2019春九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第1课时正切与坡度教案1新版北师大版

合集下载

九年级数学下册 第1章 直角三角形的边角关系教案 北师大版

九年级数学下册 第1章 直角三角形的边角关系教案 北师大版

九年级数学下册第1章直角三角形的边角关系教案北师大版§1.1.1 从梯子的倾斜程度谈起(第1课时)教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计一、复习已学过的直角三角形性质和定理(勾股定理和其逆定理,300定理,斜边中线定理等等)二、新课讲授1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?ABC 8mα5m 5mβ13m3、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢? ⑷由此你得出什么结论?4、正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

(4) tanA 的值越大,梯子越陡 5、巩固练习如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; 三、讲解例题例1 图中表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?分析:通过计算正切值判断梯子的倾斜程度。

这是上述结论的直接应用。

ABC∠A 的对边∠A 的邻边斜边ABC例2 如图,在△ACB 中,∠C = 90°,AC = 6,43tanB ,求BC 、AB 的长。

北师版九年级数学下册作业课件 第一章 直角三角形的边角关系 锐角三角函数 第1课时 正切

北师版九年级数学下册作业课件 第一章 直角三角形的边角关系 锐角三角函数 第1课时 正切

5.(8 分)(教材 P4 习题 1.1T2 变式)如图,在 Rt△ABC 中,∠C=90°,若 tan A
=5 12
,AB=26,求 AC 和 BC 的长.
解:∵tan A=BC = 5 ,∴可设 AC=12x,BC=5x,∴AB= AC2+BC2 = AC 12
(12x)2+(5x)2 =13x=26,∴x=2,∴AC=12x=24,BC=5x=10
+∠ADB =90°,∴∠DCE=∠BAD,∴DCEE =tan ∠DCE =tan ∠BAD=13 .设 DE
=x m,则 CE=3x m.在 Rt△CDE 中,∵CD2=CE2+DE2,∴3.22=x2+(3x)2,解
得 x≈1.012,∴CE=3x≈3.036(m)>2.8(m),∴货车能顺利进入地下停车场
(2)∵AD= AE2+DE2 = 62+82 =10,∴AC=AD+CD=10+8=18.又∵在
Rt△ABC中,tan A=BACC =43 ,∴BC=43 AC=43 ×18=24,∴tan ∠DBC=DBCC =
8 24
=13
【素养提升】 16.(14 分)某公园要修建一个地下停车场,停车场的入口设计示意图如图所示, 其中斜坡的坡度为 1∶3,一楼到地下停车场地面的垂直高度 CD=3.2 m,一楼到地 平线的距离 BC=1 m. (1)为保证斜坡的坡度为 1∶3,斜面 AD 的长度应为多少米?(结果精确到 0.01 m, 参考数据: 10 ≈3.16) (2)若给该地下停车场送货的货车的高度为 2.8 m,则按这样的设计能否保证货车 顺利进入地下停车场?请说明理由.
7.(8 分)如图,两架长度分别为 17 m,15 m 的梯子 AB,CD 靠墙摆放,且 BE =8 m,DF=12 m,则哪一架梯子比较陡?请说明理由.

1.1 锐角三角函数 第1课时(教案)-北师大版数学九下

1.1 锐角三角函数 第1课时(教案)-北师大版数学九下

第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。

北师大版初中九年级数学下册第一章集体备课教案教学设计含教学反思

北师大版初中九年级数学下册第一章集体备课教案教学设计含教学反思

第一章直角三角形的边角关系1 锐角三角函数第1课时正切【知识与技能】让学生理解并掌握正切的含义,并能够举例说明;会在直角三角形中说出某个锐角的正切值;了解锐角的正切值随锐角的增大而增大.【过程与方法】让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维的习惯,提高学生运用数学知识解决实际问题的能力.【情感态度】能激发学生学习的积极性和主动性,引导学生自主探索、合作交流,培养学生的创新意识.【教学重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.【教学难点】理解正切的意义,并用它来表示两边的比.一、情景导入,初步认知你能比较两个梯子哪个更陡吗?你有哪些办法?【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望。

.二、思考探究,获取新知(1)Rt△AB1C1和 Rt△AB2C2有什么关系?(2)111B CAC有什么关系(3)如果改变B2的位置(如B3C3)呢?(4)由此你得出什么结论?【教学说明】通过相似沟通了直角三角形中的边、角关系,从而变换角度继续探讨,符合学生的认知规律此时学生的思维豁然开朗,同时培养了学生思维的深刻性.此环节的设计正是数学思维的开阔性,多角度、多方位性的展现师生的共同努力,淋漓尽致地演绎了数学体现在思维艺术上的美,从而解决了本节课的第一个难点.【归纳结论】在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定.这个比叫做∠A 的正切.记作:tanA =A A ∠的对边∠的邻边当锐角A 变化时,tanA 也随之变化。

(5)梯子的倾斜度与tanA 有关系吗?【教学说明】借助几何画板,从运动的角度来实施动态化、形象化、直观化教学.【归纳结论】在这些直角三角形中,当锐角A 的大小确定后,无论直角三角形的大小怎样变化,∠A 的对边与∠A 的邻边的比值总是唯一确定的.所以,倾斜角的对边与邻边的比可以用来描述坡面的倾斜程度.三、运用新知,深化理解1. 见教材P 3上第1题.2. 如图,在 Rt △ABC 中,∠C= 90。

九年级 第一章 直角三角形的边角关系

九年级 第一章  直角三角形的边角关系

九年级下册第一章 直角三角形的边角关系 §1.1 从梯子的倾斜程度谈起(一) 一 知识要点1. 能够用tanA 表示直角三角形中两边的比,表示生 活中物体的倾斜程度、坡度等正切的定义:在Rt △ABC 中,锐角A 的 与 锐角A 的比叫做∠A 的正切,记作tanA,即 tanA=2. 能够用正切进行简单的计算. 二、典型例题与分析例1:如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?跟踪练习1、在Rt △ABC 中,锐角A 的对边和邻边同时扩大100 倍,tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不能确定 2、已知∠A,∠B 为锐角(1)若∠A=∠B,则tanA tanB; (2)若tanA=tanB,则∠A ∠B.例2:在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.随堂练习(见课本P 6 1、2)3、补充:在等腰△ABC 中,AB=AC=13,BC=10,求tanB.三、拓展训练例3如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)四、中考链接1:若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高_______米2、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.§1.2从梯子的倾斜程度谈起(2)正弦与余弦一.知识要点:1.正弦,余弦的定义(1).在Rt△ABC中,锐角A的与的比叫做∠A的正弦,记作sinA,即sinA=(2).在Rt△ABC中,锐角A的与的比叫做∠A的余弦,记作cosA,即cosA=总结:①锐角三角函数的定义.锐角A的, , 都叫做∠A的三角函数.②定义中应该注意的几个问题(1)sinA,cosA,tanA, 是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).(2)sinA,cosA,tanA, 是一个完整的符号,表示∠A,习惯省去“∠”号;(3)sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位.(4)sinA,cosA,tanA, 的大小只与∠A的大小有关,而与直角三角形的边长无关.(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.练习:如图,分别根据图(1)和图(2)求∠A的三个三角函数值.二.典型例题与分析:例1.如图:在Rt△ABC中,∠B=090,AC=200,sinA=0.6.求:BC的长.跟踪练习:1.如图,已知直角三角形A B C中,斜边A B的长为m,40B∠=,则直角边B C的长是()A.s in40m B.co s40mC.tan40m D.ta n40m2.如图, ∠C=90°CD⊥AB.(1)SinB=()()=()()=()()(2)若BD=6,CD=12.求cosA的值.3.在等腰△ABC中,AB=AC=13,BC=10,求sinB,cosB.三.基础练习:A BC 1.已知△ABC 中,90=∠C ,3cosB=2, AC=52 ,则AB= . 2.在Rt ABC ∆中,90=∠C ,如果2=AB ,1=BC ,那么Bsin的值是( )A.21B.23C.33D.33.在R t A B C △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A =4.如图,一架梯子斜靠在墙上,若梯子到墙的距离A C =3米,3c o s 4B AC ∠=,则梯子A B 的长度为 米.5.如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A.12B.2C.1D.2四.知识延伸1.如图,P 是∠α的边OA 上一点,且点 P 的坐标为(3,4), 则sin α= ( ) A .35B .45C .34D .432.如图,A D C D ⊥,13A B =,12B C =,3C D =,4A D =,则sin B =( ) A .513B .1213C .35D .453.直角三角形纸片的两直角边长分别为6,8,现将A B C △如图那样折叠,使点A 与点B 重合,折痕为D E ,则tan C B E ∠的值是( ) A .247B .3C .724D .134.如图所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于 ( ) A. 12223五.中考链接 1.正方形网格中,A O B ∠如图放置,则co s A O B∠的值为() 55C.12D.22.如图,在A B C △中,90A C B ∠=,C D A B ⊥于D ,若A C =A B =tan B C D ∠的值为( )2333.如图,在A B C ∆中,90C ∠=︒,点D 、E 分别在A C 、A B 上,B D 平分A B C ∠,D E A B ⊥,6A E =,3c o s 5A =.求(1)D E 、C D 的长; (2)tan D B C ∠的值.§1.3 300,450,600角的三角函数值(1)D ABCABO第1题一、知识要点(1)直角三角形中的边角关系(2)特殊角300,450,600角的三角函数值. (3)互余两角之间的三角函数关系. (4)同角之间的三角函数关系 二、典型例题例1:(1)sin300﹢cos450(2) sin 2600+cos 2600﹣tan450跟踪练习:(1)sin600﹣cos450; (2)cos600+tan600例2: 如图:一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为600,且两边摆动的角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0.01m).跟踪练习:2.某商场有一自动扶梯,其倾斜角为300,高为7m,扶梯的长度是多少?例3、如图,在Rt △ABC 中,∠C=90°, ∠A,∠B ,∠C 的对边分别是a,b,c.求证:sin 2A+cos 2A=1C跟踪练习:1.tan α×tan300 =1,且α为锐角。

《 锐角三角函数》 (第1课时)示范公开课教学PPT课件【北师大版九年级数学下册】

《  锐角三角函数》 (第1课时)示范公开课教学PPT课件【北师大版九年级数学下册】

注意:坡度是坡角的正切.坡度越大,坡面越陡.
典例精析
《自动扶梯》
典例精析
例 下图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?
4m α
8m (甲)
13 m 5m
β
(乙)
解:甲梯中,tanα= 4 1 . 82
乙梯中,tanβ= 5 5 .
132 52 12
因为tanα>tanβ,所以甲梯更陡.
议一议 在下图中,梯子的倾斜程度与tan A有关系吗?
答:tan A的值越大,梯子越陡.
探究新知
正切也经常用来描述山坡的坡度(坡面的铅直高度与 水平宽度的比称为坡度(或坡比)).
60 m
例如,有一山坡在水平方向上
每前进100 m就升高60 m
α
那么山坡的坡度就是tan α= 60 3
100 m
100 5
探究新知
如图,在Rt△ABC中,如果锐角A确定,那么∠A的 对边与邻边的比便随之确定,这个比叫做∠A的正切 (tangent),记作tan A,即tan A= ∠A的对边.
∠A的邻边
B
∠A的对边
A ∠A的邻边 C 说明:tanA是一个完整的符号,它表示∠A的正切, 记号里习惯省去角的符号“∠”.
探究新知
北师大版·统编教材九年级数学下册
第一章 直角三角形的边角关系
1.1 锐角三角函数 第 1 课时
学习目标
1.经历探索直角三角形中边角关系的过程. 2.理解锐角三角函数(正切)的意义,并能够举例说明. 3.能够运用tan A表示直角三角形中两边的比. 4.能够根据直角三角形中边角关系,进行简单的计算.
解:在Rt△ABC中, AC= AB2 BC2 2002 552 5 1479 (m). 所以tan A= BC 55 ≈0.286

九年级数学初三下册:1 锐角三角函数第1课时 正切与坡度教案

九年级数学初三下册:1 锐角三角函数第1课时 正切与坡度教案

7. 在 Rt△ABC 中,∠C=90°,AB= 5 cm,tanB=2,则 AC=
_____2____cm. 8. 如图,在△ABC 中,∠ACB=90°,AC=2,BC=1,CD 是 AB 1
上的高,则 tan∠BCD 的值是______2______.
三、解答题 9. 如图,在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍 ,求tanA,tanB的值.
【例3】 如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值 是______12___.
3. 如图,点 A(t,4)在第一象限,OA 与 x 轴所夹的锐角为α ,tanα =43,则 t 的值为_____3________.
知识点二:坡度
【典例导引】 【例 4】 (泰州中考)小明沿着坡度 i 为 1∶ 3的直路向上走了 50 m,则小明 沿垂直方向升高了____2_5_______m.
2. 坡度(或坡比)的概念:如图②,坡面的___铅__直_____高度 h 和__水__平___
宽度 l 的比称为坡度(或坡比),记作 i,有 i=hl =___ta_n_α____.坡度 i 越大,坡 角α 越____大____,坡面越____陡_____.
知识点一:正切
【典例导引】 【例 1】 在 Rt△ABC 中,∠C=90°,AC=4,BC=3,则 tanA 的值 为( B )
解:设 BC=a,则 AB=3a,AC=2 2a,∴
tanA=ABCC=2
a= 2a
42,tanB=ABCC=2
a2a=2
2
10. 如图,方方和圆圆分别将两根木棒AB,CD斜靠在墙上,其中AB= 10 cm,CD=6 cm,BE=6 cm,DE=2 cm.你能判断谁的木棒更陡吗? 并说明理由.

1.1锐角三角函数(第一课时)课件(共17张PPT)浙教版数学九年级下册

1.1锐角三角函数(第一课时)课件(共17张PPT)浙教版数学九年级下册


cosA=
=

∠的邻边
温馨提醒:以正弦为例
sinA(省去角的符号),
30°的正弦表示为sin30°,比值 叫做∠A的正切值,记做tanA,即
斜边

∠BAC的正弦表示为sin∠BAC

,∠1的正弦表示为:sin∠1.
tanA=
∠的对边
∠的邻边
=

概念运用
①BC=8,AC=6
概念



cosA=

= ,

tanA=

4
3
sinA=
4
5
3
= ,
5
= .
解后反思:在直角三角
形中,已知什么条件可
以求三角函数值?
课堂练习
1.如图,在Rt△ABC中,∠ACB=90°,作CD⊥AB于
点D,若BC=5,BD=4,求sin∠A.
C
A
B
思路1:求AB的长
思路2:等角转化
△BCD∽△BAC
B"
P
C" Q
图(1)
图(2)
角为30°
’’ 1
""
=
= =
’’ 2
"
’’
3 "
=
=
=
’’
2
"
’’
3 ""
=
=
=
’’
3
"
请先按暂停键!
思考完成后
再按回播放键!
边的比值为定值
探索规律
当∠PAQ发生改变时,刚才所获得的发现是否还成立呢?
解:设AB=5k,AC=3k,

北师大版九年级数学下全册详细教案(含答案)

北师大版九年级数学下全册详细教案(含答案)

第一章 直角三角形的边角关系1.1 锐角三角函数 第1课时 正切1.理解正切的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.(重点)2.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.阅读教材P2~4,完成预习内容. (一)知识探究1.在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =∠A 的对边∠A 的邻边.2.tanA 的值越大,梯子越陡.3.坡面的竖直高度与水平距离的比称为坡度(或坡比). (二)自学反馈1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,那么tanA 等于(C) A.513 B.1213 C.512 D.1252.如图,有一个山坡在水平方向上前进100 m ,在竖直方向上就升高60 m ,那么山坡的坡度i =tan α=35.活动1 小组讨论例 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?解:甲梯中,tan α=5132-52=512.乙梯中,tan β=68=34. 因为tan β>tan α,所以乙梯更陡.求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边.活动2 跟踪训练1.如图,下面四个梯子最陡的是(B)2.如图,在边长为1的小正方形组成的网格中,点A 、B 、O 为格点,则tan ∠AOB =(A) A.12 B.23 C.105 D.533.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a =24,c =25,则tanA =247、tanB =724.4.如图,某人从山脚下的点A 走了300 m 后到达山顶的点B ,已知点B 到山脚的垂直距离为70 m ,求山的坡度0.24.(结果精确到0.01)活动3 课堂小结 1.正切的定义.2.梯子的倾斜程度与tanA 的关系(∠A 和tanA 之间的关系).3.数形结合的方法,构造直角三角形的意识.第2课时 锐角三角函数1.理解正弦函数和余弦函数的意义,能根据边长求出锐角的正弦值和余弦值,准确分清三种函数值的求法.(重点)2.经历探索直角三角形中边角关系的过程,进一步理解当锐角度数一定,则其对边、邻边、斜边三边比值也一定.能根据直角三角形中的边角关系,进行简单的计算.阅读教材P5~6,完成预习内容. (一)知识探究1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =a c .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc.2.锐角A 的正弦、余弦、正切叫做∠A 的三角函数.3.sinA 的值越大,梯子越陡;cosA 的值越小,梯子越陡.锐角三角函数是在直角三角形的前提下.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是(A) A.513 B.1213 C.512 D.1352.如图,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为(A)A.4B.2 5C.181313D.1213133.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3、b =4,则sinB =45,cosB =35,tanB =43.活动1 小组讨论例1 如图,在Rt △ABC 中,∠B =90°,AC =200,sinA =0.6,求BC 的长.解:在Rt △ABC 中, ∵sinA =BC AC ,即BC200=0.6,∴BC =200×0.6=120.例2 如图,在Rt △ABC 中,∠C =90°,AC =10,cosA =1213,求AB 的长及sinB.解:在Rt △ABC 中, ∵cosA =ACAB ,即10AB =1213,∴AB =656. ∴sinB =AC AB =cosA =1213.这里需要注意cosA =sinB.活动2 跟踪训练1.如图,某厂房屋顶呈人字架形(等腰三角形),已知AC =8,DB =43,CD ⊥AB 于点D ,求sinB 的值.解:∵△ABC 是等腰三角形,∴BC =AC =8. ∵CD ⊥AB ,∴∠CDB =90°,∴CD =BC 2-BD 2=82-(43)2=4, ∴sinB =CD BC =48=12.2.如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB的值.解:在Rt △ACD 中,∵CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =75.活动3 课堂小结学生试述:这节课你学到了些什么?1.2 30°,45°,60°角的三角函数值1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算,能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(重点)阅读教材P8~9,完成预习内容. 自学反馈完成下面的表格:sin α cos α tan α 30°12323345° 22 22 1 60°32123活动1 小组讨论 例1 计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°. 解:(1)原式=12+22=1+22.(2)原式=34+14-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.例2 一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)解:根据题意可知,∠AOD =12∠AOB =30°,AO =2.5 m.∴OD =OAcos30°=2.5×32=2.165(m). ∴CD =2.5-2.165≈0.34(m).∴最高位置与最低位置的高度差约为0.34 m. 活动2 跟踪训练 1.计算:(1)2sin30°+3tan30°+tan45°;(2)cos 245°+tan60°cos30°.解:(1)原式=2+ 3. (2)原式=2. 2.如图,某同学用一个有60°的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5 m 高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为5 m ,则旗杆AB 的高度大约是多少米?(精确到1 m ,3取1.73)解:由已知可得四边形CDBE 是矩形,∴CE =DB =5 m ,BE =CD =1.5 m. 在Rt △ACE 中,∵tan ∠ACE =AECE,∴AE =CE ·tan ∠ACE =5·tan60°=53,∴AB =53+1.5=8.65+1.5=10.15≈10 (m), 即旗杆AB 的高度大约是10 m. 活动3 课堂小结学生试述:这节课你学到了些什么?1.3 三角函数的计算1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.阅读教材P12~14,完成预习内容. 自学反馈1.已知tan α=0.324 9,则α约为(B)A.17°B.18°C.19°D.20°2.已知tan β=22.3,则β=87°25′56″.(精确到1″)活动1 小组讨论例1 如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01 m)解:在Rt △ABC 中,∠ACB =90°,∴BC =ABsin α=200×sin16°≈55.13(m).例2 为了方便行人推自行车过某天桥,市政府在10 m 高的天桥两端修建了40 m 长的斜到.这条斜道的倾斜角是多少?解:在Rt △ABC 中,sinA =BC AC =1040=14.∴∠A ≈14°28′.答:这条斜道的坡角α是14°28′.在直角三角形ABC 中,直接用正弦函数描述∠CBA 的关系式,再用计算器求出它的度数.活动2 跟踪训练1.用计算器计算:(结果精确到0.000 1) (1)sin36°; (2)cos30.7°;(3)tan20°30′; (4)sin25°+2cos61°-tan71°. 解:(1)0.587 8;(2)0.859 9;(3)0.373 9;(4)-1.512 0.2.在Rt △ABC 中,若∠C =90°,BC =20,AC =12.5,求两个锐角的度数(精确到1°). 解:∵∠C =90°,BC =20,AC =12.5, ∴tanB =AC BC =12.520=0.625,用计算器计算,得∠B ≈32°,∴∠A =90°-32°=58°. 活动3 课堂小结1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,故数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.1.4 解直角三角形1.了解什么叫解直角三角形.2.掌握解直角三角形的根据,能由已知条件解直角三角形.(重点)阅读教材P16~17,完成预习内容. (一)知识探究1.在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.2.直角三角形中的边角关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°;边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b ,sinB =b c ,cosB =a c ,tanB =ba .3.在Rt △ABC 中,∠C =90°,已知∠A 与斜边c ,用关系式∠B =90°-∠A ,求出∠B ,用关系式sinA =ac求出a.(二)自学反馈1.在Rt △ABC 中,∠C =90°,sinA =35,则BC ∶AC =(A)A.3∶4B.4∶3C.3∶5D.4∶52.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为(B)A.5cos αB.5cos αC.5sin αD.5sin α活动1 小组讨论例1 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a =15,b =5,求这个三角形的其他元素.解:在Rt △ABC 中,a 2+b 2=c 2,a =15,b =5,∴c =a 2+b 2=(15)2+(5)2=2 5.在Rt △ABC 中,sinB =b c =525=12.∴∠B =30°.∴∠A =60°.例2 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°.∵sinB =b c ,b =30,∴c =bsinB≈71.∵tanB =b a ,b =30,∴a =b tanB =30tan25°≈64.活动2 跟踪训练1.根据下列条件解直角三角形.(1)在Rt △ABC 中,∠C =90°,c =43,∠A =60°. 解:∵∠A =60°,∴∠B =90°-∠A =30°.∵sinA =a c ,∴a =c ·sinA =43·sin60°=43×32=6,∴b =c 2-a 2=(43)2-62=2 3. (2)在Rt △ABC 中,∠C =90°,a =6,b =2 3.解:∵∠C =90°,a =6,b =23, ∴c =a 2+b 2=62+(23)2=4 3. ∵tanA =a b =623=3,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°.2.如图,在△ABC 中,AD ⊥BC 于点D ,AB =8,∠ABD =30°,∠CAD =45°,求BC 的长.解:∵AD ⊥BC 于点D , ∴∠ADB =∠ADC =90°.在Rt △ABD 中,∵AB =8,∠ABD =30°, ∴AD =12AB =4,BD =3AD =4 3.在Rt △ADC 中,∵∠CAD =45°,∠ADC =90°, ∴DC =AD =4,∴BC =BD +DC =43+4. 活动3 课堂小结学生试述:这节课你学到了些什么?1.5 三角函数的应用 第1课时 方位角问题能运用解直角三角形解决航行问题.阅读教材P19有关方位角问题,完成预习内容. 自学反馈1.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.2.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是250米.活动1 小组讨论例 如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?解:如图,过点A 作AD ⊥BC 交BC 的延长线于点D. 在Rt △ABD 中,∵tan ∠BAD =BDAD,∴BD =AD ·tan55°.在Rt △ACD 中,∵tan ∠CAD =CDAD ,∴CD =AD ·tan25°. ∵BD =BC +CD ,∴AD ·tan55°=20+AD ·tan25°. ∴AD =20tan55°-tan25°≈20.79>10.∴轮船继续向东行驶,不会遇到触礁危险.应先求出点A 距BC 的最近距离,若大于10则无危险,若小于或等于10则有危险.活动2 跟踪训练1.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为(A)A.402海里B.403海里C.80海里D.406海里2.如图所示,A 、B 两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内,请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)解:计划修筑的这条高速公路不会穿越保护区.理由如下:过点P 作PC ⊥AB ,C 是垂足. 则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°. ∵AC +BC =AB ,∴PC ·tan30°+PC ·tan45°=100, 即33PC +PC =100,(33+1)PC =100, ∴PC =33+3×100=50×(3-1.732)≈63.40>50.∴计划修筑的这条高速公路不会穿越保护区.解这类题目时,首先弄清楚方位角的含义;其次是通过作垂线构造直角三角形,将问题转化为解直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?第2课时仰角、俯角问题1.理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.2.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P19想一想,完成预习内容.(一)知识探究1.仰角、俯角:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.解决实际应用问题时,常作的辅助线:构造直角三角形,解直角三角形.(二)自学反馈1.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC =1 200 m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(D)A.1 200 mB.1 200 2 mC.1 200 3 mD.2 400 m2.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(D)A.200米B.2003米C.2203米D.100(3+1)米活动1 小组讨论例如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =50 m.∴DC =BD ·sin60°=50×32=253≈43(m). 答:该塔高约为43 m. 活动2 跟踪训练1.我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB 时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:2≈1.414,3≈1.732)解:没有危险,理由如下: 在△AEC 中,∵∠AEC =90°, ∴tan ∠ACE =AECE.∵∠ACE =30°,CE =BD =60, ∴AE =203≈34.64(米).又∵AB =AE +BE ,BE =CD =15, ∴AB ≈49.64(米).∵60>49.64,即BD>AB ,∴在实施定向爆破危房AB 时,该居民住宅楼没有危险.2.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB.(结果保留根号)解:作CF ⊥AB 于点F ,设AF =x 米, 在Rt △ACF 中,tan ∠ACF =AFCF,则CF =AF tan ∠ACF =x tan α=xtan30°=3x ,在直角△ABE 中,AB =x +BF =4+x(米),在直角△ABE 中,tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.第3课时 坡度问题1.能运用解直角三角形解决斜坡问题.2.理解坡度i =坡面的铅直高度坡面的水平宽度=tan 坡角.阅读教材P19做一做,完成预习内容. 自学反馈1.如图所示,斜坡AB 和水平面的夹角为α.下列命题中,不正确的是(B) A.斜坡AB 的坡角为α B.斜坡AB 的坡度为BCABC.斜坡AB 的坡度为tan αD.斜坡AB 的坡度为BCAC2.如图,一人乘雪橇沿30°的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为(C)A.72 mB.36 3 mC.36 mD.18 3 m活动1 小组讨论例 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m ,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)解:根据题意可得图形,如图所示: 在Rt △ABD 中,sin40°=AD AB =AD4,∴AD =4sin40°=4×0.64=2.56, 在Rt △ACD 中,tan35°=AD CD =2.56CD ,CD = 2.56tan35°=3.66,tan40°=AD BD =2.56BD ,BD = 2.56tan40°≈3.055 m.∴CB =CD -BD =3.66-3.055≈0.61(m). ∴楼梯多占了0.61 m 长一段地面. AC =ADsin35°≈4.46 m.∴AC -AB =4.46-4=0.46(m). ∴调整后的楼梯会加长0.46 m. 活动2 跟踪训练1.如图,某公园入口处原有三级台阶,每级台阶高为18 cm ,深为30 cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是210cm.2.如图,水库大坝的横断面是梯形,坝顶宽6 m ,坝高23 m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i ′=1∶2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡AB 的长.(精确到0.1 m)解:如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 和Rt △CDF 中,BE AE =13,CF FD =12.5,∴AE =3BE =3×23=69(m),FD =2.5CF =2.5×23=57.5(m). ∴AD =AE +EF +FD =69+6+57.5=132.5(m).∵斜坡的坡度i=13≈0.333 3,∴BEAE =0.333 3,即tan α=0.333 3.∴α≈18°26′. ∵BE AB =sin α,∴AB =BE sin α≈230.316 2≈72.7(m). 答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5 m ,斜坡AB 的长约为72.7 m.这类问题,首先要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以分割,分割成特殊的四边形和直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?1.6 利用三角函数测高会利用直角三角形的边角关系测物体的高度.(重点)阅读教材P22~23,完成预习内容. 自学反馈1.测量倾斜角可用测倾器.简单的测倾器由度盘、铅锤和支杆组成.活动1 小组讨论例1 测量底部可以到达的物体的高度下面是活动报告的一部分,请填写“测得数据”和“计算”两栏中未完成的部分.课题测量旗杆高测量示 意图测得 数据 测量项目 第一次 第二次 平均值 BD 的长 24.19 m 23.97 m 24.08 m 测倾器的高 CD =1.23 m CD =1.19 m 1.21 m 倾斜角α=31°15′α=30°45′α=31°计算,旗杆高AB(精确到0.1 m)AB =AE +BE =CEtan31°+CD=24.08×tan31°+1.21=15.7(m) 例2 测量底部不可以到达的物体的高度.如图,小山上有一座铁塔AB ,在D 处测得点A 的仰角为∠ADC =60°,点B 的仰角为∠BDC =45°;在E 处测得A 的仰角为∠E =30°,并测得DE =90米,求小山高BC 和铁塔高AB(精确到0.1米).解:在△ADE 中,∠E =30°,∠ADC =60°, ∴∠E =∠DAE =30°. ∴AD =DE =90米.在Rt △ACD 中,∠DAC =30°,则CD =12AD =45米,AC =AD ·sin ∠ADC =AD ·sin60°=453米.在Rt △BCD 中,∠BDC =45°,则△BCD 是等腰直角三角形. BC =CD =45米,∴AB =AC -BC =453-45≈32.9米.答:小山高BC 为45米,铁塔高AB 约为32.9米. 活动2 跟踪训练为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树A B 的高度(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是①④. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a ,b ,c ,α,β等表示测得的数据a ·tan α+1.5.(4)写出求树高的算式:AB =AB =a ·tan α+1.5.解:实践一:∵∠CED =∠AEB ,CD ⊥DB ,AB ⊥BD , ∴△CED ∽△AEB , ∴CD AB =DE BE. ∵CD =1.6米,DE =2.7米,BE =8.7米, ∴AB =1.6×8.72.7≈5.2(m).实践二:(1)在距离树AB 的a 米的C 处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE ,求得树高出测角仪的高度AE ,则树高为AE +BE.(2)如图.活动3 课堂小结学生试述:这节课你学到了些什么?第三章圆3.1 圆1.回顾圆的基本概念.2.理解并掌握与圆有关的概念:弦、直径、半圆、等圆、等弧等.(重点)3.结合实例,理解平面内点与圆的三种位置关系.(难点)阅读教材P65~66,完成预习内容.(一)知识探究1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.2.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.(二)自学反馈1.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个2.如图所示,图中共有2条弦.3.在平面内,⊙O的半径为5 cm,点P到圆心的距离为3 cm,则点P与⊙O的位置关系是点P在圆内.活动1 小组讨论例1 ⊙O的半径为2 cm,则它的弦长d的取值范围是0<d≤4_cm.直径是圆中最长的弦.例2⊙O中若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.与半径相等的弦和两半径构造等边三角形是常用数学模型.例3 已知AB=4 cm,画图说明满足下列条件的图形.(1)到点A和B的距离都等于3 cm的所有点组成的图形;(2)到点A和B的距离都小于3 cm的所有点组成的图形;(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.解:(1)如图1,分别以点A和B为圆心,3 cm为半径画⊙A与⊙B,两圆的交点C、D 为所求;图1 图2(2)如图1,分别以点A和点B为圆心,3 cm为半径画⊙A与⊙B,两圆的重叠部分为所求;(3)如图2,以点A为圆心,3 cm为半径画⊙A,以点B为圆心,2 cm为半径画⊙B,则⊙B中除去两圆的重叠部分为所求.活动2 跟踪训练1.已知⊙O的半径为4,OP=3.4,则P在⊙O的内部.2.已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足0<r<5.3.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.4.如图,已知矩形ABCD的边AB=3 cm、AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B、C、D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)点B在⊙A内,点C在⊙A外,点D在⊙A上;(2)3<r<5.(2)问中B、C、D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外是指哪个点在圆外?活动3 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?3.2 圆的对称性1.理解圆的轴对称性及其中心对称性.2.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.(重难点)阅读教材P70~71,完成预习内容.(一)知识探究1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两个圆心角,两条弦,两条弧中有一组量相等,那么它们所对应的其余各组量也相等.(二)自学反馈1.圆是轴对称图形,它有无数条对称轴,其对称轴是任意一条过圆心的直线.2.在⊙O 中,AB 、CD 是两条弦.(1)如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.活动1 小组讨论例 如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?解:BE =CE.理由是:∵∠AOD =∠BOE ,∴AD ︵=BE ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.活动2 跟踪训练1.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,则∠BAC =30°.2.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.证明:∵AB ︵=AC ︵,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形. ∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC.3.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,求∠AOB 的度数.解:∵AB ︵=DC ︵, ∴∠AOB =∠DOC. ∵∠AOD =80°,∴∠AOB =∠DOC =12(180°-80°)=50°.活动3 课堂小结圆心角、弧、弦是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.*3.3 垂径定理1.通过圆的轴对称性质的学习,理解垂径定理及其推论.(重点).2.能运用垂径定理及其推论计算和证明实际问题.(难点)阅读教材P74~75,完成预习内容. (一)知识探究1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A 、B 两点;②AB ⊥CD 交CD 于E ;那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (二)自学反馈1.如图,弦AB ⊥直径CD 于E ,相等的线段有:AE =EB ,CO =DO ;相等的弧有:AD ︵=DB ︵,AC ︵=BC ︵,CAD ︵=CBD ︵.2.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离OC 为3 cm ,则弦AB 的长为8_cm.活动1 小组讨论例 如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵所在圆的圆心),其中CD =600 m ,E 为CD ︵上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.解:连接OC.设弯路的半径为R m ,则OF =(R -90)m. ∵OE ⊥CD ,∴CF =12CD =12×600=300(m).在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即 R 2=3002+(R -90)2. 解得R =545.所以,这段弯路的半径为545 m.常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.活动2 跟踪训练1.如图,在⊙O 中,弦AB =4 cm ,点O 到AB 的距离OC 的长是2 3 cm ,则⊙O 的半径是4_cm.2.CD 是⊙O 的直径,AB 是弦,且AB ⊥CD ,垂足是E ,如果CE =2、AB =8,那么ED =8,⊙O 的半径r =5.3.已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA =OB.求证:AC =BD.证明:作OE ⊥AB 于E.则CE =DE. ∵OA =OB ,OE ⊥AB , ∴AE =BE.∴AE -CE =BE -DE , 即AC =BD.过圆心作垂径是圆中常用辅助线.活动3 课堂小结用垂径定理及其推论进行有关的计算.3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论11.理解圆周角的定义,会区分圆周角和圆心角.(重点)2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆推论1,能在证明或计算中熟练地应用它们处理相关问题.(难点)阅读教材P78~80,完成预习内容. (一)知识探究1.顶点在圆上,它的两边与圆还有另一个交点的角叫做圆周角.2.圆周角的度数等于它所对弧上的圆心角度数的一半.3.同弧或等弧所对的圆周角相等. (二)自学反馈1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则∠BAC =50°.2.如图所示,点A 、B 、C 在圆周上,∠A =65°,则∠D =65°.活动1 小组讨论例1 如图所示,点A 、B 、C 在⊙O 上,连接OA 、OB ,若∠ABO =25°,则∠C =65°.例2 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠COB =64°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)连接OC ,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,锐角△ABC 的顶点A ,B ,C 均在⊙O 上,∠OAC =20°,则∠B =70°.2.OA 、OB 、OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC. ∴∠ACB =2∠BAC.求圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.活动3 课堂小结圆周角的定义、定理及推论.第2课时 圆周角定理的推论2、31.进一步探索直径所对的圆周角的特征,并能应用其进行简单的计算与证明.(重点)2.掌握圆内接四边形的有关概念及性质.(难点)阅读教材P81(问题解决)~83(议一议),完成预习内容. (一)知识探究1.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2.四个顶点都在圆上的四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆;圆内接四边形的对角互补.(二)自学反馈1.如图,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于(C) A.110° B.90° C.70° D.20°2.如图,AB 是⊙O 的直径,∠A =35°,则∠B 的度数是55°.活动1 小组讨论例1 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为(C) A.30° B.45° C.60° D.75°例2 如图,四边形ABCD 是⊙O 的内接四边形,∠CBE 是它的外角,若∠D =120°,则∠CBE 的度数是120°.例3 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD.证明:连接BE ,∵AE 是⊙O 的直径, ∴∠ABE =90°, ∴∠BAE +∠E =90°. ∵AD 是△ABC 的高, ∴∠ADC =90°, ∴∠CAD +∠C =90°. ∵AB ︵=AB ︵,∴∠E =∠C.∵∠BAE +∠E =90°,∠CAD +∠C =90°, ∴∠BAE =∠CAD.涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.活动2 跟踪训练1.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(D)A.1B. 2C. 3D.22.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.3.如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.4.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A 的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.活动3 课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①直径所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③在圆周角定理运用中,遇到直径,常构造直角三角形.。

九年级数学下册 第一章 直角三角形的边角关系 1.1《锐

九年级数学下册 第一章 直角三角形的边角关系 1.1《锐

《锐角三角函数》锐角三角函数是义务教育课程标准实验教科书(北师版)《数学》九年级下册第一章第一节内容,本章主要研究直角三角形的边角关系;本节要求经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算。

;所以本节的重点是理解tanA的数学含义和公式。

【知识与能力目标】1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算。

【过程与方法目标】1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点。

2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力。

3.体会解决问题的策略的多样性,发展实践能力和创新精神。

【情感态度价值观目标】1.积极参与数学活动,对数学产生好奇心和求知欲。

2.形成实事求是的态度以及独立思考的习惯。

【教学重点】理解tanA的数学含义和公式。

【教学难点】现实情境中理解tanA的数学含义,以及公式的应用。

课前准备教师准备课件、多媒体;学生准备;练习本;教学过程第一课时创设情境引入课题[问题1]在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?从而引出课题在活动1中教师应重点关注:(1) 学生是否能从实际生活中发现并提出数学问题。

(2)学生的审美意识及对演示图片倾注的情感。

通过熟悉的物体(梯子),不仅让学生感受到生活中数学无处不在,也为后面的探究活动作好了情感准备。

梯子是日常生活常见的物体,让学生比较如何比较梯子的倾斜度,有哪些办法?“陡”或“平缓”是用来描述梯子什么的?教师通过引导学生观察、讨论,通过步步设问,引发学生思考。

定义在在Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边从而引出正切的定义利用这个梯子模型引入,可以帮助学生直观理解正切的概念。

九年级数学下册教材目录(北师大版)

九年级数学下册教材目录(北师大版)

九年级数学下册教材目录(北师大版)第一章直角三角形的边角关系
1 锐角三角函数
2 30°,45°,60°角的三角函数值
3 三角函数的计算
4 解直角三角形
5 三角函数的应用
6 利用三角函数测高
回顾与思考
复习题
第二章二次函数
1 二次函数
2 二次函数的图象与性质
3 确定二次函数的表达式
4 二次函数的应用
5 二次函数与一元二次方程
回顾与思考
复习题
第三章圆
1 圆
2 圆的对称性
*3 垂径定理
4 圆周角和圆心角的关系
5 确定圆的条件
6 直线和圆的位置关系*
7 切线长定理
8 圆内接正多边形
9 弧长及扇形的面积
回顾与思考
复习题。

2019版九年级数学下册 第一章 直角三角形的边角关系 1.1 锐角三角函数(第1课时)教案 (新版)北师大版

2019版九年级数学下册 第一章 直角三角形的边角关系 1.1 锐角三角函数(第1课时)教案 (新版)北师大版

第一章直角三角形的边角关系1 锐角三角函数第1课时【教学目标】知识技能目标:1.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度(坡比)等.2.能够根据直角三角形的边角关系,用正切进行简单的计算.过程性目标:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.情感态度目标:进一步锻炼学生用数学的观点来解释身边的事物,形成良好的数学思维习惯和思维品质.【重点难点】重点:理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.难点:理解正切的意义,并用它来表示两边的比.【教学过程】一、创设情境介绍世界文化遗产——意大利比萨斜塔,激发学习兴趣我们都知道世界著名的建筑——意大利比萨斜塔.但你知道比萨斜塔是如何倾斜的和倾斜角度是多少吗? 如图,小明说,只要测得垂直中心线、塔身中心线的长度及塔顶中心点偏离垂直中心线的距离这三个数据中的任意两个,他就可以计算出塔身倾斜角θ的大小.你想知道小明是如何做的吗?那么,我们一起来学习新知识吧.通过本章的学习,你就会明白小明这样做的道理.二、探究归纳在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,你有什么巧妙的方法得到梯子的倾斜程度呢?如图,小明想通过测量B1C1及AC1,算出它们的比来说明梯子的倾斜程度;而小亮则认为通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)Rt△AB1C1和Rt△AB2C2有什么关系?(2)和有什么关系?(3)如果改变B2在梯子上的位置呢?由此你得出什么结论?请同学们思考:既然直角三角形中,一个锐角一旦确定,它的对边与邻边的比也随之确定.那么这个确定的比我们能不能用一个数学符号来表示呢?数学上,我们把这个确定的比叫做一个锐角的正切.如图,我们把∠A的对边与∠A的邻边的比,叫做∠A的正切(tangent),记作tan A.即tan A=.对于正切的定义,同学们必须明确以下几点:1.tan A中常省略角的符号“∠”.用希腊字母表示角时也可省略如:tan α,tan β等.但用三个字母表示角和用阿拉伯数字表示角时,不能省略角的符号“∠”,要写成tan∠BAC或tan∠1,tan∠2等;2.tan A没有单位,它表示一个比值;3.tan A是一个完整的数学符号,不可分割,不表示“tan ”乘以“A”;4.一个角的正切是在直角三角形中定义的,因此,tan A=只能在直角三角形中适用;请同学们思考,梯子的倾斜程度与tan A的值有关吗?tan A的值越大,梯子越陡例1:如图表示甲、乙两个自动扶梯,哪个自动扶梯比较陡?认识坡角、坡度(坡比)坡角:坡面与水平面的夹角;坡度(坡比):坡面的铅直高度与水平宽度的比,因此坡度(坡比)就是坡角的正切.如图,有一山坡在水平方向上每前进100 m就升高60 m,那么山坡的坡角是α,坡度(坡比)就是:tanα==.三、交流反思师生互相交流总结本堂课所学的知识点和体会;谈谈对本节知识的理解.四、检测反馈1.如图,在△ABC中,∠C=90°,AC=6,若tan A=,则BC=________.2.如图,在△ABC中,AC=AB=10,BC=16,则tan B=________.3.如图,某人从山脚下的点A走了200 m后到达山顶的点B.已知山顶B到山脚下的垂直距离是55 m.求山的坡度(结果精确到0.001).五、布置作业课本P4 习题T1,T2六、板书设计七、教学反思本课时结合学生身边的数学现象,依据初中学生身心发展的特点,通过介绍求比萨斜塔的倾斜角入手引入新课,激发了学生的求知欲.为了突破教学难点,教学活动中运用了直观教学、几何画板动态演示和验证、几何推理等方法,既直观地呈现了知识的内在联系,培养了学生的几何直观能力,又唤起和加深学生对教学内容的体会和理解.本课中,对比萨斜塔的倾斜角、梯子的倾斜程度、坡角、坡度(坡比)的认识,让学生更进一步体验了数学的实用性,加深了数学和实际生活的联系.。

九年级数学下册 第一章 直角三角形的边角关系 1.1 锐角三角函数(第1课时)

九年级数学下册 第一章 直角三角形的边角关系 1.1 锐角三角函数(第1课时)

B . 3 4
C . 3 5
D .4 5
第十六页,共三十一页。
★2.如图,旗杆(qígān)高AB=8 m,某一时刻,旗杆影子长
1
BC=16 m,则tan C=______2 _.
世纪金榜导学号
第十七页,共三十一页。
★3.在Rt△ABC中,∠C=90°,若斜边AB是直角(zhíjiǎo)边BC的
3倍,则tan B的值是
( A)
A .22
B .3
C . 2 4
D .1 3
第十八页,共三十一页。
★★4.如图,A,B,C是小正方形的顶点,且每个小正
方形的边长为1,则tan∠BAC的值为 (
世纪(shìjì)金榜导学号
)B
A. 1 2
C. 3 3
B.1 D. 3
第十九页,共三十一页。
知识点二 正切的应用——坡度(P4“坡度”补充(bǔchōng)) 【典例2】(2019·上海虹口区一模)如图,传送带和地面所成 斜坡AB的坡度为1∶2,物体从地面沿着该斜坡从A点到B点 前进了10米,求物体离地面的高度.
第十一页,共三十一页。
【规范解答】如图,连接BC. 设小正方形的边长为1,根据勾股定理 可得AC2=22+22=8,BC2=12+12=2, AB2=12+32=10 …………计算(jì suàn)三边的平方 ∴AC2+BC2=AB2, …………三边满足a2+b2=c2 ∴△ABC是直角三角形,∠ACB=90°(勾股定理逆定理)
★3.如图所示,河堤横断面迎水坡AB的坡比是1∶ , 5 堤高BC=4 m,则迎水坡宽度(kuāndù)AC的长为 ( B ) 世纪金榜导学号
A. m 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 锐角三角函数
第1课时正切与坡度
1.理解正切的意义,并能举例说明;(重点)
2.能够根据正切的概念进行简单的计算;(重点)
3.能运用正切、坡度解决问题.(难点)
一、情境导入
观察与思考:
某体育馆为了方便不同需求的观众,设计了不同坡度的台阶.
问题1:图①中的台阶哪个更陡?你是怎么判断的?
问题2:如何描述图②中台阶的倾斜程度?除了用∠A的大小来描述,还可以用什么方法?
方法一:通过测量BC与AC的长度算出它们的比,来说明台阶的倾斜程度;
方法二:在台阶斜坡上另找一点B1,测出B1C1与AC1的长度,算出它们的比,也能说明台阶的倾斜程度.
你觉得上面的方法正确吗?
二、合作探究
探究点一:正切
【类型一】根据正切的概念求正切值
分别求出图中∠A、∠B的正切值(其中∠C=90°).
由上面的例子可以得出结论:直角三角形的两个锐角的正切值互为________.
解析:根据勾股定理求出需要的边长,然后利用正切的定义解答即可.
解:如图①,tan ∠A =1612=43,tan ∠B =1216=34;如图②,BC =732-552=48,tan ∠A =4855,tan ∠B =5548
.
因而直角三角形的两个锐角的正切值互为倒数.
方法总结:求锐角的三角函数值的方法:利用勾股定理求出需要的边长,根据锐角三角函数的定义求出对应三角函数值即可.
变式训练:见《学练优》本课时练习“课后巩固提升” 第1题
【类型二】 在网格中求正切值
已知:如图,在由边长为1的小正方形组成的网格中,点A 、B 、C 、D 、E 都在小正
方形的顶点上,求tan ∠ADC 的值.
解析:先证明△ACD ≌△BCE ,再根据tan ∠ADC =tan ∠BEC 即可求解.
解:根据题意可得AC =BC =12+22=5,CD =CE =12+32=10,AD =BE =5,∴△ACD ≌△BCE (SSS).∴∠ADC =∠BEC .∴tan ∠ADC =tan ∠BEC =13
.
方法总结:三角函数值的大小是由角度的大小确定的,因此可以把求一个角的三角函数值的问题转化为另一个与其相等的角的三角函数值.
变式训练:见《学练优》本课时练习“课后巩固提升” 第3题
【类型三】 构造直角三角形求三角函数值
如图,在Rt △ABC 中,∠C =90°,BC =AC ,D 为AC 的中点,求tan ∠ABD 的值.
解析:设AC =BC =2a ,根据勾股定理可求得AB =22a ,再根据等腰直角三角形的性质,可得DE 与AE 的长,根据线段的和差,可得BE 的长,根据正切三角函数的定义,可得答案.
解:如图,过D 作DE ⊥AB 于E .设AC =BC =2a ,根据勾股定理得AB =22a .由D 为AC 中点,得AD =a .由∠A =∠ABC =45°,又DE ⊥AB ,得△ADE 是等腰直角三角形,∴DE =AE =2a 2.∴BE =AB -AE =32a 2,tan ∠ABD =DE BE =13
. 方法总结:求三角函数值必须在直角三角形中解答,当所求的角不在直角三角形内时,
可作辅助线构造直角三角形进行解答.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
探究点二:坡度
【类型一】 利用坡度的概念求斜坡的坡度(坡比)
堤的横断面如图.堤高BC 是5米,迎水斜坡AB 的长是13米,那么斜坡AB 的坡度
是( )
A .1∶3
B .1∶2.6 C.1∶2.4 D.1∶2
解析:由勾股定理得AC =12米.则斜坡AB 的坡度=BC ∶AC =5∶12=1∶2.4.故选C. 方法总结:坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i =1∶m 的形式.
变式训练:见《学练优》本课时练习“课堂达标训练”第9题
【类型二】 利用坡度解决实际问题
已知一水坝的横断面是梯形ABCD ,下底BC 长14m ,斜坡AB 的坡度为3∶3,另一
腰CD 与下底的夹角为45°,且长为46m ,求它的上底的长(精确到0.1m ,参考数据:2≈
1.414,3≈1.732).
解析:过点A 作AE ⊥BC 于E ,过点D 作DF ⊥BC 于F ,根据已知条件求出AE =DF 的值,再根据坡度求出BE ,最后根据EF =BC -BE -FC 求出AD .
解:过点A 作AE ⊥BC ,过点D 作DF ⊥BC ,垂足分别为E 、F .∵CD 与BC 的夹角为45°,∴∠DCF =45°,∴∠CDF =45°.∵CD =46m ,∴DF =CF =462
=43(m),∴AE =DF =43m.∵斜坡AB 的坡度为3∶3,∴tan ∠ABE =AE
BE =33
=3,∴BE =4m.∵BC =14m ,∴EF =BC -BE -CF =14-4-43=10-43(m).∵AD =EF ,∴AD =10-43≈3.1(m).
所以,它的上底的长约为3.1m.
方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
三、板书设计
正切与坡度
1.正切的概念 在直角三角形ABC 中,tan A =
∠A的对边∠A的邻边
. 2.坡度的概念
坡度是坡面的铅直高度与水平宽度的比,也就是坡角的正切值.
在教学中,要注重对学生进行数学学习方法的指导.在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会做题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目.通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解和掌握基本概念、基础知识。

相关文档
最新文档