇒不便宜,故选B .17.在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为()(A)18(B)28(C)48(D)63【解答】,21i ji j i j i j a a a a a +=⋅++=-,而2,3,,19i j += ,故不同数值个数为18个,选A .18.在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d.若,m M 分别为()()i j k r s t a a a d d d ++⋅++ 的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足().(A)0,0m M => (B)0,0m M <>(C)0,0m M <=(D)0,0m M <<【解答】作图知,只有0AF DE AB DC ⋅=⋅> ,其余均有0i r a d ⋅≤,故选D .三、解答题19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.C 11A【解答】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C ;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1ADC ∆中,11AC DC AD ==132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.20.(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【解答】(1)根据题意,33200(51)30005140x x x x+-≥⇒--≥ 又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+ 故6x =时,max 457500y =元.21.(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值. 【解答】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩(2)()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++ 1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”;(3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.【解答】:(1)C 1的左焦点为(F ,过F 的直线x =C 1交于()2±,与C 2交于(1))±,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x = (2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学单元复习综合模拟题(一)一、 填空题 (本大题满分56分) 本大题共有14题,每个空格填对得4分,否则一律得零分. 1. 若i 为虚数单位,则-⋅=2(1i)i ___________.2. 设集合{}=≤<02M x x ,{}=--<2230N x x x ,则集合= M N ___________. 3. 已知等差数列{}n a 的公差为2,若,,134a a a 成等比数列,则=2a ___________.4. 已知函数=+()21x f x 的图像与=()y g x 的图像关于直线=y x 对称,则方程=()2g x 的解为___________.5.若)5a 的展开式中的第四项是310a ,其中a 是大于零的常数,则实数=x ___________.6. 锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同. 从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为___________. (答案用分数表示)7. 若经过两点-、(1,0)(0,2)A B 的直线l 与圆-++=222(1)(1)x y R 相切,则=2R ___________.8. 数列{}n a 中,若⎧⎪⎪=⎨⎪-⎪⎩是奇数是偶数1525nn nn a n ,=21n S a ___________.9. 在半径为30形,且其轴截面(过轴的截面)顶角为︒120则其高度为___________米.10. 阅读如图的算法框图,输出的结果S 11. 设=…(2,3,4,)n a n 是(3n⎛⎫+++ ⎪⎝⎭…23201023201020103332009a a a 的值是___________. 12. 在ΔABC 中,=2AB ,=3BC ,∠=ABC λμ=+AO AB BC ,则λμ+=___________.13. 已知ΔABC 的三个顶点在以O 球的表面积为π16,则A 、B 两点的球面距离是14. 如图给出的是一个“直角三角形数阵”: 数成等比数列,且每一行的公比相等,记第i ___________.二、 选择题 (本大题满分20分) 本大题共有4分,否则一律得零分.15. 已知集合{=-+-≤,22(,)(4)(5)4M x y x y x 素∈p M ”是“元素∈p N ”的 ( ).A .(1,2)-B.(1,0)(1,2)- C [0,1] D .[1,0)(1,2]-三、 解答题 (本大题满分74分) 本大题共有5题,在规定区域内写出必要的步骤. 19. 已知函数2()2sin sin 21,.f x x x x R =+-∈(Ⅰ)求()f x 的最小正周期及()f x 取得最大值时x 的集合.(Ⅱ)在平面直角坐标系中画出函数()f x 在[0,]π上的图象(在图上标明关键点的坐标)20. 如图直三棱柱-11ABC A B 是1AA 的中点.(1) 求异面直线AB 与1C D (2) 求点1A 到平面11B C D21已知椭圆22221(0)x y a b a b +=>>的长轴为AB ,过点B 的直线l 与x轴垂直,椭圆2c a =,F 为椭圆的左焦点,且1AF BF =g . (I )求此椭圆的方程;(II )设P 是此椭圆上异于,A B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =. 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.22.对于定义在D 上的函数=()y f x ,若存在∈0x D ,对于任意的∈x D ,都有≥0()()f x f x ,则称函数()f x 在区间D 上有下界,把0()f x 称为函数()f x 在D 上的“下界”.(1) 分别判断下列函数是否有“下界”,如果有,写出“下界”;如果没有,说明理由:=->1()12(0)f x x x ;=+∈,216()(0,5]f x x x x; (2) 请你类比函数有“下界”的定义,写出函数()f x 在区间D 上有“上界”的定义;并判断函数=-316()f x x x<≤(05)x 是否有“上界”,说明理由; (3) 若函数()f x 在区间D 上既有“上界”又有“下界”,则称函数()f x 是区间D 上的“有界函数”,把“上界” 与“下界”的差称为函数()f x 在D 上的“幅度M ”.对于实数a ,试探究函数=-+()23F x x x a 是否是[1,2]上的“有界函数”? 如果是,求出“幅度M ”的值. 23.设-=+⋅3()322k kx k xf x k x∈(x R ,k 为正整数). (1) 分别求出当=1k 、=2k 时方程=()0f x 的解;(2) 设≤()0f x 的解集为-212[,]k k a a ,求+++1234a a a a 的值及数列{}n a 的前2n 项和; (3) 对于(2)中的数列{}n a ,设--=212(1)nn n nb a a ,求数列{}n b 的前n 项和n T 的最大值.高三数学单元复习综合模拟题(一)一、填空题(56%)1. 2222(12i i )i (12i 1)i 2i 2-+=--=-=. 2. [0,2)利用数轴解题. 3. 6-. 4. 5x =. 5. 1.6. 4891112121211654654654415C C C C C C CC C C ++,若用简便方法计算防止重复计算得出正确答案的两倍答案. 7. 5注意求的是2R .8. 18. 9. 10. 0.11. 18利用裂项,原式20101111201018120092232010⎛⎫=⨯-+-+⋯-=⎪⎝⎭2009200918⨯⨯2010. 12. 231126λμ==,. 13. π.14.112j i +⎛⎫⋅ ⎪⎝⎭.二、选择题(16%) 15. A M ⊂≠N. 16. D.17. A 10201010202020C C C ()x x x f x --++===-. 18. D.三、解答题(74%) 19.解. (Ⅰ)()sin 2cos2)4f x x x x π=--所以()f x 的最小正周期是π, 当2242x k πππ-=+,k Z ∈,即38x k ππ=+,k Z ∈时,sin(2)4x π-取得最大值1,从而()f x取得最大值,所以()f x 取得最大值时x 的 集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.(Ⅱ)如图所示. 20. ⑴; ⑵ 等积法21.解:(Ⅰ)由题意可知,(,0)A a -, (,0)B a ,(,0)F c -, ()()1A FB F a c a c =+-=g 2221a cb ∴-==又2e =, 22222222134c a b a e a a a --==== ,解得24a = 所求椭圆方程为2214x y +=…………………………5分 (Ⅱ)设00(,)P x y ,则00(,2)Q x y 00(2,2)x x ≠≠- 由(2,0),A -得0022AQ y k x =+ 所以直线AQ 方程002(2)2y y x x =++ 由(2,0),B -得直线l 2,x =的方程为008(2,)2y M x ∴+ 004(2,)2y N x ∴+ 由 0000200422224NQy y x x y k x x -+==--又点P 的坐标满足椭圆方程得到:2200+44x y = , 所以 220044x y -=- 000002200022442NQ x y x y x k x y y ===--- ∴直线NQ 的方程:00002()2x y y x x y -=-- 化简整理得到:220000244x x yy x y +=+= 即0024x x yy +=所以点O 到直线NQ的距离2d O ===圆的半径∴直线NQ 与AB 为直径的圆O 相切.……………………………………. 13分22. ⑴1()f x 无(单调递减),2()f x 有,“下界”为8. ⑵ 对于定义在D 上的函数()y f x =,若存在0x D ∈,对任意的x D ∈,都有0()()f x f x ≤,则称函数()f x 在区间D 上有“上界”,把0()f x 称为函数()f x 在D 上的“上界”,函数无“上界”,因其在区间(0,4]上单调递减,无最大值.⑶ 是,1°0a =时,幅度M 为3,2°0a <时,幅度M 为32a -,3°2a >时,幅度M 为23a -,4°312a <<时,幅度M 为2(2)a -,5°322a ≤≤时,幅度M 为2(1)a -,6°102a <≤时,幅度M 为32a -,7°1526a <≤时,幅度M 为44a -,8°516a <<时,幅度M 为21a -.23. 解答:解:(1)f (x )=x 2﹣(3k+2k )x+3k•2k =(x ﹣3k )(x ﹣2k )当K=1时f (x )=(x ﹣3)(x ﹣2),所以方程f (x )=0的解为x=2,x=3﹣﹣(2分) 当K=2时f (x )=(x ﹣6)(x ﹣4),所以方程f (x )=0的解为x=6,x=4﹣﹣﹣(4分) (2)由f (x )≤0即(x ﹣3k )(x ﹣2k )≤0的解集为[a 2k ﹣1,a 2k ]. ∴,﹣﹣﹣﹣﹣﹣﹣(5分)∴k=1时,a 1+a 2=3•1+21=5,k=2时,a 3+a 4=3•2+22=10. ∴a 1+a 2+a 3+a 4=5+10=15﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分) S 2n =a 1+a 2+a 3+a 4+…+a 2n ﹣1+a 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n ) =(3•1+21)+(3•2+22)+…+(3•k+2n ) =3(1+2+…+n )+(2+22+…+2n )==﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(3)T n =b 1+b 2+b 3+…+b n==﹣﹣﹣﹣﹣﹣(10分)k≥2时,.n 为奇数时,T n ﹣T n ﹣1<0,即T 3<T 2,T 5<T 4,T 7<T 6,…,T n <T n ﹣1,…, n 为偶数时,T n ﹣T n ﹣1>0,即T 2>T 1,T 4>T 3,T 6>T 5,…,T n >T n ﹣1,…, ∴T n 的最大值必为T n 的偶数项 故当n 为偶数时(n≥4)时,=.∴n为偶数时,{T n}在n∈N*上为递减数列.∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)。

相关文档
最新文档