新人教版七(上)数学第二章《整式》复习测试题
人教版七年级上册数学第二章整式单元测试卷(含知识点)
人教版七年级上册数学第二章整式单元测试卷(含知识点)1、单项式-3x²减去单项式-4x²y,-5x²,2x²y的和,列算式为,化简后的结果是-3x²+4x²y+5x²-2x²y=2x²+2x²y。
2、当x=-2时,代数式-x²+2x-1=9,x²-2x+1=9.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x²+mx+n。
4、已知:x+1/11=1,则代数式(x+1/11)2010+x-5的值是2/11.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入0.5b-0.4a元。
6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。
7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。
8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x²+3x+7的值为10,则多项式6x²+9x-7的值为28.10、若(m+2)2x³yn-2是关于x,y的六次单项式,则m≠0,n=3.11、已知a²+2ab=-8,b²+2ab=14,则a²+4ab+b²=6,a²-b²=-22.12、多项式3x²-2x-7x³+1是次项式-7x³,最高次项是x³,常数项是1.13、下列等式中正确的是D、2x-5=-(2x-5)。
14、下面的叙述错误的是B、a+2b²的意义是a与b²的2倍的和。
15、7x³y²+x²y³-3xy²的次数是5.16、-(a-b+c)变形后的结果是-B、-a+b-c。
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)一、选择题1.下列式子书写正确的是( )A.a48B.x÷yabcC.a(x+y)D.112答案 C2化简-16(x-0.5)的结果是( )A.-16x-0.5B.16x+0.5C.16x-8D.-16x+8答案 D. -16(x-0.5)=-16x+8,故选择D.3.下列说法正确的是( )A.ab+c是二次三项式B.多项式2x+3y2的次数是4C.5是单项式是整式D.ba答案 Cx a+2y3与-3x3y2b-1是同类项,那么a,b的值分别是( )4.如果13A.a=1,b=2B.a=0,b=21C.a=2,b=1D.a=1,b=1答案 Ax-10)元出售,则下列说法中, 5.某商店举办促销活动,促销的方法是将原价x元的衣服以(45能正确表达该商店促销方法的是( )A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元答案 B6.当x=-2时,-(x-3)+(2-x)+(3x-1)的值为( )A.2B.3C.4D.5答案 A7.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A.4、-6、5B.4、0、-1C.2、0、5D.4、6、5答案 D8.多项式1x|n|-(n+2)x+7是关于x的二次三项式,则n的值是( )2A.2B.-2C.2或-2D.3答案 A239. 已知多项式ax 5+bx 3+cx,当x=1时多项式的值为5,那么当x=-1时该多项式的值为( )A.-5B.5C.1D.无法求出 答案 A10.已知m 、n 为常数,代数式2x 4y+mx|5-n|y+xy 化简之后为单项式,则m n的值共有( ) A.1个 B.2个 C.3个 D.4个 答案 C11.若x 2+ax-2y+7-(bx 2-2x+9y-1)的值与x 的取值无关,则-a+b 的值为( )A.3B.1C.-2D.2答案 A12.如果关于x 的代数式-3x 2+ax+bx 2+2x+3合并后不含x 的一次项,那么( )A.a+b=0B.a=0C.b=3D.a=-2 答案 D 二、填空题(每小题3分,共30分)13.一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.答案 2 000a14.在代数式:a 2-12,-3xy 3,0,4ab,3x 2-4,xy 7,n 中,单项式有 个.答案 5 15.多项式6x 3-xy 5+y 2中共有 项,各项系数分别为 .答案 三;6,-15,115.若单项式-2m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为.3答案2716.已知3a-2b=2,则9a-6b+5= .答案1117.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2= ,a2-b2= .答案6;-2218.图2-3-1是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n(n为正整数)个图案由个▲组成.图2-3-1答案(3n+1)三、解答题19.化简:(1)2m-3n+[6m-(3m-n)] (2)(2a2-1+3a)-2(a+1-a2).答案(1)5m-2n.(2)4a2+a-3.20.已知A=-x2+5-4x,B=5x-4+2x2,C=-2x2+8x-3.(1)化简A+B-C;45(2)在(1)的结果中,若x 取最大负整数,结果是多少?答案 (1)3x 2-7x+4.(2)4.21.化简求值:12x-2(x -13y 2)+(-32x +13y 2),其中x=-2,y=-23答案 原式=-3x+y 2.当x=-2,y=-23时,原式=-3×(-2)+(-23)2=6+49=649. 22.已知m,x,y 满足:35(x-5)2+|m-2|=0,-3a 2·b y+1与a 2b 3是同类项,求整式(2x 2-3xy+6y 2)-m(3x 2-xy+9y 2)的值.答案-158.23.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?答案 相信.(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)=7a 3-6a 3b+3a 2b+3a 3+6a 3b-3a 2b-10a 3+3=(7a 3+3a 3-10a 3)+(-6a 3b+6a 3b)+(3a 2b-3a 2b)+3=3,则不管a 、b 取何值,整式的值都为3.。
人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案
人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列说法中,正确的是( ) A. 24m n 不是整式 B. ﹣32abc 的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式 2.下列每组单项式中是同类项的是( )A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz 3.下列各式合并同类项结果正确的是( )A. 3x 2﹣x 2=3B. 3x 2+5x 3=8x 3C. 3a 2﹣a 2=aD. 3a 2﹣a 2=2a 2 4.下列说法正确的是 ( )A. x 系数是0B. y 不是单项式C. 0.5是单项式D. -5a 的系数是5 5.单项式2a 3b 的次数是( )A 2B. 3C. 4D. 5 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 9.多项式()1472m x m x --+是关于x 四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-410.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2二.填空题(共6小题) 11.225ab π-系数是________,次数是_______次; 12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 18.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n)2017的值.20.已知单项式﹣25m 2x ﹣1n 9和25m 5n 3y 是同类项,求代数式12x ﹣5y 的值. 21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?22.当x=-12,y=-3时,求代数式 3(x 2﹣2xy)﹣[3x 2﹣2y+2(xy+y)]的值. 23.定义:若a b 2+=,则称a 与b 是关于1平衡数.(1)3与______是关于1的平衡数,5x -与______是关于1的平衡数.(用含x 的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.答案与解析一.选择题(共10小题)1.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.2.下列每组单项式中是同类项是( )A. 2xy与﹣13yx B. 3x2y与﹣2xy2C.12x与﹣2xy D. xy与yz【答案】A【解析】【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断.【详解】A选项:2xy与﹣13yx含字母相同,并且相同字母指数也相同,所以是同类项,故是正确的;B选项:3x2y与-2xy2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C选项:-12x与﹣2xy所含字母不同,所以不是同类项,故是错误的;D选项:xy与yz所含字母不同,所以不是同类项,故是错误的;故选A.【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.3.下列各式合并同类项结果正确的是( )A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a2【答案】D【解析】【分析】所含字母相同且相同字母的指数也相同的项为同类项,只有同类项才能合并,合并时各同类项系数相加减,字母及其指数不变.【详解】解:A,原式=2x2,故错误;B,原式已是最简式,无法再进行合并,故错误;C,原式=2a2,故错误;D,原式=2a2,故正确;故选D.【点睛】本题考查了合并同类项的概念.4.下列说法正确的是 ( )A. x的系数是0B. y不是单项式C. 0.5是单项式D. -5a的系数是5【答案】C【解析】A选项,∵的系数是1,∴A选项说法错误;B选项,∵单独的一个数或字母都是单项式,∴B选项说法错误;C选项,∵单独的一个数或字母都是单项式,∴C选项说法正确;D选项,∵5a 的系数是,∴D选项说法错误;故选C.5.单项式2a3b的次数是( )A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 【答案】D【解析】【分析】根据单项式的概念判断即可.【详解】代数式a+b ,37x 2,5a ,﹣m ,0,3a b a b +-,32x y -中单项式有:37x 2,5a ,﹣m ,0,共计3个. 故选D.【点睛】考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案. 详解:22x y +,2a b ,12,3x 2+5x ﹣2,abc,0,2x y x +,m 中:有4个单项式:12,abc,0,m ; 2个多项式:22x y +,3x 2+5x-2. 故选C .点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 【答案】C【解析】根据同类项的概念,含有相同的字母,相同字母的指数相同,故可由代数式2x a y 3z c 与4212b x y z -是同类项,求得a=4,b=3,c=2,故选C .9.多项式()1472m x m x --+是关于x 的四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-4【答案】C【解析】 ∵多项式()1472m x m x --+是关于x 的四次三项式, ∴|m|=4,且m-4≠0,∴m=-4,故选C.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.10.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x 2﹣2y 2+(x 2+y 2),=(1+1)x 2+(﹣2+1)y 2,=2x 2﹣y 2,故选B .【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键. 二.填空题(共6小题) 11.225ab π-的系数是________,次数是_______次; 【答案】 (1). 25π-(2). 3 【解析】 单项式225ab π-的系数是-25π,次数是3. 点睛:单项式的定义:不含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.【答案】a ﹣b【解析】【分析】把a-b 看作是一个整体.合并同类项时系数相加减,字母与字母的指数不变.【详解】3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)(a-b)+(4-3-1)(a-b)2=a-b .【点睛】利用整体思想,且灵活运用合并同类项法则是解题关键.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.【答案】8【解析】【分析】根据同类项的定义可知,相同字母的次数相同,据此列出方程即可求出a 、b 的值.【详解】∵单项式a 13x y +与3b 2x y 是同类项,∴a 13{b 3+==, 解得a 2{b 3==. ∴b 3a 2=8=.故答案为8.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.【答案】 (1). 四 (2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x 3﹣x 2y 2﹣3xy+x ﹣1是四次五项式.故答案为四,五.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 【答案】x 2+2y 2,94. 【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可. 【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦ =2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x 2+2y 2,当x=12,y=﹣1时,原式=14+2=94.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.【答案】m=1,n=3【解析】【分析】根据题意,由三次二项式的定义得出m+2=3,n-3=0,然后解得m,n,即可求得答案.【详解】∵2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,∴m+2=3,n﹣3=0,解得m=1,n=3.【点睛】考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解.19.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.【答案】-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.20.已知单项式﹣25m2x﹣1n9和25m5n3y是同类项,求代数式12x﹣5y的值.【答案】-13.5. 【解析】分析】首先根据同类项的定义求出x和y的值,然后代入代数式得出答案.【详解】解:∵单项式﹣25m2x﹣1n9和25m5n3y是同类项,∴2x﹣1=5,3y=9, ∴x=3,y=3,∴12x﹣5y=12×3﹣5×3=﹣13.5.【点睛】本题主要考查的是同类项的定义以及代数式的求值问题,属于基础题型.理解同类项的定义是解题的关键.21.某村小麦种植面积是a公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?【答案】a+30公顷.【解析】试题分析:根据题意可得水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,求出水稻种植面积与玉米种植面积的差即可得出结果.试题解析:水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,则水稻种植面积比玉米种植面积大(2a+25)﹣(a﹣5)=2a+25﹣a+5=a+30(公顷).考点:整式的加减.22.当x=-12,y=-3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.【答案】﹣12【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=,y=﹣3时,原式=﹣12.考点:整式的加减—化简求值.23.定义:若a b2+=,则称a与b是关于1的平衡数.(1)3与______是关于1的平衡数,5x-与______是关于1的平衡数.(用含x的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.【答案】(1)﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数【解析】【分析】(1)由平衡数的定义即可求得答案;(2)计算a+b 是否等于1即可.【详解】(1)设3的关于1的平衡数为a ,则3+a=2,解得a=﹣1, ∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b=2,解得b=2﹣(5﹣x )=x ﹣3, ∴5﹣x 与x ﹣3是关于1的平衡数,故答案﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x 2﹣3(x 2+x )+4,b=2x ﹣[3x ﹣(4x+x 2)﹣2],∴a+b=2x 2﹣3(x 2+x )+4+2x ﹣[3x ﹣(4x+x 2)﹣2]=2x 2﹣3x 2﹣3x+4+2x ﹣3x+4x+x 2+2=6≠2, ∴a 与b 不是关于1的平衡数.。
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)一、单选题1.下列代数式中,为单项式的是( ) A .5xB .aC .3a ba+ D .22x y +2.代数式1x, 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个3.单项式322π3a b c -的系数和次数分别是( ) A .2π3-,6B .23-,6C .2π3-,5D .2π3,64.某品牌冰箱进价为每台m 元,提高20%作为标价.元旦期间按标价的9折出售,则出售一台这种冰箱可获得利润( ) A .0.1m 元B .0.2m 元C .0.8m 元D .0.08m 元5.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( ) A .七次多项式B .七次整式C .四次多项式D .四次整式6.多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( ) A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关7.如图,两个大小正方形的边长分别是4cm 和x cm (0<x <4).用含x 的式子表示图中阴影部分的面积为( )cm 2.A .214xB .212xC .()2144x + D .()2142x + 8.若当x =2时,335ax bx ++=,则当x =-2时,求多项式2132ax bx --的值为( ) A .-5 B .-2 C .2 D .59.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a ,宽为b )的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示.则图①中两块阴影部分周长和是( )A .4aB .4bC .()2a b +D .()4a b -10.按框图的程序计算,若开始输入的n 值为3,则最后输出的结果是( ).A .2B .151C .153D .168二、填空题11.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.12.甲、乙两地相距400千米,某车以80千米/小时的速度从甲地开往乙地,行驶了t (t ≤5)小时,此时该车距乙地的路程为____________千米. 13.多项式2342x y xy x -++-的次数与项数之比为______.14.已知多项式4916252581114357911a a a a a b b b b b-+-+……,(0)ab ≠,该多项式的第7项为_______,用字母a 、b 和n 表示多项式第n 项____________.(n 为正整数) 15.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:_______________________. 三、解答题的指出项和次数:4232223431,,1,,331,32,227m n a b x y x x y xy x t x y -+--++--.17.列式表示(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付100元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第二次降价每件又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m ,小李跑了()m 45000a a >,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?18.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.19.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.20.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.21.如图是某居民小区的一块长为2a 米,宽为 b 米的长方形空地,为了美化环境,b 米的扇形花台,然后在花台内种花,准备在这个长方形的四个顶点处修建一个半径为12其余种草.如果建造花台及种花费用每平方米需要资金100 元,种草每平方米需要资金50 元,那么美化这块空地共需资金多少元?参考答案1.B 2.B 3.A 4.D 5.D 6.C 7.B 8.B 9.B 10.D 11.312.(400﹣80t )13.3414.492015ab ()()23121nn n a b -+-15.22(1)(1)21n n n n n --=+-=- 16.17.(1)(15)t +℃;(2)nc 元,(100)nc -元;(3)0.8b 元,(0.810)b -元;(4)m,1500m,1500.3030a a m ⎛⎫- ⎪⎝⎭18.解:(1)①2A +B =4a 2b ﹣3ab 2+4abc ,①B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc) =4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc =-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc =8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0.19.添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号. ①a 2+b 2=5,1-b =-2,①-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7. 20.由题意可知0a c -<,0b >,0b a ->,0b a +<, ||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+. 21.解:100×14πb 2+50(2ab ﹣14πb 2)=252πb 2+100ab (元).。
七年级数学上册《第二章 整式》练习题附带答案-人教版
七年级数学上册《第二章整式》练习题附带答案-人教版一、选择题1.一个篮球的单价为a元,一个足球的单价为b元(b>a).小明买6个篮球和2个足球,小刚买5个篮球和3个足球,则小明比小刚少花( )A.(a﹣b)元B.(b﹣a)元C.(a﹣5b)元D.(5b﹣a)元2.当x=1时,代数式2x+5的值为( )A.3B.5C.7D.-23.圆柱底面半径为3 cm,高为2 cm,则它的体积为( )A.97π cm2B.18π cm2C.3π cm2D.18π2 cm24.整式x2-3x的值是4,则3x2-9x+8的值是( )A.20B.4C.16D.-45.单项式-ab2c3的系数和次数分别是 ( )A.-1、5B.-1、6C.1、5D.1、66.现有四种说法:①-a表示负数;②若|x|=-x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式.其中正确的是( )A.①B.②C.③D.④7.下列叙述中,错误的是( )A.-a的系数是-1,次数是1B.单项式ab2c3的系数是1,次数是5C.2x-3是一次二项式D.3x2+xy-8是二次三项式8.把多项式5x2y3﹣2x4y2+7+3x5y按x的降幂排列后,第三项是()A.5x2y3B.﹣2x4y2C.7D.3x5y9.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,…其中第10个式子是( )A.a 10+b 19B.a 10﹣b 19C.a 10﹣b 17D.a 10﹣b 2110.下列说法正确的是( )A.单项式-x 23的系数是-3B.单项式2π2ab 3的指数是7 C.多项式x 3y -2x 2+3是四次三项式D.多项式x 3y -2x 2+3的项分别为x 3y ,2x 2,3二、填空题11.与3x-y 的和是8的代数式是________.12.若a-2b=3,则9-2a+4b 的值为_______.13.单项式﹣56x 2y 的系数是 ,次数是 . 14.在多项式3x 2+πxy 2+9中,次数最高的项的系数是 .15.已知多项式a 2b |m|﹣2ab +b 9﹣2m +3为5次多项式,则m = .16.如图所示,是一个运算程序示意图,若第一次输入k 的值为125,则第2 022次输出的结果是______.三、解答题17.学校多功能报告厅共有20排座位,其中第一排有a 个座位,后面每排比前一排多2个座位.(1)用式子表示最后一排的座位数.(2)若最后一排有60个座位,则第一排有多少个座位?18.已知a -b=-3,求代数式(a -b)2-2(a -b)+3的值.19.王佳在抄写单项式时,不小心把字母y,z的指数用墨水污染了,他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?20.已知多项式-5πx2a+1y2-14x3y3+x4y3.①求多项式各项的系数和次数;②若多项式的次数是7,求a的值.21.若关于x的多项式x3+(2m+1)x2+(2-3n)x-1中不含二次项和一次项,求m,n的值.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.用棋子摆成的“T”字形图如图所示:(1)填写表:图形序号①②③④…⑩每个图案中棋子个5 8 …数(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)参考答案1.B2.C.3.B4.A5.B6.C7.B8.A9.B10.C11.答案为:-3x +y +8;12.答案为:3.13.答案为:﹣56;3. 14.答案为:π.15.答案为:3或2.16.答案为:5.17.解:(1)最后一排的座位数(单位:个)为a +2×19=a +38.(2)由题意,得a +38=60,解得a=22.若最后一排有60个座位,则第一排有22个座位.18.答案为:1819.解:由题意知,x 的指数是1,则y ,z 的指数的和是4.当y 的指数是1时,z 的指数是3;当y 的指数是2时,z 的指数是2;当y 的指数是3时,z 的指数是1.所以这个单项式是-xyz 3或-xy 2z 2或-xy 3z.20.解:①-5πx 2a +1y 2的系数是-5π,次数是2a +3;-14x 3y 3的系数是-14,次数是6;x 4y 3的系数是13,次数是5. ②2 21.解:∵不含二次项和一次项∴2m +1=0,2-3n=0解得m=-12,n=23. 22.解:(1)∵当n=1时,xy ,当n=2时,-2x 2y ,当n=3时,4x 3y当n=4时,-8x 4y ,当n=5时,16x 5y∴第9个单项式是29-1x 9y ,即256x 9y.(2)该单项式为(-2)n -1x n y ,它的系数是(-2)n -1,次数是n +1.23.解:(1)11 14 32;(2)第n 个“T ”字形图案共有棋子(3n +2)个.(3)当n =20时,3n +2=3×20+2=62(个).即第20个“T ”字形图案共有棋子62个.(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T ”字形图案中,棋子的总个数为67×10=670(个).。
人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)
人教版七年级数学上册《第二章整式的加减》单元测试卷(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.单项式的系数和次数分别为()A.3,2 B.-3,2 C.,3 D.,32.代数式:0,3a,π与,1,﹣,+y,其中单项式的个数是()A.5 B.1 C.2 D.33.下列计算正确的是()A.B.C.D.4.化简的结果是()A.B.C.D.5.将多项式合并同类项后所得的结果是()A.二次二项式B.二次三项式C.一次二项式D.单项式6.已知A=a3﹣2ab2+1,B=a3+ab2﹣3a2b,则A+B的值()A.2a3﹣3ab2﹣3a2b+1 B.2a3+ab2﹣3a2b+1C.2a3+ab2+3a2b+1 D.2a3﹣ab2﹣3a2b+17.若单项式与是同类项,则的值为()A.9 B.8 C.6 D.58.多项式与多项式相加后,不含二次项,则常数m的值是()A.2 B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.化简:2(a+1)﹣a= .10.把多项式按x的升幂排列为.11.长方形的长是,宽是,则长方形的周长是.12.若多项式不含项,则 =13.某天数学课上,学习了整式的除法运算,放学后,小明回到家拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道三项式除法运算题:被除式的第二项中被钢笔水弄污了(还能看到前面的运算符号),你能算出被污染的内容是.三、解答题:(本题共5题,共45分)14.化简:15.先去括号,再合并同类项.(1)(2)16.先化简,再求值:,其中.17.已知和.(1)求;(2)若,求的值.18.小马虎做一道数学题,“已知两个多项式____,试求.”其中多项式的二次项系数印刷不清楚(1)小马虎看答案以后知道,请你替小马虎求出系数“”;(2)在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.参考答案:1.D 2.A 3.D 4.D 5.D 6.D 7.A 8.B 9.a+210.11.12.213.14.解:原式;15.(1)解:原式=3a-4b+2a-1=5a-4b-1;(2)解:原式=10a-6b- +6b=10a-3a2.16.解:.当时,原式.17.(1)解:;(2)解:,解得,b=2由(1)知18.(1)-5(2)解:因为A+C=,A=-5x2-4x 所以C=+5x2+4x=6x2-3x-3所以A-C=(-5x2-4x)-(6x2-3x-3)=-5x2-4x-6x2+3x+3=-11x2-x+3.答:A-C的结果为-11x2-x+3。
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案)
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πr2ℎ的次数是()A.1 B.2 C.3 D.42.在代数式x2+5,﹣1,x2﹣3x+4,π,5m 和x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列说法正确的是()A.1x +1是多项式B.3x+y3是单项式C.−mn5是五次单项式D.−x2y−2x3y是四次多项式4.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2 B.-8 C.-2 D.-35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.请写出一个只含有a,b两个字母的单项式,要求系数为−4,次数3,这个单项式可以是.10.多项式3x2﹣2xy2+xyz3的次数是.11.如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=,n=12.多项式(m﹣2)x|m|+mx﹣3是关于x的二次三项式,则m= .13.已知x2+2y-3=0,则3(x2+2xy)-(x2+6xy)+4y的值为14.化简:(1)3xy2−4x2y−2xy2+5x2y;(2)(mn+3m2)−(m2−2mn)15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.a2−3ab−2且a、b互为倒数,求3A−2B的值.17.若A=a2−4ab−5,B=3218.今年十月份,为方便民众出行,连江县成立了出租车公司,收费标准是:起步价5元,可乘坐3千米;3千米之后每千米加收1.8元.若某人乘坐了x千米(1)用代数式表示他应支付的费用;(2)若他乘坐了13千米,应支付多少元?1.C2.B3.D4.D5.B6.B7.D8.A9.−4ab 2或−4a 2b10.511.0;212.-213.614.(1)xy 2+x 2y(2)3mn +2m 215.﹣7.16.−2x +2y ,10.17.−6ab −11,−17. 18.(1)①当0x <≤3时,支付的费用为5;②当3x >时,支付的费用为()1.80.4x -元(2)23元。
人教版七年级数学上册第二章《整式的加减》测试题(含答案)
人教版七年级数学上册第二章《整式的加减》测试题(含答案)(考试时间:90分钟,赋分:100分)姓名:________ 班级:________ 分数:________一、选择题(本大题共10小题,每小题3分,满分30分)1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同; ③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.20.观察下列等式:13+23=1×22×32;4×32×42;13+23+33=14×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=;(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S2-S1的值为;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)题 号 1 2345678910答 案 CBADBCCADB1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 -2a .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 (12a +25) 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 4b .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = -4 .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = b 2-b . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 18 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值. 解:原式=2(2x 2-2xy +y 2)-3(3x 2+xy -2y 2) =4x 2-4xy +2y 2-9x 2-3xy +6y 2 =-5x 2-7xy +8y 2.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?解:由题可知a -(13a+1)-{23[a -(13a+1)]-2}=a -13a -1-[23(23a -1)-2]=a -13a -1-49a +23+2=(29a+53)米.答:最后还剩(29a+53)米.19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.解:(1)因为该多项式为六次四项式,所以2+m+1=6,所以m=3.因为单项式3x2n y5-m的次数也是6,所以2n+5-m=6,所以n=2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项为-6,各项系数为-5,1,-3,-6,故系数和为-5+1-3-6=-13.20.观察下列等式:×22×32;13+23=1413+23+33=1×32×42;4×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=1n2(n+1)2;4(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.×1002×1012=502×1012=50502.解:(2)根据(1)可知13+23+33+…+1003=14因为50502<50552,所以13+23+33+…+1003<50552.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是630,S2-S1的值为-63;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.解:(2)因为S1=4b(40-a),S2=a(40-3b),所以S2-S1=a(40-3b)-4b(40-a)=40a-160b+ab.(3)S2-S1=a(AD-3b)-4b(AD-a),整理,得S2-S1=(a-4b)AD+ab.因为若AB的长度不变,AD变长,而S2-S1的值总保持不变, 所以a-4b=0,即a=4b,所以a,b满足的关系是a=4b.。
2023-2024学年七年级数学上册《第二章 整式》同步练习题有答案(人教版)
2023-2024学年七年级数学上册《第二章整式》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是()A.单项式x没有系数B.mn2与−12n2m是同类项C.3x3y的次数是3 D.多项式3x-1的项是3x和12.在代数式x−3y2中,含y的项的系数是()A.-3 B.3 C.-32D.323.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.常数项是1C.四次项的系数是7 D.﹣7xy3﹣2x3y2+0.3x2y+1是整式4.若单项式-2x2y3的系数是m,次数是n,则mn的值为()A.-2 B.-6 C.-4 D.-35.下列式子:x2+2,1a +4与3ab7,abc,﹣5x,0中,整式的个数有()A.3个B.4个C.5个D.6个6.若2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,则-n m的值为()A.-25 B.25 C.-32 D.327.若多项式k(k−2)x3+kx2−2x2−6是关于x的二次多项式,则k的值为().A.0 B.1 C.2 D.以上都错误8.下列说法:①a为任意有理数,a2总是正数;②如果|a|=−a,则a是负数;③单项式−4a3b的系数与次数分别为—4和4;④代数式t2、−a+b3、2b都是整式.其中正确的有()A.4个B.3个C.2个D.1个二、填空题9.单项式﹣3πx2y24的系数是,次数是.10.)多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为.11.把多项式6x−7x2+9按字母x的降幂排列为.12.多项式﹣53x3y2﹣7xy2+4x4﹣26为次四项式.13.关于x的多项式(a+1)x2+2x a+1+3x3−a(x≠0)合并后是三项式,则a的值为.(提示:当x≠0时,x0=1)三、解答题14.已知整式(m+2)x2+3x6−n−5是关于x的三次二项式,求m2n+mn2的值.x2y m+1+x2y2−3y2+8是六次四项式,单项式2x2n y5−m与该多项式次数相同,15.已知多项式−35求m,n的值.16.已知式子:ax5+bx3+3x+c,当x=0时,该式的值为﹣1.(1)求c的值;(2)已知当x=1时,该式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该式的值为﹣1,试求当x=﹣3时该式的值;(4)在第(3)小题的已知条形下,若有3a=5b成立,试比较a+b与c的大小.17.对于多项式(n-1)x m+2-3x2+2x(其中m是大于-2的整数).(1)若n=2,且该多项式是关于x的三次三项式,求m的值;(2)若该多项式是关于x的二次单项式,求m,n的值;(3)若该多项式是关于x的二次二项式,则m,n要满足什么条件?18.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式-2x2-4x+1的一次项系数,b 是x2y4的次数为c.最小的正整数,单项式−12(1)a= ,b= ,c= .(2)若将数轴在点B处折叠,则点A与点C 重合(填“能”或“不能”);(3)若数轴上M、N两点之间的距离为2022(M在N的左侧),且M、N两点在B处折叠后互相重合,则M、N表示的数分别是:M:;N:(4)若在数轴上任意画出一条长是2022个单位的线段,则此线段盖住的整数点的个数是。
七年级数学上册《第二章 整式》单元测试卷-带答案(人教版)
七年级数学上册《第二章整式》单元测试卷-带答案(人教版)一、选择题1. 在式子5,x=2,a,√ 3,m+n>0,st中,代数式的个数是( )A. 3B. 4C. 5D. 62. 已知m表示一个一位数,n表示一个两位数.若把m放在n的左边,组成一个三位数,则这个三位数可表示为( )A. mnB. m+nC. 10m+nD. 100m+n3. 代数式2(y−2)的正确含义是( )A. 2乘y减2B. 2与y的积减去2C. y与2的差的2倍D. y的2倍减去24. 多项式2a2b−ab2−ab的项数及次数分别是( )A. 3,3B. 3,2C. 2,3D. 25. 若关于x,y的多项式4x2y+7mxy−5y3+6xy化简后不含二次项,则m的值为( )A. −47B. −67C. 0D. 576. 下列代数式中,值总为正数的是( )A. x+1B. |x|C. x2+2D. x37. 代数式3m2−52可表示为( )A. m的3倍的平方减去5除以2B. m的3倍减去5的一半C. m与5的差的3倍除以2D. m的平方的3倍与5的差的一半8. 如图所示的图案均是长度相同的小木棒按一定的规律拼搭而成:第1个图案需7根小木棒,第2个图案需13根小木棒⋯⋯依此规律,第10个图案需小木棒的根数是( )A. 101B. 111C. 133D. 1579. 现定义一种新运算:如:则等于( )A. −9B. −6C. 6D. 910. 按一定规律排列的单项式:x,2x3,4x5,8x7⋯则第n个单项式是( )A. 2n x2n−1B. 2n−1x2n−1C. 2n−1x2n+1D. 2n x2n+1二、填空题11. 单项式−πa2b3的系数是.12. 多项式ab−2a−b中的各项系数和多项式的次数分别是.13. 张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸.若剩余的以每份0.2元的价格退回报社,则张大伯卖报盈利元.14. 若a+2b=8,3a+4b=18,则a+b的值为.15. 将方程2x−3y3=6变形为用含y的式子表示x,那么x=______ .16. 在代数式a3,1x+y,1−x−5xy2,−x,6xy+1,a2−b2中,多项式有个.17. 某种商品原价是m元,第一次降价打“九折”,第二次降价每件又减20元,第二次降价后的售价是元.18. 某化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(t⋅km),铁路运价为1.2元/(t⋅km),且这两次运输共支出公路运费15000元,铁路运费97200元.设购买xt原料,制成yt产品.则从A地到这家化工厂原料运输费是,这批产品的销售款比原料费与运输费的和.多元.19. 将面积分别是9和7的两个三角形按如图所示的方式放置,若图中对应的阴影部分面积分别是m和n,则m−n=.20. 如图,用正方形按如图所示的规律拼图案,图案 ①中有5个正方形,图案 ②中有9个正方形,图案 ③中有13个正方形,图案 ④中有17个正方形,按此规律排列下去,则图案 ⑨中正方形的个数为.三、解答题21. 已知a=8,b=−5,c=−3,求下列代数式的值.(1)a−b−c.(2)a−(c+b).22. 我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220−a).(1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?23. 已知3x2y|m|−(m−1)y+5是关于x,y的三次三项式,求2m2−3m+1的值.24. 根据下列语句列代数式:(1)b的4倍的相反数.3(2)x与y的2倍的和的立方.(3)x减去y的差的平方.(4)x与y的和的倒数.25.如图,有两摞规格相同的数学课本整齐地叠放在讲台上.请根据图中所给的数据信息解答下列问题.(1)每本书的厚度为cm,课桌的高度为cm.(2)若将该规格的x本数学课本在桌面上叠放成一摞,请用含x的式子表示该摞数学课本高出地面的高度.26. 已知m、n是正整数,a、b、c均不为0,若a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,求m、n的值.参考答案1、B2、D3、C4、A5、B6、C7、D8、C9、A10、B11、−π312、1,−2,−1,213、0.3b−0.2a14、515、3y+18216、317、(0.9m−20)18、40000040000019、220、3721、【小题1】16【小题2】1622、【小题1】164次.【小题2】没有危险.23、624、【小题1】−43b.【小题2】(x+2y)3.【小题3】(x−y)2.【小题4】1x+y.25、【小题1】0.5、85【小题2】(85+0.5x)cm26、依题意,可得a m+1b2c的次数为m+1+2+1=m+4,−17ab n+1c2的次数为1+n+1+2=n+4,112a m+3b n c的次数为m+3+n+1=m+n+4因为m、n为正整数,所以m+n+4>m+4,m+n+4>n+4.因为a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,所以m+n+4=8,即m+n=4,所以m=1n=3或m=2,n=2或m=3,n=1.。
【人教版】七年级上册数学:2.1《整式》练习题及答案
七年级上册第2.1 整式综合测试题一、选择题(每题 3 分,共 24 分)1、假如1a 2b 2n 1 是五次单项式,则 n 的值为()2A 、1 B、 2 C、3 D 、42、多项式 x22xy y 31是()4A 、三次三项式 B、二次四项式C、三次四项式D、二次三项式3、多项式 x 2 y 3 3xy 3 2的次数和项数分别为()A 、5,3B、5,2C 、2,3D 、 3,34、对于单项式2 r 2 的系数、次数分别为()A 、- 2,2B 、- 2,3 C、 2 ,2 D、2 ,35、以下说法中正确的选项是( )A 、2 3B 、 x 11x 3x2 x 是六次三项式xx 2 是二次三项式C 、 x 2 2x 25 是五次三项式D 、 5x 5 2x 4 y 21是六次三项式6、以下式子中不是整式的是()A 、 23xB、a2b C、 12x 5yD、 0a7、以下说法中正确的选项是()A 、- 5,a 不是单项式B、abc的系数是- 22C 、 x 2 y 2的系数是1,次数是 4D、 x 2 y 的系数为 0,次数为 2338、以下用语言表达式子“ a 3 ”所表示的数目关系,错误的选项是()A 、 a 与- 3 的和B、- a 与 3 的差C 、- a 与 3 的和的相反数 D、- 3 与 a 的差二、填空题(每题3 分,共 24 分)1、单项式4xy 2 的系数为____,次数为_____。
32、多项式 x 3xyy 2y1是_____次__项式,各项分别为___,各2项系数的和为____。
3、 a 的 3 倍的相反数可表示为____,系数为____,次数为_____。
4、以下各式: 1, a23ab b 2,1x, xy,1 x, 3a 2b , r 4 , x 2 3x 1 ,此中单项式有22 2____,多项式有_____。
5、以下式子 0, 2ab,3x 2yz,3a 3b, 1 x 2 1,它们都有一个共同的特色是__2 2 3__。
新人教版初中数学七年级数学上册第二单元《整式的加减》检测卷(有答案解析)
一、选择题1.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .69 2.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .13.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =04.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 5.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =6.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- 7.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 8.如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或133 9.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( )A .3x ﹣20=24x +25B .3x +20=4x ﹣25C .3x ﹣20=4x ﹣25D .3x +20=4x +25 10.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 11.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( )A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 12.下列判断错误的是 ( ) A .若,则B .若,则C .若,则D .若,则二、填空题13.关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________. 14.若方程2(2)3m m x x ---=是一元一次方程,则m =________.15.若2a +1与212a +互为相反数,则a =_____. 16.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x -亥61=-的x 的值为__________. 17.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____.18.将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.19.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.20.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题21.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题: ()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?22.阅读下列解题过程,指出它错在哪一步?为什么?2(1)13(1)1x x --=--. 两边同时加上1,得2(1)3(1)x x -=-.第一步两边同时除以(1)x -,得23=.第二步所以原方程无解.第三步23.某同学在给方程21133x x a -+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程.24.统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?25.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 26.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形可知:三个圆纸片覆盖的总面积+A 与B 的重叠面积+B 与C 的重叠面积+C 与A 的重叠面积−A 、B 、C 共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A 、B 、C 共同重叠面积,从而求出图中阴影部分面积.【详解】解:设三个圆纸片重叠部分的面积为x ,则73+6+8+5−x =30×3,得x =2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58.故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.2.B解析:B【分析】根据方程的解求得m 的值,然后将m 的值代入方程3261x m x +=+求解x 的值即可.【详解】解:∵x=5是关于x 的方程4x+2m=3x+1的解,∴20+2m=15+1,解得:m=-2,∴方程变为3x-4=6x+1,解得:x=53-. 故选B.【点睛】本题考查了二元一次方程的解的知识,解题的关键是根据方程的解求得m 的值,难度不大.3.A解析:A【分析】利用等式的性质解方程即可解答.【详解】解: 移项得:2+2x 4+4x =合并同类项得:48x =系数化为1得:2x =故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.4.C解析:C【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.5.D解析:D【分析】根据解一元一次方程的步骤计算,并判断.【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+,移项、合并同类项得5x =,故正确.故选:D .【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号. 6.B解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.7.B解析:B【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B .【点睛】本题考查解一元一次方程,题目简单.8.A解析:A【分析】首先分P 运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD 是矩形AD BC 2cm ∴==,当点P 在AB 边时AB 3cm =∴此时点Q 还在点D 处,AP t = ∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上∴()AQ 22t 3=-- ∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3= ∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A .【点睛】本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.9.B解析:B【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可.【详解】解:根据题意可得:3x +20=4x ﹣25.故选B .【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.10.D解析:D【分析】方程两边每一项都乘以6即可得.【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2),故选D .【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.11.A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,2x-8=12(x+8)+3,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12.D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b,则a−3=b−3,正确;B. 若a=b,则7a−1=7b−1,正确;C. 若a=b,则,正确;D. 当c=0时,若,a就不一定等于b,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.二、填空题13.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方解析:0或6或8【分析】先解方程,得到一个含有字母k的解,然后根据解是自然数解出k的值即可.【详解】解:移项得,9x-kx=2+7合并同类项得,(9-k)x=9,因为方程有解,所以k≠9,则系数化为1得,x=99-k,又∵关于x的方程9x-2=kx+7的解是自然数,∴k的值可以为:0、6、8.其自然数解相应为:x=1、x=3、x=9.故答案为:0或6或8.【点睛】本题考查解一元一次方程、方程的解,解答的关键是根据方程的解对整数k 进行取值,注意不要漏解.14.1或2【分析】利用一元一次方程的定义分和两种情况讨论即可求出m 的值【详解】①当时由题意得且解得;②当时解得综上或2故答案为:或2【点睛】本题考查了一元一次方程的定义以及绝对值熟练掌握一元一次方程的定 解析:1或2【分析】利用一元一次方程的定义,分20m -≠和20m -=两种情况讨论,即可求出m 的值.【详解】①当20m -≠时,由题意得|2|1m -=,且210m --≠,解得1m =;②当20m -=时,解得2m =.综上,1m =或2.故答案为:1或2.【点睛】本题考查了一元一次方程的定义以及绝对值,熟练掌握一元一次方程的定义,利用分类讨论思想是解本题的关键.15.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.16.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键 解析:34- 【分析】原式利用题中的新定义计算即可求出值.【详解】根据题中的新定义得123x -亥61=- 126613x -⨯-=- 2461x --=-43x -=34x =- 故答案为:34-. 【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的解法是解题的关键. 17.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x ,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可.【详解】设火车的长度为x 米,则火车的速度为15x ,依题意得: 45×15x =600+x 解得:x =300.故答案为:300.【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x ,根据题意可列方程求解. 18.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 19.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.20.【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b + 【解析】【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +, 故答案为:5()4a b +. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.三、解答题21.(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解.【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-.. 解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦,解得:y 20=,则:50y 30-=.答:小明购买了钢笔20支,签字笔30支.【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 22.第二步出错,见解析【分析】根据等式的基本性质判断即可.【详解】解题过程在第二步出错理由如下:等式两边不能同时除以1x -,1x -可能为0.【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.利用等式的性质2进行化简时,一定要注意等式两边不能同时除以一个可能为0的式子,否则容易导致类似本题中出现的错解.23.2a =,0x =【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解.【详解】把2x =代入211x x a -=+-,得:2a =∴原方程为:212133x x -+=- 去分母得:2123x x -=+-移项得:2231x x -=-+合并同类项得:0x =【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 24.102座.【分析】根据等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.【详解】设严重缺水城市有x 座,依题意得:(3x+52)+x+2x=664.解得:x=102.答:严重缺水城市有102座.【点睛】此题考查一元一次方程的应用,解题的关键在于找到合适的等量关系,列出方程求解. 25.(1)10m =;(2)5x =【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解;(2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解.【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=-m 10=(2)2(3)7636x xx--+=-()6x4x336(x7+-=--)6x4x1236x7+-=-+11x55=x5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤.26.成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.。
人教版七年级数学上册第二章《整式》练习题(含答案)
整 式姓名一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( )A .2个B .3个C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( ) A .整式abc 没有系数 B .2x+3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a - C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+x B 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2ba + B 、ba s +C 、bs a s +D 、bs a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45,0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -1 13.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是3114.在多项式x 3-xy 2+25中,最高次项是( )A .x3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1B .2C .3D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2D .-23,317.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( ) A 、1 B 、 2 C 、-1 D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ;3.多项式:y y x xy x +-+3223534是 次 项式;4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有 10.x+2xy +y 是 次多项式.11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ;14.n 是整数,用含n 的代数式表示两个连续奇数 ;15.42234263y y x y x x --+-的次数是 ;16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等;19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m= .23.在x 2,21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
【数学】新人教版数学七年级(上)第二章单元质量检测试卷、答案.doc
人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 .三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)求3A+6B;(2)若3A+6B的值与x的取值无关,求y的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A=5x2-5x+3,B=x2-x-1,所以2A-B=2(5x2-5x+3)-(x2-x-1)=10x2-10x+6-x2+x+1=9x2-9x+7.18.解:(1)8x+6y+5(20―x―y)=(3x+y+100)吨.答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是()A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a3与a2B. a2与2a2C. 2xy与2xD. -3与a3.a+b=﹣3,c+d=2,则(c﹣b)﹣(a﹣d)的值为()A. 5B. -5C. 1D. -14.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) =6x 2﹣3y 2﹣6y 2+4x 2=(6x 2+4x 2)+(﹣3y 2﹣6y 2) =10x 2﹣9y 2 .21.解:∵2A+B=x 2+5x ﹣6,A=x 2+2x ﹣1,∴B=(x 2+5x ﹣6)﹣2(x 2+2x ﹣1)=x 2+5x ﹣6﹣2x 2﹣4x+2=﹣x 2+x ﹣4,∴A+2B=x 2+2x ﹣1+2(﹣x 2+x ﹣4)=x 2+2x ﹣1﹣2x 2+2x ﹣8=﹣x 2+4x ﹣922.解:原式=a 2﹣2ab+2a 2﹣2b 2﹣a 2+2ab ﹣b 2=2a 2﹣3b 2 , 当a=﹣ ,b=1时,原式=﹣2.5 五、综合题23.(1)解:S=n (n+1) (2)解:(a )2+4+6+…+100 =50×51 =2550;(b )52+54+56+…+200=(2+4+6+8+…+200)﹣(2+4+6++…+50) =100×101﹣25×26 =10100﹣650 =9450.人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( )A.5B.2x C.2x D.23a3、①; ②; ③; ④分别是同类项的是( )(A )①② ; (B )①③; (C )②③ ; (D )②④ 4、-( a-1)-(-a-2)+3的值是( ) (A )4; (B )6;(C )0; (D )与的值有关。
新人教版初中数学七年级数学上册第二单元《整式的加减》检测卷(包含答案解析)
一、选择题1.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .32.定义运算“*”,其规则为2*3a ba b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x =3.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为( ) A .100﹣x =2(68+x) B .2(100﹣x)=68+x C .100+x =2(68﹣x) D .2(100+x)=68﹣x4.一元一次方程的解是( )A .B .C .D .5.下列运用等式的性质对等式进行的变形中,错误的是( ) A .()()2211a x b x +=+若,则a b = B .若a b =,则ac bc = C .若a b =,则22a b c c = D .若x y =,则33x y -=-6.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元 B .100元 C .80元 D .60元 8.若代数式4x +的值是2,则x 等于( ) A .2 B .2- C .6 D .6- 9.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-310.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2511.对于ax+b=0(a ,b 为常数),表述正确的是( ) A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.12.下列方程中,以x =-1为解的方程是( ) A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题13.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅. 14.已知一个角的补角是这个角的4倍,那么这个角的度数是_________. 15.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 16.用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________. 17.如果34x x =-+,那么3x +________4=.18.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.19.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______. 20.在方程431=-x 的两边同时_________,得x =___________. 三、解答题21.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下: 运输工具 途中平均速度(千米/时) 运费(元/千米) 装卸费用(元) 火车 100 15 2000 汽车8020900(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢? 22.小明解方程21152x x a-++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为4x =,试求a 的值,并正确求出方程的解. 23.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 24.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元. (2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.25.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解. 26.解方程:(1)3x ﹣4=2x +5;(2)253164x x--+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a 与b ,根据该等量关系可以列出等式解答. 【详解】解:设第二橫行第一个空格为字母c ,如下图,据题意得, 85a c c b ++=++, 移项可得, 3b a -=. 故选:D. 【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.2.D解析:D 【分析】根据新定义列出关于x 的方程,解之可得. 【详解】 ∵4*x=4,∴234x⨯+=4, 解得x=4, 故选:D . 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.3.C解析:C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.4.A解析:A【解析】【分析】先移项,再合并同类项,把x的系数化为1即可;【详解】原式=;=故选A.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.5.C解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.6.B【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断. 【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B . 【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.7.C解析:C 【详解】解:设该商品的进价为x 元/件,依题意得:(x+20)÷510=200,解得:x=80. ∴该商品的进价为80元/件. 故选C .8.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.9.B解析:B 【分析】 列方程求解. 【详解】解:由题意可知x+2=1,解得x=-1, 故选B . 【点睛】本题考查解一元一次方程,题目简单.10.B【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可.【详解】解:根据题意可得:3x+20=4x﹣25.故选B.【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.11.D解析:D【分析】ax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C、当a=0,b=0,方程有无数解,故错误;D、以上都不正确.故选D.【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.12.A解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A、把x=-1代入方程的左边= -=右边,左边=右边,所以是方程的解;B、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C、把x=-1代入方程的左边=-11≠右边,不是方程的解;D、把x=-1代入方程的左边=-≠右边,不是方程的解;【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题13.69【详解】设国画为x 幅则油画为(2x+7)幅根据题意可得:x+2x+7=100解得:x=31则2x+7=69即油画作品的数量为69幅考点:一元一次方程的应用解析:69 【详解】设国画为x 幅,则油画为(2x+7)幅, 根据题意可得:x+2x+7=100, 解得:x=31,则2x+7=69, 即油画作品的数量为69幅. 考点:一元一次方程的应用.14.36°【分析】设这个角的度数为根据补角的性质列出方程求解即可【详解】设这个角的度数为可得解得故答案为:36°【点睛】本题考查了一元一次方程的应用掌握解一元一次方程的解法补角的性质是解题的关键解析:36° 【分析】设这个角的度数为x ,根据补角的性质列出方程求解即可. 【详解】设这个角的度数为x ,可得1804x x ︒-= 解得36x =︒故答案为:36°. 【点睛】本题考查了一元一次方程的应用,掌握解一元一次方程的解法、补角的性质是解题的关键.15.【分析】先求出m 的值再代入求出x 的值即可【详解】因为原方程是关于x 的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握 解析:3x =-【分析】先求出m 的值,再代入求出x 的值即可. 【详解】因为原方程是关于x 的一元一次方程,所以21+=m , 移项,得12m =-. 合并同类项,得1m =-.把1m =-代入原方程,得224x --=. 移项,得242x -=+. 合并同类项,得26x -=. 系数化为1,得3x =-. 故答案为:3x =-. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.16.加1520除以10【分析】根据等式的基本性质解答即可解方程时将方程变形的原则是左边不含常数项右边不含未知项【详解】等式左边有-15则两边需加15得;等式两边都除以(或乘)得故答案为:加1520除以1解析:加15 20 除以2510 【分析】根据等式的基本性质解答即可,解方程时将方程变形的原则是左边不含常数项,右边不含未知项. 【详解】等式155x -=,左边有-15,则两边需加15,得20x ;等式245y =,两边都除以25(或乘52),得10y =.故答案为:加15,20,除以25,10 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.17.x 【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x 【详解】两边同时加x 得3x+x=4故答案为:x 【点睛】本题考查的是等式的性质熟知等式解析:x 【分析】根据题意,得第一个等式等号右边为-x+4 ,第二个等式等号右边为4,因为(-x+4)+x=4 ,所以等号两边同时加x . 【详解】两边同时加x ,得3x+x=4, 故答案为:x 【点睛】本题考查的是等式的性质,熟知等式两边加或减同一个数或式子,结果仍相等是解答此题的关键.18.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年 解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可. 【详解】解:设今年产品C 的销售金额应比去年增加x , 由题意得,60%(1)(160%)(145%)1x ++--=, 解得:30%x =.答:今年产品C 的销售金额应比去年增加30%. 故答案为:30%. 【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A 和B 的销售金额和C 的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程.19.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x 元可列方程x ⋅15×(30−20)=120解得:x=800则他的飞机解析:800元 【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×1.5%×超重公斤数,根据题意列方程求解. 【详解】设他的飞机票价格是x 元, 可列方程x ⋅1.5%×(30−20)=120 解得:x=800则他的飞机票价格是800元. 故答案为:800. 【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.20.乘-12【解析】【分析】根据等式的性质2方程的两边乘即可【详解】方程的两边同时乘得:x =-1故答案为:乘;-12【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:乘3- -12 【解析】 【分析】根据等式的性质2,方程的两边乘3-即可.【详解】 方程431=-x 的两边同时乘3-得:x =-1, 故答案为:乘3-;-12. 【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.三、解答题21.(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+ 当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 22.=1a ,原方程的解为:13x =【分析】首先根据错误的作法“方程左边的1没有乘以10”而得出4x =,代入错误方程,然后求出a 的值,最后进一步解方程即可.【详解】∵去分母时,方程左边的1没有乘以10,∴2(21)15()x x a -+=+,∵此时解得4x =,∴2(241)15(4)a ⨯-+=+,解得:=1a ,∴原方程为:211152x x --+=, 去分母可得:2(21)105(1)x x -+=-, 去括号可得:421055x x -+=-,移项、化简可得:13x -=-,解得:13x =,∴=1a ,原方程的解为:13x =.【点睛】本题主要考查了一元一次方程的求解,熟练掌握相关方法是解题关键.23.(1)2x =;(2)2x =;(3)表格详见解析,减小,增大.【分析】(1)由题意可得关于x 的方程,解方程即得答案;(2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势.【详解】解:(1)由题意得:422x x -+=-,解得:2x =,所以,当2x =时,12y y =;(2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大.【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.24.(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x 元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.25.y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13, 方程为1213132y y +-=-, 去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 26.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x﹣2x=5+4,解得:x=9;(2)去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项得:4x﹣3x=12+10﹣9,合并同类项得:x=13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.。
人教版七年级上册数学第2章2.1整式测试题(含部分答案)
2.1 整 式知识点回顾1.用字母表示数:字母和数一样,可以参与运算,可以用式子把数量关系简明地表示出来.2.列式的注意事项:①数与字母、字母和字母相乘省略乘号; ②数与字母相乘时数字写在前面.3.单项式:由数与字母的乘积组成的代数式称为单项式。
特别地,单独一个数或一个字母也是单项式,如a ,5。
4.单项式系数和次数系数:单项式中的数字因数叫做这个单项式的系数。
次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
注意:①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写 ③单项式次数只与字母指数有关。
5.多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
6.多项式的次数多项式里次数最高项的次数,叫做这个多项式的次数。
7.多项式的命名:一个多项式含有几项,就叫几项式。
多项式里次数最高的项的次数,就是这个多项式的次数。
例如,多项式5232+-x x 是一个二次三项式。
8.单项式和多项式统称为整式。
【对应练习】单项式1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值. 多项式1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x 2-2x -1的各项分别是( )A.3x 2,2x,1 B.3x 2,-2x,1 C.-3x 2,2x ,-1 D.3x 2,-2x ,-1 3.多项式1+2xy -3xy 2的次数是( ) A.1 B.2 C.3 D.44.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .5.写出一个关于x ,y 的三次二项式,你写的是 (写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a 千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.【课后作业】 单项式1.下列说法正确的是( ).A .a 的系数是0B .是一次单项式 C .-5x 的系数是5 D .0是单项式 1y2.下列单项式书写不正确的有( ).①3a 2b ; ②2x 1y 2; ③-x 2; ④-1a 2b . A .1个 B .2个 C .3个 D .4个3. “比a 的大1的数”用式子表示是( ). A .a+1 B .a+1 C . a D .a -1 4.下列式子表示不正确的是( ).A .m 与5的积的平方记为5m 2B .a 、b 的平方差是a 2-b 2C .比m 除以n 的商小5的数是-5 D .加上a 等于b 的数是b -a5.目前,财政部将证券交易印花税税率由原来的1‰(千分之一)•提高到3‰.如果税率提高后的某一天的交易额为a 亿元,则该天的证券交易印花税(•交易印花税=印花税率×交易额)比按原税率计算增加了( )亿元. A .a‰ B .2a‰ C .3a‰ D .4a‰ 6.填写下表12323232235232mn7.若x 2y n-1是五次单项式,则n=_______.8.针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整,已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为_______元. 9.某班a 名同学参加植树活动,其中男生b 名(b<a ),若只由男生完成,•每人需植树15株;若只由女生完成,则每人需植树________棵.10.小明在银行存a 元钱,银行的月利率为0.25%,利息税为20%,6个月后小明可得利息________元.11.某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2•天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租后第n 天(n>•2,•且为整数)•应收费_______元.12.写出所有的含字母a 、b 、c 且系数和次数都是5的单项式.13.列式表示:(1)某数x 的平方的3倍与y 的商;(2)比m 的多20%的数.14.某种商品进价m 元/件.在销售旺季,该商品售价较进价高30%;销售旺季过后,又以7折(70%)的价格开展促销活动,这时一件商品的售价是多少元?15.观察图的点阵图形和与之相对应的等式,探究其中的规律:14(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n 个图形相对应的等式.【课后作业】参考答案:1.D 2.C 3.A 4.A 5.B6.-5,0;-1,2;0.6,3;-,1;,4;52,4 7.4 8.0.4a 9.10.0.012a 11.1.6+0.5(n-2) 12.5abc 3,5ab 2c 2,5ab 3c ,5a 2bc 2,•5a 2b 2c ,5a 3bc •13.(1) (2)0.3m 14.m×(1+30%)×70%=0.91m (元)15.(1)4×3+1=4•×4-3,4×4+1=4×5-3 (2)4(n -1)+1=4n -3.7545π15b a b-23x y。
新人教版七年级数学上册第二章整式测试卷
第二章综合(zōnghé)测试卷(用时:90分钟 满分(mǎn fēn):120分)一、选择题(每题3分,共30分)1.下列说法(shuōfǎ)正确的是( D )A .单项式-3xy 25的系数(xìshù)是-3B .单项式-3xy 25的次数(cìshù)是2C .单项式a 的次数是0D .单项式a 的系数是12.下列各组代数式中,是同类项的是( B )A .5x 2y 与15xy 2B .2x 2y 与15x 2yC .83与x 3D .5x 2y 与x 2z3.式子2(y -2)的正确含义是( C )A .2乘y 减2B .2与y 的积减去2C .y 与2的差的2倍D .y 的2倍减去24.多项式43a 2b +ab 2-2ab 的项数及次数分别是( A )A .3,3B .3,2C .2,3D .2,25.下列式子合并同类项正确的是( D )A .3x +5y =8xyB .3y 2-y 2=3C .y 3-y 2=yD .7ab -7ab =06.化简-16(x -0.5)的结果是( D )A .-16x -0.5B .-16x +0.5C .16x -8D .-16x +87.化简:-32a +⎝⎛⎭⎫32a -1的结果是( D )A .-3a -1B .3a -1C .1D .-18.多项式4n -2n 3+2+6n 2减去3(n 3+2n 2-1+3n )(n 为正整数)的差一定是(A )A .5的倍数B .偶数C .3的倍数D .不能确定9.已知x2+3x+5的值等于(děngyú)7,则代数式3x2+9x-2的值为(C)A.0 B.2C.4 D.610.如果(rúguǒ)长方形的周长为4m,一边(yībiān)的长为m-n,则另一边长为(C)A.3m+n B.2m+2nC.m+n D.m+3n二、填空题(每题3分,共24分)11.如果(rúguǒ)(m+1)x2y n-2是关于(guānyú)x,y的四次单项式,则m,n满足的条件是__m≠-1,n=4__.12.若3a x+2b y与-110a5b3是同类项,则xy=__9__.13.去括号并合并同类项:4a-(9a-6)=__-5a+6__.14.某校5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款__5m+2n__元.15.一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下__3a+2b__.16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=-2,mn=-4,则2(mn-3m)-3(2n-mn)的值为__-8__.17.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有__2(n-1)__米.18.观察下列单项式:2x,-5x2,10x3,-17x4,….根据你发现的规律,写出第n个式子是__(-1)n+1(n2+1)x n__.三、解答题(共66分)19.(16分)(1)2x2+1-3x+7-2x2+5x;(2)-3(2x2-xy)+4(x2+xy-6);(3)3(2a+4b)-3(3a-b);(4)4y2-[3y-(3-2y)+2y2].解:(1)原式=(2-2)x2-(3-5)x+7+1=2x+8;(2)原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24;(3)原式=6a +12b -9a +3b =-3a +15b ;(4)原式=4y 2-3y +3-2y -2y 2=2y 2-5y +320.(8分)先化简,再求值.(4a 2b -2ab -6)-2(2a 2b +2ab -5),其中a =-2,b =2.解:原式=4a 2b -2ab -6-4a 2b -4ab +10=-6ab +4.将a =-2,b =2代入上式得:-6ab +4=-6×(-2)×2+4=28.21.(10分)已知A =3x 2-xy +y 2,B =2x 2-3xy -2y 2,其中(qízhōng)x ,y 满足(mǎnzú)等式2⎝⎛⎭⎫x -122+|y -1|=0.求:3B -2A 的值. -23222.(10分)A =-6x 2+4x ,B =-x 2-3x ,C =5x 2-7x +1,小明和小军(xiǎo jūn)在计算时对x 分别(fēnbié)取了不同的数值,并进行(jìnxíng)了多次计算,但所得A -B +C 的结果总是一样,你认为这可能吗?说明你的理由.解:这是有可能的.理由如下:先计算A -B +C =(-6x 2+4x )-(-x 2-3x )+(5x 2-7x +1)=1;显然化简结果与x 的取值无关,即当小明和小军对x 分别取了不同的数值,并代入进行多次计算时,所得A -B +C 的结果总是一样.23.(10分)某市出租车收费标准是:起步价8元,3千米后每千米2.5元,某乘客乘坐了x 千米(x >5).(1)请用含x 的代数式表示他应该支付的车费;(2)若该乘客乘坐了19千米,那他应该支付多少钱?解:(1)支付车费:8+(x -3)×2.5=2.5x +0.5(元);(2)当x =19时,2.5x +0.5=48(元).答:他应该支付48元.24.(12分)观察下列式子:-a +b =-(a -b );2-3x =-(3x -2);5x +30=5(x +6);-x -6=-(x +6).由以上四个式子中括号的变化情况,根据您的探索规律解答下题:已知a 2+b 2=5,1-b=-2,求-1+a2+b+b2的值.解:原式=5-(-2)=7.内容总结(1)(2)若该乘客乘坐了19千米,那他应该支付多少钱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一(上)数学第二章《整式》复习测试题
班级______ 姓名_____ 座号_____ 成绩________
一、选择题(每小题3分,共48分)
1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )
A.3个
B.4个
C.5个
D.6个
2.下面计算正确的是( )
A .2233x x -=
B 、235325a a a +=
C .33x x += D.10.2504ab ab -+=
3.多项式2112
x x ---的各项分别是 ( ) A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12x x --
4.下列去括号正确的是(
) A.()5252+-=+-x x B.()22242
1+-=--x x C.()n m n m +=-323231 D.x m x m 232232+-=⎪⎭
⎫ ⎝⎛-- 5.下列各组中的两个单项式能合并的是( )
A .4和4x
B .32323x y y x -和
C .c ab ab 221002和
D .2
m m 和 6.下列各式中不是单项式的是( )
A .
3a B .-51 C .0 D .a
3 7. 一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )
A :2x -5x +3
B :-2x +x -1
C :-2x +5x -3
D :2x -5x -13
8.已知2y 32x 和32m x y -是同类项,则式子4m-24的值是( )
A.20
B.-20
C.28
D.-28
9. 已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )
A :1-
B :1
C :-5
D :15
10.原产量n 吨,增产30%之后的产量应为( )
A 、(1-30%)n 吨
B 、(1+30%)n 吨
C 、n+30%吨
D 、30%n 吨 11.下列说法正确的是( )
A. 0.5ab 是二次单项式
B.1
x
和2x 是同类项
C. 2
59abc -的系数是5- D. ()23
a b +是一次单项式 12.已知0122=--b a ,则多项式2422+-b a 的值等于( )
A 、1
B 、4
C 、-1
D 、-4
13. 若(2332+-x x )—(332-+-x x )=2Ax Bx C -+,则A 、B 、C 的值为( )
A 、4,-6,5
B 、4,0,-1
C 、2,0,5
D 、4,6,5
14、若多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 等于( )
A :2
B :-2
C :4
D :-4
15. 两个3次多项式相加,结果一定是 ( )
A 、6次多项式.
B 、不超过3次的多项式.
C 、3次多项式
D 、无法确定.
16.在排成每行七天的日历表中取下一个33⨯方块.若所有日期数之和为189,
则n 的值为( )
A .21
B .11
C .15
D .9
二、填空题(每空2分,共16分)
1.单项式2
25
xy π-的系数是____________,次数是________. 2、若单项式y x 45和25m n y x 是同类项,则n m + 的值为____________。
3、多项式y x 23+与多项式y x 24-的差是_______________.
4、化简323323x x mx --+得到一个x 的最高次数是2的多项式了,则m 的值 。
5、若3=x 时,代数式13++qx px 的值为2008,则当3-=x 时,代数式13++qx px 的值是__.
6、如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个
矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是___________.
A .2m +3
B .2m +6
C .m +3
D .m +6
(第6题图) (第7题图) 7、如上图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如右图所示,则打包带的长至少要_________ (单位:mm )(用含x 、y 、z 的代数式表示)
三、解答题(28分)
(一)计算:(共13分)
1、222225
x y x y x y -- (3分) 2、(32)3(5)a a --+ (3分)
3. ()()
22224354ab b a ab b a --- (3分) 4.()22373432x x x x ⎡⎤----⎣⎦
(二)、先化简下式,再求值。
(共15分)
1、(5分) 22(3)2(4)x x x x -+-+,其中2-=x
2、(5分)已知122-=x A ,223x B -=,求2B B A --()的值。
3、(5分)三角形的第一边长为32a b +,第二边比第一边长a b -,第三边比第二边短2a ,(1)求这个三角形的周长;
(2)若a =2,b =4,求三角形周长的值
四、解答题(8分)
1、已知某船顺水航行3小时,逆水航行2小时:
(1)已知轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?
(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?
2、某工厂第一车间有x 人,第二车间比第一车间人数的5
4少30人,如果从第二车间调出10人到第一车间,那么:
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人?。