2010— 2011下期七年级9.3不等式组检测题

合集下载

人教版七年级数学下册第九章不等式与不等式组检测试题(有答案)

人教版七年级数学下册第九章不等式与不等式组检测试题(有答案)

人教版七年级数学下册第九章不等式与不等式组检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题一、选择题。

1 . 若,则下列不等式中成立的是()A. B. C. D.2 . 下列不等式中哪一个不是一元一次不等式()A. B. C. D.3. 在数轴上表示不等式的解集,正确的是()A B C D4. 不等式> 的解集为()A. >B. < 0C. >0D. <5 . 不等式的非负整数解的个数为()A. 0 个B. 1 个C. 2 个D. 3 个6 . 下列选项中,同时适合不等式和的数是()A. B. C. D. 17 . 不等式的解集是,则应满足()A. B. C. D.8 . 是一个整数,比较与的大小是()A. B. C. D. 无法确定9 . 如果关于的方程组的解是负数,则的取值范围是( )A. B. C. D. 无解10. 如果不等式组有3 个整数解,则的取值范围是()A. B. C. D.11.某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费 10000 元,再对每户收费 500 元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足 1000 元,则这个小区的住户数 ( )A.至少 20 户B.至多 20 户C.至少 21 户D.至多 21 户12.某种出租车的收费标准是:起步价 7 元 ( 即行驶距离不超过 3 千米都收 7 元车费 ) ,超过 3 千米以后,超过部分每增加 1 千米,加收 2.4 元 ( 不足 1 千米按 1 千米计 ) .某人乘这种出租车从甲地到乙地共支付 19 元,设此人从甲地到乙地经过的路程是 x 千米,那么 x 的取值范围是 ( )A.1 <x≤11B.7 <x≤8C.8 <x≤9D.7 < x < 8二、填空题1 . 不等式的解集是,则的取值范围_____________________。

人教版七年级下册数学 第九章 不等式与不等式组 综合检测题

人教版七年级下册数学  第九章 不等式与不等式组  综合检测题

人教版七年级下册数学第九章 不等式与不等式组 综合检测题一、填空题(每题3分,共24分)1. 当x 时,代数式x 35-的值小于1-.2. 用“>”或“<”填空:若b a <,则12+-a 12+-b .3. x 的21不大于2与x 的和,用不等式表示为 . 4.下列不等式组中:①⎩⎨⎧24>>x x ;②⎩⎨⎧24><x x ;③⎩⎨⎧24<>x x ;④⎩⎨⎧24<<x x ,解集在数轴上表示成如图所示,则这个不等式组为 .(填序号)5.不等式()321615+<--x x 的正整数解是 . 6. 商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为 元/千克.7. 若关于x 的不等式()21>-x a 可化为a x -<12,则a 的取值范围是 .8. 已知关于x 、y 的二元一次方程组⎩⎨⎧-=++=+m y x m y x 22212的解满足不等式组⎩⎨⎧+-1x 8><y y x ,则m 的取值范围是 .二、选择题(每小题3分,共27分) 9. 已知m 、n 均为非零有理数,下列结论正确的是( )A .若n m ≠,则22n m ≠B .若22n m =,则n m =C .若0>>n m ,则22n m >D .若0>>n m ,则nm 11> 10. 学校准备用200本笔记本奖给期末考试成绩获年级一、二等奖的80名同学,如果奖给一等奖的每5本,二等奖的每人2本,则一等奖最多设置人数为( )A .15B .14 C.13 D .1211.若关于x 、y 的二元一次方程组⎩⎨⎧=++=-3312y x m y x 的解满足0>y x +,则m 的取值范围是( ).A .2>mB .1>mC .2->mD .2<m12. 不等式组⎩⎨⎧≤-31<x x 的解集在数轴上可以表示为( ) A . B . C . D .13. 关于x 的不等式组()⎩⎨⎧->-<-12130x x m x 无解,那么m 的取值范围为( )A .1-≤mB .1-<mC .01≤-m <D .01<m ≤-14. 不等式组⎩⎨⎧-++11692<>k x x x 的解集为2<x ,则k 的取值范围为( )A .1>k B. 1<k C. 1≥k D.1≤k15. 不等式02≤-m x 的正整数解为1,2,则a 的取值范围是( )A .64<<mB .64≤≤mC .64<m ≤D .64≤m <16.不等式组x ⎩⎨⎧->-≥-1230x a x 有5个整数解,则a 的取值范围为( ).A .34-≤-<aB .34-≤≤-aC .34-≤-a <D .34--<<a17.如果关于x 的不等式组⎩⎨⎧≤-≥-0302b x a x 的整数解仅有2=x 、3=x ,那么适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有( )A .3个B .4个C .5个D .6个三、简答题(共49分)18. 解下列不等式,并把解集在数轴上表示出来.(每题4分,共8分)(1)1643312+-≤-x x (2)()()x x 2333243-≥--19. 解下列不等式组,并把解集在数轴上表示出来.(每题5分,共10分) (1)()⎪⎩⎪⎨⎧-<-++>+-2221351135x x x x x (2)⎩⎨⎧-++14232x x x x <>20. (6分)阅读下列材料:“已知2=-y x ,且1>x ,0<y ,试确定y x +的取值范围”有如下解法:解:∵2=-y x ,∴2+=y x又∵1>x ,∴2+=y x ,∴1->y又∵0<y ,∴01<<y -…① 同理21<<x …②由①+②得2011+++-<<y x , ∴y x +的取值范围是20<<y x +请按照上述方法,完成下列问题:(1)已知3=-y x ,且2>x ,1<y ,则y x +的取值范围是 ;(2)已知1-<x ,1>y ,若a y x =-成立,求y x +的取值范围(结果用含有a 的式子表示).21. (11分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少?22.(14分)某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元,(1)求A ,B 两种型号的服装每件分别多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定,购进A 型服装的数量要比购进B 型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案,如何进货?。

人教版七年级下《第九章不等式与不等式组》单元检测题含答案

人教版七年级下《第九章不等式与不等式组》单元检测题含答案

第九章不等式与不等式组单元检测一、选择题1.下列式子:;;;中,是不等式的个数有A. 1个B. 2个C. 3个D. 4个2.若,下列不等式不一定成立的是A. B. C. D.3.一元一次不等式的解集在数轴上表示为A. B.C. D.4.某县城出租车的收费标准是:起步价6元即行驶距离不超过3千米都需付6元车费,超过3千米以后,每增加l千米,加收1元不足l千米按1千米计某人从甲地到乙地经过的路程是x千米,出租车费为16元,那么x的最大值是A. 13B. 12C. 11D. 105.下列不等式中,属于一元一次不等式的是A. B. C. D.6.若的值不大于的值,则x的取值范围是A. B. C. D.7.下列说法正确的是A. 不等式组的解集是B. 的解集是C. 的解集是D. 的解集是8.关于x的不等式组恰有四个整数解,那么m的取值范围为A. B. C. D.9.已知条件p:;条件q:,且条件q是p的充分不必要条件,则a的取值范围是A. B. C. D.10.现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题11.不等式组:的解集是12.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到以外的安全区域甲工人在转移过程中,前只能步行,之后骑自行车已知导火线燃烧的速度为,甲工人步行的速度为,骑车的速度为为了确保甲工人的安全,则导火线的长要大于.13.若,则___________.14.不等式的最大整数解是___________.15.如图所示的程序中,要使输出值y大于70,则输入的最小正整数x是________.三、解答题16.解不等式组:并将解集在数轴上表示出来;17.不等式组有解,则a的取值范围是18.若,则下列式子:;;;中,正确的有A.1个个个个19.已知不等式组的解集是,则a的取值范围是A.B.C.D.20.现一堆苹果共有38个,分给若干名同学,每人7个有剩余,每人8个又不够,则有学生名答案和解析【答案】1. B2. D3. B4. A5. D6. B7. C8. C9. B10. B11.12. 略13.14.15. 2116. 略17.18. C19. B20. 5。

精选七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案解析)(1)

精选七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案解析)(1)

人教版七年级数学下册第九章不等式与不等式组单元测试题一、选择题。

1 、下列各式:(1 );(2 );(3 );(4 );(5);(6 )是一元一次不等式的有()A. 2 个B. 3 个C. 4 个D. 5 个2 、下列命题正确的是()A. 若,,则B. 若,则C. 若,则D. 若,则3 、若点P ( ,)在第四象限,则的取值范围是( )A. B. C. D.4 、如图,A ,B 两点在数轴上表示的数分别为,,下列式子成立的是( )A. B. C. D.5 、不等式组的解集在数轴上表示正确的是( )6 、已知是不等式的解,且不是这个不等式的解,则实数的取值范围是( )A. B . C. D.7 、若,且,则,,,的大小关系为()A. B. C . D .8 、已知且,则的取值范围为( )A. B. C. D.9 、若不等式组恰有两个整数解,则的取值范围是( )A. B . C. D .10 、若人要完成2.1 千米的路程,并要在18 分钟内到达,已知他每分钟走90 米,若跑步每分钟可跑210 米,问这人完成这段路程,至少要跑多少分钟?设要跑分钟,则列出的不等式为()A. B.C. D.二、填空题。

1. 若不等式组有解,则的取值范围是_____ ___ ___ .2. 已知实数,满足,并且,,现有,则的取值范围是_______ ____ _ .3. 若不等式组的解集为,则不等式<0 的解集为_______ _____ .4. 某商品的标价比成本价高m % ,根据市场需要,该商品需降价n % 出售,为了不亏本,n 应满足________________ .三、解答题。

1.解不等式(组),并把解集在数轴上表示.(1) (2)2. 已知实数是不等于3 的常数,解不等式组,并依据的取值情况写出其解集.3.已知关于,的方程组的解满足不等式组求满足条件的的整数值.4.小明早上7 点骑自行车从家出发,以每小时12 千米的速度到距家4 千米的学校上课,行至距学校1 千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7 点30 分之前赶到学校,那么他步行的速度至少应为多少?5. 已知关于的不等式的解集是,求关于的不等式的解集.6.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800 元,每把椅子80 元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的八折优惠.现某公司要购买3 张办公桌和若干把椅子,若购买的椅子数为把( ) .(1) 分别用含的式子表示到甲、乙两个厂家购买桌椅所需的金额;(2) 请你说出到哪家购买更划算?7.某中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)该中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A型放大镜?8.某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5 400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1 400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案一、选择题BDCCD CBDAA二、填空题1 .2 .3.4.三、解答题1.(1 )(2 )(解集在数轴上表示略)2.. 解:解不等式① ,得.解不等式② ,得.∵是不等于3 的常数,∴当时,不等式组的解集为.当时,不等式组的解集为.3.. 解:① +② ,得.② -① ,得.依题意,得解得.当为整数时,=-3 或=-2.4.. 解:设他步行的速度为x 千米/ 时.由题意,得,解得x ≥4.答:他步行的速度至少应为4 千米/ 时.5. 解:原不等式可化为.而该不等式的解集为 ,说明 ,且 ., , , ,所以 .因为 ,所以 , ,所以 .在 中,因为 ,所以 ,即 .所以 关于 x 的不等式 的解集 为 .6. 解: (1) 到甲厂家购买桌椅所需金额为 ( 元 ) .到乙厂家购买桌椅所需金额为 ( 元 ) .(2) 若 ,解得.∵ 为整数, ∴.若 ,解得 ; 若 , 解得.∵为整数, ∴.所以当买的椅子至少 16 把时,到乙厂家购买更划算; 当买的椅子为 16 把时,到两家厂家购买费用一样; 当买的椅子不多于 14 把时,到乙厂家购买更划算.7. 解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元、y 元.可得⎩⎪⎨⎪⎧8x +5y =220,4x +6y =152.解得⎩⎪⎨⎪⎧x =20,y =12.答:每个A 型放大镜和每个B 型放大镜分别为20元,12元. (2)设购买A 型放大镜a 个,根据题意,得 20a +12×(75-a)≤1 180, 解得:a≤35.答:最多可以购买35个A 型放大镜.8. 解:(1)设A ,B 两种型号电风扇的销售单价分别为x 元,y 元,依题意,得⎩⎪⎨⎪⎧3x +5y =1 800,4x +10y =3 100,解得⎩⎪⎨⎪⎧x =250,y =210. 答:A ,B 两种型号电风扇的销售单价分别为250元,210元. (2)设采购人教版七年级数学下册第九章不等式与不等式组单元检测卷一、选择题1.下列式子:①3>0;②4x +3y >0;③x =3;④x -1≠5;⑤x +2≤3是不等式的有( )A. 2个B. 3个C. 4个D. 5个2.实数a ,b 在数轴上的位置如图所示,则下列不等式成立的是( )A .a >bB .ab >0C .a +b >0D .a +b <0 3.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( C )A .40B .45C .51D .564.若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为( ) A .2 B .3 C .4 D .55.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3 000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个6.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .347.一元一次不等式组⎩⎪⎨⎪⎧2x +2>0,x +1≤3的解集在数轴上表示为( )8.若数a 使关于x 的不等式组,有且仅有四个整数解,且使关于y 的分式方程-=2有整数解,则所有满足条件的整数a 的值之和是( )A. -3B. -2C. 2D. 39.不等式组的整数解是()A. -1,0B. -1,1C. 0,1D. -1,0,110.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有()种.A. 2B. 3C. 4D. 5二、填空题。

七年级数学第九章《不等式与不等式组》测试卷1

七年级数学第九章《不等式与不等式组》测试卷1

第 1 页 共 4 页七年级数学第九章《不等式与不等式组》测试卷1 姓名 成绩一、选择题:(每小题3分,共30分)1.如果不等式ax <b 的解集是x <ab ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <02.若0<a <1,则下列四个不等式中正确的是( )A .a <1<1aB .a <1a <1C .1a <a <1D .1<1a<a 3.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是( ) A.3m ≥ B.3m = C.3m < D.3m ≤4. 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( )。

A 、0B 、-3C 、-2D 、-15.不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为( )6.不等式组的解集为( )A .﹣2<x <4B .x <4或x ≥﹣2C .﹣2≤x <4D .﹣2<x ≤47.已知a b=4,若-2≤b ≤-1,则a 的取值范围是( )A .a ≥-4B .a ≥-2C .-4≤a ≤-1D .-4≤a ≤-28. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )B9.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有( )人。

A 40B 41C 42D 4310.如果关于x 的不等式组 {x 13m x m <+>-无解,那么m 的取值范围是( )A m >1B m ≥1C m <1D m ≤1第4题图第 2 页 共 4 页{x a x b ≥<9-08-0二、填空题 :(每小题3分,共24分)11. 在b x y +-=2中,当1=x 时,y <1;当1-=x 时,y >0;则b 的取值范围是_____________.12. 不等式2(x -3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是 。

人教版七年级下册数学 第九章 不等式与不等式组 检测卷

人教版七年级下册数学 第九章 不等式与不等式组 检测卷

人教版七年级下册数学第九章不等式与不等式组检测卷一、选择题(共36分)1. 不等式的正整数解有()A.1个B.2个C.3个D.无数多个2. 已知关于x的不等式组的解集为,则的值是()A. B. C. D.3. 已知方程的解是不等式的最大负整数解,a的值()A. B.3 C. D.54. 若,那么下列结论错误的是()A. B. C. D.5. 下列各数中,不是一元一次不等式的解的是()A. B. C. D.6. 若不等式组无解,则m的取值范围是()A. B. C. D.7. 下列不等式中,属于一元一次不等式的是()A. B. C.xy D.8. x的3倍减去5的差不小于0,列出不等式为()A. B. C. D.9.若不等式组的解集在数轴上表示为()A. B. C. D.10. 已知不等式组有解,则a的取值范围为()A.a>-2B.a≥-2C.a<2D.a≥211.若,则下列式子错误的是()A. B. C. D.12. 如果的值不小于的值,那么x的范围应为()A. B. C. D.二、填空题(共15分)13. 若代数式的值不大于,那么y的最大整数解为。

14. 已知不等式的正整数解是1,2,则a的取值范围是。

15. 如果不等式无解,则b的取值范围是____ __。

16. 如果不等式组的解集是,那么m的取值范围是___________。

17. 琪琪用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元。

那么琪琪最多能买_______支钢笔。

三、解答题(共59分)18.x取哪些正整数时,代数式的值不大于代数式的值。

19. 解不等式组并把解集在数轴上表示出来。

20. 不等式组有解,则a的取值范围。

21. 求不等式的非负整数解。

22. 解不等式,并把解集在数轴上表示出来。

23. 某学校计划购买若干台电脑,现从两家商场了解到同一种型号电脑每台报价均为6000元,并且多买都有一定的优惠,甲商场的优惠条件是:第一台按原价收费,其余每台优惠;乙商场优惠的条件是:每台优惠。

精选人教版七年级数学下册第九章《不等式与不等式组》检测试卷及答案

精选人教版七年级数学下册第九章《不等式与不等式组》检测试卷及答案

人教版七年级下册第九章《不等式与不等式组》测试题一、单项选择题(每题只有一个正确答案)1.以下各式中:①:②:③:④;⑤:⑥,不等式有()A.2 个B.3 个C.4 个D.5 个2.若,则以下各式中必定建立的是()A.B.C.D.3.以下各数中,能使不等式x–3>0建立的是()A.– 3B. 5C. 3D.24.以下说法中,错误的选项是()A.不等式 x< 5 的整数解有无数多个B.不等式 x>- 5 的负整数解集有有限个C.不等式- 2x< 8 的解集是 x<- 4 D .- 40 是不等式2x<- 8 的一个解5.四个小朋友在公园玩跷跷板,他们的体重分别为P,Q, R, S,由图可知,这四个小朋友体重的大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q6.以下式子① 7> 4;② 3x≥ 2π +1;③ x+y> 1;④ x2+3> 2x;⑤ > 4 中,是一元一次不等式的有()A.4 个B.3 个C.2 个D.1 个7.“x的 3 倍与 2 的差不大于7”列出不等式是( )A. 3x-2>7B.3x-2<7C.3x- 2≥7D.3x- 2≤78.不等式组的解集在数轴上表示为( )A.B.C.D.9.若对于 x 的不等式( a– 1) x> a– 1 的解集是 x> 1,则 a 的取值范围是()A. a<0B. a> 0C. a<1D.a> 110.某次知识比赛共有 30 道题,每一题答对得 5 分,答错或不答都扣 3 分,小亮得分要超过 70 分,他起码要答对多少道题?假如设小亮答对了x 道题,依据题意列式得()A. 5x﹣ 3(30﹣ x)> 70B. 5x+3( 30﹣ x)≤ 70C. 5x﹣ 3(30+x)≥ 70D. 5x+3( 30﹣ x)> 7011.已知点在第四象限,则m的取值范围在数轴上表示正确的选项是()A. B . C . D .12.若对于x 的不等式组有 6 个整数解,则的取值范围是()mA.-4 <≤-3 B.- 3≤<-2 C.- 4≤<-3 D.-3 <≤-2m m m m二、填空题13.请你写出一个知足不等式2x-1 < 6 的正整数 x 的值: ________.14.不等式 12- 4x≥0的非负整数解是 _______15. x 的与 12 的差是负数,用不等式表示为________.16.某种商品的进价为每件100 元,商场按进价提升 60%后标价,为增添销量,准备打折销售,但要保证收益率不低于20%,则至多能够打 ________折.17.已知对于 X 的不等式组2的解集为 -1<x< 2,则 (m+n)2019的值是 _______.三、解答题18.用不等式表示:(1)7x 与 1 的差小于4;(2)x的一半比y 的 2 倍大;(3)a 的 9 倍与 b 的的和是正数.19.解以下不等式( 或组 ) ,并把解集表示在数轴上.①②③(④20.解不等式组:并写出它的全部整数解.21.小诚响应“低碳环保,绿色出行”的呼吁,向来坚持跑步与步行相联合的上学方式已知小诚家距离学校2200 米,他步行的均匀速度为80 米分,跑步的均匀速度为200 米分若他要在不超出20 分钟的时间内从家抵达学校,起码需要跑步多少分钟?22.某单位需要将一批商品封装入库,所以打算购进A、 B 两种型号的包装盒共100 个,若购置 3 个 A 型包装盒和 2 个 B 型包装盒共需550 元,且 A 型包装盒的单价是 3 型包装盒单价的 3 倍,每个 A 型包装盒可容纳500 件该商品,每个 B 型包装盒可容纳200 件该商品。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。

人教版七年级数学下册第九章不等式与不等式组检测题 (word版,含答案)

人教版七年级数学下册第九章不等式与不等式组检测题 (word版,含答案)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

最新人教版七年级数学下册第九章《不等式与不等式组》测试题(含答案)

最新人教版七年级数学下册第九章《不等式与不等式组》测试题(含答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。

七年级数学(下)第九章《不等式与不等式组》单元检测卷含答案

七年级数学(下)第九章《不等式与不等式组》单元检测卷含答案

七年级数学(下)第九章《不等式与不等式组》单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共33分)1.如果a<b ,那么下列不等式中一定正确的是()A. a﹣2b<﹣bB. a2<abC. ab<b2D. a2<b22.2x﹣4≥0的解集在数轴上表示正确的是().A. B.C. D.3.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是()A. a<1B. a<﹣1C. a>1D. a>﹣14.关于x的不等式(m+1)x≥m+1,下列说法正确的是()A. 解集为x≥1B. 解集为x≤1C. 解集为x取任何实数D. 无论m取何值,不等式肯定有解5.某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.6.不等式x﹣1≤1的解集在数轴上表示正确的是()A. B.C. D.7.如果不等式无解,则b的取值范围是()A. b>-2B. b<-2C. b≥-2D. b≤-28.若a<0关于x的不等式ax+1>0的解集是()A. x>B. x<C. x>-D. x<-9.在x=﹣4,﹣1,0,3中,满足不等式组的x值是()A. ﹣4和0B. ﹣4和﹣1C. 0和3D. ﹣1和010.若m<n,则在下列各式中,正确的是().A. m-3>n-3B. 3m>3nC. -3m>-3nD.11.不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0二、填空题(共8题;共32分)12.不等式﹣x+3<0的解集是________.13.若不等式组的整数解共有三个,则a的取值范围是________.14.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是________15.“x的与5的差不小于-4的相反数”,则用不等式表示为________.16.若a<3,则关于x的不等式ax>3x+a﹣3的解集为________.17.若不等式组无解,则m的取值范围是________.18.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则________ ________ .19.当x________时,式子3x﹣5的值大于5x+3的值.三、解答题(共3题;35分)20.解不等式:≥ ﹣1.21.解不等式组,并把解集在数轴上表示出来.22.园林部门用3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,挂放在迎宾大道两侧,搭配每个造型所要花盆数如表,综合上述信息,解答下列问题.造型甲乙A 90盆 30盆B 40盆 100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个乙种造型的成本为1200元,选(1)中那种方案的成本最低?参考答案一、选择题A CB D BCD D D C D二、填空题12.x>6 13.5≤a<6 14.m<215.x-5≥416.x<1 17.m≥818.85% a;92% a 19.x<﹣4三、解答题20.解:去分母,得:3(x﹣2)≥2(2x﹣1)﹣6,去括号,得:3x﹣6≥4x﹣2﹣6,移项,得:3x﹣4x≥﹣2﹣6+6,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2.21.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:22.(1)解:设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,则有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(2)解:总成本为:1000x+1200(50﹣x)=60000﹣2x.显然当x取最大值32时成本最低,为60000﹣2×32=53600 答:第一种方案成本最低,最低成本是53600。

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册第九章不等式与不等式组实际应用专题研究人教版七年级数学下册第九章不等式与不等式组实际应用专题研究一.规律与方法:1.建立不等式(组)模型解决生产、生活中的实际问题是一种重要的数学思想和数学方法,要构建不等式(组)模型,关键是分析题意,弄清题目中的数量关系,通过题目中的关键词,如:“多”、“少”、“大于”、“小于”、“超过”等,找出各量之间的不等关系,建立不等式(组)模型.2.列不等式(组)解应用题可按以下步骤进行:①审题:弄清题意,找出题目中的各种数量关系;②设未知数:一般问什么设什么,也可间接设;③根据题目中的不等关系,列出不等式(组);④解不等式(组),并验证解的正确性;⑤作答.二.利用一元一次不等式的简单应用1.例题.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得5×20+22x≤200,解得x≤7811. 由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.2.对应训练:(1)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A.103块B.104块C.105块D.106块(2)小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )A.3支笔B.4支笔C.5支笔D.6支笔(3)有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排____人种茄子.三.利用一元一次不等式设计方案1.例题:某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:1)120×0.95=114(元).答:实际应支付114元.2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算2.对应训练:(1)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.1)若购进A、B两种树苗刚好用去1 220元,问购进A、B两种树苗各多少棵?2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.(2).某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.四.利用一元一次不等式(组)解决图表问题1.例题.某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11 815元.已知厂家两种球的批发价和商场两种球的零售价如下表,试解答下列问题:(1)该采购员最多可购进篮球多少个?(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2 580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个,则排球是(100-x)个,依题意,得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数,∴x最大取60.答:该采购员最多可购进篮球60个.(2)设篮球x个,则排球是(100-x)个,则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58,59,60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中,当篮球最多时,商场可盈利最多,故篮球60个,排球40个,此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元),即该商场最多可盈利2 600元.2.对应训练:(1).甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物越过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.1)根据题意,填写下表(单位:元)2)当x取何值时,小红在甲、乙两商场的实际花费相同?3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?(2).学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?(3).2018年5月20日是第24个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图),根据信息,解答下列问题.1)求这份快餐中所含脂肪的质量;2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.五.综合题1.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足( )A.n≤m B.n≤100m100+mC.n≤m100+nD.n≤100m100-m2.“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.60 B.70 C.80 D.903.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为____________cm.4.2018年的5月20日是第18个学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图一矩形内).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1).快餐成分:蛋白质、脂肪、碳水化合物和其他.2).快餐总质量为400克.3).碳水化合物质量是蛋白质质量的4倍.5.某商品的进价是500元,标价是750元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打____折出售此商品.6.为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自家2013年前5个月的实际用电量为1 300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过2 520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?7.冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克;乙饮料每瓶需糖6克,柠檬酸10克.现有糖500克,柠檬酸400克.请计算有几种配制方案能满足冷饮店的要求?8.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一个就分不到3本,这些书有多少本?共有多少人?9..某地教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?10.小明家准备用15 000元装修房子,新房的使用面积包括居室、客厅、卫生间和厨房共100 m2,卫生间和厨房共10 m2,厨房和卫生间装修工料费为每平方米200元,为卫生间和厨房配套卫生洁具和厨房厨具还要用去400元,则居室和客厅的装修工料费每平方米用多少元才能不超过预算?11.某货运码头,有稻谷和棉花共2680t,其中稻谷比棉花多380t.⑴求稻谷和棉花各是多少?⑵现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地,已知稻谷35t 和棉花15t可装满一个甲型集装箱;稻谷25t和棉花35t可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?12.某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?13.海中游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元。

人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。

1.下列式子中,是不等式的有( ).①2x=7;②3x+4y;③-3<2;④2a-3≥0;⑤x>1;⑥a-b>1.A.5个B.4个C.3个D.1个2.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b23.不等式3x+2≥5的解集是()A.x≥1 B.x≥C.x≤1 D.x≤﹣14.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.5.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤76.不等式组的正整数解的个数是()A.5 B.4 C.3 D.27.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<18.下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>09.不等式组的最小整数解是()A.﹣1 B.0 C.1 D.210.已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A .f (1)=0B .f (k+4)=f (k )C .f (k+1)≥f (k )D .f (k )=0或1二.填空题1.不等式0103≤-x 的正整数解是_______________________.2.2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a3.把关于x 的不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 .4.若不等式组⎩⎨⎧><b x ax 的解集是空集,则,a b 的大小关系是_______________. 5.若代数式3x -15的值不小于代数式1510x+的值,则x 的取值范围是__________.6.不等式组的解集为 .7.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x ﹣1的所有解,其所有解为 . 三、解答题1.解不等式组,并将解集在数轴上表示出来.2.求不等式组的正整数解.3.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?4.某中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?6.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.参考答案:一、选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扶沟县2010— 2011下期七年级9.3不等式组检测题
一.选择题 (每小题4分,共32分)
1. 解集在数轴上表示为如图1所示的不等式组是
A.⎩⎨⎧≥->23x x
B.⎩⎨⎧≤-<23x x
C.⎩⎨⎧≥-<23x x
D.⎩
⎨⎧≤->23x x 2. 把不等式组⎩⎨
⎧>-≥-36042x x 的解集表示在数轴上,正确的是
3. 把不等式组⎩⎨⎧>-≥-3
6042x x 的解集表示在数轴上,正确的是
4. 不等式组⎩⎨
⎧≤-->0
542x x 的解集是
A.2->x
B.52≤<-x
C.5≤x
D.无解 5. 已知关于x 的不等式组200x x a +>⎧⎨-≤⎩
的整数解共有4个,则a 的最小值为 A.2 B.2.1 C.3 D.1
6. 将不等式84113822
x x x x +<-⎧⎪⎨≤-⎪⎩的解集在数轴上表示出来,正确的是
7. 不等式组201x x -<⎧⎨⎩
,≥的解集为 A.12x <≤
B.1x ≥ C.2x < D.无解 8. 把不等式组1020
x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是
二填空题(每题4分共32分)
9. 不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是 .
10. 不等式组⎩
⎨⎧<+->-81312x x 的解集为_______。

11. 若不等式组⎩⎨⎧≤->0
3x a x 有三个整数解,则a 的取值范围为_____
12. 不等式组⎩
⎨⎧<+≥+3201x x 的整数解是_______________________ 13. 不等式组⎩⎨⎧-<+<2
12m x m x 的解集是x <m -2,则m 的取值应为_________。

14. 如果不等式组2223
x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .
15. 关于x 的不等式(5 – 2m )x > -3的解是正数,那么m 所能取的最小整数是__________。

16. 比较下面两个算式结果是的大小(在横线上填“>、<、=”)
2243+______2×3×4 2222+______2×2×2
225)2(+-______2×(—2)×5 4
312______)43(122⨯⨯+ 3
2212______322122⨯⨯+)()( 通过观察归纳,写出能反映这种规律的一般情况___________
三.解答题 (共36分)
17. 解不等式组,并把其解集在数轴上表示出来;
⎪⎩⎪⎨⎧-<--≥+-.
8)1(31,323x x x x (6分)
18. 已知01623,0132=--=+-x b x a ,且b a <≤4,求x 的取值范围。

(6分)
19. 解不等式组⎪⎩⎪⎨⎧+<-≤-)
1(42,11x x x x ,并写出不等式组的正整数解。

(6分)
20. 青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。

(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案:(10分)
21. 2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?(10分)
1 2 3 4 5 6 7 8
D A A B A C A
C 1. [解析]本题考查了在数轴上表示不等式解集的方法,题目较简单.本题要注意区别“O ”和“●”表示的不同含义,正确选好不等号。

2. [解析]本题考查了用数轴表示不等式组的解集的能力.不等式2x 一4≥0的解集是x ≥2,不等式36>-x 的解集是3<x ,则该不等式组的解集为2≤x<2.其解集在数轴上表示应如选项A 所示,故排除B 、C ,D ,选A.
3. [解析]本题考查了用数轴表示不等式组的解集的能力.不等式2x 一4≥0的解集是x ≥2,不等式36>-x 的解集是3<x ,则该不等式组的解集为2≤x<2.其解集在数轴上表示应如选项A 所示,故排除B 、C ,D ,选A.
4. [解析]本题考查了求解不等式组的能力。

不等式2x>4的解为x>2,不等式05≤-x 的解为5≤x ,则该不等式组的解集是52≤<x ,故排除选项A 、C 、D 选B 。

6. [解析]主要考查一元一次不等式组的解法、利用数轴表示解集的方法.体现了数形结合的数学思想.
二.简答题答案:
9. 2 10. 3
71<<x [解析]考查不等式组解集的计算。

11. 0<a <1
12. -1,0
13. m ≥-3
14. 1
15. 3
要使关于x 的不等式的解是正数,必须5 – 2m <0,即m >
2
5,故所取的最小整数是3。

16. >=>>>b a ab b a 、(222≥+为任意有理数)
三.解答题答案: 17. 解不等式
x x ≥+-32
3,得3≤x , 解不等式x x -<--8)1(31,得2->x 。

所以,原不等式组的解集是32≤<-x 。

在数轴上表示为
18. 由
01623,0132=--=+-x b x a , 可得.3
162,213+=-=x b x a ∵b a <≤4,∴⎪⎪⎩⎪⎪⎨⎧>+≤-.43
162,4213x x (1)(2)
由(1),得3≤x 。

由(2),得2->x 。

∴x 的取值范围是.32≤<-x
19. 解不等式①,得3≤x 。

解不等式②,得x>-2。

∴原不等式组的解集是:-2〈3≤x .
∴原不等式组的正整数解是:1,2,3。

20. (1)设该商场能购进甲种商品x 件。

根据题意,得2700)100(3515=-+x x 40=x
乙种商品:6040100=-(件)
答:该商场能购进甲种商品40件,乙种商品60件。

(2)设该商场购进甲种商品a 件,则购进乙种商品(100-a )件。

根据题意,得 ⎩
⎨⎧≤--+-≥--+-760)100)(3545()1520(750)100)(3545()1520(a a a a 因此,不等式组的解集为5048≤≤a
根据题意,a 的值应是整数,∴48=a 或49=a 或50=a
∴该商场共有三种进货方案:
方案一:购进甲种商品48件,乙种商品52件,
方案二:购进甲种商品49件,乙种商品51件,
方案三:购进甲种商品50件,乙种商品50件。

21. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,
依题意,得:8050(50)34904090(50)2950
x x x x +-⎧⎨
+-⎩≤≤ 解这个不等式组,得:3331x x ⎧⎨⎩
≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,
,, ∴可设计三种搭配方案:
①A 种园艺造型31个 B 种园艺造型19个
②A 种园艺造型32个 B 种园艺造型18个
③A 种园艺造型33个 B 种园艺造型17个. (2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元)
方法二:方案①需成本:318001996043040⨯+⨯=(元)
方案②需成本:328001896042880⨯+⨯=(元)
方案③需成本:338001796042720⨯+⨯=元
∴应选择方案③,成本最低,最低成本为42720元。

相关文档
最新文档