材料成型原理及工艺第一章液态成型工艺基础理论
金属材料成型基础之金属液态成型
(2) 凝固收缩 从凝固开始到凝固终止温度间的收缩。 T液 — T固
(3) 固态收缩 从凝固终止温度到室温间的收缩。 T固 — T室
体收缩率:
体收缩率是铸件产生缩 孔或缩松的根本原因。
线收缩率:
线收缩率是铸件产生应 力、变形、裂纹的根本
原因。
书山有路勤为径, 学海无涯苦作舟
书山有路勤为径, 学海无涯苦作舟
7.0
白口铸铁: P+Fe3C+Le
(wC+wSi)%
麻口铸铁: P+Fe3C+G+Le 灰口铸铁:
珠光体灰口铸铁: P+G片
6.0
白 5.0 口
铸 4.0 铁
10 20
珠光体+铁素体灰口铸铁: P+F+G片 铁素体灰口铸铁: F+G片
灰口铸铁
30 40 50 60 70
3.麻口铸铁: 组织中既存在石墨、又有莱氏体,是白口和灰 口之间的过渡组织,因断口处有黑白相间的麻 点,故而得名。
书山有路勤为径, 学海无涯苦作舟
根据铸铁中石墨形态的不同,灰口铸铁又可分为:
1.普通灰口铸铁 : 简称灰口铸铁,其石墨呈片状。如图a所示 2.可锻铸铁: 其石墨呈团絮状。。如图b所示。 3.球墨铸铁: 其石墨呈球状。如图c所示。
2.缩孔与缩松
液态合金在冷凝过程中, 若其液态收缩和凝固收缩所缩减的容积 得不到补充, 则在铸件最后凝固的部位形成一些孔洞 。大而集中的 称为缩孔, 细小而分散的称为缩松。
1)缩孔和缩松的形成
书山有路勤为径, 学海无涯苦作舟
2)缩孔和缩松的防止
防止缩孔和缩松常用的工艺措施就是控制铸件的凝固 次序, 使铸件实现“顺序凝固”。
材料成型原理及工艺
材料成型原理及工艺材料成型是指将原料通过一定的工艺过程,使其获得所需形状的过程。
在材料成型中,最常见的方式包括热成型、冷成型和粉末冶金成型等。
这些成型工艺的原理和应用在各个领域都有广泛的应用。
热成型是指通过加热材料使其软化并塑性变形以达到所需形状的一种成型方法。
主要包括热压成型、热拉伸成型、热挤压成型等。
其原理是通过加热使材料达到一定的软化点或熔点,然后通过外力施加,使材料塑性变形并成型。
热成型适用于塑料、玻璃、金属等材料的成型,并且可以制造复杂形状的产品。
冷成型是通过机械力作用在室温下进行的成型方法。
冷成型主要包括挤压成型、压铸成型、冷轧成型等。
其中,冷挤压是常见的一种冷成型方式,主要应用于金属材料的成型。
其原理是通过施加机械力,使材料在室温下产生塑性变形,并达到所需形状。
具有高精度、高效率的特点。
粉末冶金成型是一种将粉末材料在一定温度下进行成型的方法。
其主要过程包括压制和烧结两个过程。
首先将粉末材料经过一定的工艺处理得到一定的物理性质,然后该粉末被用来制造一种新型的成型工艺。
原理是通过压制使粉末粒子结合,并在一定的温度下进行烧结,最终得到所需形状的产品。
其优点是可以制造复杂形状的产品,同时可以利用废料进行再利用。
在材料成型过程中,还有一些辅助工艺和辅助设备的应用,以实现更好的成型效果。
例如模具是实现材料成型的重要工具,通过对模具进行设计和制造,可以获得不同形状和尺寸的产品。
在热成型过程中,需要控制加热温度、保持时间、冷却速率等参数,以确保产品的质量。
在冷成型过程中,需要选择合适的冷却介质和冷却方式,以使产品达到所需的硬度和强度。
在粉末冶金成型过程中,需要控制压制力、压制时间和烧结温度等参数,以实现产品的致密度和力学性能。
总结起来,材料成型的原理和工艺非常丰富多样,根据不同材料和产品的要求选择合适的成型方式可以实现高效率、高质量的制造。
随着科技的进步和工艺的改进,材料成型在各个行业的应用也越来越广泛。
材料成型原理与工艺
04
材料成求极高,需要具备轻质、高强度、 耐高温等特性。材料成型原理与工艺的发展为航空航天领域 提供了更多的选择,如钛合金、复合材料等。
这些新型材料的应用有助于减轻飞机和航天器的重量,提高 其性能和安全性。
汽车工业领域的应用
随着环保意识的提高和新能源汽车的 兴起,汽车工业对轻量化材料的需求 越来越大。
件。
锻造工艺
01
02
03
04
自由锻造
利用自由锻锤或压力机对坯料 进行锻打,形成所需形状和尺
寸的锻件。
模锻
利用模具对坯料进行锻打,使 坯料在模具中形成所需形状和
尺寸的锻件。
热锻
将坯料加热至高温后进行锻打 ,使材料易于塑性变形。
冷锻
在常温下对坯料进行锻打,适 用于塑性较差的材料。
焊接工艺
熔化焊
压力焊
材料成型原理与工艺的发展使得汽车 零部件的制造更加高效、精确,如铝 合金、镁合金等轻质材料的广泛应用 ,有助于降低汽车能耗和排放。
能源领域的应用
能源领域如核能、太阳能等需要大量的特殊材料,如耐高 温、耐腐蚀的材料。
材料成型原理与工艺的进步为能源领域提供了可靠的材料 解决方案,如高温合金、耐腐蚀涂层等,有助于提高能源 利用效率和安全性。
材料成型原理与工艺
• 材料成型原理概述 • 材料成型工艺介绍 • 材料成型原理与工艺的发展趋势 • 材料成型原理与工艺的应用前景
01
材料成型原理概述
材料成型的基本概念
材料成型是通过物理或化学手 段改变材料的形状,以达到所 需的结构和性能的过程。
材料成型涉及多种工艺和技术, 如铸造、锻造、焊接、注塑等。
泡沫金属
通过在金属基体中引入孔洞,制备 出具有轻质、高比强度的泡沫金属 材料。
材料成型技术基础第一章第五节与液态成形相关的新工艺、新技术简介
第五节与液态成形相关的新工艺、新技术简介一、模具快速成形技术快速成形(Rapid Prototyping,简称RP):利用材料堆积法制造实物产品的一项高新技术。
它能根据产品的三维模样数据,不借助其它工具设备,迅速而精确地制造出该产品,集中体现在计算机辅助设计、数控、激光加工、新材料开发等多学科、多技术的综合应用。
传统的零件制造过程往往需要车、钳、铣、刨、磨等多种机加工设备和各种工装、模具,成本高又费时间。
一个比较复杂的零件,其加工周期甚至以月计,很难适应低成本、高效率生产的要求。
快速成形技术是现代制造技术的一次重大变革。
(一)快速成形工艺快速成形技术就是利用三维CAD的数据,通过快速成形机,将一层层的材料堆积成实体原型。
迄今为止,国内、外已开发成功了10多种成熟的快速成形工艺,其中比较常用的有以下几种:1.纸层叠法—薄形材料选择性切割(LOM法)计算机控制的CO2激光束按三维实体模样每个截面轮廓对薄形材料(如底面涂胶的卷状纸、或正在研制的金属薄形材料等)进行切割,逐步得到各个轮廓,并将其粘结快速形成原型。
用此法可以制作铸造母模或用于“失纸精密铸造”。
2.激光立体制模法—液态光敏树脂选择性固化(SLA法)液槽盛满液态光敏树脂,它在计算机控制的激光束照射下会很快固化形成一层轮廓,新固化的一层牢固地粘结在前一层上,如此重复直至成形完毕,即快速形成原型。
激光立体制模法可以用来制作消失模,在熔模精密铸造中替代蜡模。
3.烧结法—粉末材料选择性激光烧结(SLS法)粉末材料可以是塑料、蜡、陶瓷、金属或它们复合物的粉体、覆膜砂等。
粉末材料薄薄地铺一层在工作台上,按截面轮廓的信息,CO2激光束扫过之处,粉末烧结成一定厚度的实体片层,逐层扫描烧结最终形成快速原型。
用此法可以直接制作精铸蜡模、实型铸造用消失模、用陶瓷制作铸造型壳和型芯、用覆膜砂制作铸型、以及铸造用母模等。
4.熔化沉积法—丝状材料选择性熔覆(FDM法)加热喷头在计算机的控制下,根据截面轮廓信息作X-Y平面运动和高度Z方向的运动,塑料、石腊质等丝材由供丝机构送至喷头,在喷头中加热、熔化,然后选择性地涂覆在工作台上,快速冷却后形成一层截面轮廓,层层叠加最终成为快速原型。
材料成型基本原理完整版
第一章:液态金属的结构与性质1雷诺数Re:当Re>2300时为紊流,Re<2300时为层流。
Re=Du/v=Duρ/η,D为直径,u 为流动速度,v为运动粘度=动力粘度η/密度ρ。
层流比紊流消耗能量大。
2表面张力:表面张力是表面上平行于切线方向且各方向大小相同等的张力。
润湿角:接触角为锐角时为润湿,钝角时为不润湿。
3压力差:当表面具有一定的曲度时,表面张力将使表面的两侧产生压力差,该压力差值的大小与曲率半径成反比,曲率半径越小,表面张力的作用越显著。
4充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力,即液态金属充型能力。
5长程无序、近程有序:液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性,表现出长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,液体结构表现出局域范围内的近程有序。
拓扑短程序:Sn Ge Ga Si等固态具有共价键的单组元液体,原子间的共价键并未完全消失,存在着与固体结构中对应的四面体局域拓扑有序结构。
化学短程序:Li-Pb Cs-Au Mg-Bi Mg-Zn Mg-Sn Cu-Ti Cu-Sn Al-Mg Al-Fe等固态具有金属间化合物的二元熔体中均有化学短程序的存在。
6实际液态金属结构:实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇空穴所组成,同时也含有各种固态液态和气态杂质或化合物,而且还表现出能量结构及浓度三种起伏特征,其结构相对复杂。
能量起伏:液态金属中处于热运动的原子的能量有高有低,同一原子的能量也在随时间不停的变化,时高时低,这种现象成为能量起伏。
结构起伏:由于能量起伏,液体中大量不停游动的局域有序原子团簇时聚时散,此起彼伏而存在结构起伏。
浓度起伏:游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化,这一现象成为浓度起伏。
材料成型基本原理习题答案第一章答案
第一章习题1 . 液体与固体及气体比较各有哪些异同点哪些现象说明金属的熔化并不是原子间结合力的全部破坏(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义液体的配位数N1、平均原子间距r1各表示什么答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
材料成型及加工原理第一章
第一章1.聚合物材料的加工性质:可模塑性、可挤压性、可纺性、可延性。
2.什么是可挤压性?答:可挤压性是指聚合物经过挤压作用形变时获得形状和保持形状的能力。
发生地点:主要有挤出机、注塑机料筒、压延机辊筒用、模具中等聚合物力学的状态:粘流态。
表征参数:熔融指数3.什么是可模塑性?答:可模塑性是指材料在温度和压力作用下形变和在模具中模制成型的能力。
发生地点:主要有挤出机、注塑机、模具中等聚合物力学状态:高弹态、粘流态表征方法:螺旋流动试验在成型加工过程中,聚合物的可模塑性常用在一定温度、压力下熔体的流动长度来表示。
4.什么是可纺性?答:可纺性是聚合物材料经过加工形成连续的固态纤维的能力。
发生地点:主要有熔融纺丝聚合物力学状态:粘流态表征方法:纺丝实验5.什么是可延性?答:可延性表示无定型或半结晶聚合物在一个或两个方向上受到压延或拉伸时变形的能力。
发生地点:压延或拉伸工艺聚合物力学状态:高弹态、或玻璃态。
表征方法:拉伸试验(速率快慢、式样)可延性源于:1)大分子结构非晶高聚物单个分子空间形态:无规线团:结晶高聚物:折叠链状细而长的长链结构和巨大的长径比2)大分子链的柔性。
6.什么是粘弹性?答:粘弹性是纯弹性和纯粘性的有机组合。
A,粘性:物体受力后,形变随时间发生变化,除去外边后,形变不能回复。
B,弹性:物全受力后,发生形变,除去外力后,形变能回复1)普弹性:物体受力后,瞬时发生形变,除去外力能迅速回复,与时间无关。
(符合胡克定律)2)高弹性:物体受力后,瞬时发生形变,除去外力能回复,与时间有关。
(不符合胡克定律)7.什么是滞后效应?答:在外作用力下,聚合物分子链由于跟不上外力作用速度而造成的形变总是落后于外力作用速度的效应。
形成原因:长链结构和大分子的运动具有步性,存在松弛过程,需要松弛时间。
聚合物的可挤压性:粘度---流动性---MFR表征、表征意义及使用意义聚合物的可模塑性:可模塑性的影响因素聚合物的可延性:冷拉伸、热拉伸、滞后效应线型高聚合物的聚集态与成型加工:力学三态的特征(分子运动状态、宏观力学状态)及适应的成型加工方法重要的成型加工特征温度:Tb /Tg/Tm/Tf/Td习题:1.请用粘弹性的滞后效应相关理论解说塑料注射成型制品的变形收缩现象以及热处理的作用。
液态成型工艺(
震击噪音小,劳动条件好。
生产率高(120箱/h),铸件质量好。 机器使用可靠,维修方便,价格低。
微震压实原理图
第四节
一、高压造型概述
水平分型高压造型
高压造型优缺点 优点:铸件质量高。 由于铸件质量高,可减少机加工余量,成本低。 降低劳动强度,改善劳动条件,提高生产率。 适应性强,能制造复杂、较大的铸件。 二、水平分型高压造型工艺过程 1、水平分型有箱高压造型 2、水平分型脱箱高压造型
四、冷冻造型
又称低温硬化造型法。其过程是采用普通石英砂作为骨架材料,加入少 量水,必要时加少量粘土,按普通造型方法制好铸型后送入冷冻室中, 用液态氮或二氧化碳作为制冷剂,使铸型冷冻,借助于包覆在砂粒表面 的冷冻水分而实现砂粒的结合,使铸型具有很高的强度及硬度。浇注时, 铸型温度升高,水分蒸发,铸型逐步解冻,稍加振动立即溃散,可方便 地取出铸件。 与其他造型方法相比,冷冻造型法具有以下特点: (1) 型砂中除少量的水及粘土外,无其他辅助材料,铸件的清理落砂方 便,设备简单; (2) 粉尘及有害气体少,环境污染小; (3) 铸型强度高、硬度大、透气性好,铸件表面粗糙度低、缺陷少。采 用这种造型方法生产球墨铸铁件可实现无冒口铸造,不会产生白口组织。
2、机器造型的特点
要使用模板 使用标准或专用砂箱
尽量采用单一砂
砂型只能有一个分型面 一般为流水线生产,浇注速度快,对浇注系统要求高
3、机器造型方法分类
砂型表面单位面积所受的压力称为压实比压。 根据比压大小可分为: 高压造型-----比压≥0.689MPa 中压造型-----比压在0.4~0.7MPa 低压造型-----比压在0.13~0.4MPa
5、出气孔与排气槽
四、垂直分型无箱高造型
液态成形工艺技术
液态成形工艺技术液态成形工艺技术是一种将液体材料注入模具中,通过各种方式使其固化成形的技术。
液态成形工艺技术包括压铸、注塑、压力真空成型等。
这些技术广泛应用于工业生产中,能够生产高精度、高性能的零部件和产品。
液态成形工艺技术的基本原理是通过将液体材料注入模具中,并施加一定的压力,使其充满整个模腔。
在一定的温度和时间下,液体材料会逐渐固化,从而得到所需的成品。
压铸是一种常见的液态成形工艺技术。
在压铸中,液态金属被注入到模具中,并经过高压力的作用,使其充满整个模腔,然后在一定的时间内进行冷却固化。
最终,通过打开模具,可以得到精确的金属零部件。
注塑是另一种常见的液态成形工艺技术。
在注塑中,熔融的塑料被注入到模具中,并且根据模具的形状和尺寸,塑料材料会逐渐固化。
注塑工艺技术可以生产各种塑料制品,如塑料壳体、包装材料等。
注塑工艺技术具有生产效率高、成本低等优点,因此在工业生产中得到广泛应用。
压力真空成型是一种利用压力和真空力来注入液态材料进行成形的技术。
在压力真空成型中,将液态材料放入模具中,并在一定的压力和真空条件下,使其充满整个模腔,并在固化过程中保持形状。
压力真空成型技术适用于各种不同材料的成形,如橡胶、塑料、陶瓷等。
液态成形工艺技术具有许多优点。
首先,液态成形工艺技术可以生产高精度的零部件和产品,尺寸和形状的精准度较高。
其次,液态成形工艺技术可以实现大规模的生产,生产效率较高。
此外,液态成形工艺技术具有良好的表面质量和产品性能,可以生产出高质量的产品。
然而,液态成形工艺技术也存在一些局限性。
首先,液态成形工艺技术对模具的要求较高,模具制造成本较高。
其次,对液态材料的选择和控制有一定的技术要求,不同的液态材料需要不同的成形工艺。
此外,液态成形工艺技术在处理高温材料和特殊材料时存在一定的困难。
总之,液态成形工艺技术是一种重要的加工技术,能够生产出高精度、高性能的零部件和产品。
随着材料和工艺的不断创新,液态成形工艺技术将在工业生产中发挥越来越重要的作用。
材料成型原理与工艺(01)-液态金属成形概论
夹杂物的排除: 夹杂物的排除:
金属液静止处理、真空浇注,加熔剂, 金属液静止处理、真空浇注,加熔剂,过滤法
2012-1-8
凝固区域
固相区、凝固区、液相区
凝固方式
逐层凝固方式 体积凝固(糊状凝固方式) 体积凝固(糊状凝固方式) 中间凝固方式
2012-1-8 22
如果合金的结晶温度范围很宽,且铸件的温度分布较 为平坦,则在凝固的某段时间内,铸件表面并不存在 固体层,而液、固并存的凝固区贯穿整个断面。由于 这种凝固方式与水泥类似,即先呈糊状而后固化,故 称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄 铜等都是糊状凝固的合金。 中间凝固方式 大多数合金的凝固介于逐层凝固和糊状 凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口 铸铁等具有中间凝固方式
气压保温浇包
15
采用德国KW公司技术的新二线主机,发动机缸体造型生产线。
罗兰门第制芯中心
2012-1-8 16
二、液态金属在铸型中的流动
1、 液态金属充型能力的基本概念 、
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力, 叫做液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属充填铸型一般是在纯液态下充满型腔的,也有边充型边结晶的 情况,在充型过程中当液态金属中形成晶粒堵塞充型通道时,流动则停 止,造成铸件“浇不足”缺陷。 液态金属的充型能力(实验-螺旋形试样):
2012-1-8
18
思考题 1 1. 液态金属成形的概念是什么?液态金属 液态金属成形的概念是什么? 成形具有哪些优点? 成形具有哪些优点? 2. 液态金属成形生产过程。 液态金属成形生产过程。
材料成型原理各章重点
第一章重点总结第一节了解即可,没有出过题。
第二节1.纯金属的液态结构(11页第三段)2.实际金属的液态结构(11页第四段第五行,从“因此,实际液态金属-----”到段末)3.名词解释温度起伏,结构起伏,能量起伏(11页三、四段中)4.13页第一段“X射线衍射-----”第三节5.影响液态金属粘度的因素(14页)(1)化学成分,难熔化合物的液体粘度较高,熔点低的共晶成分合金粘度低(2)温度,液体金属的粘度随温度的升高而降低。
(3)非金属夹杂物,非金属夹杂物使液态金属粘度增加6.粘度在材料成形过程中的意义1)对液态金属净化的影响(2)对液态合金流动阻力的影响(3)对凝固过程中对流的影响7.名词解释,表面张力(15页最下面一句“总之,一小部分---”)8.表面张力产生的原因,(16页第一段)9.影响表面张力的因素(见2005年A卷二大题1小题)第四节10.流变铸造及特点(21页第一段“即使固相体积分数达到---”至最后,及21页最后一段,22页第一段)11.半固态金属表观粘度的影响因素(21页2 3 4段)第二章重点总结1铸造概念(22页第一段第一句)第一节2.液态金属充型能力和流动性有何本质区别(见2006年A卷第2题)3.两种金属停止流动机理(1)纯金属和窄结晶温度范围合金的停止流动机理(22页最后一段)(2)款结晶温度范围合金停止流动机理(23页第二三段)4.影响充型能力的因素及促进措施(1)金属性质方面的因素1.合金成分2.结晶潜热3.金属比热容4液态金属粘度5表面张力(2)铸型性质方面的因素1铸型蓄热系数,蓄热系数越大,铸型的激冷能力就越强2.铸造温度(3)浇注条件方面因素1.浇注温度2充型压头3浇注系统结构(4)铸件结构方面因素1折算厚度2铸件复杂程度(每点后最好总结一句话)第二节5.金属凝固过程中的流动(第二节1、2段)第三节6.了解存在三种传热;对流传热,传导传热,辐射传热即可第四节7.了解存在三种计算凝固时间的方法1理论计算法2平方根定律3折算厚度法即可第三章重点第一节1为什么过冷是液态合金结晶的驱动力(见2006年A卷第1题)2. 何为热力学能障和动力学能障?凝固过程中是如何克服这两个能障的?(见2005年D卷第3题)第二节 3.形核条件(40页第一段)4.名词解释,匀质形核,非匀质形核(41页最上部)5,2007年B卷第1题6.记住公式3-17 7.2006年A卷第3题第三节8.晶体宏观长大方式晶体宏观长大方式取决于界面前方液体中的温度分布,即温度梯度(1)平面方式长大固-液界面前方液体中的温宿梯度大于0,液相温度高于界面温度,称为正温度梯度分布。
材料成型原理及工艺第一章液态成型工艺基础理论
态 陷产生,导致成型件力学性能,
成 特别是冲击性能较低。
型 2. 涉及的工序很多,难以精确控
的 制,成型件质量不稳定。
缺 3.由于目前仍以砂型铸造为主,
点:
自动化程度还不很高,且属于热 加工行业,因而工作环境较差。
4.大多数成型件只是毛坯件,需 经过切削加工才能成为零件。
液态成型原理及工艺
冲天炉出铁
液态成型原理及工艺
绪论:
金属液态成型又称为铸造,
金 它是将固态金属熔炼成符合
属 液 态 成 型:
一定要求的液态金属,然后 将液态金属在重力或外力作 用下充填到具有一定形状型 腔中,待其凝固冷却后获得 所需形状和尺寸的毛坯或零 件,即铸件的方法。
制造毛坯或机器零件的重要方法。
液态成型原理及工艺
绪论:
的 游离原子
级,在此范围 内仍具有一定
近
液
的规律性。原
程
态
子集团间的空
结
空穴或裂纹 穴或裂纹内分
布着排列无规
有 序
构
则的游离的原
子。
液态成型原理及工艺
这样的结构不是静止的,而是 处于瞬息万变的状态,即原子 集团、空穴或裂纹的大小、形 态及分布及热运动的状态都处 于无时无刻不在变化的状态。 液态中存在着很大的能量起伏。
液 液态成型件在机械产品中占有重 态 要比例:
成 在机床、内燃机、重型机器中铸 型 件约占70%-90%;在风机、压
的 缩机中占60%-80%;在拖拉机
重 中占50%-70%;在农业机械中
要 占40%-70%;汽车中占20%-30
性 %。
液态成型原理及工艺
液 态 成 型 的 优 点:
(1) 适应性广,工艺灵活性大
材料成型与工艺课后答案 1-3,1-4
铸造工艺图:铸造工艺图是利用各种工 艺符号,把制造模样和铸型所需的资料, 直接绘在零件图上的图样。
它是制造模样和铸型,进行生产准备和铸件检验的依 据——基本工艺文件 收缩余量
工 浇注位置 艺 方 分型面的选择 案
工 加工余量 艺 参 起模斜度 数 铸造圆角 型芯及芯头
浇 组成及作用 注 常见类型 系 统 冒口
2)铸件的大平面应朝下,减少辐射,防开裂夹渣。
3)面积较大的薄壁部分应置于铸型下部或垂直、 倾斜位置。防止产生浇不足、冷隔。
4)易形成缩孔的铸件,较厚部分置于上部或 侧面。考虑安放冒口利于补缩。
5) 应尽量减少型芯的数量。
6)要便于安放型芯、固定和排气。
Back to page-4
浇注位置
较大的铸件,宜将内浇道
从铸件薄壁处引入,以利 铸件同时凝固,减少铸件 的内应力、变形,防止裂 纹产生。
二、浇注位置的选择-六点注意
浇注位置:浇注时铸件在铸型中所处的空间位置;浇 注位置对铸件质量及铸造工艺都有很大影响。选择时应考 虑如下原则:
选择原则:
1)铸件的重要加工面和受力面应朝下或位于侧面, 避免砂眼气孔和夹渣。
1)冒口就近设在铸件热节的上方或侧旁; 2) 冒口尽量设在铸件最高、最厚的部位,对低处的热节增设补 贴或使用冷铁。 3)冒口不应设在铸件重要的、受力大的部位,以防晶粒粗大降 低力学性能。 4)冒口位置不要选在铸造应力集中处,应注意减轻对铸件的收 缩阻碍,以免引起裂纹。 5)尽量用一个冒口同时补缩几个热节或铸件 6)冒口布置在加工面上,可借加工精整铸件表面,零件外观质 量好。 7)对不同高度上的多个冒口,应用冷铁使各个冒口的补缩范围 相隔开
起模斜度的大小根据立壁的高度、造型方法和模样材料来 确定:立壁愈高,斜度愈小;外壁斜度比内壁小;机器造型 的一般比手工造型的小;金属模斜度比木模小。具体数据可 查有关手册。一般外壁为3º ~ 15°,内壁为3°~10°。
《材料成型理论基础》课程大纲
《材料成型理论基础》课程教学大纲一、课程名称(中英文)中文名称:材料成型理论基础英文名称:Fundamentals for Materials Processing二、课程编码及性质课程编码:0809554课程性质:专业核心课,必修课三、学时与学分总学时:56学分:3.5四、先修课程工程材料学、传热学、流体力学、材料成形工艺基础五、授课对象本课程面向材料成型及控制工程专业学生开设,也可以供材料科学与工程专业和电子封装技术专业学生选修。
六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是本专业的核心课程之一,其教学目的主要包括:1.让学生对液态成形、连接成形、固态塑性成形及高分子材料成形的基本过程有较全面、深入的理解,掌握其基本原理和规律。
2.了解液态金属的结构和性质;掌握液态金属凝固的基本原理,冶金处理及其对产品性能的影响。
3.掌握材料成形中化学冶金基本规律和缺陷的形成机理、影响因素及防止措施。
4.掌握塑性成形过程中的应力与应变的基础理论,金属流动的基本规律及其应用。
5.了解高分子材料的组织转变及流动、成形的基本规律。
表1 课程目标对毕业要求的支撑关系七、教学重点与难点:教学重点:1)本课程以材料成形工艺的理论基础为主线,根据成形加工过程中材料所处或经历的状态,分为液态凝固成形、固态塑性成形、连接成形、塑料注射成形等几类,学习材料在成形过程中的组织结构、性能、形状随外在条件的不同而变化的规律性知识。
2)本课程着重利用前期所学的物理、化学等基础理论,以及传热学、流体力学等专业基础理论知识,学习液态成形、塑性成形、连接成形等基本材料成形技术的内在规律和物理本质,包括共性原理,同时也要注重个性规律性认识。
3)课程将重点或详细介绍三种主要材料成形方法中的主要基础理论和专门知识,阐述这些现象的本质,揭示变化的规律。
而对次要成形方法的基本原理或发展状况等只作简要介绍或自学。
4)重点学习的章节内容包括:第4章“单相合金与多相合金的凝固”(6学时)、第5章“铸件凝固组织的形成与控制”(6学时)、第7章“焊缝及其热影响区的组织和性能”(6学时)、第8章“成形过程的冶金反应原理”(6学时)、第11章“应力与应变理论”(4学时)、第12章“屈服准则”(6学时)。
材料成型基础课件
一般合金在凝固过程中都存在液-固两相区,树枝状晶在其中 不断扩大[见图a]。枝晶长到一定程度,枝晶分叉间的熔融 合金被分离成彼此孤立的状态[见图b],它们继续凝固时也 将产生收缩,这种凝固方式称糊状凝固。这时铸件中心虽有液 体存在,但由于树枝晶的阻碍使之无法补缩,在凝固后的枝晶 分叉间就形成许多微小的孔洞(缩松)[见图c]。
2.2 液态成形理论基础
材 料 成 形 工 艺 基 础
总结:具有逐层凝固倾向的合金(如灰 铸铁、铝硅合金等) 易于铸造,应尽量 选用。当必须采用有糊状凝固倾向的合 金(如锡青铜、铝铜合金、球墨铸铁等) 时,需考虑采用适当的工艺措施,例如, 选用金属型铸造等,以减小其凝固区域。
2.2 液态成形理论基础
1.2 材料成型方法及特点
材 料 成 形 工 艺 基 础
1.材料成型方法的分类
1.3 材料成型工艺发展及概况
材 料 成 形 工 艺 基 础
古代、近代及现代的材料成形技术 材料成形技术与材料科学 我国及世界先进国家的差距
1.4 材料成型工艺的发展趋势
材 料 成 形 工 艺 基 础
每项材料成形技术都有各自发展特点,总的趋势可归纳为 : 1、成型技术精密化 2、材料制备与成型一体化 3、复合成型 4、数字化成型 5、材料成型自动化 6、绿色清洁生产
液态合金填满铸型后[见图 a],因铸型吸热,靠近型腔表面 的金属很快就降到凝固温度,凝固成一层外壳[见图b],温 度继续下降,合金逐层凝固,凝固层加厚,内部的剩余的液体, 由于液态收缩和补充凝固层的凝固收缩,体积缩减,液面下降, 铸件内部出现空隙[见图c],直到内部完全凝固,在铸件上 部形成缩孔[见图d]。已经形成缩孔的铸件继续冷却到室温 时,因固态收缩使铸件的外形轮廓尺寸略有缩小[见图e]。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越 厚,缩孔的容积就越大。
液态成型工艺-绪论
—可镶嵌其他材料,节省贵金属材料和加工工时;
—生产率极高;
—压铸速度快,易产生气孔;
—设备投资大,模具制造费用高,故只适用于大批量生
产复杂的薄壁的中、小有色合金零件。
陶瓷型铸造
陶瓷型铸造——属于精密铸造的一种 所用的陶瓷浆料为: 刚玉粉(100%)、硅酸乙酯水解液粘结剂(37~40%) 催化剂 透气剂 氢氧化钙(0.2~0.3%) 双氧水(0.2~0.3%)及适量酒精
离心铸造
离心铸造:是将液态金属注入到无型芯的旋转铸型,在离心力 作用下结晶,形成铸件的一种铸造方法 卧式离心:铸造件壁厚均匀,适用于铸造管套类铸件 立式离心:铸造件壁厚不均匀,内表面呈抛物面,适用于铸造 盘环类铸件
刷涂料目的:是防止由于金属导热较快而使铸件形成白口
通水的目的:是加快冷却速度 离心铸造的铸件外表面光洁,内表面粗糙,易形成偏析, 离心铸造适用于大批量生产管套类铸件
永乐大钟 铜钟通高6.75米,钟壁 厚度不等,最厚处185 毫米,最薄处94毫米, 重w约46吨。钟体内外 遍铸经文,共22.7万字。 铜钟合金成分为:铜 80.54%、锡16.40%、 铝1.12%,为泥范铸造。
中国古代铁器中带有球状石墨的金相组织
湖南长沙砂子塘战国凹形铁锄
现代铸造
我国已成功地生产出了世界上最 大的轧钢机机架铸钢件(重410t)
◆ 成本低廉
铸造生产的特点
铸造生产之所以被广泛应用
主要是因为: a 容易实现机械化生产 b 可大量利用废、旧金属料 c 与锻造相比,动力消耗少
d 尺寸精度高,加工余量小
e 有效的节约物力和财力
铸造生产的意义
在机械产品中,如在机床、内燃机、重型机器中,
70~90%为铸件;
材料成型原理及工艺
材料成型原理及工艺实验指导书姓名班级学号南京农业大学工学院机械工程系机械制造教研室2006年11月目录实验一铸造合金流动性测定 (1)实验二铸造合金热裂倾向测定 (4)实验三焊接缺陷分析 (6)实验四铸造合金收缩率的测定 (12)实验五铸造残余应力测定 (15)实验一铸造合金流动性测定一、实验目的1.了解铸造合金流动性的测定原理、方法及过程;2.理解影响合金流动性的各种因素。
二、合金流动性测定原理流动性是铸造合金最主要的铸造性能之一,其影响因素众多:如金属及合金自身的特性、出炉温度、浇注温度、铸型的种类、铸件结构复杂程度、浇注系统设计等,为使其具有可比性,实际中常浇注流动性试样,并按浇出的试样尺寸评价流动性的好坏。
流动性试样按照试样的形状可分为:螺旋试样,U试样,棒状试样,楔型试样,球型试样等;按照铸型材料来分有:砂型和金属型。
螺旋试样法应用比较普遍,其特点是接近生产条件,操作简便,测量的数值明显。
螺旋试样的基本组成包括:外浇道,直浇道,内浇道和使合金液沿水平方向流动的具有倒梯形断面的螺旋线形沟槽。
合金的流动性是以其充满螺旋形测量沟槽的长度(cm)来确定的。
图1.1为同心三螺旋线测定法试样形状和尺寸。
此法为标准法。
同心三螺旋线的合金流动长度的平均值来测定合金的流动性,从而提高了测量的精度。
也可图1.1 同心三螺旋线测定法试样简以采用不同心的三螺旋线试样测定,图1.2为不同心三螺旋线测定法试样形状和尺寸,其截面为倒梯形,长度为1500mm,每隔50mm试样模型上有一凸点(便于读数)。
分别测量三螺旋线长度取其平均值来测定合金的流动性。
图1.2 不同心三螺旋线试样示意图1堤坝式浇口杯2 上砂箱3下砂箱4全压井5螺旋形试样a缓冲池b直浇口c溢流池d浇口井三、实验仪器设备及材料1.合金熔炼:100kW中频感应电炉一台(套),容量为10kg的坩埚、容量为10kg手端包;或电阻炉一台,Al2O3坩埚一个,热电偶、防护用品等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又同老的核心一起长大,直至凝固
结束。
液态成型原理及工艺
3、形核方式:
均质形核
依靠液态金属(合 金)内部自身的结
构自发地形核
异质形核
依靠外来夹杂 所提供的异质 界面非自发地
形核液态成型原理及工艺
4、纯金属晶体长大:
形成稳定的晶核后,液相中的
原子不断地向固相核心堆积,
使固-液界面不断地向液相中
推移,导致液态金属(合金)的
液态成型原理及工艺
1-1液态金属理论基础
一、 液
态
金
属
固态
的
结
从固态金属的熔化过 程看出,在熔点附近 或过热度不大的液态 金属中仍然存在许多 的固态晶粒,其结构 接近固态而远离气态.
构
液态
液态成型原理及工艺
1、纯金属的液态结构:
纯 金
原子集团由数
原子集团
量不等的原子 组成,其大小
属
为10-l0m数量
液态金属凝固的驱动 力是由过冷度提供的
图1-1 液态成型原理及工艺
2、液态金属(合金)凝固过程
在相变驱动力∆T的作用下,液态金
属开始凝固。凝固过程不是在一瞬
间完成的。首先产生结晶核心,然
后是核心的长大直至相互接触为止。
但生核和核心长大不是截然分开的,
而是同时进行的,即在晶核长大的
同时又会产生新的核心。新的核心
液 液态成型件在机械产品中占有重 态 要比例:
成 在机床、内燃机、重型机器中铸 型 件约占70%-90%;在风机、压
的 缩机中占60%-80%;在拖拉机
重 中占50%-70%;在农业机械中
要 占40%-70%;汽车中占20%-30
性 %。
液态成型原理及工艺
液 态 成 型 的 优 点:
(1) 适应性广,工艺灵活性大
图1-2
液态成型原理及工艺
其它成分合金,其结晶是在一定温 度区间内完成的,在结晶区间中, 既有形状复杂的枝晶,又有液体。 由于初生枝晶使结晶固体层内表面 粗糙,枝晶不仅阻碍液体流动,还 使液体金属的冷却速度加快,所以 合金的流动性变差。如图1-2b。
液态成型原理及工艺
铸铁的凝固温度范围虽比铸钢的宽, 但流动性却比铸钢的好。这是由于 铸钢的熔点高,钢液的过热度比铸 铁的小,保持液态流动的时间短。 另外,由于钢液的温度高,在铸型 中的散热速度快,很快析出一定数 量的枝晶,使钢液失去流动能力。 同时,液态金属的粘度愈高,金属 液的流动性愈差。
液态成型原理及工艺
绪 论 复习题
1、什么是液态成型?优缺点有哪些?
液态成型原理及工艺
第一章液态成型工艺基础理论
1-1液态金属理论基础
本 1-2液态金属的充型能力与流动性 章 1-3液态金属的凝固方式与收缩 内 1-4液态成形内应力、变形与裂纹 容 1-5液态合金吸气性
1-6铸件凝固组织的形成 1-7液态成形件的质量与控制
液态成型原理及工艺
一、液态合金的流动性
1、合金流动性:是指液态合金本身的
流动能力。
合金的流动性用浇注 流动性试样的方法来 衡量。流动性试样的 种类很多,如螺旋形、 球形、α形、真空试 样等等,应用最多的 是螺旋形试样,如图11所示。
图1-1 液态成型原理及工艺
合金流动性主要取决于合金化学成分。对应着纯 金属、共晶点和形成金属间化合物的成分,流动 性出现最大值;而有结晶温度范围的合金,流动 性下降。这是因为纯金属和共晶成分的合金是在 恒温下结晶的,凝固层表面光滑,对尚未凝固的 金属液流动阻力小,因此流动性好;如图1-2a。
凝固。液相原子堆积的方式及
速率与凝固驱动力和固-液界
面的特性有关。
液态成型原理及工艺
1-2液态金属的充型能力与流动性
充型
液态金属填充铸型的 过程
充型 能力
液体金属充满铸型型腔, 获得尺寸精确、轮廓清
晰的成形件的能力.
充型能力不足时,会产生浇不足、冷
隔、夹渣、气孔等缺陷。 液态成型原理及工艺
充型能力要考虑铸型及工艺因素 影响的熔融金属的流动性。它首 先取决于金属本身的流动性(流动 能力),同时又受铸型性质、浇注 条件和铸件结构等因素的影响。
(2)铸型温度:铸型温度越高,液态金属与铸型 的温差越小,充型能力越强。
液态成型原理及工艺
(3)铸型中的气体:铸型在浇注时发 气,能在金属液与铸型间形成气膜, 减小摩擦阻力,有利于充型。但铸 型的发气力过强,浇注速度太快, 而铸型的排气能力又小时,则型腔 中的气体压力增大,阻碍金属流动。
液态成型原理及工艺
合金的固态收缩同样表现为合金体积 的缩减,但也表现为铸件线尺寸的缩 减,它是铸件产生应力、变形和裂纹 的根本原因,常用单位长度的收缩量 即线收缩率(εL)来表示。
液态成型原理及工艺
不同合金的收缩率不同。在常用合金中 铸钢的收缩率最大,灰口铸铁的收缩率 最小。灰口铸铁收缩率最小,是因为其 中大部分碳是以石墨状态存在的,石墨 的比容大,在结晶过程中石墨析出所产 生的体积膨胀,抵消了合金的部分收缩.
1-3液态金属的凝固方式与收缩
一、铸件的凝固方式
在铸件凝固过程中,其断面上一般存在三 个区域,即固相区、凝固区和液相区。其 中对铸件质量影响较大的,是液相和固相 并存的凝固区的宽窄。铸件的凝固方式就 是依据凝固区的宽窄来划分的,图1-3中S所 示即为凝固区。其凝固方式有三种。
液态成型原理及工艺
图1-3
液态成型原理及工艺
二、液态金属的收缩
(一)收缩的概念
合金从液态冷却至室温的过程中,其体积 或尺寸缩减的现象,称为收缩。收缩是合 金的物理本质。合金的收缩给液态成型工 艺带来许多困难,是许多铸造缺陷(如缩孔、 缩松、裂纹、变形等)产生的根源。
液态成型原理及工艺
合金的收缩经历如下三 个阶段,如图1-4:
(3)浇注系统的结构:浇注系统的结构越复杂, 流动阻力越大,充型能力越差。
液态成型原理及工艺
三、铸型充填条件
液态合金充型时,铸型的阻力将影响合金的流 动速度,而铸型与合金的热交换又将影响合金 保持流动的时间。铸型的如下因素对充型能力 均有显著影响:
(1)铸型的蓄热系数:表示铸型从金属吸取热量 并储存在本身的能力。蓄热系数愈大,铸型的 激冷能力就愈强,金属液于其中保持液态的时 间就愈短,充型能力下降。
液态成 型技术
中频炉出钢
电弧炉出钢
铸铁连铸生产线 液态成型原理及工艺
产品
液态成型原理及工艺
成型件的应用
液态成型原理及工艺
本课程主要研究内容:
第一章液态成型工艺基础理论 第二章常用液态成型合金及其熔炼 第三章成型工艺及方法 第四章液态成型件的结构设计 第五章液态成型件的工艺设计 第六章液态成型工作过程 第七章液态成型技术的新发展
实用的液态合金除了存在能量起伏外, 还存在浓度起伏和结构(或称相)起伏。 三个起伏影响液态合金凝固过程,从而 对产品的质量有着重要的影响。
液态成型原理及工艺
二、液态金属的凝固
1、液态金属(合金)凝固热力学
条件:
液态金属(合金)的凝固是一个 体系自由能降低的自发进行的 过程。
液态成型原理及工艺
在熔点Tm的温度以下Gs 低于GL;故T<Tm时液态 金属进行凝固变成固态; T>Tm时固态金属的自由 能高于液态金属,发生 熔化,金属由固态变成 液态;当金属温度T=Tm 时,∆Gv=0,即液、固 态处于平衡状态。
缸体等。
液态成型原理及工艺
液 (3) 成本较低
态
所用原料大都来源广泛,价格
成
低廉,一般不需要昂贵的设备。
型
的 (4)成型件尺寸精度高
优
成型件与最终零件的形状相似、
点:
尺寸相近,因而切削加工余量可 减少到最小,从而减少了金属材
料消耗,节省了切削加工工时。
液态成型原理及工艺
液
1. 组织疏松,晶粒粗大,成型件 内部常有缩孔、缩松、气孔等缺
液态成型原理及工艺
2、实际的液态金属结构:
纯金属在工程中的应用极少,特别是 作为结构材料,在材料成形过程中也 很少使用纯金属。即使平常所说的化 学纯元素,其中也包含着无数其他杂 质元素。对于实际的液态金属,特别 是材料成形过程中所使用的液态合金 具有二个特点,一是化学元素的种类 多;二是过热度不高,一般为100~ 300℃。
态 陷产生,导致成型件力学性能,
成 特别是冲击性能较低。
型 2. 涉及的工序很多,难以精确控
的 制,成型件质量不稳定。
缺 3.由于目前仍以砂型铸造为主,
点:
自动化程度还不很高,且属于热 加工行业,因而工作环境较差。
4.大多数成型件只是毛坯件,需 经过切削加工才能成为零件。
液态成型原理及工艺
冲天炉出铁
的 游离原子
级,在此范围 内仍具有一定
近
液
的规律性。原
程
态
子集团间的空
结ห้องสมุดไป่ตู้
空穴或裂纹 穴或裂纹内分
布着排列无规
有 序
构
则的游离的原
子。
液态成型原理及工艺
这样的结构不是静止的,而是 处于瞬息万变的状态,即原子 集团、空穴或裂纹的大小、形 态及分布及热运动的状态都处 于无时无刻不在变化的状态。 液态中存在着很大的能量起伏。
液态成型原理及工艺
绪论:
金属液态成型又称为铸造,
金 它是将固态金属熔炼成符合
属 液 态 成 型:
一定要求的液态金属,然后 将液态金属在重力或外力作 用下充填到具有一定形状型 腔中,待其凝固冷却后获得 所需形状和尺寸的毛坯或零 件,即铸件的方法。
制造毛坯或机器零件的重要方法。
液态成型原理及工艺
绪论:
液态成型原理及工艺
二、浇注条件