概率论 数理统计 高教出版社 课后答案 浙江大学

合集下载

概率论和数理统计第四版-习题答案解析-第四版-盛骤--浙江大学

概率论和数理统计第四版-习题答案解析-第四版-盛骤--浙江大学

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为: C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计课后习题答案(高等教育出版社)(浙江大学)(盛骤_、谢式千、潘承毅)

概率论与数理统计课后习题答案(高等教育出版社)(浙江大学)(盛骤_、谢式千、潘承毅)

浙大第四版(高等教育出版社)(浙江大学)第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

故 表示为:AB +BC +AC6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

盛骤--浙江大学-概率论和数理统计第四版-课后习题答案解析

盛骤--浙江大学-概率论和数理统计第四版-课后习题答案解析

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论答案浙江大学第四版

概率论答案浙江大学第四版

概率论答案浙江大学第四版【篇一:概率论与数理统计浙江大学第四版-课后习题答案(完全版)】p> 浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)o1n?100?s???,???,n表小班人数 n??nn(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)s={10,11,12,???,n,???}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))s={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设a,b,c为三事件,用a,b,c的运算关系表示下列事件。

(1)a发生,b与c不发生。

表示为: a或a- (ab+ac)或a- (b∪c)(2)a,b都发生,而c不发生。

表示为: ab或ab-abc或ab-c表示为:a+b+c (3)a,b,c中至少有一个发生(4)a,b,c都发生,表示为:abc表示为:ac或s- (a+b+c)或a?b?c (5)a,b,c都不发生,(6)a,b,c中不多于一个发生,即a,b,c中至少有两个同时不发生相当于,,中至少有一个发生。

故表示为:??。

(7)a,b,c中不多于二个发生。

相当于:,,中至少有一个发生。

故表示为:??abc(8)a,b,c中至少有二个发生。

相当于:ab,bc,ac中至少有一个发生。

故表示为:ab+bc+ac6.[三] 设a,b是两事件且p (a)=0.6,p (b)=0.7. 问(1)在什么条件下p (ab)取到最大值,最大值是多少?(2)在什么条件下p (ab)取到最小值,最小值是多少?从而由加法定理得p (ab)=p (a)+p (b)-p (a∪b) (*)(1)从0≤p(ab)≤p(a)知,当ab=a,即a∩b时p(ab)取到最大值,最大值为p(ab)=p(a)=0.6,(2)从(*)式知,当a∪b=s时,p(ab)取最小值,最小值为p(ab)=0.6+0.7-1=0.3 。

概率论数理统计高教出版社课后答案浙江大学共63页word资料

概率论数理统计高教出版社课后答案浙江大学共63页word资料

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

(1)该数是奇数的可能个数为48344=⨯⨯个,所以出现奇数的概率为(2)该数大于330的可能个数为48454542=⨯+⨯+⨯,所以该数大于330的概率为5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

概率论与数理统计答案浙江大学主编

概率论与数理统计答案浙江大学主编

概率论与数理统计答案浙江大学主编第一章概率论的基本概念注意:这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a),(0,b),(0,c),(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A所包含的样本点为(0,a),(1,a),(2,a)。

(3)事件B包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B所包含的样本点为(0,a),(0,b),(0,c)。

2、解(1)AB BC AC或ABC ABC ABC ABC;(2)AB BC AC(提示:题目等价于A,B,C至少有2个发生,与(1)相似);(3)ABC ABC ABC;(4)A B C或ABC;(提示:A,B,C至少有一个发生,或者A B C,,不同时发生);3(1)错。

依题得()()()()0=BApABp ,但空集p-p+=BAA ,≠B故A、B可能相容。

(2)错。

举反例(3)错。

举反例(4)对。

证明:由()6.0=p,()7.0=B p知A()()()()()3.0ApBpp,即A和B交非AABpB=-3.1>+-pA=B空,故A和B一定相容。

4、解(1)因为A B,不相容,所以A B,至少有一发生的概率为:P A B P A P B=+()()()=0.3+0.6=0.9(2) A B,都不发生的概率为:=-=-=;()1()10.90.1P A B P A B(3)A不发生同时B发生可表示为:A B,又因为A B,不相容,于是==;P A B P B()()0.65解:由题知()3.0=ABCP.,()05.0=ABACpBC因()()()()()-AB+p2=AC得,+ABBCpBCpABCppAC()()()()4.0ACpppBCAB3.0=+2=++ABCp故A,B,C 都不发生的概率为 ()()C B A p C B A p -=1 ()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”}若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则(1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C ==若是不放回抽样,则(1)2821028()45C P A C ==; (2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。

表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:中至少有一个发生。

故表示为:(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (4)(1)AB BC AC 或ABC ABC ABC ABC ;(5)(2)ABBCAC(6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得,但,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P AB P B ==;5解:由题知,.因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率论与数理统计课后习题参考答案高等教育出版社

概率论与数理统计课后习题参考答案高等教育出版社

概率论与数理统计课后习题参考答案高等教育出版社 习题1、1解答1、 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2、 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之与为偶数”,“点数之与小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1(ΛΛΛΛ=Ω; {})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1(Λ=+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3、 以C B A ,,分别表示某城市居民订阅日报、晚报与体育报。

试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报与晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ;(9)C B A ++4、 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。

概率论与数理统计课后习题答案高等教育出版社

概率论与数理统计课后习题答案高等教育出版社

概率论与数理统计课后习题答案高等教育出版社习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。

试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。

概率论与数理统计课后答案浙江大学盛骤

概率论与数理统计课后答案浙江大学盛骤

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计第四版_习题答案_第四版_盛骤__浙江大学出版pdf

概率论与数理统计第四版_习题答案_第四版_盛骤__浙江大学出版pdf
(3)生产产品直到得到 10 件正品,记录生产产品的总件数。 ([一] 2) S={10,11,12,………,n,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品” ,不合格的盖上“次品” ,如连续查出二 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 查出合格品记为“1” ,查出次品记为“0” ,连续出现两个“0”就停止检查,或查满 4 次才停止检 查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设 A,B,C 为三事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生。 表示为:
从 10 只中任取 4 只,取法有
10 种,每种取法等可能。 4
要 4 只都不配对,可在 5 双中任取 4 双,再在 4 双中的每一双里任取一只。取法有
5 24 4

P( A )
4 C5 24 4 C10

8 21 8 13 21 21
P( A) 1 P( A ) 1
4
后四个数全不同的排法有 A 10 ∴
P( A)
4 A10 0.504 104
10.[六]
在房间里有 10 人。 分别佩代着从 1 号到 10 号的纪念章, 任意选 3 人记录其纪念章的号码。
(1)求最小的号码为 5 的概率。 记“三人纪念章的最小号码为 5”为事件 A ∵ 10 人中任选 3 人为一组:选法有
1500 种,每种取法等可能。 200
200 个产品恰有 90 个次品,取法有
4001100 种 90 110

概率论与数理统计 浙大 第四版 课后答案(盛骤 谢式千 潘承毅 著) 高等教育出版社

概率论与数理统计 浙大 第四版  课后答案(盛骤 谢式千 潘承毅 著) 高等教育出版社

k = (n +1) p时, M = 1 ,此时 P{X = k} = P{X = k −1}
k > (n +1) p时, M < 1
所以当
k
=
⎧(n +1)p −1, (n + 1) p,若(n +1) p为整数
⎨ ⎩
(n
+
1)p,若(n
+
1)p为非整数
(2)对于泊松分布 P(λ) ,由
P(k;λ) P(k −1;λ)
0
1
P{0 ≤ X ≤ 2} = F(2) − F(0) = 1− 0 = 1
⎧0 解法二: f (x) = F '(X ) = ⎪⎨2Ax
⎪⎩ 0
x<0 0≤ x <1 x ≥1
∫ ∫ 由
1=
+∞
1
f (x)dx = 2Axdx =A

A = 1 其它同解法一
−∞
0
⎧x 17、已知随机变量 X 的概率密度为: f (x) = ⎪⎨2 − x
k=0 k!
∑ 查表得 +∞ e−3 3k = 0.000292 < 1 − 0.999 = 0.001 k =11 k!
所以在月初进货时要进此种商品 10 件,才能保证此商品当月不脱销的概率 为 0.999。 10、每年袭击某地的台风次数近似服从参数为 4 的泊松分布。求一年中该地区受 台风袭击次数为 3~5 的概率。 解:设 X 表示每年袭击某地的台风次数
=
λ k
…,
k
=
2,3...
可知
当 k < λ 时, P(k − 1; λ) < P(k; λ)

概率论与数理统计及其应用_习题答案_(浙大_盛骤、谢式千版本)

概率论与数理统计及其应用_习题答案_(浙大_盛骤、谢式千版本)

《概率论与数理统计》习题解答教材:《概率论与数理统计及其应用》,浙江大学盛骤、谢式千编,高等教育出版社,2004年7月第一版目录第一章随机事件及其概率 (1)第二章随机变量及其散布 (9)第三章随机变量的数字特点 (25)第四章正态散布 (34)第五章样本及抽样散布 (40)第六章参数估量 (43)第七章假设查验 (54)第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S(2){} ,4,3,2=S(3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P )])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-= 3、解:用A 表示事件“取到的三位数不包括数字1”25189********)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每一个数字最多显现一次的全部三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48五、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求以下事件的概率(1)4只中恰有2只白球,1只红球,1只黑球;(2)4只中至少有2只红球;(3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338 (2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点取得k 张提货单”n kn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,假设取到白球,放回,并放入1只白球,假设取到红球不放回也再也不放回另外的球,持续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

概率论与数理统计浙大第四版答案

概率论与数理统计浙大第四版答案

概率论与数理统计浙大第四版答案【篇一:概率论与数理统计答案第四版第2章(浙大)】死亡,则公司赔付20万元,若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。

若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。

解:设x为公司的赔付金额,x=0,5,20p(x=0)=1-0.0002-0.0010=0.9988 p(x=5)=0.00102.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以x表示取出的三只中的最大号码,写出随机变量的分布律.3解:方法一: 考虑到5个球取3个一共有c5 =10种取法,数量不多可以枚举来解此题。

设样本空间为ss={123,124,125,134,135,145,234,235,245,345 }易得,p{x=3}=10p{x=4}=10p{x=5}=10;136方法二:x的取值为3,4,5当x=3时,1与2必然存在,p{x=3}=c22c5=;10c23c51当x=4时,1,2,3中必然存在2个, p{x=4}= =;103当x=5时,1,2,3,4中必然存在2个, p{x=5}=c24c5=;106(2)将一颗骰子抛掷两次,以x表示两次中得到的小的点数,试求x 的分布律. 解:p{x=1}= p (第一次为1点)+p(第二次为1点)- p (两次都为一点)= +?6611136=;361114141715151966661313136=36566661212136=3631111113.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样.以x表示取出的次品的只数.(1)求x的分布律. 解:p{x=0}= c133515c322p{x=1}= p{x=2}=1c213 c212c1535;1352c113c2c15;(2)画出分布律的图形.4、进行独立重复试验,设每次试验的成功率为p,失败概率为q=1-p(0p1)(1)将试验进行到出现一次成功为止,以x表示所需的试验次数,求x的分布律。

概率论浙大第四版答案

概率论浙大第四版答案

概率论浙大第四版答案【篇一:概率论(浙大第四版)课后答案】p> 浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)o1n?100?s???,???,n表小班人数 n??nn(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)s={10,11,12,???,n,???}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))s={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设a,b,c为三事件,用a,b,c的运算关系表示下列事件。

(1)a发生,b与c不发生。

表示为: a或a- (ab+ac)或a- (b∪c)(2)a,b都发生,而c不发生。

表示为: ab或ab-abc或ab-c表示为:a+b+c (3)a,b,c中至少有一个发生(4)a,b,c都发生,表示为:abc(5)a,b,c都不发生,表示为:或s- (a+b+c)或a?b?c(6)a,b,c中不多于一个发生,即a,b,c中至少有两个同时不发生相当于,,中至少有一个发生。

故表示为:??。

(7)a,b,c中不多于二个发生。

相当于:,,中至少有一个发生。

故表示为:??abc(8)a,b,c中至少有二个发生。

相当于:ab,bc,ac中至少有一个发生。

故表示为:ab+bc+ac6.[三] 设a,b是两事件且p (a)=0.6,p (b)=0.7. 问(1)在什么条件下p (ab)取到最大值,最大值是多少?(2)在什么条件下p (ab)取到最小值,最小值是多少?从而由加法定理得p (ab)=p (a)+p (b)-p (a∪b) (*)(1)从0≤p(ab)≤p(a)知,当ab=a,即a∩b时p(ab)取到最大值,最大值为p(ab)=p(a)=0.6,(2)从(*)式知,当a∪b=s时,p(ab)取最小值,最小值为p(ab)=0.6+0.7-1=0.3 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2) 求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

(1)该数是奇数的可能个数为48344=⨯⨯个,所以出现奇数的概率为48.010048= (2)该数大于330的可能个数为48454542=⨯+⨯+⨯,所以该数大于330的概率为48.010048=5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412131425=C C C C ;(2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。

6,一公司向M 个销售点分发)(M n n <张提货单,设每张提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤张提货单的概率。

解:根据题意,)(M n n <张提货单分发给M 个销售点的总的可能分法有n M 种,某一特定的销售点得到)(n k k ≤张提货单的可能分法有k n k n M C --)1(种,所以某一特定的销售点得到)(n k k ≤张提货单的概率为nk n k n M M C --)1(。

7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。

若一只球装入与球同号的盒子,称为一个配对。

(1)求3只球至少有1只配对的概率。

(2)求没有配对的概率。

解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。

至少有1只配对的放法当然就有6-2=4种。

所以(2)没有配对的概率为3162=;(1)至少有1只配对的概率为32311=-。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃, )|(),|(AB A P B A AB P ⋃.(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。

连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。

解:(1)由题意可得7.0)()()()(=-+=⋃AB P B P A P B A P ,所以313.01.0)()()|(===B P AB P B A P , 515.01.0)()()|(===A P AB P A B P , 75)()()()]([)|(=⋃=⋃⋃=⋃B A P A P B A P B A A P B A A P , 71)()()()]([)|(=⋃=⋃⋃=⋃B A P AB P B A P B A AB P B A AB P , 1)()()()]([)|(===AB P AB P AB P AB A P AB A P 。

(2)设)4,3,2,1(=i A i 表示“第i 次取到白球”这一事件,而取到红球可以用它的补来表示。

那么第一、二次取到白球且第三、四次取到红球可以表示为4321A A A A ,它的概率为(根据乘法公式))|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==⨯⨯⨯=。

9,一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另一只也是红球的概率。

解:设“得到的两只球中至少有一只是红球”记为事件A ,“另一只也是红球”记为事件B 。

则事件A 的概率为65314232422)(=⨯+⨯⨯=A P (先红后白,先白后红,先红后红) 所求概率为51653142)()()|(=⨯==A P AB P A B P10,一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。

以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率。

(1))(),(B P A P ;(2))|(A B P ;(3))|(A B P ;(4))|(B A P ;(5))|(B A P 。

解:(1)根据题意可得%50%45%5)()()(=+=+=B A P AB P A P ;%15%10%5)()()(=+=+=A B P BA P B P ;(2)根据条件概率公式:1.0%50%5)()()|(===A P AB P A B P ; (3)2.0%501%10)()()|(=-==A P AB P A B P ; (4)179%151%45)()()|(=-==B P B A P B A P ; (5)31%15%5)()()|(===B P AB P B A P 。

11,在11张卡片上分别写上engineering 这11个字母,从中任意连抽6张,求依次排列结果为ginger 的概率。

解:根据题意,这11个字母中共有2个g ,2个i ,3个n ,3个e ,1个r 。

从中任意连抽6张,由独立性,第一次必须从这11张中抽出2个g 中的任意一张来,概率为2/11;第二次必须从剩余的10张中抽出2个i 中的任意一张来,概率为2/10;类似地,可以得到6次抽取的概率。

最后要求的概率为924013326403661738193102112==⨯⨯⨯⨯⨯;或者92401611111311131212=A C C C C C C 。

12,据统计,对于某一种疾病的两种症状:症状A 、症状B ,有20%的人只有症状A ,有30%的人只有症状B ,有10%的人两种症状都有,其他的人两种症状都没有。

在患这种病的人群中随机地选一人,求(1)该人两种症状都没有的概率;(2)该人至少有一种症状的概率;(3)已知该人有症状B ,求该人有两种症状的概率。

解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为%40%10%30%201=---;(2)至少有一种症状的概率为%60%401=-;(3)已知该人有症状B ,表明该人属于由只有症状B 的30%人群或者两种症状都有的10%的人群,总的概率为30%+10%=40%,所以在已知该人有症状B 的条件下该人有两种症状的概率为41%10%30%10=+。

13,一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率。

通讯线通讯量的份额 无误差的讯息的份额 10.4 0.9998 20.3 0.9999 30.1 0.9997 4 0.2 0.9996解:设“讯号通过通讯线i 进入计算机系统”记为事件)4,3,2,1(=i A i ,“进入讯号被无误差地接受”记为事件B 。

则根据全概率公式有 9996.02.09997.01.09999.03.09998.04.0)|()()(41⨯+⨯+⨯+⨯==∑=i i i A B P A P B P=0.9997814,一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。

已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。

解:设“一名被检验者经检验认为患有关节炎”记为事件A ,“一名被检验者确实患有关节炎”记为事件B 。

根据全概率公式有%1.12%4%90%85%10)|()()|()()(=⨯+⨯=+=B A P B P B A P B P A P , 所以,根据条件概率得到所要求的概率为%06.17%1.121%)851%(10)(1)|()()()()|(=--=-==A P B A P B P A P A B P A B P 即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17.06%.15,计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。

已知一程序因打字机发生故障而被破坏了,求该程序是在A,B,C 上打字的概率分别为多少?解:设“程序因打字机发生故障而被破坏”记为事件M ,“程序在A,B,C 三台打字机上打字”分别记为事件321,,N N N 。

则根据全概率公式有025.004.01.005.03.001.06.0)|()()(31=⨯+⨯+⨯==∑=i i i N M P N P M P ,根据Bayes 公式,该程序是在A,B,C 上打字的概率分别为24.0025.001.06.0)()|()()|(111=⨯==M P N M P N P M N P , 60.0025.005.03.0)()|()()|(222=⨯==M P N M P N P M N P , 16.0025.004.01.0)()|()()|(333=⨯==M P N M P N P M N P 。

相关文档
最新文档