计算机算法设计与分析期末考试复习题

合集下载

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。

7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。

14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。

19.快速排序的基本思想是什么。

20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。

二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p))else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F25.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endif repeatend MAX6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j ←mid; returnendcase repeat j ←0 end BINSRCH三、算法理解1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出最优值。

(完整word版)计算机算法设计与分析期末试题4套(含答案)

(完整word版)计算机算法设计与分析期末试题4套(含答案)

(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1.确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2.分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。

3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。

4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。

时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。

5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。

最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。

6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。

上述过程被反复递归调用。

7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。

目标函数:获得最大利润。

最优量度:最大利润/重量比。

8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。

计算机算法设计与分析复习题与答案1

计算机算法设计与分析复习题与答案1

《算法分析与设计》期末复习题(一)一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。

现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi 塔问题的移动规则。

由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C.D.10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。

算法设计与分析期末试题_考试版

算法设计与分析期末试题_考试版

1、用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制2、算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程3、算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法基本思想:迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

解题步骤:1、确定迭代模型。

根据问题描述,分析得出前一个(或几个)值与其下一个值的迭代关系数学模型。

2、建立迭代关系式。

迭代关系式就是一个直接或间接地不断由旧值递推出新值的表达式,存储新值的变量称为迭代变量3、对迭代过程进行控制。

确定在什么时候结束迭代过程,这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

计算机算法设计与分析期末复习资料

计算机算法设计与分析期末复习资料

计算机算法设计与分析期末复习资料一填空题(20x1=20分)1.当有多个算法来解决集合问题时,选择算法的主要原则是选择复杂度最低的算法。

2.函数本身定义的函数是递归函数。

该算法适用于求解动态规划问题。

4.贪心算法的两个基本要素是最优子结构性质、贪心选择性质。

5.在搜索解空间树时,回溯方法通常使用深度优先的方法来提高搜索效率,以避免无效搜索。

6.根据不同的求解目标,分枝定界法和回溯法分别通过广度优先遍历或最小代价优先和深度优先搜索解空间树。

7.分支界限法和回溯法主要区别在于求解目标和搜索方式不同。

8.在执行分支定界法时,通常使用该方法来实现最大优先级队列。

9.依据求解所花费的时间和所得到的结果不同,随机化算法大致分为数值随机化算法、蒙特卡罗算法、拉斯维加斯算法和舍伍德算法四类。

10.产生伪随机数最常用的方法是线性同余法。

11.线性规划算法中旋转轴变化的目的是调整基准内变量和基准外变量的位置。

12.在最大网络流问题中,增广路径是剩余网络中容量大于0的路径。

13.应用于动态规划的待解决问题的两个基本要素是:。

14.算法必须满足的四个特征是输入、输出、确定性和有限性。

15.算法复杂性依赖于、、三个方面的复杂因素。

16.实现递归调用的关键是17.动态规划算法解决问题的重要线索是问题的性质。

18.最优子结构性质是贪婪算法的关键特征。

19.分支界限法的求解目标是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

20.有两种常见的解空间树:子集树和置换树。

21.分支界限算法依据其从和节点表中选择获得下一扩展节点的不同方式被分为22.对于任何约束标准线性规划问题,只要基本变量设置为0,就可以得到一个解。

三概念题(6x2=12分)1.算法复杂度:指算法运行所需的计算机资源量。

需要时间资源的量称为时间复杂度,需要空间资源源的量称为空间复杂性。

2.递归算法:直接或间接调用自身的算法称为递归算法。

算法设计与分析期末复习题【试题.知识点】

算法设计与分析期末复习题【试题.知识点】

算法设计与分析期末复习题【试题.知识点】算法设计与分析期末考试复习题1.算法有哪些特点?为什么说⼀个具备了所有特征的算法,不⼀定就是使⽤的算法?2.证明下⾯的关系成⽴:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)13.考虑下⾯的算法:输⼊:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i5. for(j=i+1;j6. if(A[j]7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执⾏的元素赋值的次数最少?最少多少次?(2)什么时候算法所执⾏的元素赋值的次数最多?最多多少次?4.考虑下⾯的算法:输⼊:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]9. temp=A[j];210. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执⾏的元素⽐较次数最少是多少次?什么时候达到最少?(2)算法所执⾏的元素⽐较次数最多是多少次?什么时候达到最多?(3)算法所执⾏的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执⾏的元素赋值次数最多是多少次?什么时候达到最多?(5)⽤О、和Ω记号表⽰算法的运⾏时间。

(6)可以⽤Θ记号来表⽰算法的运⾏时间吗?请说明。

35.解下⾯的递归⽅程:(1)f(n)=5f(n-1)-6f(n-2) f(0)=1 f(1)=0(2)f(n)=4f(n-1)-4f(n-2) f(0)=6 f(1)=86.初始链表的内容为:3562,6381,0356,2850,9136,3715,8329,7481,写出⽤基数排序算法对它们进⾏排序的过程。

算法题__计算机算法设计与分析期末试题4套(含答案)

算法题__计算机算法设计与分析期末试题4套(含答案)

(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

算法分析与设计期末考试复习题纲完整版

算法分析与设计期末考试复习题纲完整版

《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。

A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成概算法的时间为t秒。

现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。

A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。

A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。

A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。

A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。

A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。

A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。

A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。

A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。

《算法分析与设计》期末复习题

《算法分析与设计》期末复习题

一、选择题1.一个.java文件中可以有()个public类。

A.一个B.两个C.多个D.零个2.一个算法应该是()A.程序B.问题求解步骤的描述C.要满足五个基本特性D.A和C3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。

若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是()A.3,15,130,20,98,67B.3,15,20,130,98,67C.3,15,20,67,130,98 D.3,15,20,67,98,1305.下列关于算法的描述,正确的是()A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出C.算法只能用流程图表示D.一个完整的算法至少有一个输入6.Java Application源程序的主类是指包含有()方法的类。

A、main方法B、toString方法C、init方法D、actionPerfromed方法7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是()A.分治法B.减治法C.蛮力法D.变治法8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。

A、import java.awt.* ;B、import java.applet.Applet ;C、import java.io.* ;D、import java.awt.Graphics ;9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

图中空白处理框①和②处应填入的是()A.①sum ←sum + d B.①sum ←sum + c②c ←c + 1②c ←c + 1C.①sum ←sum + d D.①sum ←sum + c②d ←d + 1 ②d ←d + 110.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。

算法分析与设计期末复习题

算法分析与设计期末复习题

一、选择题1.一个.java文件中可以有()个public类。

A.一个B.两个C.多个D.零个2.一个算法应该是()A.程序B.问题求解步骤的描述C.要满足五个基本特性D.A和C3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。

若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是()A.3,15,130,20,98,67B.3,15,20,130,98,67C.3,15,20,67,130,98 D.3,15,20,67,98,1305.下列关于算法的描述,正确的是()A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出C.算法只能用流程图表示D.一个完整的算法至少有一个输入6.Java Application源程序的主类是指包含有()方法的类。

A、main方法B、toString方法C、init方法D、actionPerfromed方法7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是()A.分治法B.减治法C.蛮力法D.变治法8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。

A、import java.awt.* ;B、import java.applet.Applet ;C、import java.io.* ;D、import java.awt.Graphics ;9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

图中空白处理框①和②处应填入的是()A.①sum ←sum + d B.①sum ←sum + c②c ←c + 1②c ←c + 1C.①sum ←sum + d D.①sum ←sum + c②d ←d + 1 ②d ←d + 110.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。

算法设计与分析复习题目及答案详解

算法设计与分析复习题目及答案详解

算法设计与分析复习题目及答案详解分治法 1、二分搜索算法是利用(分治策略)实现的算法。

9.实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是(分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除(栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

算法题__计算机算法设计及分析期末试题4套(含答案)

算法题__计算机算法设计及分析期末试题4套(含答案)

(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

计算机算法设计与分析-期末考试复习资料

计算机算法设计与分析-期末考试复习资料

一、算法设计实例1、快速排序(分治法)int partition(float a[],int p,int r) {int i=p,j=r+1;float x=a[p];while(1){while(a[++i]<x);while(a[--j]<x);if(i>=j)break;swap(a[i],a[j]);}a[p]=a[j];a[j]=x;return j;}void Quicksort(float a[],int p,int r){//快速排序if(p<r){int q=partition(a,p,r);Quicksort(a,p,q-1);Quicksort(a,p+1,r);}}2、归并排序(分治法)void mergesort(Type a[],int left,int right) {if(left<rigth){int mid=(left+right)/2;//取中点mergesort(a,left,mid);mergesort(a,mid+1,right);mergesort(a,b,left,right);//合并到数组bmergesort(a,b,left,right);//复制到数组a}}3、背包问题(贪心算法)void knapsack(int n,float m,float v[],float w[],float x[]) {sort(n,v,w)//非递增排序int i;for(i=1;i<=n;i++)x[i]=0;float c=m;for(i=1;i<=n;i++){if(w[i]>c)break;x[i]=1;c-=w[i];}if(i<=n)x[i]=c/w[i];}4、活动安排问题(贪心算法)void Greadyselector(int n,Type s[],Type f[],bool A[]) {//s[i]为活动结束时间,f[j]为j活动开始时间A[i]=true;int j=1;for(i=2;i<=n;i++){if(s[i]>=f[j]){A[i]=true;j=i;}elseA[i]=false;}}5、喷水装置问题(贪心算法)void knansack(int w,int d,float r[],int n){//w为草坪长度d为草坪宽度r[]为喷水装置的喷水半径,//n为n种喷水装置,喷水装置的喷水半径>=d/2sort(r[],n);//降序排序count=0;//记录装置数for(i=1;i<=n;i++)x[i]=0;//初始时,所有喷水装置没有安装x[i]=0for(i=1;w>=0;i++){x[i]=1;count++;w=w-2*sqart(r[i]*r[i]-1);}count<<装置数:<<count<<end1;for(i=1;i<=n;i++)count<<喷水装置半径:<<r[i]<<end1;}6、最优服务问题(贪心算法)double greedy(rector<int>x,int s){rector<int>st(s+1,0);rector<int>su(s+1,0);int n=x.size();//st[]是服务数组,st[j]为第j个队列上的某一个顾客的等待时间//su[]是求和数组,su[j]为第j个队列上所有顾客的等待时间sort(x.begin(),x.end());//每个顾客所需要的服务时间升序排列int i=0,j=0;while(i<n){st[j]+=x[i];//x[i]=x.begin-x.endsu[j]+=st[j];i++;j++;if(j==s)j=0;}double t=0;for(i=0;i<s;i++)t+=su[i];t/=n;return t;}7、石子合并问题(贪心算法)float bebig(int A[],int n) {m=n;sort(A,m);//升序while(m>1){for(i=3;i<=m;i++)if(p<A[i])break;elseA[i-2]=A[i];for(A[i-2]=p;i<=m;i++){A[i-1]=A[i];m--;}}count<<A[1]<<end1}8、石子合并问题(动态规划算法)best[i][j]表示i-j合并化最优值sum[i][j]表示第i个石子到第j个石子的总数量|0f(i,j)=||min{f(i,k)+f(k+1,j)}+sum(i,j)int sum[maxm]int best[maxm][maxn];int n,stme[maxn];int getbest();{//初始化,没有合并for(int i=0;i<n;i++)best[i][j]=0;//还需要进行合并for(int r=1;r<n;r++){for(i=0;i<n-r;i++){int j=i+v;best[i][j]=INT-MAX;int add=sum[j]-(i>0!sum[i-1]:0);//中间断开位置,取最优值for(int k=i;k<j;++k){best[i][j]=min(best[i][j],best[i][k]+best[k+1][j])+add;}}}return best[0][n-1];}9、最小重量机器设计问题(回溯法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void backstack(Qnode*p){if(p->ceng==n+1){if(bestw>p->wei){testw=p->wei;best=p;}}else{for(i=1;i<=m;i++)k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->val=vt;s->wei=wt;s->ceng=k+1;s->no=1;s->parent=p;backstrack(S);}}}10、最小重量机器设计问题(分支限界法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void minloading(){float wt=0;float vt=0;float bestw=Max;//最小重量Qnode*best;s=new Qnode;s->wei=0;s->val=0;s->ceng=1;s->no=0;s->parent=null;Iinit_Queue(Q); EnQueue(Q,S);do{p=OutQueue(Q);//出队if(p->ceng==n+1){if(bestw>p->wei){bestw=p->wei;best=p;}}else{for(i=1;i<=m;i++){k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->ceng=k+1;s->wt=wt;s->val=val;s->no=i;s->parent=p;EnQueue(Q,S);}}}}while(!empty(Q));p=best;while(p->parent){count<<部件:<<p->ceng-1<<end1;count<<供应商:<<p->no<<end1;p=p->parent;}}11、快速排序(随机化算法—舍伍德算法)int partion(int a[],int l,int r){key=a[l];int i=l,j=r;while(1){while(a[++i]<key&&i<=r);while(a[--j]>key&&j>=l);if(i>=j)break;if(a[i]!=a[j])swap(a[i],a[j]);}if((j!=l)&&a[l]!=a[j])swap(a[l],a[j]);return j;}int Ranpartion(int a[],int l,int r) {k=rand()%(r-1+l)+1;swap(a[k],a[l]);int ans=partion(a,l,r);return ans;}int Quick_sort(int a[],int l,int r,int k){int p=Randpartion(a,l,r);if(p==k)return a[k];else if(k<p)return Quick_sort(a,l,p-1,k);else{int j=0;for(int i=p+1;i<=r;i++)b[j++]=a[i]return Quick_sort(b,1,j,k-p);}}12、线性选择(随机化算法—舍伍德算法)二、简答题1.分治法的基本思想分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

《算法设计与分析》期末复习题

《算法设计与分析》期末复习题

填空1.直接或间接地调用自身的算法称为 递归算法 。

2.算法的复杂性是 算法效率 的度量,是评价算法优劣的重要依据。

3.以广度优先或以最小耗费方式搜索问题解的算法称为 分支限界法 。

4.回溯法解题的显著特点是在搜索过程中动态产生问题的解空间。

在任何时刻,算法只保存从根结点到当前扩展结点的路径。

如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为 O (h(n)) 。

5.人们通常将问题的解决方案分为两大类:一类是可以通过执行若干个步骤就能得出问题结论的,叫做 算法 方案;另一类是不能通过若干个步骤直截了当地得出结论,而是需要反复验证才能解决的,叫做 启发式 方案。

6.算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 。

7.在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。

3个基本计算模型是 随机存取机RAM 、 随机存取存储程序机RASP 、 图灵机 。

8.快速排序算法的性能取决于 划分的对称性 。

9.计算机的资源最重要的是 时间资源 和 空间 资源。

因而, 算法的复杂性有 时间复杂度 和 空间复杂度 之分。

10.贪心算法总是做出在当前看来 最优 的选择。

也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的 局部最优 。

11.许多可以用贪心算法求解的问题一般具有2个重要的性质: 贪心选择 性质和 最优子结构 性质。

12.常见的两种分支限界法为 队列式(FIFO )分支限界 和 优先队列式分支限界 。

13.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中需要排序的是 回溯法、分支限界法 ,不需要排序的是 动态规划 。

14.f ( n ) = 6 × 2n + n 2,f(n)的渐进性态f ( n ) = O ( 2n )。

15.对于含有n 个元素的排列树问题,最好情况下计算时间复杂性为 ,最坏情况下计算时间复杂性为 n! 。

算法分析与设计期末复习题

算法分析与设计期末复习题

一、选择题1.一个.java文件中可以有〔〕个public类。

A.一个B.两个C.多个D.零个2.一个算法应该是〔〕A.程序B.问题求解步骤的描绘C.要满足五个根本特性D.A和C3.用计算机无法解决“打印所有素数〞的问题,其原因是解决该问题的算法违犯了算法特征中的〔〕A.唯一性B.有穷性C.有0个或多个输入D.有输出4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。

假设采用冒泡排序算法对其进展排序,那么完成第二遍时的结果是〔〕A.3,15,130,20,98,67B.3,15,20,130,98,67C.3,15,20,67,130,98 D.3,15,20,67,98,1305.以下关于算法的描绘,正确的选项是〔〕A.一个算法的执行步骤可以是无限的B.一个完好的算法必须有输出C.算法只能用流程图表示D.一个完好的算法至少有一个输入6.Java Application源程序的主类是指包含有〔〕方法的类。

A、main方法B、toString方法C、init方法D、actionPerfromed方法7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是〔〕A.分治法B.减治法C.蛮力法D.变治法8.在编写Java Application程序时,假设需要使用到标准输入输出语句,必须在程序的开头写上( )语句。

9.计算某球队平均年龄的部分算法流程图如下列图,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入完毕。

图中空白处理框①和②处应填入的是〔〕A.①sum ←sum + d B.①sum ←sum + c②c ←c + 1②c ←c + 1C.①sum ←sum + d D.①sum ←sum + c②d ←d + 1 ②d ←d + 110.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机算法设计与分析期末考试复习题
work Information Technology Company.2020YEAR
1、二分搜索算法是利用( A )实现的算法。

A、分治策略
B、动态规划法
C、贪心法
D、回溯法
2、下列不是动态规划算法基本步骤的是( A )。

A、找出最优解的性质
B、构造最优解
C、算出最优解
D、定义最优解
3、最大效益优先是( A )的一搜索方式。

A、分支界限法
B、动态规划法
C、贪心法
D、回溯法
4、最长公共子序列算法利用的算法是( B )。

A、分支界限法
B、动态规划法
C、贪心法
D、回溯法
5. 回溯法解TSP问题时的解空间树是( A )。

A、子集树
B、排列树
C、深度优先生成树
D、广度优先生成树
6.下列算法中通常以自底向上的方式求解最优解的是( B )。

A、备忘录法
B、动态规划法
C、贪心法
D、回溯法
7、衡量一个算法好坏的标准是(C )。

A 运行速度快
B 占用空间少
C 时间复杂度低
D 代码短
8、以下不可以使用分治法求解的是(D )。

A 棋盘覆盖问题
B 选择问题
C 归并排序
D 0/1背包问题
9. 实现循环赛日程表利用的算法是( A )。

A、分治策略
B、动态规划法
C、贪心法
D、回溯法
10、实现最长公共子序列利用的算法是( B )。

A、分治策略
B、动态规划法
C、贪心法
D、回溯法
11.下面不是分支界限法搜索方式的是( D )。

A、广度优先
B、最小耗费优先
C、最大效益优先
D、深度优先
12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。

A、备忘录法
B、动态规划法
C、贪心法
D、回溯法
13. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的
( B )。

A、重叠子问题
B、最优子结构性质
C、贪心选择性质
D、定义最优解
14.广度优先是( A )的一搜索方式。

A、分支界限法
B、动态规划法
C、贪心法
D、回溯法
15.背包问题的贪心算法所需的计算时间为( B )。

A、O(n2n)
B、O(nlogn)
C、O(2n)
D、O(n)
16.实现最大子段和利用的算法是( B )。

A、分治策略
B、动态规划法
C、贪心法
D、回溯法
17.实现棋盘覆盖算法利用的算法是( A )。

A、分治法
B、动态规划法
C、贪心法
D、回溯法
18.下面是贪心算法的基本要素的是( C )。

A、重叠子问题
B、构造最优解
C、贪心选择性质
D、定义最优解
19.回溯法的效率不依赖于下列哪些因素( D )
A.满足显约束的值的个数
B. 计算约束函数的时间
C. 计算限界函数的时间
D. 确定解空间的时间
20.下面哪种函数是回溯法中为避免无效搜索采取的策略( B )
A.递归函数 B.剪枝函数C。

随机数函数 D.搜索函数
21、以深度优先方式系统搜索问题解的算法称为 ( D ) 。

A、分支界限算法
B、概率算法
C、贪心算法
D、回溯算法
22、贪心算法与动态规划算法的主要区别是( B )。

A、最优子结构
B、贪心选择性质
C、构造最优解
D、定义最优解
23. 采用最大效益优先搜索方式的算法是( A )。

A、分支界限法
B、动态规划法
C、贪心法
D、回溯法
24. ( D )是贪心算法与动态规划算法的共同点。

A、重叠子问题
B、构造最优解
C、贪心选择性质
D、最优子结构性质
25. 矩阵连乘问题的算法可由( B)设计实现。

A、分支界限算法
B、动态规划算法
C、贪心算法
D、回溯算法
26. 0-1背包问题的回溯算法所需的计算时间为( A )
A、O(n2n)
B、O(nlogn)
C、O(2n)
D、O(n)
27、背包问题的贪心算法所需的计算时间为( B )
A、O(n2n)
B、O(nlogn)
C、O(2n)
D、O(n)
29、使用分治法求解不需要满足的条件是(A )。

A 子问题必须是一样的
B 子问题不能够重复
C 子问题的解可以合并
D 原问题和子问题使用相同的方法解
30、下面问题(B )不能使用贪心法解决。

A 单源最短路径问题
B N皇后问题
C 最小花费生成树问题
D 背包问题
31、下列算法中不能解决0/1背包问题的是(A )
A 贪心法
B 动态规划
C 回溯法
D 分支限界法
32、回溯法搜索状态空间树是按照(C )的顺序。

A 中序遍历
B 广度优先遍历
C 深度优先遍历
D 层次优先遍历
33、采用广度优先策略搜索的算法是( A )。

A、分支界限法
B、动态规划法
C、贪心法
D、回溯法
34.实现合并排序利用的算法是( A )。

A、分治策略
B、动态规划法
C、贪心法
D、回溯法
35.下列是动态规划算法基本要素的是( D )。

A、定义最优解
B、构造最优解
C、算出最优解
D、子问题重叠性质
36.下列算法中通常以自底向下的方式求解最优解的是( B )。

A、分治法
B、动态规划法
C、贪心法
D、回溯法
二、填空题
1.算法的复杂性有时间复杂性和空间复杂性之分。

2、程序是算法用某种程序设计语言的具体实现。

3、算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。

4.矩阵连乘问题的算法可由动态规划设计实现。

5、算法是指解决问题的一种方法或一个过程。

6、快速排序算法的性能取决于划分的对称性。

7、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。

8、问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。

9、以深度优先方式系统搜索问题解的算法称为回溯法。

10、任何可用计算机求解的问题所需的时间都与其规模有关。

11、计算一个算法时间复杂度通常可以计算循环次数、基本操作的频率或计算步。

12、回溯法搜索解空间树时,常用的两种剪枝函数为约束函数和限界函数14、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划,需要排序的是回溯法,分支限界法。

15、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题,只使用约束条件进行裁剪的是 N皇后问题。

17、回溯法是一种既带有系统性又带有跳跃性的搜索算法。

18. 动态规划算法的两个基本要素是. 最优子结构性质和重叠子问题性质
19.贪心算法的基本要素是贪心选择质和最优子结构性质。

21. 动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

算法是由若干条指令组成的有穷序列,且要满足输入,输出、确定性和有限性四条性质。

23、快速排序算法是基于分治策略的一种排序算法。

24、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法。

三、算法设计题
1.背包问题的贪心算法,分支限界算法
2.最大子段和: 动态规划算法
3.贪心算法求活动安排问题
5.快速排序
6.多机调度问题-贪心算法
四、简答题
1分治法的基本思想
2. 分治法与动态规划法的相同点
3. 分治法与动态规划法的不同点
4. 分支限界法与回溯法的相同点
5.分治法所能解决的问题一般具有的几个特征是:
6. 用分支限界法设计算法的步骤
7. 回溯法中常见的两类典型的解空间树是子集
8. 请简述符号t(n)∈θ(g(n)), t(n)∈Ω(g(n)),t(n)∈Ο(g(n))的含义。

9. 分支限界法的搜索策略是:。

相关文档
最新文档