逆变器photon测试报告
光伏逆变器EMC测试报告
TEST RESULTS E M I S S I O N ................................................................................................................. 7 4.1 EMISSION IN THE FREQUENCY RANGE UP TO 30 MHZ .................................................................................. 7 4.1.1 Harmonics on AC Mains..................................................................................................................... 7 4.1.2 Voltage changes, voltage fluctuations and flicker on AC mains ......................................................... 7 4.1.3 Mains Terminal Continuous Disturbance Voltage ............................................................................. 8 4.2 EMISSION IN THE FREQUENCY RANGE ABOVE 30 MHZ .............................................................................. 11 4.2.1 Radiated emission ............................................................................................................................. 11
逆变器实验报告规范
逆变器实验报告规范标题:逆变器实验报告规范摘要:本实验报告旨在规范逆变器实验报告的撰写要求,包括实验目的、实验原理、实验装置、实验步骤、实验结果及分析、实验结论等内容,以期提高实验报告的质量和规范性。
关键词:逆变器,实验报告,规范,实验步骤,实验结果一、实验目的逆变器是一种将直流电能转换为交流电能的装置,广泛应用于工业生产和生活中。
本实验旨在通过对逆变器的实验研究,掌握逆变器的工作原理和性能特点,为相关领域的研究和应用提供参考。
二、实验原理逆变器是一种将直流电能转换为交流电能的电力转换装置。
其工作原理是利用电子器件(如晶闸管、场效应管等)将直流电源转换为交流电源,从而实现电能的变换和传输。
逆变器的工作原理涉及电子器件的导通和关断控制,以及电压、电流的变换和调节等内容。
三、实验装置本实验所用的逆变器实验装置包括逆变器主机、直流电源、交流负载、电压、电流测量仪器等。
四、实验步骤1. 接通直流电源,调节电压和电流到设定值;2. 连接逆变器主机和交流负载,确保连接正确;3. 依次启动逆变器主机和交流负载,观察实验现象;4. 测量并记录逆变器主机的输入电压、电流和输出交流电压、电流等参数;5. 根据实验数据进行分析和总结。
五、实验结果及分析通过实验测量和数据分析,我们得到了逆变器主机的输入电压、电流和输出交流电压、电流等参数。
通过对这些数据的分析,我们可以得出逆变器的工作性能和特点,包括输出波形的谐波含量、效率、稳定性等方面的表现。
六、实验结论根据实验结果和分析,我们得出了对逆变器性能和特点的结论,以及对逆变器实验的总结和改进建议。
综上所述,本实验报告对逆变器实验报告的规范撰写提出了详细的要求和内容,以期提高实验报告的质量和规范性,为相关领域的研究和应用提供参考。
光伏逆变器研究报告
光伏逆变器研究报告1. 引言光伏逆变器是太阳能光伏系统中的重要组成部分,其作用是将太阳能电池板产生的直流电转换为交流电,以满足人们日常生活和工业生产中对电能的需求。
随着太阳能光伏发电技术的快速发展,光伏逆变器在市场中的需求量不断增加,因此对光伏逆变器的研究和改进显得尤为重要。
本研究报告将对光伏逆变器的工作原理、结构以及发展趋势进行深入探讨,并通过实验和分析,评估光伏逆变器在不同条件下的表现。
2. 光伏逆变器的工作原理光伏逆变器根据太阳能电池板产生的直流电的功率、电压和频率特点,采用电子器件将直流电转换为交流电,并输出到电网或电力系统。
光伏逆变器的工作原理主要分为两个过程:直流-直流转换和直流-交流转换。
首先,通过直流-直流转换器将直流电电压升高,从而提供给交流逆变器。
然后,交流逆变器将直流电转换为交流电,并通过输出滤波器将纹波进行滤除,最终输出到电网或电力系统中。
3. 光伏逆变器的结构光伏逆变器一般由输入端、输出端和控制电路组成。
输入端包括太阳能电池板、进流保护电路以及直流-直流转换器。
太阳能电池板将太阳能光线转化为直流电,并通过进流保护电路对其进行保护。
直流-直流转换器将直流电的电压升高,并通过滤波电容将电压纹波去除,为交流逆变器提供输入电源。
输出端包括交流逆变器和输出滤波器。
交流逆变器将直流电转换为交流电,并通过输出滤波器对输出波形进行平滑处理,以满足电网或电力系统的要求。
控制电路对光伏逆变器进行监控和控制。
其主要功能包括电压调节、频率调节、功率调节以及保护功能等。
4. 光伏逆变器的发展趋势随着太阳能光伏技术的不断进步和应用领域的扩大,光伏逆变器也面临着一系列的挑战和发展机遇。
4.1 高效率提高光伏逆变器的转换效率是当前的研究热点之一。
通过优化逆变器的拓扑结构、控制策略和电子器件的选择,可以实现更高的转换效率,提高太阳能光伏系统的发电能力。
4.2 可靠性光伏逆变器的可靠性对于太阳能光伏系统的运行稳定性和寿命影响巨大。
逆变器并网测试数据及分析
电网侧2012-3-28测试数据及分析测试时间:2012-3-28 地 点:测试设备:FLUKE 1760 测 试 人:测试内容:逆变器并网前后电网侧谐波及功率因数的变化1. 现场配电以及测试接入点跟现场值班人员确认,得知车间配电简图如图1所示:VdcA1A2图1:车间配电见图FLUKE 1760的测试点在A2位置。
实际测试接法如图2所示。
图2:现场测试照片为研究逆变器并网过程以及并网点对于此电网的影响,进行对比试验。
试验过程如下:09:45-10:40左右逆变器未开机,负载功率全由电网提供;10:40-13:50左右为逆变器工作时间段;13:50-14:30逆变器停机,负载功率全部由电网提供。
在三个过程中始终采用Fluke 1760接在A1点记录数据进行最终分析,得出逆变器对此电网的影响。
2.测试数据及分析测试时间从上午9点45分开始,到下午2点30分结束。
Fluke 1760采集数据分析如下:1)三相电流时间图标(时间:09:44:39-14:28:12)图3:三相电流波形纵坐标:电流(KA);横坐标:时间(小时:分);从三相电流波形可以看出:09:45-10:40左右逆变器未开机,每一相电流在0.9~1.2KA左右;10:40-13:50左右为逆变器工作时间段,此时逆变器为负载提供一部分电流,A2点的电流在0.5~0.9KA附近;13:50-14:30逆变器停机,电流在1.1~1.5KA左右。
从图上三相电流测量数据可以得出两点:整个线路的最大的尖峰电流也在1.7KA附近,与断路器K1的整定值相差偏大,很难导致K1脱扣。
电网的负载存在一定的不平衡,而且负载的功率也有波动。
2)有功功率时间图片(时间:09:44:39-14:28:12)图4:有功功率纵坐标:有功功率(MW);图4是有功功率,其中黄色为总有功功率。
由上图可以看出:09:45-10:40左右逆变器未开机,负载功率全由电网提供;10:40-13:50左右为逆变器工作时间段,因为逆变器发电给负载提供了有功功率,可以看出电网侧提供的有功功率下降比较明显,此时负载功率=电网提供功率+逆变器发电功率。
62109-1and-2 逆变器报告
Prepared by Brian Huang4 General testing requirements P 4.1 General P 4.2 General conditions for testing P 4.2.1 Sequence of tests P 4.2.2 Reference test conditions P 4.2.2.1 Environmental conditions 25℃,48%, 98kPa P 4.2.2.2 State of equipment P 4.2.2.3 Position of equipment P 4.2.2.4 Accessories P 4.2.2.5 Covers and removable parts P 4.2.2.6 Mains supply P 4.2.2.7 Supply ports other than the mains P 4.2.2.7.1 Photovoltaic supply sources P 4.2.2.7.2 Battery inputs N 4.2.2.8 Conditions of loading for output ports P 4.2.2.9 Earthing terminals N 4.2.2.10 Controls P 4.2.2.11 Available short circuit current P 4.3 Thermal testing P 4.3.1 General PNormal load condition --- 4.3.2 Maximum temperatures (see appended table 4.3) P 4.3.2.1 General P 4.3.2.2 Touch temperatures (see appended table 4.3) P 4.3.2.3 Temperature limits for mounting surfaces (see appended table 4.3) P 4.4 Testing in single fault condition P 4.4.1 General P 4.4.2 Test conditions and duration for testingunder fault conditionsP 4.4.2.1 General P 4.4.2.2 Duration of tests P 4.4.3 Pass/fail criteria for testing under faultconditionsP 4.4.3.1 Protection against shock hazard P 4.4.3.2 Protection against the spread of fire P 4.4.3.3 Protection against other hazards P 4.4.3.4 Protection against parts expulsion hazards P 4.4.4 Single fault conditions to be applied P 4.4.4.1 Component fault tests (see appended table 4.4.4.1) P4.4.4.2 Equipment or parts for short-term orintermittent operation PTEST REPORTIEC 62109-1:2010 ;IEC 62109 -2:2011Safety of power converters for us e in photovoltaic power systems –Part 1: General requirementsSafety of power converters for use in photovoltaic power systems –Part 2: Particular requirements for inverters4.4.4.3 Motors P 4.4.4.4 Transformer short circuit tests P 4.4.4.5 Output short circuit PP 4.4.4.6 Backfeed current test for equipment withmore than one source of supply4.4.4.7 Output overload (see appended table 4.4.4.7) P 4.4.4.8 Cooling system failure N 4.4.4.9 Heating devices N 4.4.4.10 Safety interlock systems N 4.4.4.11 Reverse d.c. connections P 4.4.4.12 Voltage selector mismatch PP 4.4.4.13 Mis -wiring with incorrect phase sequenceor polarity4.4.4.14 Printed wiring board short-circuit test PP 4.4.4.15 of 62109-2 Fault-tolerance of protection for grid -interactive inverters4.4.4.15.1 of 62109-2 Fault-tolerance of residual currentN monitoring4.4.4.15.2 of 62109-2 Fault-tolerance of automatic disconnectingN means4.4.4.15.2.1of62109-2 General N 4.4.4.15.2.2 of 62109-2 Design of insulation or separation NN 4.4.4.15.2.3 of 62109-2 Automatic checking of the disconnectmeans(see appended table 4.4.4.1) N 4.4.4.16 of 62109-2 Stand - alone inverters – Load transfertest4.4.4.17 of 62109-2 Cooling system failure – Blanketing test (see appended table 4.4.4.1) N 4.5 of 62109-2 Humidity preconditioning P 4.5.1 of 62109-2 General P 4.5.2 of 62109-2 Conditions Humidity:93%,Temperature:40°C P 4.6 of 62109-2 Backfeed voltage protection P 4.6.1 of 62109-2 Backfeed tests under normal conditions PP 4.6.2 of 62109-2 Backfeed tests under single-faultconditions4.6.3 of 62109-2 Compliance with backfeed tests (see appended table 4.6.3) P 4.7 of 62109-2 Electrical ratings tests P 4.7.1 of 62109-2 Input ratings (see appended table 4.7) P 4.7.1.1 of 62109-2 Measurement requirements for DC inputP ports4.7.2 of 62109-2 Output ratings (see appended table 4.7) P 4.7.3 of 62109-2 Measurement requirements for AC output(see appended table 4.7) P ports for stand- alone inverters(see appended table 4.7) P 4.7.4 of 62109-2 Stand - alone Inverter AC output voltageand frequency4.7.4.1 of 62109-2 General>90%,<110% P 4.7.4.2 of 62109-2 Steady state output voltage at nominal DCinput4.7.4.3 of 62109-2 Steady state output voltage across the DC>85%,<110% N input range>85%,<110% P 4.7.4.4 of 62109-2 Load step response of the output voltageat nominal DC inpu4.7.4.5 of 62109-2 Steady state output frequency >– 6 %,<+4 % PP 4.7.5 of 62109-2 Stand - alone inverter output voltagewaveform4.7.5.1 of 62109-2 General P 4.7.5.2 of 62109-2 Sinusoidal output voltage waveformTHD<6% P requirements4.7.5.3 of 62109-2 Non- sinusoidal output waveformN requirements4.7.5.3.1 of 62109-2 General N 4.7.5.3.2 of 62109-2 Total harmonic distortion THD<40% N 4.7.5.3.3 of 62109-2 Waveform slope <10 V/ µ s N 4.7.5.3.4 of 62109-2 Peak voltage <1, 414 X110% X Urms NN 4.7.5.4 of 62109-2 Information requirements for non-sinusoidal waveformsN 4.7.5.5 of 62109-2 Output voltage waveform requirements forinverters for dedicated loadsN 4.8 of 62109-2 Additional tests for grid- interactiveinvertersN 4.8.1 of 62109-2 General requirements regarding inverterisolation and array grounding4.8.2 of 62109-2 Array insulation resistance detection forN inverters for ungrounded and functionallygrounded arrays4.8.2.1 of 62109-2 Array insulation resistance detection forN inverters for ungrounded arraysN 4.8.2.2 of 62109-2 Array insulation resistance detection forinverters for functionally grounded arrays4.8.3 of 62109-2 Array residual current detection N 4.8.3.1 of 62109-2 General NN 4.8.3.2 of 62109-2 30 mA touch current type test for isolatedinverters4.8.3.3 of 62109-2 Fire hazard residual current type test forN isolated inverters4.8.3.4 of 62109-2 Protection by application of RCD’s N 4.8.3.5 of 62109-2 Protection by residual current monitoring N 4.8.3.5.1 of 62109-2 General N<0.3s N 4.8.3.5.2 of 62109-2 Test for detection of excessive continuousresidual currentN 4.8.3.5.3 of 62109-2 Test for detection of sudden changes inresidual currentN 4.8.3.6 of 62109-2 Systems located in closed electricaloperating areas5 Marking and documentation P 5.1 Marking P 5.1.1 General P 5.1.2 Durability of markings (see appended table 5.1.2) P 5.1.3 Identification P(See page 3) Pa) the name or trade mark of themanufacturer or supplier;(See page 3) Pb) a model number, name or other meansto identify the equipment,(See page 3) Pc) a serial number, code or other markingallowing identification of manufacturinglocationand the manufacturing batch or date withina three month time period.5.1.4&5.1.4 of 62109-2 Equipment ratings P(see page 3) P PV input ratings, a.c. input ratings, d.c.input (other than PV) ratingsa.c. output ratings (see page 3) PProtective class (I, II, or III) (see page 3) P(see page 3) P the ingress protection (IP) rating as in 6.3below.5.1.5 Fuse identification T25A 250V P5.1.6 Terminals, connections and controls P 5.1.6.1 Protective conductor terminals P 5.1.7 Switches and circuit-breakers P 5.1.8 Class II equipment P 5.1.9 Terminal boxes for external connections P 5.2 Warning markings NP 5.2.1 Visibility and legibility requirements forwarning markings5.2.2 Content for warning markings N 5.2.2.1 Ungrounded heatsinks and similar parts N 5.2.2.2 Hot surfaces N 5.2.2.3 Coolant P 5.2.2.4 Stored energy P 5.2.2.5 Motor guarding PP 5.2.2.6 of 62109-2 Inverters for closed electrical operatingareas5.2.3 Sonic hazard markings and instructions P 5.2.4 Equipment with multiple sources of supply N 5.2.5 Excessive touch current P 5.3 Documentation P 5.3.1 General PPa) explanations of equipment markings,including symbols used;Pb) location and function of terminals andcontrols;Pc) all ratings or specifications that arenecessary to safely install and operate thePCE,including the following environmentalratings along with an explanation of theirmeaningand any resulting installation requirements:– Environmental category as per 6.1 P– Wet locations classification as per 6.1 P– Pollution degree classification for theP intendedexternal environment as per 6.2– Ingress protection rating as per 6.3 PP – Ambient temperature and relativehumidity ratings– Maximum altitude rating PP – Overvoltage category assigned to eachinput and output port as per 7.3.7.1.2,accompanied by guidance regarding howto ensure that the installation complies withthe required overvoltage categories;Pd) a warning that when the photovoltaicarray is exposed to light, it supplies a d.c.voltage to the PCE.5.3.1.1 Language English P 5.3.1.2 Format P 5.3.2 Information related to installation P 5.3.2.1 of 62109-2 Ratings P 5.3.2.2 of 62109-2 Grid- interactive inverter setpoints N 5.3.2.3 of 62109-2 Transformers and isolation N 5.3.2.4 of 62109-2 Transformers required but not provided N5.3.2.5 of 62109-2 PV modules for non- isolated inverters NN 5.3.2.6 of 62109-2 Non-sinusoidal output waveforminformationP 5.3.2.7 of 62109-2 Systems located in closed electricaloperating areas5.3.2.8 of 62109-2 Stand-alone inverter output circuit bonding P 5.3.2.9 of 62109-2 Protection by application of RCD’s N 5.3.2.10 of 62109-2 Remote indication of faults NP 5.3.2.11 of 62109-2 External array insulation resistancemeasurement and response5.3.2.12 of 62109-2 Array functional grounding information P 5.3.2.13 of 62109-2 Stand - alone inverters for dedicated loads P 5.3.2.14 of 62109-2 Identification of firmware version(s) P 5.3.3 Information related to operation P 5.3.4 Information related to maintenance P5.3.4.1 Battery maintenance N6 Environmental requirements andN conditionsN – Environmental category, as in 6.1below– Suitability for wet locations or not NN – Pollution degree rating, as in 6.2belowN – Ingress protection (IP) rating, as in 6.3belowN – Ultraviolet (UV) exposure rating, as in6.4 belowN – Ambient temperature and relativehumidity ratings, as in 6.5 belowP 6.1 Environmental categories and minimumenvironmental conditions6.1.1 Outdoor P-- Pollution degree Min. PD3 ---- Wet location Yes ----Ingress protection Min. IP34 ---- Ambient service–20 °C to +50 °C -- temperature range-- Relative humidity range 4 % to 100 % (Condensing) ---- UV exposure Required -- 6.1.2 Indoor, unconditioned N-- Pollution degree Min. PD3 ---- Wet location No ----Ingress protection Min. IP20 ---- Ambient service–20 °C to +50 °C -- temperature range-- Relative humidity range 5 % to 95 %--( Non condensing)-- UV exposure Not required -- 6.1.3 Indoor, conditioned N-- Pollution degree Min. PD2 ---- Wet location No ----Ingress protection Min. IP20 --+0 °C to +40 °C -- -- Ambient servicetemperature range-- -- Relative humidity range 5 % to 85 %( Non condensing)-- UV exposure Not required --6.2 Pollution degree Pollution degreeⅡP 6.3 Ingress protection Comply with Table 4 of thisPstandard and be verified inaccordance with IEC 60529.6.4 UV exposure P 6.5 Temperature and humidity PP 7 Protection against electric shock andenergy hazards7.1 General P 7.2 Fault conditions P 7.3 Protection against electric shock P 7.3.1 General P 7.3.2 Decisive voltage classification P 7.3.2.1 Use of decisive voltage class (DVC) P 7.3.2.2 Limits of DVC P 7.3.2.3 Short-term limits of accessible voltagesP under fault conditions7.3.2.4 Requirements for protection P 7.3.2.5 Connection to PELV and SELV circuits P 7.3.2.6 Working voltage and DVC P 7.3.2.6.1 General P 7.3.2.6.2 AC working voltage P 7.3.2.6.3 DC working voltage P 7.3.2.6.4 Pulsating working voltage P 7.3.3 Protective separation P 7.3.4 Protection against direct contact P 7.3.4.1 General P 7.3.4.2 Protection by means of enclosures andP barriers7.3.4.2.1 General P 7.3.4.2.2 Access probe criteria P7.3.4.2.3 Access probe tests Pa) Inspection PPb)Tests with the test finger (Figure D.1)and test pin (Figure D.2) of Annex DPc)Further tested by means of a straightunjointed test finger (Figure D.3 of AnnexD), applied with a force of 30 NPd)tested with the IP3Xprobe of IEC 605297.3.4.2.4 Service access areas PP 7.3.4.3 Protection by means of insulation of livepartsP 7.3.4.3 Protection by means of insulation of liveparts7.3.5 7.3.5 Protection in case of direct contact P 7.3.5.1 General P 7.3.5.2 Protection using decisive voltage class A P 7.3.5.3 Protection by means of protectiveP impedance7.3.5.3.1 Limitation of current through protective≤ 3,5 mA a.c.or 10 mA d.c. P impedance7.3.5.3.2 Limitation of discharging energy throughP protective impedance7.3.5.4 Protection by means of limited voltages P 7.3.6 Protection against indirect contact P 7.3.6.1 General P7.3.6.2 Insulation between live parts andaccessible conductive partsP7.3.6.3 Protective class I - Protective bonding andearthingN 7.3.6.3.1 General N 7.3.6.3.2 Requirements for protective bonding N7.3.6.3.3 Rating of protective bonding Na) For PCE with an overcurrent protectivedevice rating of 16 A or less, theimpedance of the protective bondingmeans shall not exceed 0,1 Ω during orat the end of the test below.(see appended table 7.3.6.3) Nb) For PCE with an overcurrent protectivedevice rating of more than 16 A, thevoltagedrop in the protective bonding test shall notexceed 2,5 V during or at the end of thetest below.(see appended table 7.3.6.3) N7.3.6.3.3.1 Test current, duration, and acceptancecriteria(see appended table 7.3.6.3) N7.3.6.3.4 Protective bonding impedance (routinetest)(see appended table 7.3.6.3) N 7.3.6.3.5 External protective earthing conductor N 7.3.6.3.6 Means of connection for the externalprotective earthing conductorN 7.3.6.3.6.1 General N7.3.6.3.7 Touch current in case of failure of theprotective earthing conductor not exceed 3,5 mA a.c. or 10 mA d.c.N7.3.6.4 Protective class II - Double or reinforcedinsulationP7.3.7 Insulation including clearance andcreepage distancesP 7.3.7.1 General P 7.3.7.1.1 Pollution degree Pollution degree ⅡP 7.3.7.1.2 Overvoltage category and Impulsewithstand voltage ratingP 7.3.7.1.3 Supply earthing systems NTN system: NTT system: NIT system: N 7.3.7.1.4 Insulation voltages P 7.3.7.2 Insulation between a circuit and itssurroundingsP 7.3.7.2.1 General P 7.3.7.2.2 Circuits connected directly to the mains P 7.3.7.2.3 Circuits other than mains circuits P 7.3.7.2.4 Insulation between circuits P 7.3.7.3 Functional insulation P 7.3.7.4 Clearance distances (see appended table 7.3.7) P 7.3.7.4.1 Determination (see appended table 7.3.7) P 7.3.7.4.2 Electric field homogeneity (see appended table 7.3.7) P 7.3.7.4.3 Clearance to conductive enclosures (see appended table 7.3.7) P 7.3.7.5 Creepage distances (see appended table 7.3.7) P 7.3.7.5.1 General (see appended table 7.3.7) P 7.3.7.5.2 Voltage (see appended table 7.3.7) P 7.3.7.5.3 Materials Insulating material group IIIa400 > CTI ≥ 175P 7.3.7.6 Coating P7.3.7.7 PWB spacings for functional insulation P 7.3.7.8 Solid insulation P 7.3.7.8.1 General PP 7.3.7.8.2 Requirements for electrical withstandcapability of solid insulationP 7.3.7.8.2.1 Basic, supplemental, reinforced, anddouble insulation7.3.7.8.2.2 Functional insulation P 7.3.7.8.3 Thin sheet or tape material P 7.3.7.8.3.1 General P 7.3.7.8.3.2 Material thickness not less than 0,2 mm P 7.3.7.8.3.3 Material thickness less than 0,2 mm P 7.3.7.8.3.4 Compliance P 7.3.7.8.4 Printed wiring boards (PWBs) P 7.3.7.8.4.1 General P 7.3.7.8.4.2 Use of coating materials P 7.3.7.8.5 Wound components N 7.3.7.8.6 Potting materials N 7.3.7.9 Insulation requirements above 30 kHz NN 7.3.8 Residual Current Detection (RCD) orMonitoring (RCM) device compatibility7.3.9 Protection against shock hazard due toP stored energy7.3.9.1 Operator access area The discharge time<1S P 7.3.9.2 Service access areas The discharge time<1S P 7.3.10 of 62109-2 Additional requirements for stand- aloneinverters7.3.11 of 62109-2 Functionally grounded arrays7.4 Protection against energy hazards P 7.4.1 Determination of hazardous energy level (see appended table 7.4.1) P 7.4.2 Operator access areas P 7.4.3 Service access areas P 7.5 Electrical tests related to shock hazard P 7.5.1 Impulse voltage test (type test) PP 7.5.2 Voltage test (dielectric strength test) (typetest and routine test)7.5.2.1 Purpose of test P 7.5.2.2 Value and type of test voltage (see appended table 7.5.2) P 7.5.2.3 Humidity pre-conditioning P 7.5.2.4 Performing the voltage test (see appended table 7.5.2) P 7.5.2.5 Duration of the a.c. or d.c. voltage test 60s PP 7.5.2.6 Verification of the a.c. or d.c. voltage test No electrical breakdown occursand no abnormalcurrent flow<10pC P 7.5.3 Partial discharge test (type test or sampletest)7.5.4 Touch current measurement (type test) (see appended table 7.5.4) P7.5.5 Equipment with multiple sources of supply N8 Protection against mechanical hazards P 8.1 General P 8.2 Moving parts N8.2.1 Protection of service persons Na) access is not possible without the useN of a tool;b) the instructions for the responsibleN body include a statement that operatorsmust betrained before being allowed to perform thehazardous operation;c) there are warning markings (see 5.2)N on any covers or parts which have to beremoved toobtain access, prohibiting access byuntrained operators.test finger of Figure D.1 of Annex D Can not touch hazardous movingNpart8.3 Stability PPa) Equipment other than hand-heldequipment, is tilted in each direction to anangle of 10°from its normal position.b) Equipment which has both a height of 1N m or more and a mass of 25 kg or more,and allfloor-standing equipment, has a forceapplied at its top, or at a height of 2 m iftheequipment has a height of more than 2 m.The force is 250 N, or 20 % of the weightof theequipment, whichever is less, and isapplied in all directions except upwards.Jacks usedin normal use, and doors, drawers, etc.,intended to be opened by an operator, arein theirleast favourable positions.Nc) Floor-standing equipment has a forceof 800 N applied downwards at the point ofmaximum moment to1) all horizontal working surfaces; NN2) other surfaces providing an obviousledge andwhich are not more than 1 m abovefloor level.8.4 Provisions for lifting and carrying (see appended table 8.4) N 8.5 Wall mounting (see appended table 8.5) N8.6 Expelled parts P9 Protection against fire hazards P 9.1 Resistance to fire PP 9.1.1 Reducing the risk of ignition and spread offlame9.1.2 Conditions for a fire enclosure P 9.1.2.1 Parts requiring a fire enclosure P 9.1.2.2 Parts not requiring a fire enclosure PP 9.1.3 Materials requirements for protectionagainst fire hazard9.1.3.1 General P 9.1.3.2 Materials for fire enclosures PP 9.1.3.3 Materials for components and other partsinside fire enclosures9.1.3.4 Materials for air filter assemblies P9.1.4 Openings in fire enclosures N 9.1.4.1 General N 9.1.4.2 Side openings treated as bottom openings N 9.1.4.3 Openings in the bottom of a fire enclosure N 9.1.4.4 Equipment for use in a closed electricalN operating area9.1.4.5 Doors or covers in fire enclosures N 9.1.4.6 Additional requirements for openings inN transportable equipment9.2 Limited power sources P 9.2.1 General P 9.2.2 Limited power source tests (see appended table 9.2.2) P 9.3 Short-circuit and overcurrent protection P 9.3.1 General P 9.3.2 Number and location of overcurrentP protective devicesP 9.3.3 Short-circuit co-ordination (backupprotection)9.3.4 of 62109-2 Inverter backfeed current onto the array N10 Protection against sonic pressure hazards P 10.1 General P 10.2 Sonic pressure and sound level P10.2.1 Hazardous noise levels P11 Protection against liquid hazards P 11.1 Liquid containment, pressure and leakage N 11.2 Fluid pressure and leakage N 11.2.1 Maximum pressure N 11.2.2 Leakage from parts N 11.2.3 Overpressure safety device N11.3 Oil and grease N12 Chemical hazards P12.1 General P13 Physical requirements P 13.1 Handles and manual controls (see appended table 13.1) PPa)The shape of these parts is such that anaxial pull is unlikely to be applied in normaluse, theforce is:P - 15 N for the operating means ofelectrical components- 20 N in other cases PNb)the shape is such that an axial pull islikely to be applied, the force is:N – 30 N for the operating means ofelectrical components– 50 N in other cases N 13.1.1 Adjustable controls P 13.2 Securing of parts P 13.3 Provisions for external connections P 13.3.1 General P 13.3.2 Connection to an a.c. mains supply N 13.3.2.1 General N 13.3.2.2 Permanently connected equipment N 13.3.2.3 Appliance inlets N 13.3.2.4 Power supply cords N 13.3.2.5 Cord anchorages and strain relief (see appended table 13.3.2.5) N 13.3.2.6 Protection against mechanical damage N13.3.3 Wiring terminals for connection of externalP conductors13.3.3.1 Wiring terminals P 13.3.3.2 Screw terminals P 13.3.3.3 Wiring terminal sizes P 13.3.3.4 Wiring terminal design P 13.3.3.5 Grouping of wiring terminals P 13.3.3.6 Stranded wire P 13.3.4 Supply wiring space PN 13.3.5 Wire bending space for wires 10 mm2 andgreater13.3.6 Disconnection from supply sources P 13.3.7 Connectors, plugs and sockets P 13.3.8 Direct plug-in equipment ≤0.25Nm N 13.4 Internal wiring and connections P 13.4.1 General P 13.4.2 Routing P 13.4.3 Colour coding P 13.4.4 Splices and connections P 13.4.5 Interconnections between parts of the PCE P 13.5 Openings in enclosures N 13.5.1 Top and side openings <5 mm in any dimension;N<1 mm in width regardless oflength13.6 Polymeric materials Metal materials N 13.6.1 General N 13.6.1.1 Thermal index or capability NN 13.6.2 Polymers serving as enclosures or barrierspreventing access to hazards13.6.2.1 Stress relief test (see appended table 13.6.2) N 13.6.3 Polymers serving as solid insulation N 13.6.3.1 Resistance to arcing N 13.6.4 UV resistance NN 13.7 Mechanical resistance to deflection,impact, or drop13.7.1 General P 13.7.2 250 N deflection test for metal enclosures (see appended table 13.7.2) N 13.7.3 7 J impact test for polymeric enclosures (see appended table 13.7.3) N 13.7.4 Drop test (see appended table 13.7.4) N 13.8 Thickness requirements for metalN enclosures13.8.1 General N 13.8.2 Cast metal >2.4mm N 13.8.3 Sheet metal >1.5mm N 13.9 Fault indication NP 14 Components Components, which are certifiedto IEC or national standards, areapplied correctly within theirratings. Components not coveredby IEC standards are testedunder the conditions present inthe equipment.14.1 General P 14.2 Motor overtemperature protection PP 14.3 Overtemperature protection devices No overtemperature protectiondevices14.4 Fuse holders P14.5 Mains voltage selecting devices P 14.6 Printed circuit boards P 14.7 Circuits or components used as transientovervoltage limiting devicesP 14.8 Batteries N 14.8.1 Battery enclosure ventilation N 14.8.1.1 Ventilation requirements N 14.8.1.2 Ventilation testing N 14.8.1.3 Ventilation instructions N 14.8.2 Battery mounting N 14.8.3 Electrolyte spillage N 14.8.4 Battery connections N 14.8.5 Battery maintenance instructions N14.8.6 Battery accessibility and maintainability N15 Software and firmware performing safetyfunctionsNB Annex B , Programmable equipment N B.1 Software or firmware that performs safetycritical functionsN B.2 Evaluation of controls employing software N B.2.1 Risk analysis NG Annex G , Clearance and creepage distance determination forfrequencies greater than 30 kHzN G.1 Clearances (see appended table 7.3.7) N G.2 Creepage distances : (see appended table 7.3.7) N J Annex J , Ultraviolet light conditioning test(see 13.6.4) N J.1 General N J.2 Mounting of test samples: N J.3 Carbon-arc light-exposure apparatus N J.4 Xenon-arc light-exposure apparatus NK ANNEX K: list of critical components Pobject/part No. manufacturer/trademark type/model technical data standard mark(s) ofconformity1)PCB various various V-1 or better, 130degree C minimum.UL796 UL Fuse 25A-X-3 T 25A 250V -- --Electrolytic Capacitor C1 APIC Various 2200μF 35V -40+85℃-- VDEElectrolytic Capacitor C2 LXM A1128 220μF 450V -40+105℃-- VDETransformer (T1) FUTRUE FUTRUE -11AB EE25CLASS B BSEN61558-1--Coil various various Minimum 130degree CUL1446 ULX -capacity TC - 2.2μF K 275V AC40/100 21EN132400 VDESwitch FUTRUE various - EN61058 Have been testedwith this equiment1) an asterisk indicates a mark which assures the agreed level of surveillance4.3 Table:THERMAL TEST (NORMAL OPERATION) P VOLTAGE ( V ) A 12B 24DURATIONtest until steady condition – temperature change not more than +/-1K/hourSupply voltage within ±1% of the test voltage.OPERATION MODE / TEST CONDITION:1.It shall not vary by more than ±1 °C during measurements and during a preceding period long enough to affect the results.2. Measurements shall not be taken until the luminaire has stabilized thermally, i.e. temperatures are changing at a rate less than 1 °C per hour.3. a)Supplied by photovoltaic supply sourcesb) Supplied by other d.c sourcesc)The test voltage is 0.9 and 1.1 times t the rated voltage range if supplied at mains supply.4 Performed under the least favorable loading conditions.AMB. TEMP. t1 = 25.1 ℃ (before test) t2 = 25.0 ℃(after test)Location / Part (by thermocouple) Temp. (℃) Limit(℃) ResultA BPCB near D1 110.8 108.9 130PCB near BG2 120.7 118.7 130Transformer coil 100.4 98.6 110Transformer core 98.7 96.3 RefC1 body 92.3 93.2 105C2 body 94.5 95.3 105Switch 58.9 57.2 85C8 body 82.7 82.7 85L1 body 117.3 115.3 130Input terminal 63.7 62.7 RefOutput terminal 69.8 68.9 Ref4.4.4.1 TABLE: Component fault tests PAmbient temperature ( C) : 25.0Component No. Fault Supplyvoltage(V)TesttimeFuse cur-rent(A)ObservationOutput SC 24 3min -- Unit shut down ,no hazardC8 SC 24 3min -- Unit shut down ,no hazard L1 SC 24 3min -- Unit shut down ,no hazard C2 SC 24 3min -- Unit shut down ,no hazard C1 SC 24 3min -- Unit shut down ,no hazardSupplementary information:After fault condition, all output voltage comply with DVC A requirement;4.4.4.7 TABLE: Output overload NComponent No. Fault Supply voltage (V)Test timeFuse # Fuse current (A) ObservationOuput L Output N Short 24V 10 Min F1 -- Unit shut down ,no hazard Ouput L Output NOverload 24V 5H F1 --The output current: 6.2 A, The maximun temperature were:T1 core= 141.4 ℃, T1 coil= 149.9 ℃, Ambient= 25.0 ℃,Supplementary information:Following each test, an Electric Strength (ES) potential was applied between the points, noted below, for one minute after the insulation cooled to room temperature. Location Potential Used (V) From To [ x ] ac [ ] dc A Primary Secondary --- -- B Primary Enclosure with metal foil --- --4.6.3TABLE: Compliance with backfeed testPPCE terminals (V) Condition Time(s) Result V+to V- Normal 1 10.3V V+to V- Abnormal 1 11.4V Remark :a)15 s for sources that are permanently connected;b) 1 s for sources that are cord-connected or use connectors that can be opened without the use of a tool4.7.1 TABLE: Input ratings (in normal conditions) PP rated input (W) P input (W) U input(V/D.C) I input (A/D.C) U Rated output (V/A.C)U output(V/A.C)I output(A/ A.C) POUPUT(W/AC) F rated (Hz) F (Hz) condition-- -- 12 50.02 110 110.3 5.44 600 50 49.9under maximum normal load-- -- 24 25.03 110 110.4 5.44 600 50 50.1 -- -- 12 50.01 220 219.9 2.71 600 50 49.9 -- -- 24 25.01 220 219.7 2.80 600 50 49.8 -- -- 12 50.04 110 110.1 5.44 600 60 60.1 -- -- 24 25.01 110 110.4 5.43 600 60 60.1 -- -- 12 50.02 220 220.5 2.76 600 60 60.2 24 25.07 220 220.8 2.84 600 60 60.3 ----2425.01220219.72.806005049.8No load。
电源逆变器测评报告模板
电源逆变器测评报告模板1. 引言电源逆变器是一种将直流电转换成交流电的装置,适用于各种电子设备、通信设备、机械设备等等。
其重要性不言而喻。
本文将对某品牌的电源逆变器进行评测。
2. 测评流程本次测评从以下三个方面进行:2.1 性能测试我们对电源逆变器的功能进行了测试,包括输出功率、输出电压、调整稳定性等。
测试环境为普通住宅电路,主要针对高低电压、电流、负载容量等因素进行测试。
2.2 故障测试我们模拟了一系列故障情况,包括短路、过载、瞬间电压过高等情况。
通过对电源逆变器的反应、保护措施等进行测试,评估其实际使用情况下的可靠性和安全性。
2.3 实际使用测试我们将电源逆变器实际应用于办公室环境,并结合日常的使用场景进行测评。
主要针对使用体验、耗电情况、声音、大小、重量等方面进行测试和评估。
3. 测评结果根据我们的测试和评估,我们得出以下结论:3.1 性能方面电源逆变器的输出稳定性良好,可以应对一般家用电器的需求,能够满足基本的办公环境要求。
3.2 故障方面电源逆变器在遇到短路、过载等故障情况时,能够及时采取保护措施,避免设备损坏,保障使用安全。
3.3 使用体验方面电源逆变器的大小和重量较为适中,声音较小,具备良好的便携性和使用体验,可以满足日常的办公需要。
4. 测评分析综合考虑以上三个方面的测试和评估,我们认为该品牌的电源逆变器性能良好,功能稳定,安全可靠,使用体验良好。
但其输出功率和负载容量有限,对于有特殊需求的用户需要考虑是否满足需求。
5. 结论本次电源逆变器测评对该品牌的电源逆变器进行了全面的测试和评估,其表现良好,适合一般用户使用。
建议对于有特殊需求的用户需要根据自身情况进行选择,以达到最佳的使用效果。
逆变器实验报告规范
逆变器实验报告规范逆变器实验报告规范引言:逆变器是一种将直流电能转换为交流电能的装置,广泛应用于太阳能发电、风能发电等可再生能源领域。
为了确保实验结果的准确性和可重复性,编写规范的实验报告是必要的。
本文将介绍逆变器实验报告的规范要求,包括实验目的、实验原理、实验过程、实验结果及分析、结论等内容。
一、实验目的:明确实验的目的是实验报告的第一步。
在逆变器实验中,实验目的可能是测试逆变器的效率、输出电压波形的谐波含量等。
实验目的应该简明扼要地表达实验的目标,避免使用模糊的表述。
二、实验原理:实验原理部分应该对逆变器的工作原理进行详细的阐述。
可以包括逆变器的拓扑结构、控制方法、电路设计等内容。
在介绍原理时,可以使用图表、公式等辅助说明,以便读者更好地理解实验的基本原理。
三、实验过程:实验过程应该清晰地描述实验的步骤和操作方法。
包括实验所需的仪器设备、实验样品的准备、实验参数的设置等内容。
同时,还可以提供实验中可能遇到的问题及解决方法,以帮助读者更好地进行实验。
四、实验结果及分析:实验结果是实验报告中最重要的部分之一。
在这一部分,应该详细记录实验中获得的数据、图表等信息,并进行相应的分析。
例如,可以对逆变器的效率、输出电压波形等进行分析,与理论值进行比较,讨论实验结果的可靠性和准确性。
五、结论:结论部分是对实验结果的总结和归纳。
应该明确回答实验目的,并给出实验结果的评价。
同时,还可以提出对实验的改进意见,以及对未来研究方向的展望。
六、参考文献:在实验报告的最后,应该列出参考文献,包括相关教材、学术论文等。
参考文献的引用应该符合学术规范,可以使用著者-年份制,例如:“[作者, 年份]”。
结语:逆变器实验报告的规范编写对于实验结果的准确性和可重复性具有重要意义。
通过明确实验目的、详细介绍实验原理、清晰描述实验过程、准确记录实验结果并进行分析,可以使实验报告更具有科学性和可读性。
希望本文提供的逆变器实验报告规范能够对实验报告的撰写有所帮助。
光伏逆变器整机测试报告模板
光伏逆变器整机测试报告模板[公司名称]光伏逆变器整机测试报告[报告编号]日期:[日期]1. 介绍本测试报告旨在评估[公司名称]生产的光伏逆变器整机的性能,并提供相关测试结果和结论。
该逆变器已按照[相关标准]进行测试。
2. 测试项目2.1 输入电压范围和频率2.2 输出电压范围和频率2.3 最大输出功率2.4 效率2.5 峰值功率追踪效率2.6 隔离性能2.7 温度范围2.8 保护功能3. 测试方法3.1 输入电压范围和频率:将逆变器连接到符合标准范围的电源,并逐步调整输入电压并记录结果。
3.2 输出电压范围和频率:将逆变器连接到负载,并逐步调整输出电压并记录结果。
3.3 最大输出功率:将逆变器连接到符合标准条件的光伏模块,并记录输出功率。
3.4 效率:在符合标准条件下,记录逆变器的输入功率和输出功率,并计算效率。
3.5 峰值功率追踪效率:在不同光照条件下,记录逆变器的最大输出功率。
3.6 隔离性能:在符合标准条件下,记录逆变器的隔离性能,包括输入/输出的电气隔离。
3.7 温度范围:将逆变器放置在不同温度环境中,并记录其正常工作范围。
3.8 保护功能:模拟各种故障情况,如短路、过载等,记录逆变器的保护功能。
4. 测试结果4.1 输入电压范围和频率:[输入测试结果]4.2 输出电压范围和频率:[输出测试结果]4.3 最大输出功率:[最大输出功率测试结果]4.4 效率:[效率测试结果]4.5 峰值功率追踪效率:[峰值功率追踪效率测试结果]4.6 隔离性能:[隔离性能测试结果]4.7 温度范围:[温度范围测试结果]4.8 保护功能:[保护功能测试结果]5. 结论[公司名称]光伏逆变器整机经过测试,符合[相关标准]的要求,性能稳定可靠。
该逆变器可用于光伏发电系统的应用。
6. 建议根据本次测试的结果,建议[公司名称]在生产过程中注意以下问题:- [建议1]- [建议2]7. 附件[测试数据表格、照片等的附件]8. 感谢感谢[公司名称]提供光伏逆变器整机进行测试的机会,同时感谢测试人员的辛勤工作。
光伏并网逆变器效率测试及分析
2021.5 EPEM139新能源New Energy光伏并网逆变器效率测试及分析水电十四局大理聚能投资有限公司 曹学华 杨 博摘要:以云南大理某光伏电站逆变器转换效率测试为例,以期为判断光伏并网逆变器的运行状态和改进提升光伏发电效率提供依据。
关键词:光伏;并网逆变器;效率;测试;分析云南大理某光伏电站于2015年4月建成投产,电站共安装40台型号为YLSSL-500的光伏并网逆变器,该型号逆变器不带隔离变压器,每台逆变器直流侧光伏组件容量和规格型号完全相同,电站投产运行以来各台逆变器交流输出电量差异较大,年度最大输出电量与最小输出电量比率超过1.08,为准确判断各台逆变器输出电量存在差异的原因,采取现场试验方式对并网逆变器转换效率进行了测试,并对测试结果进行了分析。
1 测试方法1.1 测试对象为准确了解云南大理某光伏电站逆变器的转换效率性能,通过对近3年逆变器交流侧输出电量分析,选取交流侧输出电量最大、最小和中间值各一台进行现场测试。
逆变器基本性能参数为:直流输入侧。
输入电压范围400~1000VDC、额定输入电压600VDC、额定输入电流900A、最大输入功率550kW ;交流输出侧。
交流输出额定功率500kW、最大交流输出功率550kW、输出电压范围250~380VAC、输出频率50Hz。
1.2 测试方法逆变器效率。
结合国内光伏发电行业标准及现场测试条件,本文所述的并网逆变器效率包含逆变器最大转换效率ηmax 和平均加权总效率ηtc 。
逆变器最大转换效率ηmax 指从早到晚的测试时段范围内,某一时刻输出能量与输入能量最大值的比值。
平均加权总效率ηtc 指按照我国典型太阳能资源区的效率权重系数计算不同负载情况下逆变效率的加权平均值。
云南大理地区属于III 类资源区,加权因子系数见表1。
按表中相关数据,则光伏逆变器平均加权总效率公式为ηtc =0.02η5%+0.06η10%+0.21 η25%+0.41η50%+0.28η75%+0.03η100%。
光伏并网逆变器型式检验报告
光伏并网逆变器型式检验报告产品名称集中式光伏并网逆变器产品型号规格SF-500KTL产品编号1565132010005测试时间2013-03-02~2013-5-26 测试工程师丁川,彭庆飞光伏并网逆变器型式检验报告产品型号:SF-500KTL 出厂编号:序号检验项目标准要求检验结果1 机体和结构质量检查遵从CNCA/CTS0004:2009A PASS2 转换效率试验遵从CNCA/CTS0004:2009APASS(详见附表1)3 并网电流谐波试验遵从CNCA/CTS0004:2009A PASS4 功率因数测定试验遵从CNCA/CTS0004:2009APASS(详见附表2)5 电网电压响应试验遵从CNCA/CTS0004:2009APASS(详见附表3)6 电网频率响应试验遵从CNCA/CTS0004:2009APASS(详见附表4)7 直流分量试验遵从CNCA/CTS0004:2009A PASS8 电压不平衡度试验遵从CNCA/CTS0004:2009A PASS9 噪声试验遵从CNCA/CTS0004:2009A PASS10 防孤岛效应保护试验遵从CNCA/CTS0004:2009A PASS11 低电压穿越试验遵从CNCA/CTS0004:2009A PASS12 输出端短路保护试验遵从CNCA/CTS0004:2009APASS输出短路可保护13 防反放电保护试验遵从CNCA/CTS0004:2009A PASS14 极性反接保护试验遵从CNCA/CTS0004:2009APASS具备极性反接保护功能15 直流过载保护试验遵从CNCA/CTS0004:2009APASS具备直流过载保护功能16 直流过压保护试验遵从CNCA/CTS0004:2009APASS具备直流过压保护功能17 通讯功能试验遵从CNCA/CTS0004:2009A PASS18 自动开关机试验遵从CNCA/CTS0004:2009A PASS19 软启动试验遵从CNCA/CTS0004:2009APASS输出软启动,无冲击电流,输出功率变化率可调。
逆变器试验台出厂测试报告
产品名称
规格型号
产品编号
额定电压
额定电流
防护等级:IP
序号
试验项目
技术要求
设备或方法
结论
1
一般检查
所装元、器件是否符合3C认证要求
核对产品描述
铭牌内容是否符合3C认证要求
目检
产品外涂层应均匀美观;无擦伤、压痕等明显缺陷
目检
防护等级:□IP30(2.5mm专用量规)
□IP30(1.0mm专用量规)
专用检具
2
介电强度
施以以下试验电压U:
工作电压60-300V U:2000V
工作电压300-660V U:2500V
试验1分钟、无击穿和闪络现象
所有带电部位与外壳之间
耐压测试仪
各相、各极之间
工作电压300-660V U:3750V
试验1分钟、无击穿和闪络现象
绝缘件(手柄)
3
保护电路的连续性检查
有无明显的接地保护点及标志,电路是否连续
通电试验台
动作试验
手动操作电气元件,各操作5次
电动操作电气元件,各操作5次
漏电保护器件,按试验按钮动作5次
检查试验结论:
经检验合格,准予出厂。
检验员:审核:日期:年月日
目检
1、每台全检
2、记录5点测பைடு நூலகம்部位
3、结论栏填写实测值均应≤0.1Ω
主开关框架—主接地
接地电阻测试仪
仪表门—主接地
安装支架—主接地
金属框架—主接地
电流互感器底座—主接地
4
电气间隙和爬电距离
电气间隙≥mm
爬电距离≥mm
所有带电部件与不带电部件间最小值
光伏逆变器EMC测试报告及认证报告书
GENERAL PRODUCT INFORMATION ...................................................................................................... 5
TEST SET-UP AND OPERATION MODES ................................................................................................. 6
批注本地保存成功开通会员云端永久保存去开通
Produkte Products
Prüfbericht - Nr.:
Test Report No.:
15061668 001
Seite 2 von 26 Page 2 of 26
TEST SUMMARY
4.1.1 HARMONICS ON AC MAINS Result: N/A 4.1.2 VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER ON AC MAINS Result: N/A 4.1.3 MAINS TERMINAL CONTINUOUS DISTURBANCE VOLTAGE Result: Passed 4.2.1 RADIATED EMISSION Result: Passed 5.1.1 ELECTROSTATIC DISCHARGE Result: Passed 5.1.2 RADIO FREQUENCY ELECTROMAGNETIC FIELD Result: Passed 5.1.3 POWER FREQUENCY MAGNETIC FIELDS Result: Passed 5.2.1 ELECTRICAL FAST TRANSIENTS AND BURSTS Result: Passed 5.2.2 CONDUCTED DISTURBANCES, INDUCED BY RF FIELDS Result: Passed 5.2.2 SURGES TO AC POWER PORT Result: Passed 5.2.3 VOLTAGE DIPS AND INTERRUPTIONS TO AC POWER PORT Result: N/A
电瓶逆变器评测报告模板
电瓶逆变器评测报告模板
一、产品简介
电瓶逆变器是一种将电池的直流电转换为交流电的装置,通俗来讲就是家庭应
急备用电源。
本次评测产品为xxx品牌的电瓶逆变器,规格为xxx。
二、产品外观
该电瓶逆变器外观造型简约大方,主色调为黑色。
产品尺寸为xxx,重量为xxx。
产品正面中央有一个液晶显示屏,可以显示电池电压、输出电压、输出功率
等参数。
三、使用体验
1. 参数设置
该电瓶逆变器具有多种参数设置,可以根据用户需求进行合理调整。
例如输出
电压和输出频率可以自行设定。
同时,该产品还配备了多种保护机制,如过载保护、过压保护、欠压保护等,可以确保产品安全可靠地工作。
2. 稳定性
在测试过程中,我们将该电瓶逆变器接入了多种家电设备,如电视、电脑、冰
箱等,产品工作稳定,没有出现过载等异常情况。
3. 使用便捷性
该产品使用非常便捷,可以直接插入电池使用。
同时,产品配备了手提式设计,携带方便,可以在户外进行使用。
4. 噪音
该产品在使用过程中噪音较小,基本不会出现干扰。
四、总结
综上所述,xxx品牌的电瓶逆变器产品在参数设置、稳定性、使用便捷性和噪
音方面表现优秀,可以满足家庭应急备用电源的需求。
唯一的缺点是售价较高。
我们建议,若用户对电瓶逆变器的要求较高,可以优先考虑该产品,同时也可以考虑其他品牌的电瓶逆变器进行对比。
逆变器电路实验报告总结
逆变器电路实验报告总结逆变器是一种将直流电能转换成交流电能的电子器件。
逆变器的应用范围广泛,被广泛应用于电力电子、工业自动化、农业、医疗、航空航天等领域。
本次实验以逆变器电路为研究对象,通过构建电路、调试参数,实现从直流到交流的转换。
在实验中,我们首先了解了逆变器的基本工作原理。
逆变器电路由直流输入电源、半桥电路、输出滤波电路、控制电路等部分组成。
直流输入电源提供原始的直流输入信号,半桥电路根据控制信号对直流电压进行转换,输出滤波电路将半桥电路输出的方波滤波为平滑的正弦波信号,控制电路负责产生逆变器所需的各种控制信号。
在实验的过程中,我们按照实验指导书的步骤搭建了逆变器电路,合理选择了元器件的参数。
在调试参数的过程中,我们先后调整了半桥电路的频率、占空比、死区时间等参数,以得到较为稳定的输出电压和频率。
在调试过程中,我们注意到了一些现象和问题,比如频率调整过高会导致输出电压不稳定,占空比调整过大会使输出电压变大等等。
通过不断调整参数,我们最终实现了逆变器电路的正常工作,成功地将直流电能转换成了交流电能。
通过这次实验,我对逆变器电路的工作原理和调试参数有了更深入的了解。
实验中,我不仅亲自搭建了电路,还亲自参与了调试参数的过程,对逆变器电路的各个部分有了更加清晰的认识。
通过实验,我深刻体会到了电子器件的具体应用和重要性,在实践中加深了对课堂知识的理解。
在今后的学习和研究中,我将继续深入学习逆变器电路的相关知识和原理,进一步提高我的实际动手能力和解决问题的能力。
我相信,通过不断地实验和学习,我将更好地理解和掌握逆变器电路的工作原理,进一步提高我的实践能力和创新能力,为电子器件的应用和发展做出更大的贡献。
太阳能光伏逆变器出厂检验报告
太阳能光伏逆变器出厂检验报告
1. 概述
本报告对太阳能光伏逆变器进行了出厂检验。
逆变器是将太阳能电池板发出的直流电转换为交流电的重要设备。
2. 检验方法
出厂检验采用了以下方法和步骤:
- 外观检验:检查逆变器外壳是否完整,是否有损坏或变形。
- 功能检验:测试逆变器的电气功能,如电流输出稳定性和过载保护等。
- 安全检验:检查逆变器的安全性能,如漏电保护和过压保护等。
3. 检验结果
经过严格检验,太阳能光伏逆变器在所有方面表现良好,符合国家标准和相关规定。
- 外观检验:逆变器外壳完好无损,没有任何变形或破损。
- 功能检验:逆变器的电气功能正常,输出电流稳定,在过载情况下能够正确保护电路。
- 安全检验:逆变器具有漏电保护和过压保护功能,能够保障使用安全。
4. 检验结论
太阳能光伏逆变器在出厂检验中达到了预期要求,并通过了所有测试项目。
该逆变器可以安全运行,并能够有效地将太阳能电池板的直流电转换为交流电。
5. 备注
请注意,本报告仅对逆变器的出厂检验结果进行了描述,不包括逆变器的使用和维护说明。
为了确保逆变器的长期稳定运行,请仔细阅读并遵守逆变器的使用和维护手册。
以上为太阳能光伏逆变器出厂检验报告,谢谢阅读。
光伏并网逆变器型式检验报告
光伏并网逆变器型式检验报告第一部分:引言(100字)第二部分:检验目的(100字)本次检验的目的是验证光伏并网逆变器的设计、制造和性能是否符合国家和行业标准,以保证其安全、可靠并满足预期的使用要求。
第三部分:检验范围(100字)本次检验涉及光伏并网逆变器的外观、电气性能、保护功能、并网性能等方面。
同时,根据相关标准要求,还将对其密封性、环境适应性等进行检验。
第四部分:检验方法(100字)本次检验将采用实验室测试、检验样品检验和技术文档评审等方法进行。
实验室测试将包括交流输出性能、效率、并网稳定性等方面的测试。
第五部分:检验结果(500字)经过对光伏并网逆变器进行一系列的测试和评估,以下是我们的主要检验结果:2.电气性能:光伏并网逆变器在额定输入功率下,输出电压、电流满足相关标准要求,无异常现象。
3.保护功能:光伏并网逆变器具备过压、欠压、过温等保护功能,并能正常运行。
4.并网性能:光伏并网逆变器可以与电网连接并实现电网供电功能,具备稳定的并网性能。
5.密封性:光伏并网逆变器外壳密封良好,符合相关标准的防尘、防湿要求。
6.环境适应性:光伏并网逆变器能够适应不同的环境温度、湿度等条件,并保持正常工作。
第六部分:结论(100字)根据以上的检验结果,光伏并网逆变器经检验合格,符合相关的国家和行业标准要求,具备良好的性能和可靠性。
第七部分:建议(100字)根据对光伏并网逆变器的检验结果,建议制造商在生产过程中继续保持严格的质量控制,并根据用户反馈及时进行改进和优化。
第八部分:参考资料(50字)1. 光伏并网逆变器技术规范(GB/T xxx)2. 光伏并网逆变器质量检验通则(GB/T xxx)3. 光伏电站工程建设及检验规范(GB/T xxx)注:以上字数仅为参考,实际写作时可根据需要增加或减少。
逆变器检验报告
供货单位:到货日期:检验日期:
产品规格型号
编号
检测项目
目标值
实际值
结果
备注
外
观
检验报告
随产品附带检验报告
合格证
产品附带合格证
外形尺寸
外壳外观
表面平整光滑、无毛刺、漆面均匀、无剥落、 锈蚀及裂痕等现象
标示性文字
文字符合要求,功能显示清晰、正确
开关/按键
操作灵活可靠、无锈迹
电
气
当输入大于30±1V时,关闭负载
过热保护
当工作温度大于≥40℃时,开启风扇;当工作温度大于≥65℃时,关闭负载
空载自耗
只连接蓄电池,在额定工作电压情况下设备自身损耗
判定结果
合格( ) 退货( ) 让步接收( ) 拣用( ) 报废( )
检验员: 日期: 质量主管: 日期:
性
能
输出电压/频率
AC 110/220V±10%,50hz
空载电流
< 0.6A
低压报警
DC 20.5±1V
低压关断
DC 19.5±1V
过载保护
当负载功率超出额定功率值120%,30分钟关闭负载; 当负载功率超出额定功率值150%,2分钟关闭负载; 当负载功率超出额定功率值200%,15秒关闭负载
过压保护
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S
Heinz Neuenstein Head of laboratory (inverters & system components)
Check the monthly test results in: • • • • • PHOTON – Das Solarstrom-Magazin (German) PHOTON Profi – Photovoltaik-Fachwissen für die Praxis (German) PHOTON – Il Mensile del Fotovoltaico (Italian) PHOTON International – The Solar Power Magazine (English) PHOTON International – 太阳能产业专业杂志 (Chinese)
Up Ma date y 20 13!
EVE PHO MON RY T DAT TON M H IN A FR AGA DEV OM IN ZINES IC : V AND ES TES ERTER T PHO RATED ED TON BY LAB
PHOTON inverter test
More than 120 inverters from multiple manufacturers have been tested and rated based on their efficiency
Laboratory
3
Steca Elektronik GmbH
PHOTON Laboratory
installers, wholesalers, system the MPPT adjustment efficiency and the operators, insurance companies overall efficiency. The diagram is colored and banks. To give readers of our black if the maximum MPP voltage isn‘t inverter test an immediate sense adequately distanced from the inverter‘s of a device‘s value, we assign a maximum DC voltage, and if it doesn‘t single grade for both medium and have an active overload limit according high irradiation to each inverter to the manufacturer, which means no that takes into account all relevant measurements can be conducted in this factors such as an inverter's efficirange, since the MPP tracker won‘t opeency dependence on input voltage, rate properly. The diagram also reflects the suggested MPP operating point, the DC current limitation range. These information on the input current liblack areas, which reflect a value of zero, mitation on the operating point, and are used to calculate an average based the relation between temperature on the PHOTON grading system and, and conversion efficiency. No other therefore, have a strong influence on the individual scores have an influence grade. The resulting effect is desired and on the grade. The parameters rea consequence of considerations about flected in the grade are reviewed on the inverter‘s actual, useable MPP range: an annual basis and are discussed an inverter will only get a good grade in with manufacturers in advance. the test if it actually can operate without The total grade is based on two limitations in the voltage range specified criteria: the assessment of the effiby the manufacturer. Finally, manufactuciency determined by PHOTON and rers who change their product data to the temperature-related reduction reflect a more sensible MPP range will of efficiency. The grade for this efreceive an improvement in their grade. ficiency is assigned without any difThe color diagram also includes white ferentiation based on the suitability hatched areas. These represent areas in of the inverters' use with a particular the MPP voltage range that are consisolar generator. The best device is A thermographic image shows temperature hotspots within an inverter. Naturally, dered critical when designing a PV systhe one with the highest efficiency tem. They are located at the upper end these hotspots can be critical for the long-term performance of a device. independent of whether or not it has of the MPP range. There are two types of potential separation, is exclusively designed for average at each power level. This average is then hatching marks. The diagonal upward lines repreuse indoors or outdoors, or has a broad voltage weighted according to European and Californian sent an MPP range in which the VMPPmax is generally range. In the meantime, there are now suitable efficiencies, and included in the evaluation. The absent for PV systems with crystalline modules. transformerless inverter topologies for all known overall efficiency is based on Heinrich Häberlin‘s The hatching marks in the other direction (i.e. module types. Only the conversion efficiency‘s definition of »total efficiency,« which is described sloping diagonally downward) represent the MPP temperature interdependency has a relevant inrange in which the VMPPmax is generally absent for in his book on the efficiency of PV inverters publisfluence on the grade. Furthermore, we provide hed in 2005. PV systems with thin-film modules. The exact deinformation on the inverter‘s efficiency at 25 °C finition of these limits can be established when The PHOTON efficiency for medium and high and the maximum temperature before any power irradiation levels is an artificial value th