第一轮 中考考点系统复习 第三单元 函数 第12讲 二次函数 第1课时 二次函数的图象和性质试题

合集下载

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

最新中考数学总复习第一部分数与代数 第12讲 二次函数

最新中考数学总复习第一部分数与代数 第12讲 二次函数
题23, 题23, 题23, 题10,
10, 题25
数的
题22,
题25 题25 题25 题25
图象和性质
题25
题25
二次函数的 题12,4 题7,
平移

3分
返回
数学
二次函数的
解析式
(待定系数)
二次函数图
象的
顶点坐标、
对称轴

25(1),
2分
题7,3分


25(1),
25(3),
1分
1分

23(3),
2
2
∴k= 3 或 k=2,即 k 的值为 2 或 3.
返回
数学
(3)∵函数的对称轴为直线 x=2,当 m<2 时,当 x=m 时,y 有最大
4m
1
值, 3 =- 3 (m-2)+3,解得 m=± 5,∴m=- 5;
4m
当 m≥2 时,当 x=2 时,y 有最大值,∴
3
9
=3,∴m= .
4
9
综上所述,m 的值为- 5或 4.

题23(1) 3分
23(2),
(2),6分 题
3分
25(3),
2分
题10,
3分

23(3),
1分
返回
数学
二次函数与一元
二次方程、不等

题25(1), 题10,3
题23(3),
25(1),

5分

4分
(与x轴的交点坐
2分
标)
题10,3分
题25(3), 题25(3), 题25(3), 题25(3),
A,B(-1,0)两点,则下列说法正确的是( D )

中考一轮复习--第12讲 二次函数的图象及性质

中考一轮复习--第12讲 二次函数的图象及性质
A.1个
B.2个
C.3个
D.4个
答案:A
解析:由函数图象可知a<0,对称轴-1<x<0,图象与y轴的交点c>0,
函数与x轴有两个不同的交点,∴b-2a>0,b<0;Δ=b2-4ac>0;abc>0;当
x=1时,y<0,即a+b+c<0;当x=-1时,y>0,即a-b+c>0;∴(a+b+c)(ab+c)<0,即(a+c)2<b2;∴只有④是正确的.故选A.
考法1
考法2
考法3
二次函数的图象

例1(2018·山东青岛)已知一次函数y= x+c的图象如图,则二次函
数y=ax2+bx+c在平面直角坐标系中的图象可能是(
)
答案:A
考法1
考法2
考法3


解析:观察函数图象可知: <0,c>0,∴二次函数 y=ax2+bx+c 的图象

2
对称轴 x=- >0,与 y 轴的交点在 y 轴正半轴.故选 A.
第12讲 二次函数的图象及性质
考点梳理
自主测试
考点一 二次函数概念及表达式
定义:一般地,形如y=ax2+bx+c (a,b,c为常数,a≠0)的函数叫做二
次函数.
(1)一般形式:y = ax 2 + bx + c
;
(2)顶点式:y = a(x-h)2 + k(a ≠ 0),其中
二次函数的顶点坐标是(h,k)
顶点
坐标
对称轴
b 4ac-b2

中考数学 第一部分 基础知识过关 第三章 函数及其图象 第12讲 二次函数精练

中考数学 第一部分 基础知识过关 第三章 函数及其图象 第12讲 二次函数精练

第12讲二次函数A组基础题组一、选择题1.(2018陕西)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2018威海)抛物线y=ax2+bx+c(a≠0)如图所示,下列结论错误的是( )A.abc<0B.a+c<bC.b2+8a>4acD.2a+b>03.(2017甘肃兰州)将抛物线y=3x2-3向右平移3个单位长度,得到的新抛物线的表达式为( )A.y=3(x-3)2-3B.y=3x2C.y=3(x+3)2-3D.y=3x2-64.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( )A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥95.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )二、填空题6.(2017湖北武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室面积最大为m2.8.如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.三、解答题9.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边的距离分别为 m, m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m,则最多可以连续绘制几个这样的拋物线型图案?B组提升题组一、选择题1.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,正确的是( )A.没有交点B.有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧2.(2018枣庄)下图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A.b2<4acB.ac>0C.2a-b=0D.a-b+c=03.(2018潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6B.1或6C.1或3D.4或64.(2018菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是( )二、填空题5.(2017青岛)若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是.6.(2018淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C 是线段AD的三等分点,则m的值为.三、解答题7.(2017广东)如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.8.(2018陕西)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y 轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L',且L'与x轴相交于A'、B'两点(点A'在点B'的左侧),并与y轴相交于点C',要使△A'B'C'和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.二次函数的综合应用培优训练一、选择题1.向上发射一枚炮弹,经x秒后的高度为y千米,且时间与高度的关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A.第9.5秒B.第10秒C.第10.5秒D.第11秒2.烟花厂为成都春节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+12t+30,若这种礼炮在升空到最高点时引爆,则从点火升空到引爆需要的时间为( )A.3 sB.4 sC.5 sD.6 s3.二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,x=-1是对称轴,下列结论:①<0;②a-b+c=-9a;③若(-3,y1),是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2-9).其中正确的是( )A.①②③B.①③④C.①②④D.①②③④二、填空题4.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃-4 -2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想并推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.5.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.三、解答题6.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1 100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?7.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元/台,就可多售出50台.供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)求售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?8.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A和B(4,m)两点,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.9.如图,直线y=-x+3与x轴,y轴分别交于B(3,0),C(0,3)两点,抛物线y=ax2+bx+c过A(1,0),B,C三点.(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方的一个动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是以BN为腰的等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.10.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=-x2+bx+c的对称轴l上是否存在点F,使△DFQ为直角三角形,若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.11.如图1,平面直角坐标系中,二次函数y=-x2+bx+c的图象与坐标轴分别交于点A、B、C,其中点A(0,8),OB=OA.(1)求二次函数的表达式;(2)若OD=OB,点F为该二次函数在第二象限内图象上的动点,E为DF的中点.①当△CEF的面积最大时,求出点E的坐标;②如图2,将△CEF绕点E旋转180°,C点落在M处,若M点恰好在该抛物线上,求出此时△CEF 的面积.12.如图,直线y=-x+2与x轴交于B点,与y轴交于C点,A点坐标为(-1,0).(1)求过A、B、C三点的抛物线的解析式;(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF 周长的最大值;(3)在满足第(2)问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P 的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC,BC.求四边形PABC面积的最大值,并求出此时点P的坐标;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.第12讲二次函数A组基础题组一、选择题1.C 当x=1时,y=a+2a-1+a-3>0,解得a>1,又根据抛物线顶点坐标公式可得-<0,=<0,所以这条抛物线的顶点一定在第三象限,故选C.2.D A.由图象开口可知:a<0,由对称轴可知:->0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;B.由图象可知:x=-1时,y<0,∴y=a-b+c<0,∴a+c<b,故B正确;C.由图象可知:顶点的纵坐标大于2,∴>2,∵a<0,∴4ac-b2<8a,∴b2+8a>4ac,故C正确;D.对称轴x=-<1,a<0,∴2a+b<0,故D错误.故选D.3.A4.A5.D二、填空题6.答案-3<a<-2或<a<解析把(m,0)代入y=ax2+(a2-1)x-a得am2+(a2-1)m-a=0,m==,解得m1=,m2=-a,∵2<m<3,∴2<<3或2<-a<3,解得<a<或-3<a<-2.7.答案75解析设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,故饲养室的最大面积为75平方米.8.答案(,2)解析∵Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,∴4=4a,解得a=1,∴抛物线的解析式为y=x2,∵AB⊥x轴,∴B(-2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=(负值舍去),∴P(,2).三、解答题9.解析(1)根据题意得B,C,把B,C代入y=ax2+bx(a≠0)得解得∴拋物线的函数关系式为y=-x2+2x,∴图案最高点到地面的距离==1 m.(2)令y=0,即-x2+2x=0,解得x1=0,x2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.B组提升题组一、选择题1.D ∵a>1,∴Δ=(-2a)2-4a=4a(a-1)>0,∴ax2-2ax+1=0有两个不相等的实数根,即函数图象与x轴有两个交点,x=>0,故选D.2.D ∵抛物线与x轴有两个交点,∴b2-4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴-=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(-1,0),∴a-b+c=0,所以D选项正确.故选D.3.B 对于二次函数y=-(x-h)2(h为常数),当x=h时,函数有最大值0,又当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,故h<2或h>5.当h<2,2≤x≤5时,y随x的增大而减小,故当x=2时,y有最大值,此时-(2-h)2=-1,解得h1=1,h2=3(舍去);当h>5,2≤x≤5时,y随x的增大而增大,故当x=5时,y有最大值,此时-(5-h)2=-1,解得h1=6,h2=4(舍去),综上可知h=1或6.故选B.4.B ∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选B.二、填空题5.答案m>9解析∵抛物线y=x2-6x+m与x轴没有交点,∴Δ<0,即(-6)2-4×1×m<0,解得m>9.6.答案 2解析如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为2.三、解答题7.解析(1)把A(1,0),B(3,0)代入抛物线y=-x2+ax+b,得解得∴抛物线的解析式为y=-x2+4x-3.(2)当点P是线段BC的中点时,易得点P的横坐标为,当x=时,y=,所以点P的坐标为.(3)由(2)得点C的坐标为,∴OC=,又OB=3,∴BC==.∴sin∠OCB===.8.解析(1)令y=0,得x2+x-6=0,解得x=-3或x=2,∴A(-3,0),B(2,0).∴AB=5,令x=0,得y=-6,∴C(0,-6),∴OC=6,∴S△ABC=AB·OC=×5×6=15.(2)由题意得A'B'=AB=5.要使S△A'B'C'=S△ABC,只要抛物线L'与y轴的交点为C'(0,-6)或C'(0,6)即可. 设所求抛物线L':y=x2+mx+6,y=x2+nx-6.∵抛物线L'与抛物线L的顶点的纵坐标相同,∴=,=,解得m=±7,n=±1(n=1舍去).∴抛物线L'的函数表达式为y=x2+7x+6,y=x2-7x+6或y=x2-x-6.二次函数的综合应用培优训练一、选择题1.C 当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=-21a,根据二次函数图象的对称性及抛物线的开口方向,得当x=-=10.5时,y最大,即高度最高.故选C.2.B ∵礼炮在升空到最高点时引爆,且二次函数图象的开口向下,∴高度h取最大值时,t=-,即t=-=4.故选B.3.D ∵二次函数的图象开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵抛物线的对称轴x=-=-1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=-8a,∴a-b+c=-9a,故②正确;∵抛物线的对称轴为x=-1,∴当x=-1时,抛物线有最大值,-3距离-1有2个单位长度,距离-1有个单位长度,∴y1>y2,故③正确;设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=-8a,∴a+k=-8a,∴k=-9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=ax2-9a,即y=a(x2-9),故④正确.正确结论为①②③④.故选D.二、填空题4.答案-1解析设l=at2+bt+c(a≠0),将(0,49),(1,46),(4,25)代入后得方程组解得所以l与t之间的二次函数解析式为l=-t2-2t+49,当t=-=-1时,l有最大值50,即最适合这种植物生长的温度是-1 ℃.5.答案x<-1或x>4解析由题图可知,当x<-1或x>4时,直线y=mx+n的图象在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<-1或x>4.三、解答题6.解析(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1 100>0,解得x>22,∵x是5的倍数,∴每辆车的日租金至少应为25元.(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1 100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1 100=3 900;当x>100时,y2=x-1 100=50x-x2+20x-1 100=-x2+70x-1 100=-(x-175)2+5 025,当x=175时,y2的最大值为5 025,5 025>3 900,故当每辆车的日租金为175元时,每天的净收入最多,是5 025元.7.解析(1)根据题中条件售价每降低10元/台,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式为y=200+50×,化简得y=-5x+2 200.(2)根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务,则解得300≤x≤350.所以售价x的范围为300≤x≤350.(3)w=(x-200)(-5x+2 200),整理得w=-5(x-320)2+72 000.∵x=320在300≤x≤350内,∴当x=320时,w有最大值,为72 000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72 000元.8.解析(1)∵B(4,m)在直线y=x+2上,∴m=6,即B(4,6),∵A和B(4,6)在抛物线y=ax2+bx+6上,∴解得∴抛物线的解析式为y=2x2-8x+6.(2)存在.设动点P的坐标为(n,n+2),点C的坐标为(n,2n2-8n+6),∴PC=(n+2)-(2n2-8n+6)=-2n2+9n-4=-2+,∵-2<0,∴抛物线开口向下,有最大值,∴当n=时,线段PC的长有最大值.9.解析(1)由题意将点A(1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得解得∴抛物线的解析式为y=x2-4x+3.(2)设点M的坐标为(m,m2-4m+3),∵MN∥y轴,∴点N的坐标为(m,-m+3).∵A(1,0),B(3,0)在抛物线上且点M是抛物线在x轴下方的一个动点.∴1<m<3.∵线段MN=-m+3-(m2-4m+3)=-m2+3m=-+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为,∴PB==,PN=,BN==.△PBN以BN为腰的等腰三角形,分二种情况:①当PB=BN,即=时,解得n=±,此时点P的坐标为或.②当PN=BN,即=时,解得n=,此时点P的坐标为或.综上可知:在抛物线的对称轴l上存在点P,使△PBN是以BN为腰的等腰三角形,点P的坐标为或或或.10.解析(1)将A、C两点坐标代入抛物线解析式,得解得∴抛物线的解析式为y=-x2+x+8.(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10-m),∴S=·CP·QE=m×(10-m)=-m2+3m.②∵S=·CP·QE=m×(10-m)=-m2+3m=-(m-5)2+, ∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△DFQ为直角三角形,∵抛物线y=-x2+x+8的对称轴为x=,D的坐标为(3,8), Q的坐标为(3,4),当∠FDQ=90°时,F1,当∠FQD=90°时,则F2,当∠DFQ=90°时,设F,则FD2+FQ2=DQ2,即+(8-n)2++(n-4)2=16,解得n=6±,∴F3,F4,满足条件的点F共有四个,分别为F1,F2,F3,F4,6-.11.解析(1)∵OA=8,∴OB=OA=4,∴B(4,0),∵y=-x2+bx+c的图象过点A(0,8),B(4,0), ∴解得∴二次函数的表达式为y=-x2-x+8.(2)①当y=0时,-x2-x+8=0,解得x1=4,x2=-8,∴C点坐标为(-8,0),∵D点坐标为(0,4),∴设直线CD的解析为y=kx+d(k≠0),故解得故直线DC的解析为y=x+4.如图,过点F作y轴的平行线交DC于点P,设F点坐标为,则P点坐标为, 则FP=-m2-m+4,∴S△FCD=·FP·OC=×-m2-m+4×8=-m2-6m+16,∵E为FD中点,∴=×=-m2-3m+8=-(m+3)2+,当m=-3时,有最大值,∴-m2-m+8=-×9+3+8=,E点纵坐标为×=,∴F,∴E.②∵F点坐标为,C点坐标为(-8,0),D点坐标为(0,4),∴M,又∵M点在抛物线上,∴-(m+8)2-(m+8)+8=-m2-m+12,解得m=-7,故=-m2-3m+8=.12.解析(1)直线y=-x+2与x轴交于B(2,0),与y轴交于C(0,2), 设过A、B、C的抛物线的解析式为y=ax2+bx+c(a≠0),把A(-1,0),B(2,0),C(0,2)的坐标代入,解得a=-1,b=1,c=2,∴抛物线的解析式为y=-x2+x+2.(2)设D(x,-x2+x+2),F(x,-x+2),∴DF=(-x2+x+2)-(-x+2)=-x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴∠DFE=∠OCB=45°,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+.(3)存在.如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1,当∠DFP=∠DBC时,△DFP∽△DBF,∴=,∴DP=,∴===,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH-DM=2-=,∴P.13.解析(1)对于y=x+2,当x=0时,y=2,当y=0时,x=-4,∴C(0,2),A(-4,0),由抛物线的对称性可知:点A与点B关于x=-对称,∴点B的坐标为(1,0). ∵抛物线y=ax2+bx+c过A(-4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x-1),又∵抛物线过点C(0,2),∴2=-4a,∴a=-,∴y=-x2-x+2.(2)设P.过点P作PQ⊥x轴交AC于点Q,∴Q,∴PQ=-m2-m+2-=-m2-2m,∵=×PQ×(x C-x A)=×PQ×4=2PQ=-m2-4m=-(m+2)2+4,∴当m=-2时,△PAC的面积有最大值4,易知S△ACB=×OC×AB=×2×5=5.则四边形PABC面积的最大值是9,此时P(-2,3).(3)存在.在Rt△AOC中,tan∠CAO=,在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(-3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M n,-n2-n+2,则N(n,0), ∴MN=n2+n-2,AN=n+4,当=时,MN=AN,即n2+n-2=(n+4),整理得n2+2n-8=0,解得n1=-4(舍),n2=2,∴M(2,-3);当=时,MN=2AN,即n2+n-2=2(n+4),整理得n2-n-20=0,解得n1=-4(舍),n2=5,∴M(5,-18).综上所述,存在M1(0,2),M2(-3,2),M3(2,-3),M4(5,-18),使得以点A、M、N为顶点的三角形与△ABC相似.。

2020 最新中考数学复习 第12讲第1课时 二次函数的图象与性质

2020 最新中考数学复习 第12讲第1课时 二次函数的图象与性质

第12讲 二次函数第1课时 二次函数的图象与性质知识点1 二次函数的概念1.关于x 的函数y =(m +1)x 2+(m -1)x +m ,当m =0时,它是二次函数;当m =-1时,它是一次函数.知识点2 二次函数的图象与性质2.已知h 与t 的函数关系式为h =12gt 2(g 为常数,t 为时间),则函数图象为(A )3.抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数有(B )A .1个B .2个C .3个D .4个4.如图,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是(C )A .x >3B .x <3C .x >1D .x <15.二次函数y =x 2-2x -3的最小值是-4.知识点3 二次函数图象的平移6.抛物线y =(x +2)2-3由抛物线y =x 2先向左平移2个单位长度,再向下平移3个单位长度得到.7.将抛物线y =2(x -1)2+2向左平移3个单位长度,再向下平移4个单位长度,那么得到的抛物线的表达式为y =2(x +2)2-2.知识点4 确定二次函数的解析式8.已知二次函数的图象如图,则其解析式为(B)A.y=x2-2x+3B.y=x2-2x-3C.y=x2+2x-3D.y=x2+2x+39.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=-x2+4x-3.知识点5二次函数与方程、不等式10.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是(A)A.m<2 B.m>2C.0<m≤2 D.m<-211.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是(A)A.-1<x<3B.x>3C.x<-1D.x>3或x<-1重难点1二次函数的图象和性质(2017·枣庄)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D)A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【思路点拨】(1)将a=1代入原函数解析式,令x=-1求出y值,由此得出A选项不符合题意;(2)将a=2代入原函数解析式,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;(3)利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;(4)利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.【变式训练1】(2016·兰州)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是(D)A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【变式训练2】(2017·泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x -1 0 1 3y -3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x<1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个,方法指导解决二次函数图象和性质相关题,首先需明确二次函数图象的开口方向、对称轴、顶点坐标等与解析式中相关字母的关系,若确定解析式,也可通过将解析式配方,得出函数的对称轴,顶点坐标,函数图象与坐标轴的交点等,从而画出函数大致图象,再利用数形结合思想解题.方法指导比较抛物线上点的纵坐标大小的基本方法有以下三种:(1)利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行比较; (2)当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小;(3)利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小,开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”比较大小.重难点2 同一坐标系中的函数图象共存问题(2016·毕节)一次函数y =ax +c(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一个坐标系中的图象可能是(D )【变式训练3】 函数y =kx与y =-kx 2+k(k ≠0)在同一直角坐标系中的图象可能是(B )方法指导解决函数图象共存问题主要有以下三种方法:(1)排除法:根据已知条件中得出的结论直接排除某选项,如:本例由已知条件可知两个函数的常数项都是c ,说明两个函数图象与y 轴交于同一个点,所以排除A 选项;(2)同一法:一般可以先假定其中一种函数的图象(如:一次函数,反比例函数),再根据函数图象得到该函数解析式中字母的范围,去判断另一个函数图象是否正确.如:本例B 选项,若一次函数图象正确,则a<0,c<0,这与抛物线开口向上相矛盾.故B 选项错误.重难点3 二次函数图象与字母系数的关系(2016·随州)二次函数y =ax 2+bx +c(a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a +b =0;(2)9a +c>3b ;(3)8a +7b +2c>0;(4)若点A(-3,y 1),点B(-12,y 2)、点C(72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a(x +1)(x -5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论有(B )A.2个B.3个C.4个D.5个【思路点拨】(1)利用对称轴公式判别;(2)观察形式发现当x=-3时,y=9a-3b+c<0,可得9a+c<3b;(3)根据对称轴为x=2,得b=-4a,则8a+7b+2c=-20a+2c,由a<0,c>0,可得-20a+2c>0;(4)抛物线的开口向下,距离对称轴越远,纵坐标越小;(5)方程a(x+1)(x-5)=-3的两根x1和x2为直线y=-3与抛物线y=a(x +1)(x-5)的两个交点的横坐标,这两个交点在抛物线y=a(x+1)(x-5)与x轴两交点的两侧,因此x1<-1<5<x2.【变式训练4】(2017·荆门)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(D)A.a<0,b<0,c>0B.-b2a=1C.a+b+c<0D.关于x的方程ax2+bx+c=-1有两个不相等的实数根变式训练4图变式训练5图【变式训练5】(2017·广安)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3,其中正确的有(B)A.1个B.2个C.3个D.4个方法指导解答二次函数的图象信息问题,通常先抓住抛物线的对称轴和顶点坐标,再依据图象与字母系数之间的关系求解.常考的一些式子的判断方法如下:(1)判断2a+b与0的关系,需比较对称轴与1的大小;判断2a-b与0的关系,需比较对称轴与-1的大小;(2)判断a+b+c与0的关系,需看x=1时的纵坐标,即比较x=1时函数值与0的大小;判断a-b+c与0的关系,需看x=-1时的纵坐标,即比较x=-1时函数值与0的大小;(3)判断4a+2b+c与0的关系,需看x=2时的纵坐标,即比较x=2时函数值与0的大小;判断4a-2b+c与0的关系,需看x=-2时的纵坐标,即比较x=-2时函数值与0的大小.1.(人教九上教材P37练习的变式题)(2017·长沙)抛物线y=2(x-3)2+4的顶点坐标是(A)A.(3,4) B.(-3,4)C.(3,-4) D.(2,4)。

中考数学复习课件:第1轮第3章第12讲 二次函数

中考数学复习课件:第1轮第3章第12讲 二次函数

(1)求该二次函数的表达式; 解:由题意可设抛物线解析式为 y=a(x-4)2-3(a≠0), 把A(1,0)代入,可得0=a(1-4)2-3,解得a= 31, 故该二次函数解析式为y=31(x-4)2-3;
(2)求 tan ∠ABC.
解:令x=0,则y=13(0-4)2-3=37,则OC=73. ∵二次函数图象的顶点坐标为(4,-3),A(1, 0),则点B与点A关于直线x=4对称,可得B(7,0),
②当AB为平行四边形的边时,有AB∥PQ,AB =PQ,
当P点在Q点右边时,则P(4,n), 把P(4,n)代入y=-12x2+x+32, 可得n=-52,则P4,-52;
③当AB为平行四边形的对角线时,如图2所
示,AB与PQ交于点E,则E(1,0),
∵PE=QE,∴P(2,-n),
把P(2,-n)代入y=-12x2+x+32,
3.已知函数 y=-3x2-6x+1,此抛物线的开口向 ___下___,对称轴为直线__x_=__-__1___,顶点坐标为 __(_-__1_,__4_)_;当 x=__-__1__时,抛物线有最__大____ 值,最值为___4_____;当 x__<_-__1___时,y 随 x 的 增大而增大;当 x__>__-__1__时,y 随 x 的增大而减 小.
第一轮 考点突破
第三章 函 数
第12讲 二次函数
1.(2020·哈尔滨)抛物线 y=3(x-1)2+8 的顶点坐 标为_(_1_,__8_)__.
2.(2020·上海)如果将抛物线 y=x2 向上平移 3 个单位,那么所得新抛物线的表达式是_y_=__x_2+__3_.
3.(2020·淮安)二次函数 y=-x2-2x+3 的图象 的顶点坐标为_(-__1_,__4_)_.

2022中考数学 第一轮 考点系统复习 第三章 函数第12讲 二次函数的图象与性质(练本)课件

2022中考数学 第一轮 考点系统复习 第三章 函数第12讲 二次函数的图象与性质(练本)课件

设直线BC的解析式为y=kx+b′.
将点B(-3,0),C(0,3)代入,

3k b b 3,
0,解得
k b
1, 3,
∴直线BC的解析式为y=x+3.
∵S△CPD∶S△BPD=1∶2,即
1 CD PN 2 1 BD PN
,1
2

CD BD
1 2
2
,∴BD=2CD,

BD BC
BD BD CD
4.(2021·绍兴)关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正 确的是( D )
A.有最大值4 C.有最大值6
B.有最小值4 D.有最小值6
5.对于二次函数y=3(x-2)2+1的图象,下列说法正确的是( C )
A.开口向下 C.有最低点
B.对称轴是直线x=-2 D.与x轴有两个交点
中考先锋数学 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给
那些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午7时13分22.3.319:13March 3, 2022
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月3日星期四7时13分37秒19:13:373 March 2022
解得
a
b
1, 2,
∴抛物线的解析式为y=-x2-2x+3=-(x+1)2+4,
∴顶点坐标为(-1,4).
(2)连接PB,PO,PC,BC.PO交BC于点D,当S△CPD∶S△BPD=1∶2时,求点
D的坐标.
解:过点D作DM⊥y轴于点M,过点P作PN⊥BC于点N.

中考考点二次函数知识点汇总全

中考考点二次函数知识点汇总全

中考考点二次函数知识点汇总全二次函数是高中数学中的重要内容之一,也是中考考试的重点内容。

它是由一次项、常数项和二次项组成的一元二次方程的图像,其函数关系为y=ax²+bx+c,其中a、b、c为常数,且a≠0。

下面将汇总全面介绍中考中二次函数的知识点。

1.二次函数的图像特点:-当a>0时,二次函数的开口向上,图像是一个U型,顶点在下方;-当a<0时,二次函数的开口向下,图像是一个倒U型,顶点在上方;-函数的图像关于顶点对称。

2.顶点坐标与轴对称:-二次函数的顶点坐标是(-b/2a,f(-b/2a)),其中f(x)为二次函数的定义域;-二次函数的轴对称是x=-b/2a。

3.判断二次函数的开口方向及平移:-当a>0时,二次函数的开口向上;-当a<0时,二次函数的开口向下;-平移后的二次函数的顶点坐标为(x-h,f(x-h)),其中h为平移的横坐标单位,f(x)为原二次函数。

4.与坐标轴的交点与函数值:- 与x轴的交点(零点)是二次方程ax²+bx+c=0的解;-与y轴的交点是二次函数的常数项c;-函数值f(x)是二次函数在x处的y值。

5.最值及取值范围:-当a>0时,二次函数的最小值是顶点的纵坐标,没有最大值,取值范围是[最小值,+∞);-当a<0时,二次函数的最大值是顶点的纵坐标,没有最小值,取值范围是(-∞,最大值]。

6.对称轴的方程及关于顶点的对称点:-对称轴的方程是x=-b/2a;-对于点P(x,y),在对称轴上的对称点是P'(-b/a-x,y)。

7.解析式与一般式转换:- 一般式:y=ax²+bx+c,解析式则为y=a(x-h)²+k,其中(h,k)为顶点坐标;- 解析式:y=a(x-p)(x-q),则一般式为y=ax²-(ap+aq)x+apq,其中p、q是解析式的两个根。

8.方程与二次函数的关系:- 二次函数y=ax²+bx+c的解析式的自变量x和函数值y满足方程y=ax²+bx+c;- 方程y=ax²+bx+c=0的解是对应二次函数的图像在x轴上的交点。

中考数学一轮复习学案:第12讲 二次函数

中考数学一轮复习学案:第12讲 二次函数

第12讲 二次函数【考纲要求】1.理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题.4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解.【命题趋势】二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.【考点探究】考点一、二次函数的图象及性质【例1】(1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b2a =--62×(-3)=-1,4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A.(2)点(-1,y 1),(2,y 2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y 1,y 2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y 3),∵抛物线对称轴为直线x =1,∴点(0,y 3)与点(2,y 2)关于直线x =1对称.∴y 3=y 2. ∵a >0,∴当x <1时,y 随x 的增大而减小. ∴y 1>y 3.∴y 1>y 2. 答案:(1)A (2)>方法总结 1.将抛物线解析式写成y =a (x -h )2+k 的形式,则顶点坐标为(h ,k ),对称轴为直线x =h ,也可应用对称轴公式x =-b 2a ,顶点坐标⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a 来求对称轴及顶点坐标. 2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根考点二、利用二次函数图象判断a ,b ,c 的符号【例2】如图,是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a +b +c =0;根据-b2a=-1,推出b =2a ;根据图象关于对称轴对称,得出与x 轴的交点是(-3,0),(1,0);由a -2b +c =a -2b -a -b =-3b <0,根据结论判断即可.答案:①③方法总结 根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点,抛物线的对称轴由a ,b 共同决定,b 2-4ac 决定抛物线与x 轴的交点情况.当x =1时,决定a +b +c 的符号,当x =-1时,决定a -b +c 的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2 小明从如图的二次函数y =ax 2+bx +c 的图象中,观察得出了下面五个结论:①c <0;②abc >0;③a -b +c >0;④2a -3b =0;⑤c -4b >0,你认为其中正确的结论有( )A .2个B .3个C .4个D .5个考点三、二次函数图象的平移【例3】二次函数y =-2x 2+4x +1的图象怎样平移得到y =-2x 2的图象( ) A .向左平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向上平移3个单位C .向左平移1个单位,再向下平移3个单位D .向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y =-2x 2+4x +1=-2(x -1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y =-2x 2的图象.答案:C方法总结 二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3 将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是( )A .y =(x -1)2+2B .y =(x +1)2+2C .y =(x -1)2-2D .y =(x +1)2-2 考点四、确定二次函数的解析式【例4】如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求经过A ,B ,C 三点的抛物线的解析式. 解:(1)由抛物线的对称性可知AE =BE . ∴△AOD ≌△BEC . ∴OA =EB =EA .设菱形的边长为2m ,在Rt △AOD 中, m 2+(3)2=(2m )2,解得m =1.∴DC =2,OA =1,OB =3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3).(2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标. 考点五、二次函数的实际应用【例5】我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元).(1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少; (3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元). (2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值.触类旁通5 一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.【经典考题】1.(乐山)二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <12.(菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=ax在同一平面直角坐标系中的图象大致是()'3.(上海)将抛物线y=x2+x向下平移2个单位,所得新抛物线的表达式是________.4.(枣庄)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是______________.(第4题图)5.(珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(第5题图)(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.6.(益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-3,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P ′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD )的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:5≈2.236,6≈2.449,结果可保留根号)【模拟预测】1.抛物线y =x 2-6x +5的顶点坐标为( ) A .(3,-4) B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( ) A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图)A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发出了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y 轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标; (2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.参考答案【考点探究】触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0; ∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0. 由题图知当x =-1时,y >0, 即a -b +c >0.对称轴是直线x =13,∴-b 2a =13,即2a +3b =0;由⎩⎨⎧a -b +c >0,2a +3b =0,得c -52b >0.又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0.∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3.∴m =6. (2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3).触类旁通5.解:(1)(10+7x ) (12+6x ) (2)y =(12+6x )-(10+7x )=2-x . (3)∵w =2(1+x )(2-x )=-2x 2+2x +4, ∴w =-2(x -0.5)2+4.5. ∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【经典考题】1.B ∵二次函数y =ax 2+bx +1的顶点在第一象限, 且经过点(-1,0),∴a -b +1=0,a <0,b >0.由a =b -1<0得到b <1,结合上面b >0,∴0<b <1①; 由b =a +1>0得到a >-1,结合上面a <0, ∴-1<a <0②.∴由①②得-1<a +b <1,且c =1, 得到0<a +b +1<2, ∴0<t <2.2.C ∵二次函数图象开口向下,∴a <0.∵对称轴x =-b2a<0,∴b <0.∵二次函数图象经过坐标原点,∴c =0.∴一次函数y =bx +c 过第二、四象限且经过原点,反比例函数y =ax 位于第二、四象限,故选C.3.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.4.-1<x <3 因为二次函数的图象与x 轴两个交点的坐标分别是(-1,0),(3,0),由图象可知,当y <0时,自变量x 的取值范围是-1<x <3.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3). ∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎨⎧ 0=k +b ,3=4k +b ,解得⎩⎨⎧k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.6.解:(1)∵P 与P ′(1,3)关于x 轴对称, ∴P 点坐标为(1,-3).∵抛物线y =a (x -1)2+c 过点A (1-3,0),顶点是P (1,-3),∴⎩⎨⎧a (1-3-1)2+c =0,a (1-1)2+c =-3,解得⎩⎨⎧a =1,c =-3.则抛物线的解析式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD 平行于x 轴,P ′(1,3)在CD 上, ∴C ,D 两点纵坐标为3,由(x -1)2-3=3,得x 1=1-6,x 2=1+6, ∴C ,D 两点的坐标分别为(1-6,3),(1+6,3), ∴CD =26,∴“W ”图案的高与宽(CD )的比=326=64(或约等于0.612 4). 【模拟预测】1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D. 4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎨⎧ 1-b +c =0,1+b +c =-2,解得⎩⎨⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2,∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y取得最大值,②错误.7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b-2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎨⎧4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t .∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295.∴10-t=7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L2与L1有关图象的两条相同的性质:对称轴为直线x=2或顶点的横坐标为2;都经过A(1,0),B(3,0)两点.②线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E,F两点,∴kx2-4kx+3k=8k,∵k≠0,∴x2-4x+3=8,解得x1=-1,x2=5.∴EF=x2-x1=6,∴线段EF的长度不会发生变化.11 / 11。

中考数学复习二次函数知识点总结

中考数学复习二次函数知识点总结

中考数学复习二次函数知识点总结二次函数是中学数学中的重要内容,也是考试中常见的题型之一、在复习二次函数时,需要掌握其基本概念、性质、图像和应用等方面的知识。

下面是关于二次函数的知识点总结。

一、基本概念1.二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a为二次函数的二次系数。

2.二次函数的导数与二次系数的关系二次函数的导数为一次函数,二次系数a决定了导数的单调性,当a>0时,导数在整个定义域上单调递增;当a<0时,导数在整个定义域上单调递减。

3.二次函数的对称轴二次函数的对称轴是二次函数的图像关于该轴对称的直线。

对称轴的方程为x=-b/2a,其中a、b是二次函数的系数。

4.二次函数的顶点二次函数的顶点是二次函数的图像的最低点或最高点,对称轴上的点。

顶点的横坐标为对称轴的横坐标,纵坐标为代入对称轴横坐标得到的纵坐标。

二、性质1.零点性质二次函数y=ax²+bx+c(a≠0)的零点是方程ax²+bx+c=0的解,当方程有解时,二次函数与x轴交于两点,也可能与x轴重合。

2.二次函数图像的开口方向当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

3.二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。

4.判别式二次函数方程ax²+bx+c=0的判别式Δ=b²-4ac可以判断二次函数方程的解的情况:当Δ>0时,方程有两个不相等实数解;当Δ=0时,方程有两个相等实数解;当Δ<0时,方程没有实数解。

三、图像1.开口向上的二次函数图像特点开口向上的二次函数图像在顶点处为最小值,两侧递增;对称轴为y 轴且在第四象限,二次系数a为正数。

2.开口向下的二次函数图像特点开口向下的二次函数图像在顶点处为最大值,两侧递减;对称轴为y 轴且在第一象限,二次系数a为负数。

中考复习第12讲:二次函数

中考复习第12讲:二次函数

1.已知抛物线 y
1 2
x (5
2
Hale Waihona Puke m ) x m 3( m 0 )
2
与x轴有两个交点A、B,点A在x轴的正半轴,点B在x 轴的负半轴上,且OA=OB,点C为抛物线与y轴的交点。 (1)求m的值; (2)在抛物线上是否存在一点M,使S△MAC=S△OAC? 若存在,求出点M的坐标;若不存在,请说明理由。
,直线FE交AB的延长线于点
G,过线段FG上的一动点H作HM⊥AG,HN⊥AD,垂 足为M、N,设HM=x,矩形AMHN的面积为y。 (1)求x与y之间的函数关系; (2)当x为何值时,矩形AMHN的面积最大,最大面积
是多少?
D
F
C
E
N
H
A
B
M
G
考点4:利用二次函数解决实际问题
1.杂技团进行杂技表演,演员从翘翘板右端A处弹跳到人梯
中 考 复 习 第十二讲:二次函数(二)
考点1:抛物线的对称性
抛物线y=x2+bx+c的图象上有两点(3,-8)和(-5,-8),
则此抛物线的对称轴是( D )
A、x=4
B、x=3
C、x=-5
D、x=-1
考点2:抛物线型的实际问题
1. 某飞机着陆后滑行的路程 s 米与时间 t 秒的关系式为: s 60 t 1 . 5 t ,
顶端椅子B处,其身体的路线是抛物线
的一部分,如图.
y
3 5
x 3x 1
2
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的 水平距离是4米,问这次表演是否成功?请说明理由.

初中数学中考复习——第12节:二次函数:第1课时

初中数学中考复习——第12节:二次函数:第1课时

数学
首页
末页
考点梳理
5.二次函数与一元二次方程的关系.
二次函数
的图象与 x 轴的交点有三种情况:有两
个交点,有一个交点,没有交点。当图象与 x 轴有交点时,令 y=0,
解方程
就可求出与 x 轴交点的横坐标.
的根 抛物线
与x轴的交点
△>0 △=O △<O
两个不相等的实数根
两个相等的实数根
无实数根
两个交点
为 (h,k)
.

(2)
的图象




图象.
数学
首页
末页
考点梳理
4.二次函数解析式的确定 要确定二次函数的解析式,就是要确定解析式中 的待定系数(常数): (1)当已知抛物线上任意三点时,通常将函数的解 析式设为一般式 y=ax2+bx+c(a≠0). (2)当已知抛物线的顶点坐标和抛物线上另一点 时,通常将函数的解析式设为顶点式 y=a(x-h)2 +k(a≠0).
B.函数y=ax2+bx+c(a≠0)的最小值是-4
C.-1和3是方程ax2+bx+c=0(a≠0)的两个根
D.当x<1时,y随x的增大而增大
解析: A.观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确 ,故本选项不符合题意;
B.观察图象,可知抛物线的顶点坐标为(1,-4),抛物线开口向上,所以函数 y=ax2+bx+c(a≠0)的最小值是-4,正确,故本选项不符合题意;
题意;
B.由图象可知,对称轴为x= ,正确,故本选项不符合题意;
C.因为a>0,所以,当x< 时,y随x的增大而减小,正确,故本选项不符合题意;

2024年中考数学一轮复习考点精讲课件—二次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—二次函数的图象与性质

前提条件
当已知抛物线上的无规律的三个点的坐标时,常用
一般式求其表达式.
顶点式
y=a(x–h)²+k(a,h,k为常数, 当已知抛物线的顶点坐标(或者是对称轴) 时,常用
a≠0),顶点坐标是(h,k)
交点式
y=a(x–x1)(x–x2) (a≠0)
顶点式求其表达式.
其中x1,x2是二次函数与x轴的交点的横坐标,若题
【详解】解:∵二次方程 2 + + = 0的两根为−1和 5,

1−+ =0
= −4
,解得

25 + 5 + = 0
= −5
∴二次函数 = 2 + + = 2 − 4 − 5 = ( − 2)2 − 9,
∵ 1 > 0,
∴当 = 2时,有最小值,最小值为−9,
2)自变量的最高次数是2;
3)二次项系数a≠0,而b,c可以为零.
根据实际问题列二次函数关系式的方法:
1)先找出题目中有关两个变量之间的等量关系;
2)然后用题设的变量或数值表示这个等量关系;
3)列出相应二次函数的关系式.
考点一 二次函数的相关概念
二次函数的常见表达式:
名称
解析式
一般式
y=ax²+bx+c (a≠0)
状相同,
∴可设该二次函数的解析式为 = ±3 − ℎ
2
+ ,
∵该二次函数的顶点为 1,4 ,
∴该二次函数的解析式为 = ±3 − 1
2
+ 4,
∴该二次函数的解析式为 = 3 2 − 6 + 7或 = −3 2 +

2020年春湘教版中考数学知识点梳理第12讲 二次函数的图象与性质

2020年春湘教版中考数学知识点梳理第12讲 二次函数的图象与性质
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
b2-4ac
决定抛物线与x轴的交点个数
b2-4ac>0时,抛物线与x轴有2个交点;
b2-4ac=0时,抛物线与x轴有1个交点;
b2-4ac<0时,抛物线与x轴没有交点
知识点三:二次函数的平移
4.平移与解析式的关系
注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式
第12讲二次函数的图象与性质
一、知识清单梳理
知识点一:二次函数的概念及解析式
关键点拨与对应举例
1.一次函数的定义
形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.
2.解析式
(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k);③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.
当Δ=b2-4ac>0,两个不相等的实数根;
当Δ=b2-4ac=0,两个相等的实数根;
当Δ=b2-4ac<0,无实根
例:已经二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两个实数根为2,1.

中考第一轮复习第12讲二次函数

中考第一轮复习第12讲二次函数

第12讲 二次函数,知识清单梳理)二次函数的图象性质1.一般地,形如y =__ax 2+bx +c__(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 2.二次函数的图象和性质二次函数图象的平移、表达形式1.一般式:__y =ax 2+bx +c__(a ,b ,c 是常数,a ≠0).2.交点式:__y =a(x -x 1)(x -x 2)__(a ,x 1,x 2是常数,a ≠0).3.顶点式:__y =a(x -m)2+k__(a ,m ,k 是常数,a ≠0).二次函数与一元二次方程之间的关系对于二次函数y =ax 2+bx +c(a≠0),令y =0,即为ax 2+bx +c =0,也就完全转化为一元二次方程的问题.二次函数y =ax 2+bx +c(a≠0)与x 轴的交点分下列三种情况:1.__b 2-4ac >0__⇔抛物线与x 轴有两个交点(-b±b 2-4ac2a,0).2.__b 2-4ac =0__⇔抛物线与x 轴只有一个交点⎝ ⎛⎭⎪⎫-b2a ,0. 3.__b 2-4ac <0__⇔抛物线与x 轴没有交点.,云南省近五年高频考点题型示例)二次函数的图象性质【例1】(2019云南中考)抛物线y =x 2-2x +3的顶点坐标为________.【解析】本题可以利用配方法把二次函数的解析式化成顶点式得y =(x -1)2+2,则可得其顶点坐标为(1,2).【答案】(1,2)1.(2019昭通中考)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .3是方程ax 2+bx +c 的一个根 C .a +b +c =0D .当x <1时,y 随x 的增大而减小二次函数的解析式【例2】(2019曲靖中考节选)如图,在平面直角坐标系xOy 中,直线y =x +4与坐标轴分别交于A ,B 两点,过A ,B 两点的抛物线为y =-x 2+bx +c ,求抛物线的解析式.【解析】先根据直线y =x +4求得A ,B 两点的坐标,再把A(-4,0)代入y =-x 2+bx +c 中即可求出b ,c.【答案】解:当x =0时,y =4; 当y =0时,x =-4, ∴A(-4,0),B(0,4).∵抛物线y =-x 2+bx +c 过A ,B 两点,∴⎩⎪⎨⎪⎧c =4,-16-4b +c =0, 解得⎩⎪⎨⎪⎧b =-3,c =4,∴抛物线的解析式为y =-x 2-3x +4.2.(2019昆明中考节选)如图,在平面直角坐标系中,抛物线y =ax 2+32x +c(a≠0)与x 轴交于A ,B两点(点A 在点B 的右侧),与y 轴交于点C ,点A 的坐标为(4,0),抛物线的对称轴是直线x =32.求抛物线的解析式.解:∵抛物线的对称轴为直线x =-b 2a =32,b =32, ∴a =-12,把A(4,0),a =-12代入y =ax 2+32x +c 中,解得c =2,∴抛物线的解析式为y =-12x 2+32x +2.3.(2019曲靖中考节选)如图,在平面直角坐标系xOy 中,直线l⊥y 轴于点B(0,-2),A 为OB 的中点,以A 为顶点的抛物线y =ax 2+c 与x 轴交于C ,D 两点,且CD =4.求抛物线的解析式.解:∵A 为OB 的中点, B(0,-2), ∴A(0,-1).∵抛物线y =ax 2+c 的对称轴为y 轴,CD =4, ∴C(-2,0),D(2,0).把A(0,-1),D(2,0)代入抛物线y =ax 2+c 得:⎩⎪⎨⎪⎧c =-1,4a +c =0,解得⎩⎪⎨⎪⎧a =14,c =-1,∴抛物线的解析式为y =x24-1.4.(2019曲靖中考节选)如图,在平面直角坐标系中,抛物线y =ax 2+2ax +c 交x 轴于A ,B 两点,交y 轴于点C(0,3),tan ∠OAC =34.求抛物线的解析式.解:∵C(0,3), ∴OC =3.∵tan ∠OAC =OC OA =34,∴OA =4,∴A(-4,0).把A(-4,0),C(0,3)代入y =ax 2+2ax +c 中,得⎩⎪⎨⎪⎧16a -8a +c =0,c =3,解得⎩⎪⎨⎪⎧a =-38,c =3,∴抛物线的解析式为y =-38x 2-34x +3.5.(2019云南中考节选)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c(a≠0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =kx +n(k≠0)经过B ,C 两点.已知A(1,0),C(0,3),且BC =5.分别求直线BC 和抛物线的解析式(关系式).解:∵点C 的坐标为(0,3), ∴OC =3.∵在Rt △BOC 中,OC =3,BC =5,∴OB =BC 2-OC 2=4, ∴点B 的坐标为(4,0).将点B(4,0),点C(0,3)代入直线y =kx +n(k≠0)中,得⎩⎪⎨⎪⎧4k +n =0,n =3,解得⎩⎪⎨⎪⎧k =-34,n =3,∴直线BC 的解析式为y =-34x +3.∵点A(1,0),B(4,0),C(0,3)在抛物线上,∴⎩⎪⎨⎪⎧a +b +c =0,16a +4b +c =0,c =3,解得⎩⎪⎨⎪⎧a =34,b =-154,c =3,∴抛物线的解析式为y =34x 2-154x +3.二次函数的应用【例3】(2019云南中考)已知二次函数y =-2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S =9的所有点M 的坐标.【解析】由顶点坐标(3,8)可求解析式,进而可算b +2c +8=0故(1)成立.注意:点M 可以在x 轴的上方,也可能在x 轴的下方,可能在对称轴的左侧,也可能在右侧,故要分情况讨论.【答案】解:(1)∵二次函数顶点坐标为(3,8),∴解析式为y =-2(x -3)2+8=-2x 2+12x -10, ∴b =12,c =-10,∴b +2c +8=0,∴b +2c +8≥0成立;(2)设M(m ,-2m 2+12m -10), ∴S =12OA·|y M |=9,∴|-2m 2+12m -10|=6,①-2m 2+12m -10=6,解得m 1=2,m 2=4,∴M 1(2,6),M 2(4,6);②-2m 2+12m -10=-6,解得m 1=3+7,m 2=3-7,∴M 3(3+7,-6),M 4(3-7,-6).综上所述,M 的坐标为(2,6)或(4,6)或(3+7,-6)或(3-7,-6).,近五年遗漏考点及社会热点与创新题)1.遗漏考点二次函数的增减性问题【例1】(2019连云港中考)已知抛物线y =ax 2(a >0)过A(-2,y 1),B(1,y 2)两点,则下列关系式一定正确的是( )A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>0【解析】依据抛物线的对称性可知:(2,y 1)在抛物线上,然后依据二次函数的性质解答即可. 【答案】C直线与抛物线的交点问题【例2】(2019张家界中考)已知抛物线C 1的顶点为A(-1,4),与y 轴的交点为D(0,3). (1)求C 1的解析式;(2)若直线l 1:y =x +m 与c 1仅有唯一的交点,求m 的值.【解析】知道顶点为A(-1,4)可设成顶点式y =a(x +1)2+4,把D(0,3)代入即可.有唯一的交点可Δ=9-4m +12=0,从而得解.【答案】解:(1)∵抛物线c 1的顶点为A(-1,4),∴设抛物线C 1的解析式为y =a(x +1)2+4,把D(0,3)代入y =a(x +1)2+4得3=a +4,∴a =-1,∴抛物线C 1的解析式为:y =-(x +1)2+4,即y =-x 2-2x +3;(2)联立抛物线和直线l 1的解析式可得⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m得x 2+3x +m -3=0,∵直线l 1:y =x +m 与C 1仅有唯一的交点, ∴Δ=9-4m +12=0, ∴m =214.2.创新题【例3】(2019安徽中考)已知抛物线y =ax 2+bx +c 与反比例函数y =b x 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y =bx +ac 的图象可能是( )ABCD【解析】根据抛物线y =ax 2+bx +c 与反比例函数y =b x 的图象在第一象限有一个公共点,可得b >0,根据交点横坐标为1,可得a +b +c =b ,可得a ,c 互为相反数,依此可得一次函数y =bx +ac 的图象.【答案】B,课内重难点真题精练及解题方法总结)1.(2019哈尔滨中考)抛物线y =-35⎝ ⎛⎭⎪⎫x +122-3的顶点坐标是( B )A.⎝ ⎛⎭⎪⎫12,-3B.⎝ ⎛⎭⎪⎫-12,-3C.⎝ ⎛⎭⎪⎫12,3D.⎝ ⎛⎭⎪⎫-12,3 【方法总结】已知抛物线解析式为顶点式,可直接写出顶点坐标.关键是熟记:抛物线y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是直线x =h.2.抛物线y =(x +3)2-4可以由抛物线y =x 2平移得到,则下列平移过程正确的是( B ) A .先向左平移3个单位长度,再向上平移4个单位长度 B .先向左平移3个单位长度,再向下平移4个单位长度 C .先向右平移3个单位长度,再向下平移4个单位长度 D .先向右平移3个单位长度,再向上平移4个单位长度【方法总结】熟知“上加下减,左加右减”的原则是解答此题的关键.3.(2019安顺中考)二次函数y =ax 2+bx +c(a≠0)的图象如图,给出下列四个结论:①4ac-b 2<0;②3b+2c <0;③4a+c <2b ;④m(am+b)+b <a(m≠1),其中结论正确的个数是( B )A .1B .2C .3D .4【方法总结】本题考查二次函数图象与系数的关系,解题的关键是能看懂图象,利用数形结合的思想解答.4.抛物线y =-2x 2-6x +1与x 轴的交点个数是( C ) A .0个 B .1个 C .2个 D .3个【方法总结】本题考查抛物线与x 轴的交点、根的判别式等知识,解题的关键记住Δ>0,抛物线与x 轴有两个交点;Δ=0抛物线与x 轴只有一个交点;Δ<0,抛物线与x 轴没有交点.5.(2019威海中考)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则正比例函数y =(b +c)x与反比例函数y =a -b +cx在同一坐标系中的大致图象是( C )ABCD【方法总结】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出a ,b ,c 的取值范围.6.(2019天水中考)如图,在等腰△ABC 中,AB =AC =4 cm ,∠B =30°,点P 从点B 出发,以 3 cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1 cm/s 的速度沿BA -AC 方向运动到点C 停止,若△BPQ 的面积为y(cm 2),运动时间为x(s),则下列最能反映y 与x 之间函数关系的图象是( D )ABCD【方法总结】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.7.(2019上海中考节选)已知在平面直角坐标系xOy 中,已知抛物线y =-x 2+bx +c 经过点A(2,2),对称轴是直线x =1,顶点为B.求这条抛物线的解析式和点B 的坐标.解:∵抛物线的对称轴为直线x =1,∴x =-b 2a =1,即-b2×(-1)=1,解得b =2.∴y =-x 2+2x +c.将A(2,2)代入得:-4+4+c =2,解得c =2.∴抛物线的解析式为y =-x 2+2x +2.配方得:y =-(x -1)2+3.∴抛物线的顶点坐标为(1,3).8.(2019广东中考)如图,在平面直角坐标系中,抛物线y =-x 2+ax +b 交x 轴于A(1,0),B(3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C.(1)求抛物线y =-x 2+ax +b 的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin ∠OCB 的值.解:(1)将点A ,B 代入抛物线y =-x 2+ax +b 中,得⎩⎪⎨⎪⎧0=-12+a +b ,0=-32+3a +b ,解得⎩⎪⎨⎪⎧a =4,b =-3, ∴抛物线的解析式为:y =-x 2+4x -3; (2)∵点C 在y 轴上, ∴C 点横坐标x =0.∵点P 是线段BC 的中点,B(3,0), ∴点P 横坐标x P =0+32=32.∵点P 在抛物线y =-x 2+4x -3上, ∴y P =-⎝ ⎛⎭⎪⎫322+4×32-3=34, ∴点P 的坐标为⎝ ⎛⎭⎪⎫32,34; (3)∵点P 的坐标为⎝ ⎛⎭⎪⎫32,34,点P 是线段BC 的中点, ∴点C 的纵坐标为2×34=32,∴点C 的坐标为⎝ ⎛⎭⎪⎫0,32, ∴BC =⎝ ⎛⎭⎪⎫322+32=352, ∴sin ∠OCB =OB BC =3352=255.【方法总结】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P 的坐标是解答此题的关键.请完成精练本第13页作业2019-2020学年数学中考模拟试卷一、选择题1.如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C =60°,如果⊙O 的半径为2,则结论错误的是( )A.AD =DBB.AE EB =C.OD =1D.AB 2.如图,ABC ∆纸片中,点1A ,1B ,1C 分别是ABC ∆三边的中点,点2A ,2B ,2C 分别是111A B C ∆三边的中点,点3A ,3B ,3C 分别是222A B C ∆三边的中点,若小明向纸板上投掷飞镖(每次飞镖均落在纸板上且不落在各边上),则飞镖落在阴影部分的概率是( )A.2164B.1132C.2148D.7123.若m >n ,则下列各式中一定成立的是( ) A .m -2>n -2B .m -5<n -5C .-2m >-2nD .4m <4n4.已知函数:①y=2x ;②()2y=-x<0x;③y=3-2x ;④()2y=2x +x x 0≥,其中,y 随x 增大而增大的函数有( ) A .1个B .2个C .3个D .4个5.图为某班35名学生投篮成绩的条型统计图,其中上面部分数据缺损导致数据不完全.已知此班学生投篮成绩的中位数是5,则根据统计图的数据,无法..确定下列哪一选项中的数值( )A .4球(不含4球)以下的人数B .5球(不含5球)以下的人数C .6球(不含6球)以下的人数D .7球(不含7球)以下的人数6.如图,在平面直角坐标系中,一个含有45〫角的三角板的其中一个锐角顶点置于点A (﹣3,﹣3)处,将其绕点A 旋转,这个45〫角的两边所在的直线分别交x 轴,y 轴的正半轴于点B ,C ,连结BC ,函数y =k x(x >0)的图象经过BC 的中点D ,则( )A.9942k ≤≤B.94k =C.994k ≤≤D.92k = 7.若一个正九边形的边长为α,则这个正九边形的半径是( )A .cos 20α︒ B .sin 20α︒ C .2cos 20α︒ D .2sin 20α︒8.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5 B .4 C .3 D .29.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为().A .50°B .60°C .70°D .80°10.下列说法正确的是( )A .一组数据2,5,5,3,4的众数和中位数都是5B .“掷一次骰子,向上一面的点数是1”是必然事件C .掷一枚硬币正面朝上的概率是12表示每抛硬币2次就有1次正面朝上 D .计算甲组和乙组数据,得知x 甲=x 乙=10,2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定11.已知,⊙O 的半径是一元二次方程x 2﹣5x ﹣6=0的一个根,圆心O 到直线l 的距离d =4,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .平行12.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种.A.3 B.4 C.5 D.6 二、填空题13.如图,四边形ABCD是矩形,AD=5,AB=163,点E在CD边上,DE=2,连接BE,F是BE边上的一点,过点F作FG⊥AB于G,连接DG,将△ADG沿DG翻折的△PDG,设EF=x,当P落在△EBC内部时(包括边界),x的取值范围是__.14.如图所示的网格是正方形网格,∠AOB_____∠COD.(填“>“,“=”或“<“)15.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.16.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_____.17.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数12y x的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A nB n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是______.18.已知函数y=mx2+(m2﹣m)x+2的图象关于y轴对称,则m=_____.三、解答题19.夏季多雨,在山坡CD处出现了滑坡,为了测量山体滑坡的坡面长度CD,探测队在距离坡底C点米处的E点用热气球进行数据监测,当热气球垂直升腾到B点时观察滑坡的终端C点,俯视角为60°,当热气球继续垂直升腾90米到达A点,此时探测到滑坡的始端D点,俯视角为45°,若滑坡的山体坡角∠DCH为30°,求山体滑坡的坡面长度CD的长.(计算保留根号)20.已知:如图,在平行四边形中,点E在BC边上,连接AE.O为AE中点,连接BO并延长交AD于F.(1)求证:△AOF≌△BOE,(2)判断当AE平分∠BAD时,四边形ABEF是什么特殊四边形,并证明你的结论.21.如图,在平面直角坐标系中,一次函数y=kx+b图象与x轴交于点B,与y轴交于点A,与反比例函数y=mx在第二象限内的图象交于点C,CE⊥x轴,tan∠ABO=12,OB=4,OE=2.(1)求一次函数与反比例函数的解析式;(2)若点D是反比例函数在第四象限内图象上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S△DFO,求点D的坐标.22.矩形OABC的边OC、OA分别位于x、y轴上,点A(0,﹣4)、B(6,﹣4)、C(6,0),抛物线y=ax2+bx经过点O和点C,顶点M(3,﹣92),点N是抛物线上一动点,直线MN交直线AB于点E,交y轴于F,△A′EF是将△AEF沿直线MN翻折后的图形.(1)求抛物线的解析式;(2)当四边AEA′F是正方形时,求点N的坐标.(3)连接CA′,求CA′的最小值.23.如图,将等腰直角三角形ABC的直角顶点置于直线l上,过A,B两点分别作直线l的垂线,垂足分别为D,E,求证:BE=DC.24.某市礼乐中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成加图所示的两幅不完整的统计图.∠的度数是________;(1)这次统计共抽取了________本书籍,扇形统计图中的m=________,α(2)通过计算补全条形统计图;(3)请你估计全校师生共捐赠了多少本文学类书籍.25.东北大米主要种植于黑龙江省、吉林省、辽宁省的广大平原地区,种植在极其肥沃的黑土地中,吸收了足够的氮、磷、钾等多种矿物元素,阳光雨露充足,又有纯净无污染的灌溉用水,生长周期比较长,一般五个月左右.东北大米颗粒饱满,质地坚硬,色泽清白透明;饭粒油亮,香味浓郁;蒸煮后出饭率高,粘性较小,米质较脆.刘阿姨到超市购买东北大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg.这种东北大米的原价是多少?【参考答案】***一、选择题二、填空题13 14.>.15.9016.5×108. 17.(n+21n n +,242n n n ++). 18.1或0.三、解答题19.山体滑坡的坡面长度CD 的长为(810)米.【解析】【分析】作DG ⊥AE 于G ,DF ⊥EH 于F ,设DF =a 米,根据直角三角形的性质用a 表示出CF 、CD ,根据正切的定义求出BE ,根据题意列方程,解方程得到答案.【详解】解:作DG ⊥AE 于G ,DF ⊥EH 于F ,则四边形GEFD 为矩形,∴GE =DF ,GD =EF ,设DF =a 米,则GE =a ,在Rt △DCF 中,∠DCF =30°,∴CD =2DF =2a ,CF ,∴EF =EC+CF =,∵AM ∥GD ,∴∠ADG =∠MAD =45°,∴AG =DE =EF =,∵BN ∥EF ,∴∠BCE =∠NBC =60°,在Rt △BEC 中,tan ∠BCE =BE CE,BE =EC•tan60°=360,AG =AB+BE ﹣GE =450﹣a ,∴450﹣a =120,解得,a =﹣405,∴CD =2a =570810,答:山体滑坡的坡面长度CD 的长为(810)米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.20.(1)求证:见解析;(2)四边形ABEF 是菱形,见解析.【解析】【分析】(1)先利用平行四边形的性质得AD ∥BC ,则∠AFB =∠CBF ,然后根据“AAS”可判断△AOF ≌△BOE ;(2)利用△AOF ≌△BOE 得到FO =BO ,则可根据对角线互相平分可判定四边形ABEF 是平行四边形,根据AE 平分∠BAD ,得∠BAE =∠FAE ,又∠FAE =∠AEB ,得∠BAE =∠AEB ,AB =BE ,有一组对边相等的平行四边形是菱形,得四边形ABEF 是菱形.【详解】(1)∵O 为AE 中点,∴AO =EO ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠AFB =∠CBF ,在△AOF 和△BOE 中AFO EBO AOF EOB AO EO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△BOE ;(2)四边形ABEF 是菱形,理由如下:∵△AOF ≌△BOE ,∴FO =BO ,而AO =EO ,∴四边形ABEF 是平行四边形,∵AE 平分∠BAD ,∴∠BAE =∠FAE ,∵∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是菱形.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质,菱形的判定等,熟练掌握相关的性质与判定定理是解题的关键.21.(1)6yx=-,122y x=-+;(2)D(32,﹣4).【解析】【分析】(1)由条件可求得OA,由△AOB∽△CEB可求得CE,则可求得C点坐标,代入反比例函数解析式可求得m 的值,可求得反比例函数解析式;(2)设出D的坐标,从而可分别表示出△BAF和△DFO的面积,由条件可列出方程,从而可求得D点坐标.【详解】解:(1)∵tan∠ABO=12,∴A1OB2O=,且OB=4,∴OA=2,∵CE⊥x轴,即CE∥AO,∴△AOB∽△CEB,∴AO BOCE BE=,即2442CE=+,解得CE=3,∴C(﹣2,3),∴m=﹣2×3=﹣6,∴反比例函数解析式为y=6x -;∵OA=2,OB=4,∴A(0,2),B(4,0),代入y=kx+b得240bk b=⎧⎨+=⎩,解得1k2b2⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=12x-+2;(2)设D(x,6x -),∵D在第四象限,∴DF=x,OF=6x,∴S△DFO=12DF•OF=1632xx⋅=,由(1)可知OA =2,∴AF =2+6x, ∴S △BAF =12AF•OB 16624222x x ⎛⎫⎛⎫=+⨯=+ ⎪ ⎪⎝⎭⎝⎭, ∵S △BAF =4S △DFO ,∴2(2+6x )=4×3,解得x =32, 当x =32时,6x-的值为﹣4, ∴D (32,﹣4). 【点睛】本题考查了反比例函数和一次函数的交点问题,相似三角形的判定和性质、待定系数法求反比例函数的解析式、三角形的面积鞥,用D 点坐标表示出△BAF 和△DFO 的面积是解题的关键.22.(1)y =12x 2﹣3x ;(2)51,2N ⎛⎫- ⎪⎝⎭;(33. 【解析】【分析】(1)根据待定系数法进行求解即可得到答案;(2)根据正方形的性质,联立y =﹣x ﹣32与y =12x 2﹣3x ,即可得到答案; (3)根据圆的性质即可得到答案.【详解】解:(1)由已知可知C (6,0),M (3,﹣92),代入y =ax 2+bx ,得 03669932a b a b =+⎧⎪⎨-=+⎪⎩, ∴123a b ⎧=⎪⎨⎪=-⎩∴y =12x 2﹣3x ; (2)当四边AEA′F 是正方形时,直线MF 与x 轴成角45°,∴MF 直线解析式为y =﹣x ﹣32,联立y =﹣x ﹣32与y =12x 2﹣3x ,可得 x =1或x =3(舍)∴N (1,﹣52); (3)A'的运动轨迹是以M 为圆心MA 为半径的圆,∵MA =3,MC=, ∴CA'最小值为3-; 【点睛】 本题考查待定系数法、正方形的性质和圆的性质,解题的关键是熟练掌握待定系数法、正方形的性质和圆的性质.23.见解析.【解析】【分析】只需要证明△CBE ≌△ACD ,即可解答【详解】解:由题意知∠CAD+∠ACD =90°,∠ACD+∠BCE =90°,∴∠BCE =∠CAD .在△CBE 与△ACD 中,CEB ADC BCE CAD BC AC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△CBE ≌△ACD (AAS ).∴BE =DC .【点睛】此题考查三角形全等的判定与性质,难度不大24.(1)200,40,36︒;(2)见解析;(3)估计全校师生共捐赠了900本文学类书籍.【解析】【分析】(1)用A 的本数÷A 所占的百分比,即可得到抽取的本数;用C 的本数÷总本数,即可求得m ;计算出D 的百分比乘以360°,即可得到圆心角的度数;(2)计算出B 的本数,即可补全条形统计图;(3)根据文学类书籍的百分比,即可解答.【详解】解:(1)40÷20%=200(本),80÷200×100%=40%,20÷200×360=36°故答案为:200,40,36°;(2)40÷20%=200(本),200-40-80-20=60(本)补全图形如图所示;(3)603000900200⨯=(本).答:估计全校师生共捐赠了900本文学类书籍.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.这种大米的原价是每千克7元.【解析】【分析】设这种大米的原价是每千克x元,根据第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg,列出方程即可解答【详解】解:设这种大米的原价是每千克x元,根据题意,得105140400.8x x+=,解得:x=7.经检验,x=7是原方程的解.答:这种大米的原价是每千克7元.【点睛】此题考查分式方程的应用,解题关键在于列出方程2019-2020学年数学中考模拟试卷一、选择题1.下列关于0的说法中,正确的个数是( )①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值. A.1B.2C.3D.42.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3D .a=2,b=-33.下列分式中,最简分式是( )A.2211x x -+B.211x x +- C.2222x xy y x xy-+-D.236212x x -+ 4.如图,抛物线2y ax bx c =++(a≠0)的对称轴为直线x =1,与x 轴的交点(1x ,0),(2x ,0),且﹣1<1x <0<2x ,有下列5个结论:①abc <0;②b >a+c ;③a+b >k (ka+b )(k 为常数,且k≠1);④2c <3b ;⑤若抛物线顶点坐标为(1,n ),则2b =4a (c ﹣n ),其中正确的结论有( )个.A .5B .4C .3D .25.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A ,B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,设AD =x ,BC =y ,则y 与x 的函数关系式为( )A .16y x=B .y =2xC .y =2x 2D .8y x=6.小明骑自行车到学校上学,若每小时骑15千米,可早到10分钟,若每小时骑13千米,则迟到5分钟,设他家到学校的路程为x 千米,下列方程正确的是( ) A .10515601360x x +=- B .1051513x x+=- C .10515601360x x +=+ D .10515601360x x -=-7.由个大小相同的正方形搭成的几何体,被小颖拿掉两个后,得到如图 所示的几何体,如图是原几何体的三视图,请你判断小颖拿掉的两个正方体原来放在( )A .4号的左右B .3号的前后C .1号的前后D .2号的前后8.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2B .πC .2πD .3π9.如图,∠ACB =60°,半径为3的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为( )A .3B .C .6πD 10.如图,将一副直角三角板按图中所示的位置摆放,两条斜边互相平行,则∠1=( )A .75B .70C .65D .6011.下列四个点中,有三个点在同一反比例函数y =kx的图象上,那么不在这个函数图象上的是( ) A .(﹣3,﹣3)B .(1,9)C .(3,3)D .(4,2)12.下列计算正确的是( ) A .(b ﹣a )(a+b )=a 2﹣b 2B .2212255x xy x y ⎛⎫⋅-=- ⎪⎝⎭C .(﹣2x 2)3=﹣6x 3y 6D .(6x 3y 2)÷(3x )=2x 2y 2二、填空题13.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是________14.计算的结果是________.15.已知关于x的二次函数y=ax2+2ax+a-3在-2≤x≤2时的函数值始终是负的,则常数a的取值范围是____.16.函数26xyx=-中,自变量x的取值范国是_____.17.观察下列几组勾股数:3,4,5; 5,12,13; 7,24,25;9,40,41…按此规律,当直角三角形的最小直角边长是11时,则较长直角边长是________;当直角三角形的最小直角边长是21n+时,则较长直角边长是________.18.如图,已知正方形ABCD的边长为4,现有一动点P从点B出发,沿着B→C→D→A的路径以每秒1个单位长度的速度运动,则S△PAB与运动时间t(秒)之间的函数关系图象是()A. B.C. D.三、解答题19.(问题背景)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF ≌△AGF,可得出结论,他的结论应是.(探索延伸)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.20.某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元. (1)直接写出y 与x 之间的函数关系式;(2)如果该超市销售这种商品每天获得3900元的利润,那么该商品的销售单价为多少元?(3)设每天的总利润为w 元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?21.如图,在矩形ABCD 中,AB =4,AD =3,折叠纸片,使AD 边与对角线BD 重合,得折痕DG ,求DG 的长.22.先化简,再求值:()()()2b a a b a b +-+-其中a = -2,b =12.23.抛物线y =ax 2﹣2x+b 的顶点为A(m ,n),过点A 的直线y =kx ﹣1与抛物线的另一交点为B(p ,q). (1)当a =b =1时,求k 的值;(2)若b =m ,当﹣3≤a<1时,求p 的取值范围.24.幸福村在推进美丽乡村建设中,决定建设幸福广场,计划铺设相同大小、规格的红色和蓝色地砖,经过调查,获取信息如下表:若购买红色地砖400块,蓝色地砖600块,需付款8600元;若购买红色地砖1000块,蓝色地砖350块,需付款9900元.(1)红色地砖和蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖1200块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过600块,如何购买付款最少?最少是多少元?请说明理由.25.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于点G.(1)求证:CE=CF;(2)若AE=4cm,求AC的长度.(结果精确到0.1cm≈1.732)【参考答案】***一、选择题二、填空题13.3 814.15.<且≠016.x≠617.60,2n²+2n18.A三、解答题19.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.20.(1)y=﹣x+180;(2)该商品的销售单价为50元;(3)销售单价定为80元时,该超市每天的利润最大,最大利润6000元.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得:(x−20)(−x+180)=3900,即可求解;(3)由题意得:w=(x−20)(−x+180)=−(x−100)2+6400,即可求解.【详解】解:(1)将点(30,150)、(80,100)代入一次函数表达式得:15030 10080k bk b=+⎧⎨=+⎩,解得:1180 kb=-⎧⎨=⎩,故函数的表达式为:y =﹣x+180; (2)由题意得:(x ﹣20)(﹣x+180)=3900, 解得:x =50或150(舍去150), 故:该商品的销售单价为50元;(3)由题意得:w =(x ﹣20)(﹣x+180)=﹣(x ﹣100)2+6400, ∵﹣1<0,故当x <100时,W 随x 的增大而增大,而30≤x≤80, ∴当x =80时,W 由最大值,此时,w =6000,故销售单价定为80元时,该超市每天的利润最大,最大利润6000元. 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x =2ba-时取得.21 【解析】 【分析】设AG =x ,由勾股定理可求得BD 的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x 2+22=(4﹣x )2,解此方程即可求得AG 的长,继而求得答案. 【详解】 解:设AG =x , ∵四边形ABCD 是矩形, ∴∠A =90°, ∵AB =4,AD =3,∴BD 5,由折叠的性质可得:A′D=AD =3,A′G=AG =x ,∠DA′G=∠A =90°, ∴∠BA′G=90°,BG =AB ﹣AG =4﹣x ,A′B=BD ﹣A′D=5﹣3=2, ∵在Rt △A′BG 中,A′G 2+A′B 2=BG 2, ∴x 2+22=(4﹣x )2, 解得:x =32, ∴AG =32,∴在Rt △ADG 中,DG =【点睛】本题主要考查了矩形的性质、翻折变换的性质以及勾股定理;解答的关键是利用勾股定理得到x 2+22=(4﹣x )2.。

第12讲 二次函数的零点与最值

第12讲 二次函数的零点与最值

第十二讲 二次函数的零点与最值知识归纳和梳理:1.一元二次方程的根即二次函数的零点也是二次函数的图象与x 轴交点的横坐标2.解决二次函数零点问题的方法:(1)转化为⎩⎨⎧韦达定理判别式(零点的正负问题) (2)结合二次函数的图象等价转化为⎪⎪⎨⎧判别式符号对称轴位置开口方向的不等式组3.(1(2)4.恒成立问题的解决方法:)(x f a >恒成立⇔”)a ≤2)若12,x x 都小于1,求k 的取值范围;4)若1220x x -<<、,求k 的取值范围;k 的取值范围。

2m 的取值范围。

1.若一元二次方程0332=-++k kx kx-1、1)内,求k 的取值范围。

4.设⎭⎬⎫⎩⎨⎧≤≤=121|x x A ,}0)1()12(|{2≤+++-=a a x a x x B ,若B A ⊆,求实数a 的取值范围例3..求函数22242)(a x x x f --=在区间]1,[+a a 上的最小值例4.求函数)(2+-=ax x x f3,4]2,1[-上的最小值为-2求a2.已知函数122)(2++--=a ax x x f ,若]1,1[-∈x ,记函数的最小值为)(a g ,写出)(a g 的解析式.例5.设f (x )=x 2-2ax +2.当x ∈[-1,+∞)时,f (x )≥a 恒成立,求实数a 的取值范围不等式0626922≥--+-a a ax x 在1≤-【巩固练习】:一、基础训练题:1.设0abc >,二次函数()2f x ax bx c =++的图象可能是( )1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

2、已知方程()2210x m x m -++=3、,求实数m41,求实数m 的取值范围。

5、若方程012)2(2=-+-+k x k x 的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数
第1课时二次函数的图象和性质
1.(2016·益阳)关于抛物线y=x2-2x+1,下列说法错误的是( D )
A.开口向上
B.与x轴有两个重合的交点
C.对称轴是直线x=1
D.当x>1时,y随x的增大而减小
2.(2016·当涂五校联考)将抛物线y=x2-2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是( C )
A.y=x2-2x-1 B.y=x2+2x-1
C.y=x2-2 D.y=x2+2
3.若y=ax2+bx+c
A.y=x2-4x+3 B.y=x-3x+4
C.y=x2-3x+3 D.y=x2-4x+8
4.(2015·当涂一模)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( D )
A.b2<4ac B.ac>0 C.2a-b=0 D.a-b+c=0
5.(2016·张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是( C )
6.(2016·南陵模拟)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于点E;过点E作EF⊥DE,交AB的延长线于点F.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是( A )
7.(2015·怀化)二次函数y=x2+2x的顶点坐标为(-1,-1),对称轴是直线x=-1.
8.(2015·马鞍山期末)函数y=(x-2)(3-x)取得最大值时,x=2.5.
9.(2016·阜阳颍泉区一模)已知抛物线y =ax 2
+bx +c(c≠0)的对称轴为直线x =1,且经过点P(-1,0),则抛物线与x 轴的另一个交点坐标为(3,0).
10.已知抛物线y =ax 2
+bx +c(a >0)的对称轴为直线x =1,且经过点(-1,y 1),(-2,y 2),试比较y 1和y 2的大小:y 1<y 2(填“>”“<”或“=”).
11.(2016·灵璧县一模)已知二次函数y =ax 2
+bx +c(a≠0)的图象如图所示,有下列5个结论:①c=0;②该抛物线的对称轴是直线x =-1;③当x =1时,y =2a ;
④am 2
+bm +a >0(m≠-1);⑤设A(100,y 1),B(-100,y 2)在该抛物线上,则y 1>y 2.其中正确的结论有①②④⑤.(写出所有正确结论的序号)
提示:抛物线与y 轴交于原点,c =0,故①正确;该抛物线的对称轴是直线x =-1,故②正确;当x =1时,y =a +b +c.∵对称轴是直线x =-1,∴-b 2a =-1,b =2a.又∵c=0,∴y =3a.故③错误;x =m 对应的函数值为y =am
2
+bm +c.x =-1对应的函数值为y =a -b +c ,又∵x=-1时函数取得最小值,∴a -b +c <am 2
+bm +c ,即a -b
<am 2+bm.∵b=2a ,∴am 2
+bm +a >0(m≠-1).故④正确;∵|100+1|>|-100+1|,且开口向上,∴y 1>y 2.故⑤正确.
12.(2016·安庆一模)已知抛物线C :y =x 2
-4x +3. (1)求该抛物线关于y 轴对称的抛物线C 1的解析式;
(2)将抛物线C 平移至C 2,使其经过点(1,4).若顶点在x 轴上,求C 2的解析式.
解:(1)y =x 2-4x +3=(x -2)2
-1.
∴抛物线C 顶点坐标是(2,-1),与y 轴交点坐标是(0,3). ∵C 1与C 关于y 轴对称,
∴C 1顶点坐标是(-2,-1),且与y 轴交点坐标是(0,3).
设C 1的解析式为y =a(x +2)2
-1, 把(0,3)代入,解得a =1.
∴C 1的解析式为y =x 2
+4x +3.
(2)设平移后抛物线的解析式为y =(x -h)2
. ∵抛物线C 2经过点(1,4),
∴(1-h)2
=4,解得h =-1或h =3.
∴C 2的解析式为y =(x +1)2或y =(x -3)2

即y =x 2+2x +1或y =x 2
-6x +9.
13.(2016·宁波)如图,已知抛物线y =-x 2
+mx +3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).
(1)求m 的值及抛物线的顶点坐标;
(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.
解:(1)把点B 的坐标为(3,0)代入抛物线y =-x 2+mx +3,得0=-32
+3m +3,解得m =2.
∴y =-x 2+2x +3=-(x -1)2
+4. ∴顶点坐标为(1,4).
(2)连接BC 交抛物线对称轴l 于点P ,则此时PA +PC 的值最小. 设直线BC 的解析式为y =k x +b. ∵点C(0,3),点B(3,0),
∴⎩⎪⎨⎪⎧3k +b =0,b =3. 解得⎩
⎪⎨⎪⎧k =-1,b =3. ∴直线BC 的解析式为y =-x +3. 当x =1时,y =-1+3=2.
∴当PA +PC 的值最小时,点P 的坐标为(1,2).
14.(2016·合肥十校联考一)已知二次函数y =a(x -2)2
+c ,当x =x 1时,函数值为y 1;当x =x 2时,函数值为y 2,若|x 1-2|>|x 2-2|,则下列表达式正确的是( C ) A .y 1+y 2>0 B .y 1-y 2>0 C .a(y 1-y 2)>0 D .a(y 1+y 2)>0
15.(2015·资阳)已知抛物线p :y =ax 2
+bx +c 的顶点为C ,与x 轴相交于A ,B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物
线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2

2x +1和y =2x +2,则这条抛物线的解析式为y =x 2
-2x -3.
16.(2016·合肥十校联考二)在平面直角坐标系中,已知抛物线y =x 2
+bx +c 与x 轴交于点A(-1,0)和点B ,与y 轴交于点C(0,-2).
(1)求该抛物线的表达式,并写出其对称轴;
(2)点D 为该抛物线的顶点,设点E(m ,0)(m >2),如果△BDE 和△CDE 的面积相等,求E 点坐标.
解:(1)∵抛物线y =x 2
+bx +c 经过点A(-1,0),C(0,-2),
∴⎩⎪⎨⎪⎧1-b +c =0,c =-2. 解得⎩
⎪⎨⎪⎧b =-1,c =-2. ∴抛物线的表达式为y =x 2
-x -2,对称轴为直线x =12
.
(2)由(1)知,抛物线的表达式为y =x 2
-x -2=(x -12)2-94,∴点D(12,-94).
当y =x 2
-x -2=0时,x 1=-1,x 2=2,
∴点B(2,0).
若△BDE 和△CDE 的面积相等,则DE∥BC. ∵直线BC 的解析式为y =x -2, ∴直线DE 的解析式为y =x -11
4.
当y =0时,m =114,∴E(11
4
,0).
17.(2015·安庆二模)如图所示,二次函数y =-2x 2
+4x +m 的图象与x 轴的一个交点为A(3,0),另一个交点为B ,且与y 轴交于点C.
(1)求m 的值及点B 的坐标; (2)求△ABC 的面积;
(3)该二次函数图象上有一点D(x ,y),使S △ABD =S △ABC ,请求出D 点的坐标.
解:(1) ∵ 函数过A(3,0), ∴ -18+12+m =0,即m =6.
∴ 该函数解析式为y =-2x 2
+4x +6.
又∵当-2x 2
+4x +6=0时,x 1=-1,x 2=3, ∴点B 的坐标为(-1,0) .
(2)C 点坐标为(0,6),S △ABC =4×6
2=12.
(3)∵S △ABD =S △ABC =12, ∴S △ABD =12.
∴S △ABD =4|h|
2=12.∴|h|=6.
①当h =6时,-2x 2
+4x +6=6, 解得x 1=0,x 2=2. ∴D 点坐标为(2,6);
②当h =-6时,-2x 2
+4x +6=-6,
解得x 1=1+7,x 2=1-7.
∴D 点坐标为(1+7,-6),(1-7,-6).
综上所述,D 点坐标为(2,6),(1+7,-6) ,(1-7,-6) .
18.(2016·荆州)若函数y =(a -1)x 2
-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为-1或2或1.
提示:分2种情况:①当y 是x 的一次函数时,a -1=0,即a =1;②当y 是x 的二次函数时,a ≠1,且Δ=(-4)2
-4(a -1)·2a=0,解得a =-1或2.。

相关文档
最新文档