整流滤波时电容和电感大小型号的选择
逆变电源滤波电容的大小计算
逆变电源滤波电容的大小计算11-06-19 01:19逆变电源滤波电容的大小计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
有电感滤波的整流电路
电感滤波器的优点和缺点
优点
可以有效平滑整流输出电压,减小输 出电压的脉动,提高电路的稳定性。
缺点
由于电感的储能和放电特性,使得电 感滤波器的响应速度较慢,可能会影 响电路的性能;同时,电感滤波器也 需要较大的体积和重量,增加了电路 的成本和体积。
讨论仿真结果在实际应用中 的意义,以及可能遇到的问 题和解决方法。
05
有电感滤波的整流电路应用实例
工业控制系统的应用
工业控制系统中,有电感滤波的整流 电路常被用于提供稳定的直流电源, 为各种电子设备和传感器提供电力。
由于其能够减小交流电源的干扰,提 高设备的稳定性和可靠性,因此广泛 应用于各种需要高精度控制的工业环 境中。
03
有电感滤波的整流电路设计
电路设计概述
电路组成
有电感滤波的整流电路主要由整 流二极管、电感滤波器和负载组
成。
工作原理
整流二极管将交流电转换为脉动直 流电,电感滤波器将脉动直流电的 脉动减小,得到较为平滑的直流电 供给负载。
电路特点
该电路具有滤波效果好、输出电压 稳定、对感性负载适应性强等优点, 常用于对电源要求较高的场合。
和电网的稳定性提供有力支持。
THANKS
感谢观看
汽车电子系统的应用
在汽车电子系统中,有电感滤波的整 流电路被用于为车载电子设备提供稳 定的直流电源。
VS
例如,汽车的点火系统、燃油喷射系 统、自动变速器等都需要稳定的直流 电源来保证其正常工作。
家用电器中的应用
家用电器中,如电视、冰箱、空调等,有电感滤波的整流电路同样发挥着重要的作用。
它能够将家用交流电源转换为稳定的直流电源,为家用电器的电子控制部分提供可靠的电力供应,保证家用电器的正常运行 和延长其使用寿命。
滤波电容的选择
滤波电容的选择滤波电容的选择经过整流桥以后的是脉动直流,波动范围很大。
后面一般用大小两个电容大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑小电容是用来滤除高频干扰的,使输出电压纯净电容越小,谐振频率越高,可滤除的干扰频率越高容量选择:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大(2)小电容,凭经验,一般104即可2.别人的经验(来自互联网)1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
2、电源滤波中电容对地脚要尽可能靠近地。
3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。
4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例: AC220-9V再经过全桥整流后,需加的滤波电容是多大的?再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。
后者电容耐压应大于9V,容量应大于220微发以上。
2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:(1)选择整流二极管;(2)选择滤波电容;(3)另:电容滤波是降压还是增压?(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。
(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。
(3)电容滤波是升高电压。
滤波电容的选用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C为滤波电容,单位为UF;T为频率, 单位为HzR为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R.3.滤波电容的大小的选取PCB制版电容选择印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。
详解滤波电容的选择及计算
详解滤波电容的选择及计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用,用于滤低频,二级用,用于滤高频,的电容作用是减小输出脉动和低频干扰,的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少就算我知道SFR值,我如何选取不同SFR值的电容值呢是选取一个电容还是两个电容电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
电源滤波电容大小的计算方法
电源滤波电容大小的计算方法滤波电容工程粗略计算公式:按RC时间常数近似等于3~5倍电源半周期估算。
给出一例:负载情况:直流1A,12V。
其等效负载电阻12欧姆。
桥式整流(半波整流时,时间常数加倍):RC = 3 (T/2)C = 3 (T/2) / R = 3 x (0.02 /2 ) / 12 = 2500 (μF)工程中可取2200 μF,因为没有2500μF这一规格。
若希望纹波小些,按5倍取。
这里,T是电源的周期,50HZ时,T = 0.02 秒。
时间的国际单位是S。
仅供参考C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是96.7%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。
那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=2.5A(正负电源各2.5A),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=0.01s,带上上式后得到C=2.5×0.01=0.025=25000uF。
以上计算是按照功放的最大功率计算的,如果我们平时是用小音量听的话,电容不需要这么大的,我认为满足一定的纹波系数就可以了,4700u或许就已经够用了。
整流滤波电路输出电压的算法
我国供电,整流输出直流电压是输入交流电压的倍数(无滤波):三相半波整流:1.17。
三相桥式整流:2.34。
单相半波整流:0.45.单相全波和桥式整流:0.9。
电容滤波空载电压是交流的1.4。
对于整流电压的输出电压大小,大家一定不陌生。
很多人会说,输出平均值全波0.9倍,半波0.45倍的交流有效。
但是在设计中,我们常常发现一个事实,例如在半波整流后,输出电压得到的不止0.45倍,9V交流整流后可能有11~12V。
之前我一直很困惑,是我记错了计算倍数吗?翻了很多书籍,公式当然是没错的。
那到底怎么回事?可能之前我们在学校学这个方面知识点的时候太过注重整流电路,而忽略了脉动比的概念,所以造成我们现在很多人对这一简单的知识不是很清晰。
其实这里是由于整流电路后面接的滤波电容有关的,查阅模电知识我们即可了解到,整流后往往会加滤波稳压,而滤波电路会改变整流输出的脉动比,并且和负载有关。
因此最终整流后得到的电压除了跟整流方式有关,还和负载、滤波电容大小有关系。
RL*C的数值直接影响输出电压的大小。
因此滤波电容选择其实不是随意的,而是需要根据负载选取合适的值。
接入滤波电路后,输出电压平均值近似取值为1.2倍,负载开路取1.414倍。
RC=(3-5)T/2 来确定电容容量选择。
其中T表示电网周期。
电容滤波电路适用于负载电流较小情况,而电感滤波电路适用于大负载电流。
(电流较大时R较小,C较难选择)练习:1.若U2为电源变压器副边电压的有效值,则半波整流电容滤波电路和全波整流电容滤波电路在空载时的输出电压均为1.414U。
()2.对于全波整流电路,已知变压器副边电压有效值U2为10V,RC=(3-5)T/2 (T为电网电压的周期)。
测得输出电压平均值UO(AV)可能的数值为A. 14VB. 12VC. 9VD. 4.5V选择合适答案填入空内。
(1)正常情况UO(AV)≈ ;(2)电容虚焊时UO(AV)≈ ;(3)负载电阻开路时UO(AV)≈ ;(4)一只整流管和滤波电容同时开路,UO(AV)≈ 。
如何选择滤波电容的大小?
如何选择滤波电容的大小?
电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用
0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大。
项目六:整流、滤波及稳压电路
稳压二极管的主要参数: 1、稳定电压UZ:指稳压管通过额定电流时两端产 生的反向击穿电压值。 2、稳定电流IZ :指稳压管产生稳定电压时通过 该管的电流值。 3、 动态电阻RZ:指稳压管两端电压变化与电流 变化的比值。该比值随工作电流的不同而改变,一 般是工作电流愈大动态电阻则愈小。 4、额定功耗Pz :由芯片允许温升决定,其数值为 稳定电压Uz 和允许最大电流Izm 的乘积。 5、反向漏电流IR :指稳压二极管在规定的反向电 压下产生的漏电流。
CW217--/CW217M--/CW217L-CW317--/CW317M--/CW317L--
4.三端可调负输出集成稳压器,国标型号为CW137--/CW137M--/CW137L-
CW237--/CW237M--CW237L-CW337--/CW337M--/CW337L--
5.三端低压差集成稳压器 6. 大电流三端集成稳压器
基本稳压电路
电路结构:电路是由稳压二极管Vz和电阻R等构成,稳压二极 管Vz是稳定输出电压UL,使UL输出电压受制于稳压二极管Vz的稳 压电压值上。电阻R又称为限流电阻,其作用是限制通过的电流 ,使稳压管Vz的稳定电流IZ不超过最大值,并使输出U0电压趋向 稳定。
工作原理:(1)当电网电压升高时, U1 U2 UL的电压都会跟着升高,并引起稳 压二极管两端的电压UZ增加,使输出电压 UL也增加,根据稳压二极管反向击穿特性, 当反向电压有微小增加时,就会引起反向
整流电路是将交流电转变为具有脉动成分的直 流电。
电容材质
电容器是电路中最基本的元件之一,利用电容滤除电路上的高频骚扰和对电 源解耦是所有电路设计人员都熟悉的。但是,随着电磁干扰问题的日益突出,特 别是干扰频率的日益提高,由于不了解电容的基本特性而达不到预期滤波效果的 事情时有发生。本文介绍一些容易被忽略的影响电容滤波性能的参数及使用电容 器抑制电磁骚扰时需要注意的事项。 1电容引线的作用
好的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷 电容的高频特性较好。设计印刷线路板时,每个集成电路的电源,地之间都要加 一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和 吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。 数字电路中典型的去耦电容为0.1uf的去耦电容有5nH分布电感,它的并行共振 频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用, 对40MHz以上的噪声几乎不起作用。
电力电子技术项目教程习题答案(1-3)
项目1 认识和调试晶闸管单相半波整流控制的调光灯电路1.1.4 思考题与习题1.晶闸管的导通条件是什么?怎样使晶闸管由导通变为关断?解:导通条件:(1)晶闸管阳极和阴极之间加正向电压;(2)晶闸管门极和阴极间加正向电压。
最根本的方法就是必须将阳极电流减小到使之不能维持正反馈的程度,也就是将晶闸管的阳极电流减小到小于维持电流。
可采用的方法有:将阳极电压减小到零或将晶闸管的阳极和阴极间加反向电压。
2.晶闸管导通后,去掉门极电压,晶闸管是否还能继续导通?为什么?解:继续导通,导通之后,门极就失去了控制作用。
3.说明晶闸管型号规格KP200-7E代表的含义。
解:额定电流为200A,额定电压为800V,管压降为0.8V4.有些晶闸管触发导通后,触发脉冲结束时它又关断是什么原因?解:欲使晶闸管触发导通,必须使触发脉冲保持到阳极电流上升到擎住电流IL以上,否则会造成晶闸管重新恢复阻断状态,因此触发脉冲必须具有一定宽度。
5.晶闸管导通时,流过晶闸管的电流大小取决于什么?晶闸管阻断时,承受的电压大小取决于什么?解:取决于电路里负载电阻的大小;取决于电源电压的大小。
6.画出图1-19所示电路电阻R d上的电压波形。
图1-19习题6图解:7.如图1-20,型号为KP100-3,维持电流4mA的晶闸管,在以下电路中使用是否合理?为什么?(未考虑电压、电流安全余量)(a) (b) (c)图1-20习题7图解:(a)图的目的是巩固维持电流和擎住电流概念,擎住电流一般为维持电流的数倍。
本题给定晶闸管的维持电流I H=3mA,那么擎住电流必然是十几毫安,而图中数据表明,晶闸管即使被触发导通,阳极电流为100V/50KΩ=3 mA,远小于擎住电流,晶闸管不可能导通,故不合理。
(b)图主要是加强对晶闸管型号的含义及额定电压、额定电流的理解。
本图所给的晶闸管额定电压为300A、额定电流100A。
图中数据表明,晶闸管可能承受的最大电压为311V,大于管子的额定电压,故不合理。
滤波扼流圈(差模电感)的设计方法和电感量大小计算方法
滤波扼流圈(差模电感)的设计方法和电感量大小计算方法展开全文电子电路设计过程中中,为了获得平滑的直流电流,将交流电经整流后得到直流电,由于脉动比较大,必须采用电容滤波或电感滤波,以减少整流后的纹波电压,虽然许多小功率的整流电路,只需在整流后并联上一只大容量的电解电容器,即可满足要求。
但对直流负载功率达几百瓦的整流电路,单靠电容器滤波是不够的,因为加大电容器的容量,它的体积也要增大,另外,当负载电流变化时,直流电压的波动也会增大,输出特性变差。
如果在整流后采用一个滤波扼流圈,也就是一般说的电感,与电容器配合接成π形滤波电路,或者接成倒L 形滤波电路,那么,滤波效果要好得多了,见图1所示。
如何确定滤波扼流圈的电感量L?在图1中,先计算负载电阻的阻值:(Ω)那么,滤波扼流圈的电感量L可以根据负载电阻的大小,按下式计算电感量L:(亨)当电源频率f=50Hz时,则(亨)例如: 经整流、滤波后的负载电压为24V,直流电流I为5A。
此时负载电阻=4.8Ω。
那么要求滤波扼流圈的电感量L:即电感量为5毫亨,直流电流为5A。
由于在滤波扼流圈中通过的是脉动直流电流,其中主要的是直流成分,也有少量的交流成分,即在交直流同时磁化下工作的。
因此在铁芯中产生很强的直流磁通,甚至使铁芯中的磁通达到饱和状态。
制造这样的扼流圈,在铁芯的磁路中都留有一定的空气隙lg以防止直流磁通的饱和。
滤波扼流圈的铁芯体积V、线圈匝数N和空气隙lg,是由三个有相互关系的电气参数,即:电感量L、直流磁化电流I和线圈两端的交流的电压U~而决定的。
滤波扼流圈的匝数、和通过的直流电流,因而在铁芯中产生直流磁通,同时在直流电流中还含有纹波电压,因此在铁芯中也含有一部分交变的磁通,它叠加在直流磁通上,见图2所示。
滤波扼流圈的磁路是由铁芯的磁路长度和空气隙lg两部分组成。
虽然磁路长度极大于空气隙lg,但这两部分是不能直接相加的。
因为这两部分的导磁率μ是不同的,在空气隙中的导磁率是1,而在铁芯中的导磁率视铁芯的饱和程度而定。
整流滤波时电容和电感大小型号的选择
整流滤波时电容和电感大小型号的选择纸介电容用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯子,然后密封在金属壳或者绝缘材料(如火漆、陶瓷、玻璃釉等)壳中制成。
它的特点是体积较小,容量可以做得较大。
但是有固有电感和损耗都比较大,用于低频比较合适。
云母电容用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。
它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。
陶瓷电容用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。
它的特点是体积小,耐热性好、损耗小、绝缘电阻高,但容量小,适宜用于高频电路。
铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。
薄膜电容结构和纸介电容相同,介质是涤纶或者聚苯乙烯。
涤纶薄膜电容,介电常数较高,体积小,容量大,稳定性较好,适宜做旁路电容。
聚苯乙烯薄膜电容,介质损耗小,绝缘电阻高,但是温度系数大,可用于高频电路。
金属化纸介电容结构和纸介电容基本相同。
它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频电路中。
油浸纸介电容它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。
它的特点是电容量大、耐压高,但是体积较大。
铝电解电容它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。
还需要经过直流电压处理,使正极片上形成一层氧化膜做介质。
它的特点是容量大,但是漏电大,稳定性差,有正负极性,适宜用于电源滤波或者低频电路中。
使用的时候,正负极不要接反。
钽、铌电解电容它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。
它的特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好。
用在要求较高的设备中。
半可变电容也叫做微调电容。
它是由两片或者两组小型金属弹片,中间夹着介质制成。
调节的时候改变两片之间的距离或者面积。
基于UC3844的电流控制型反激变换器分析与设计
基于UC3844的电流控制型反激变换器分析与设计云珂【摘要】分析反激变换器工作的基本原理,给出电路参数的选取原则以及RCD吸收电路的设计方法,基于电流型控制芯片UC3844,设计了满载功率36 W的反激变换器进行实验验证.实验结果表明,设计的电路满足设计要求,具有精度高、纹波小、效率高等优点.【期刊名称】《通信电源技术》【年(卷),期】2018(035)006【总页数】5页(P144-148)【关键词】反激变换器;RCD;UC3844;电流型控制【作者】云珂【作者单位】南京理工大学自动化学院,江苏南京 210094【正文语种】中文0 引言反激变换器具有体积小、成本低、可靠性高以及易于实现多路输出等特点,在中小功率领域得到了广泛应用,特别适用于作为各类控制系统的辅助电源[1]。
反激变换器中电感电流变化率较大,非常适合电流控制型的应用。
在反激变换器中,首先推荐使用电流控制型。
但是,由于变压器漏感的存在,反激变换器在开关管关断瞬间会产生很大的尖峰电压,使得开关管承受较高的电压应力,甚至可能导致开关管损坏[2-3]。
因此,为确保反激变换器安全可靠工作,必须引入钳位电路吸收漏感能量。
钳位电路可分为有源[4-5]和无源[6-7]钳位电路两类,其中无源钳位电路因不需控制和驱动电路而被广泛应用。
本文分析了反激变换器的工作原理,详细说明了电路参数的设计方法,并基于UC3844控制芯片,设计了满载功率为36 W的反激变换器,以验证设计参数[8] 。
1 反激变换器的工作原理反激变换器(Flyback Converter)本质上属于Buck-Boost变换器,输入回路与输出回路隔离,既可以升压也可以降压,广泛应用于100 W以内的隔离式开关电源。
反激变换器的初级回路主要由输入滤波电容Cin1、PWM控制器、启动电路及控制器供电电路、反激变压器主绕组、开关管Q以及尖峰脉冲吸收电路等部分组成;而次级回路主要由反激变压器次级绕组、整流二极管D3、输出滤波电容C0等部分组成。
滤波电容选取
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的。
对于高频杂波,一般我的经验是不要过大的电容,因为我个人认为,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想。
所以电容的选择不是容量越大越好。
疑问点:1。
以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是否正确。
或者推荐一个网页或者网站。
2。
是不是超过了谐振频率,其阻抗将大大增加,所以对高频的过滤信号,其作用就相对减小了呢?3。
理想的滤波点是不是在谐振频率这点上???(没有搞懂中)4。
以前只知道电容的旁路作用是隔直通交,现在具体于PCB设计中,电容的这一旁路作用具体体现在哪里?~~~~~~~~~~~~~~~~~~~~~~~~~~~在用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响。
电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用。
然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策。
出现这种情况的一个原因是忽略了电容引线对旁路效果的影响。
实际电容器的电路模型是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络。
理想电容的阻抗是随着频率的升高降低,而实际电容的阻抗是图1所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR。
在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性。
在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失。
电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差。
整流滤波电路详解
(C)L-C电感滤波(D)π型滤波或叫C-L-C滤波图1 无源滤波电路的基本形式为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。
电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。
电感滤波的波形图如图2所示。
根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。
图2电感滤波电路在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。
当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。
当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。
由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。
图3电感滤波电路波形图已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。
电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。
如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。
电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。
采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。
电容滤波原理详解1.空载时的情况当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。
电感和电容的滤波有什么不同
电感和电容的滤波有什么不同电感隔交通直电容隔直通交电感是滤高频,电容滤低频电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的电源滤波电容的大小计算电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF 的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10n H左右,取决于需要接地的频率。
采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率AC/DC电源中最基本的整流和滤波以我们的市电220V 50HZ正弦交流电为例,先通过变压器降压得到的还是一个正弦电压,然后通过全桥整流,把正弦电压的负半周期的部分翻到X轴上方,这样得到的一个函数周期就只有原来的一半了即100HZ的信号,VPP也就变成原来的一半了,这就是一个大小在变,方向不变一个脉动电压信号,然后就需要电容滤波了.电容滤波的原理其实也很简单,利用电容的充放电,以脉动电压第一和第二个周期为例,其中任意一个周期的波形就是正弦信号的正半周期的波形,假如负载为空载,当输入电压随着波形上升,电容的电压也上升,输出电压也和输入电压一样上升,这时电容处于充电状态,当正弦信号达到峰值的时候也就是说此使电容已经能充到最大电量了,然后过了峰值以后,输入电压开始下降,但是由于空载,没有东西消耗电,电容不需要放电,所以输出电压继续保持峰值输出.但是假如有了负载的情况,过了峰值以后输出电压开始需要靠电容放电了,所以观察输出波行就可以发现过了峰值后电压开始缓慢的下降,但是下降的速度是很慢的,而此时输入又已经进入第2个周期又开始充电了,当然理论上假如负载过小导致电容的放电时常数已经小于半个周期,那放完电时输入还没进入第2个周期所以在实际AC/DC过程中不可能做到完美的直流,有负载的情况下肯定存在纹波,因为需要电容肯定要放电这个就是AC/DC电源中最基本的整流和滤波了如何选用滤波电容滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员都十分关心的问题。
整流滤波电感计算
输入您的搜索字词提交搜索表单搜索Web 2007-1-22 22:31:00滤波扼流圈设计方法1推荐在电子设备中,将交流电经整流后得到脉动直流电,为了获得平滑的直流电流,必须采用电容滤波或电感滤波,以减少整流后的纹波电压,虽然许多小功率的整流电路,只需在整流后并联上一只大容量的电解电容器,即可满足要求。
但对直流负载功率达几百瓦的整流电路,单靠电容器滤波是不够的,因为加大电容器的容量,它的体积也要增大,另外,当负载电流变化时,直流电压的波动也会增大,输出特性变差。
如果在整流后采用一个滤波扼流圈,与电容器配合接成π形滤波电路,或者接成倒L形滤波电路,那么,滤波效果要好得多了,见图1所示。
如何确定滤波扼流圈的电感量 L?在图1中,先计算负载电阻的阻值:(Ω)那么,滤波扼流圈的电感量L可以根据负载电阻的大小,按下式计算电感量L:(亨)当电源频率f=50Hz时,则(亨)例如: 经整流、滤波后的负载电压为24V,直流电流I为5A。
此时负载电阻=4.8Ω。
那么要求滤波扼流圈的电感量L:即电感量为5毫亨,直流电流为5A。
由于在滤波扼流圈中通过的是脉动直流电流,其中主要的是直流成分,也有少量的交流成分,即在交直流同时磁化下工作的。
因此在铁芯中产生很强的直流磁通,甚至使铁芯中的磁通达到饱和状态。
制造这样的扼流圈,在铁芯的磁路中都留有一定的空气隙lg以防止直流磁通的饱和。
滤波扼流圈的铁芯体积V、线圈匝数N和空气隙lg,是由三个有相互关系的电气参数,即:电感量L、直流磁化电流I和线圈两端的交流的电压U~而决定的。
滤波扼流圈的匝数、和通过的直流电流,因而在铁芯中产生直流磁通,同时在直流电流中还含有纹波电压,因此在铁芯中也含有一部分交变的磁通,它叠加在直流磁通上,见图2所示。
滤波扼流圈的磁路是由铁芯的磁路长度和空气隙lg两部分组成。
虽然磁路长度极大于空气隙lg,但这两部分是不能直接相加的。
因为这两部分的导磁率μ是不同的,在空气隙中的导磁率是1,而在铁芯中的导磁率视铁芯的饱和程度而定。
开关电源输入:共模电感,X电容,Y电容,差模电感理论计算
开关电源输入:共模电感,X电容,Y电容,差模电感理论计算引言在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。
在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。
高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。
在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。
同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。
从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。
减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。
除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。
EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。
本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。
1、EMI滤波器设计原理在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的dv/dt和di/dt,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。
所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。
设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。
基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。
逆变电源滤波电容的大小计算
逆变电源滤波电容的大小计算11-06-19 01:19逆变电源滤波电容的大小计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
滤波电容的选型与计算(详解)
电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来它在高频充放电时内阻较大,等效电感较高。
而较高的温度将使电容内部的电解液气化,电容内0.1u,用于滤高频,4.7uF100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1)FSR参数,这表示频率大于FSR值时,FSR后,对干扰的抑制就大打折扣,,SFR值大,对高频信号提供了一个对地通路,,小电容滤高频,根本的原因在于SFR(自谐振频率)近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就算我知道SFR值,我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚苯乙烯薄膜电容,介质损耗小,绝缘电阻高,但是温度系数大,可用于高频电路。
金属化纸介电容
结构和纸介电容基本相同。它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频
电路中。
油浸纸介电容
它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。它的特点是电容量大、耐压高,但是体积较大。
多,为2000~4000,因此较小的体积能产生较大的电容,Y5V的介质常数最高,为5000~25000。
许多人在选用电容器时,片面追求电容器的体积小,这种电容器的介质虽然具有较高的介质常数,但温度稳
定性很差,这会导致设备的温度特性变差。这在选用电容器时要特别注意,尤其是在军用设备中。
3.电压的影响
电容器的电容量不仅随着温度变化,还会随着工作电压变化,这一点在实际工程必须注意。不同介质材料的
铝电解电容
它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。还需要经过直流电压处理,使正
极片上形成一层氧化膜做介质。它的特点是容量大,但是漏电大,稳定性差,有正负极性,适宜用于电源滤波或
者低频电路中。使用的时候,正负极不要接反。
钽、铌电解电容
它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。它的特点是体积
●设计时应确定使用高频低频中频三种去耦电容,中频与低频去耦电容可根据器件与PCB功耗决定,可分别选47-
1000uF和470-3300uF;高频电容计算为: C=P/V*V*F。
●每个集成电路一个去耦电容。每个电解电容边上都要加一个小的高频旁路电容。
●用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容。使用管状电时,外壳要接地。
100mhz到更高频率间的合共振(harmonics)。每个芯片间都要放置旁路电容,这些电容比较小,大约0.1u左
右。
电容器是电路中最基本的元件之一,利用电容滤除电路上的高频骚扰和对电源解耦是所有电路设计人员都熟悉
的。但是,随着电磁干扰问题的日益突出,特别是干扰频率的日益提高,由于不了解电容的基本特性而达不到预
1m F1.7820 pF38.5
0.1m F4680 pF42.5
0.01m F12.6560 pF45
3300pF19.3470 pF49
1800 pF25.5390 pF54
1100pF33330 pF60
尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪
1.14.2、配置电容的经验值
好的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印刷线路板
时,每个集成电路的电源,地之间都要加一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电
容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。数字电路中典型的去
由于大部分能量的交换也是主要集中于器件的电源和地引脚,而这些引脚又是独立的直接和地电平面相连接的。
这样,电压的波动实际上主要是由于电流的不合理分布引起。但电流的分布不合理主要是由于大量的过孔和隔离
带造成的。这种情况下的电压波动将主要传输和影响到器件的电源和地线引脚上。
为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。这可以有效去除G电容器的容量几乎随温度没有变化,X7R电容器的容量在额定工作温度范围变化12%以
下,Y5V电容器的容量在额定工作温度范围内变化70%以上。这些特性是必须注意的,否则会出现滤波器在高温或
低温时性能变化而导致设备产生电磁兼容问题。
COG介质虽然稳定,但介质常数较低,一般在10~100,因此当体积较小时,容量较小。X7R的介质常数高得
刺的影响并减少在印制板上的电源环路的辐射。
当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好。这就是为
什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。
去耦电容配置的一般原则如下:
●电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗
整流滤波时电容和电感大小型号的选择
纸介电容
用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯子,然后密封在金属壳或者绝缘材料(如
火漆、陶瓷、玻璃釉等)壳中制成。它的特点是体积较小,容量可以做得较大。但是有固有电感和损耗都比较
大,用于低频比较合适。
云母电容
用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中
做双连。可变电容的介质有空气和聚苯乙烯两种。空气介质可变电容体积大,损耗小,多用在电子管收音机中。
聚苯乙烯介质可变电容做成密封式的,体积小,多用在晶体管收音机中。
NPO(COG):电气性能最稳定,基本上不随温度、电压与时间的改变面改变,适用于对稳定性要求高的高频电路;
X7R(2X1):电气性能较稳定,在温度、电压与时间改变时性能的变化并不显著,适用于隔直、偶合、旁路与对容量
差。ESL除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐
振频率越低。因此在实际工程中,要使电容器的引线尽量短,电容器的正确安装方法和不正确安装方法如图2所
示。
图2滤波电容的正确安装方法与错误安装方法
根据LC电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低。许多人认
电容器的电压特性如图3所示。从图中可以看出,X7R电容器在额定电压状态下,其容量降为原始值的70%,而Y5V
电容器的容量降为原始值的30%!了解了这个特性,在选用电容时要在电压或电容量上留出余量,否则在额定工作
电压状态下,滤波器会达不到预期的效果。
综合考虑温度和电压的影响时,电容的变化如图4所示。
5.穿心电容的使用
声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。
2.温度的影响
由于电容器中的介质参数受到温度变化的影响,因此电容器的电容值也随着温度变化。不同的介质随着温度
变化的规律不同,有些电容器的容量当温度升高时会减小70%以上,常用的滤波电容为瓷介质电容,瓷介质电容器
有超稳定型:COG或NPO,稳定型:X7R,和通用型:Y5V或Z5U三种。不同介质的电容器的温度特性如图2所示。
候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR。
在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性。在谐振点以
上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失。
电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越
(GND)间直接接入去耦电容。
●去耦电容的引线不能过长,特别是高频旁路电容不能带引线。
●在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须RC电路来吸收放电
电流。一般R取1 ~ 2K,C取2.2 ~ 47UF。
●CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。
期滤波效果的事情时有发生。本文介绍一些容易被忽略的影响电容滤波性能的参数及使用电容器抑制电磁骚扰时
需要注意的事项。
1电容引线的作用
在用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响。电容器的容抗与频率成反
比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用。然而,在实际工程中,很
藕电容。
4、电容引线不能太长,尤其是高频旁路电容不能有引线。此外,还应注意以下两点:
a、在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用附图所示的
rc电路来吸收放电电流。一般r取1 ~ 2k,c取2.2 ~ 47uf。
b、cmos的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。
稳定性要求不太高的鉴频电路,由于X7R是一种强电介质,因面能造出容量比NPO介质更大的电容器;
Y5V(2F4)(Z5U):具有较低高的介电常数,常用于生产比容较大的、标称容量较高的大容量电容器产品,但其
容量稳定性较X7R差,容量、损耗对温度,电压等测试条件较敏感。
1.14.1、退藕电容的一般配置原则
小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好。用在要求较高的设备中。
半可变电容
也叫做微调电容。它是由两片或者两组小型金属弹片,中间夹着介质制成。调节的时候改变两片之间的距离或者
面积。它的介质有空气、陶瓷、云母、薄膜等。
可变电容
它由一组定片和一组动片组成,它的容量随着动片的转动可以连续改变。把两组可变电容装在一起同轴转动,叫
制成。它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。
陶瓷电容
用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。它的特点是体积小,耐热性好、损耗
小、绝缘电阻高,但容量小,适宜用于高频电路。
铁电陶瓷电容
容量较大,但是损耗和温度系数较大,适宜用于低频电路。
薄膜电容
结构和纸介电容相同,介质是涤纶或者聚苯乙烯。涤纶薄膜电容,介电常数较高,体积小,容量大,稳定性较
1.电源输入端跨接10 ~100uf的电解电容器。如有可能,接100uf以上的更好。
2.原则上每个集成电路芯片都应布置一个0.01pf的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1
~ 10pf的但电容。
3.对于抗噪能力弱、关断时电源变化大的器件,如ram、rom存储器件,应在芯片的电源线和地线之间直接入退