高考物理总复习第五章机械能及其守恒定律突破全国卷5力学压轴问题突破训练
高考物理一轮复习练习第五章机械能及其守恒定律第讲功能关系能量守恒定律含解析
板块三限时规范特训时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.质量为m的物体,从静止开始以a=g2的加速度竖直向下运动h米,下列说法中不正确的是()A.物体的动能增加了mgh 2B.物体的机械能减少了mgh 2C .物体的势能减少了mgh 2D .物体的势能减少了mgh答案 C解析 因向下的加速度小于重力加速度,可判断物体一定受到阻力作用,由牛顿第二定律可求出合力F =ma =12mg ,可得阻力f =12mg ,合力做功W =12mgh ,动能增加12mgh ,A 正确;阻力做功W f =-12mgh ,机械能减少12mgh ,B 正确;重力做功W G =mgh ,则重力势能减少mgh ,D 正确,C 错误。
2.[2017·安徽合肥一模]一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为小铁块重力的1.5倍,则此过程中小铁块损失的机械能为( )A.18mgRB.14mgRC.12mgRD.34mgR 答案 B解析 已知小铁块滑到半圆底部时,小铁块所受向心力为小铁块重力的1.5倍,由牛顿第二定律得:1.5mg =m v 2R 。
对铁块的下滑过程运用动能定理得:mgR -W =12m v 2,联立解得:W =14mgR ,B 正确。
3. [2017·山东滨州市一模]两物块A 和B 用一轻弹簧连接,静止在水平桌面上,如图甲,现用一竖直向上的力F 拉动物块A ,使之向上做匀加速直线运动,如图乙,在物块A 开始运动到物块B 将要离开桌面的过程中(弹簧始终处于弹性限度内),下列说法正确的是( )A .力F 先减小后增大B .弹簧的弹性势能一直增大C .物块A 的动能和重力势能一直增大D .两物块A 、B 和轻弹簧组成的系统机械能先增大后减小答案 C解析 对A 物块由牛顿第二定律得:F -mg +kx =ma ,解得:F =m (g +a )-kx ,由于x 先减小后反向增大,故拉力一直增大,A 错误;在A 上升过程中,弹簧从压缩到伸长,所以弹簧的弹性势能先减小后增大,B 错误;在上升过程中,由于物块A 做匀加速运动,所以物块A 的速度增大,高度升高,则物块A 的动能和重力势能增大,C 正确;在上升过程中,除重力与弹力做功外,还有拉力做正功,所以两物块A 、B 和轻弹簧组成的系统的机械能一直增大,D 错误。
高考物理一轮复习考点延伸训练:第五章《机械能》(含解析).pdf
高考物理一轮复习讲义第五章_机械能及其守恒定律_45分钟章末验收卷_word版有答案(1)
45分钟章末验收卷一、单项选择题1.物体放在水平地面上,在水平拉力的作用下,沿水平方向运动,在6 s内其速度与时间关系的图象和拉力的功率与时间关系的图象如图1甲、乙所示,由图象可以求得物体的质量为(取g=10 m/s2)()图1A.2 kg B.2.5 kg C.3 kg D.3.5 kg答案 B解析匀速运动时拉力等于摩擦力,为:F2=F f=Pv=104N=2.5 N.物体做匀加速直线运动时,拉力为恒力,v随时间均匀增大,所以P随t均匀增大.F1=P′v′=304N=7.5 N.F1-F f=ma,a=42m/s2=2 m/s2可得m=2.5 kg.故B正确,A、C、D错误.2.如图2所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止开始下滑,到b点开始压缩轻弹簧,到c 点时达到最大速度,到d点(图中未画出)开始弹回,返回b点离开弹簧,恰能再回到a点.若bc=0.1 m,弹簧弹性势能的最大值为8 J,则下列说法正确的是()图2A.轻弹簧的劲度系数是50 N/mB.从d到b滑块克服重力做功8 JC.滑块的动能最大值为8 JD.从d点到c点弹簧的弹力对滑块做功8 J答案 A解析整个过程中,滑块从a点由静止释放后还能回到a点,说明机械能守恒,即斜面是光滑的.滑块到c点时速度最大,所受合力为零,由平衡条件和胡克定律有:kx bc=mg sin 30°,解得:k=50 N/m,A项正确;由d到b 的过程中,弹簧弹性势能一部分转化为重力势能,一部分转化为动能,B项错;滑块由d到c点过程中,滑块与弹簧组成的系统机械能守恒,弹簧弹性势能一部分转化为重力势能,一部分转化为动能,故到c点时最大动能一定小于8 J,又弹性势能减少量小于8 J,所以弹簧弹力对滑块做功小于8 J,C、D项错.图33.如图3所示,一固定斜面倾角为30°,一质量为m的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度大小等于23g.物块上升的最大高度为H,则此过程中,物块的()A.动能损失了23mgHB.动能损失了43mgHC.机械能损失了23mgHD.机械能损失了16mgH答案 B解析物块所受的合外力F=ma=23mg,ΔE k=W F=-23mg×2H=-43mgH,因此动能损失了43mgH,A项错误,B项正确;根据机械能守恒,摩擦力做的功等于机械能的变化量,mg sin 30°+F f=23mg,F f=16mg,ΔE=W f=-13mgH,机械能损失了13mgH,C、D项错误.4.一汽车的额定功率为P,设在水平公路行驶所受的阻力恒定,最大行驶速度为v m.则()A.若汽车以额定功率启动,则做匀加速直线运动B.若汽车匀加速启动,则在刚达到额定功率时的速度等于v mC.无论汽车以哪种方式启动,加速度与牵引力成正比D.汽车以速度v m匀速行驶,若要减速,则要减少牵引力答案 D解析若汽车以额定功率启动,根据P=F v可知随速度的增加,牵引力F减小,则做变加速直线运动,选项A错误;若汽车匀加速启动,则在刚达到额定功率时有:P=F v m′,其中F-F f=ma,则v m′=PF f+ma,而v m=PF f,所以v m′<v m,选项B错误;无论汽车以哪种方式启动,则a=F-F fm,加速度与牵引力不是正比关系,选项C错误;汽车以速度v m匀速行驶时,此时F=F f,则若要减速,则要减少牵引力,选项D正确;故选D.5.如图4所示,小物块以初速度v0从O点沿斜面向上运动,同时从O点斜向上抛出一个速度大小也为v0的小球,物块和小球在斜面上的P点相遇.已知物块和小球质量相等(均可视为质点),空气阻力忽略不计.则下列说法正确的是()图4A.斜面可能是光滑的B.小球运动到最高点时离斜面最远C.在P点时,小球的动能大于物块的动能D.小球和物块到达P点过程中克服重力做功的平均功率不相等答案 C二、多项选择题6.质量为m1、m2的两物体,静止在光滑的水平面上,质量为m的人站在m1上用恒力F拉绳子,经过一段时间后,两物体的速度大小分别为v1和v2,位移分别为x1和x2,如图5所示.则这段时间内此人所做的功的大小等于()图5A.Fx2B.F(x1+x2)C.12m2v22+12(m+m1)v21D.12m2v22答案BC解析根据功的定义W=Fx,而其x应为拉过的绳子长度,也就是两个物体运动的位移之和,因此B正确,A错误;根据动能定理,拉力做的功等于两个物体增加的动能之和,即W=12m2v22+12(m+m1)v21,因此C正确,D错误.7.如图6所示,轻弹簧的上端悬挂在天花板上,下端挂一质量为m的小球,小球处于静止状态.现在小球上加一竖直向上的恒力F使小球向上运动,小球运动的最高点与最低点之间的距离为H,则此过程中(g为重力加速度,弹簧始终在弹性限度内)()图6A.小球的重力势能增加mgHB.小球的动能增加(F-mg)HC.小球的机械能增加FHD.小球的机械能不守恒答案AD8.如图7甲所示,质量m=1 kg的物块(可视为质点)以v0=10 m/s的初速度从倾角θ=37°的固定粗糙长斜面上的P点沿斜面向上运动到最高点后,又沿原路返回,其速率随时间变化的图象如图乙所示.不计空气阻力,取sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2.下列说法正确的是()图7A.物块所受的重力与摩擦力之比为5∶2B.在1~6 s时间内物块所受重力的平均功率为50 WC.在t=6 s时物块克服摩擦力做功的功率为20 WD.在0~1 s时间内机械能的变化量与在1~6 s时间内机械能的变化量大小之比为1∶5答案AD解析0~1 s时间内,由题中图象得加速度大小a1=101m/s2=10 m/s2,根据牛顿第二定律有mg sin θ+Ff=ma1,1~6 s时间内,由题中图象得加速度大小a2=106-1m/s2=2 m/s2,根据牛顿第二定律有mg sin θ-F f=ma2,解得mgF f=52,F f=4 N,选项A正确;1~6 s时间内,v=0+102m/s=5 m/s,平均功率P=mg sin θ·v=30 W,选项B错误;由题中图象知t=6 s时物块的速率v6=10 m/s,物块克服摩擦力做功的功率P6=F f v6=40 W,选项C错误;根据功能关系,在0~1 s时间内机械能的变化量大小ΔE1=F f s1,在1~6 s时间内机械能的变化量大小ΔE2=F f s2,由题中图象得s1=12×1×10 m=5 m,s2=12×(6-1)×10 m=25 m,所以ΔE1ΔE2=s1s2=15,选项D正确.9.有一辆质量为170 kg、输出功率为1 440 W的太阳能试验汽车,安装有约6 m2的太阳能电池板和蓄能电池,该电池板在有效光照条件下单位面积输出的电功率为30 W/m2.若驾驶员的质量为70 kg,汽车最大行驶速度为90 km/h.假设汽车行驶时受到的阻力与其速度成正比,则汽车()A.以最大速度行驶时牵引力大小为57.6 NB.刚启动时的加速度大小为0.24 m/s2C.保持最大速度行驶1 h至少需要有效光照8 hD.直接用太阳能电池板提供的功率可获得3.13 m/s的最大行驶速度答案AC解析根据P额=F v max,得:F=P额v max=1 44025N=57.6 N,故A正确;以额定功率启动时:P额v-F f=ma,而刚启动时v=0,则F f=0,故刚启动时加速度无穷大,B错误;由公式W=Pt和能量守恒得:1 440 W×1 h=30×6 W×t,得:t=8 h,即保持最大速度行驶1 h至少需要有效光照8 h,故C正确;由题意知,汽车行驶时受到的空气阻力与其速度成正比,设F f=k v,则结合前面分析:57.6=k×25得:k=2.304,当直接用太阳能电池板提供的功率行驶获得最大速度时:牵引力=阻力,即:180v=k v得:v≈8.84 m/s,故D错误.三、非选择题10.用如图8所示的实验装置验证机械能守恒定律.实验所用的电源为学生电源,输出电压为6 V 的交流电和直流电两种.重锤从高处由静止开始落下,重锤上拖着的纸带通过打点计时器打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律,已知重力加速度为g .图8(1)下面列举了该实验的几个操作步骤: A .按照图示的装置安装器件;B .将打点计时器接到电源的直流输出端上;C .用天平测量出重锤的质量;D .先释放悬挂纸带的夹子,然后接通电源开关打出一条纸带;E .测量打出的纸带上某些点之间的距离;F .根据测量的结果计算重锤下落过程中减少的重力势能在误差范围内是否等于增加的动能. 其中没有必要或操作不恰当的步骤是________(填写选项对应的字母).(2)如图9所示是实验中得到一条纸带,将起始点记为O ,并在离O 点较远的任意点依次选取6个连续的点,分别记为A 、B 、C 、D 、E 、F ,量出各点与O 点的距离分别为h 1、h 2、h 3、h 4、h 5、h 6,使用交流电的周期为T ,设重锤质量为m ,则在打E 点时重锤的动能为________,在打O 点和E 点这段时间内的重力势能的减少量为________.图9(3)在本实验中发现,重锤减少的重力势能总是______(填“大于”或“小于”)重锤增加的动能,主要是因为在重锤下落过程中存在着阻力的作用,为了测定阻力大小,可算出(2)问中纸带各点对应的速度,分别记为v 1至v 6,并作v 2n —h n 图象,如图10所示,直线斜率为k ,则可测出阻力大小为________.图10答案 (1)BCD (2)m (h 6-h 4)28T 2 mgh 5(3)大于 m (g -k2)解析 (1)步骤B 应该将打点计时器接到电源的交流输出端上;步骤C 中没必要用天平测量出重锤的质量;步骤D 中应该先接通电源开关,后释放悬挂纸带的夹子,然后打出一条纸带;故没有必要或操作不恰当的步骤是B 、C 、D.(2)在打E 点时重锤的速度为:v E =h 6-h 42T ,则在打E 点时重锤的动能为:E k E =12m v 2E =12m (h 6-h 42T )2=m (h 6-h 4)28T 2;在打O 点和E 点这段时间内的重力势能的减少量为mgh 5.(3)在本实验中,重锤减少的重力势能总是大于重锤增加的动能;根据v 2n =2ah n 可知,v 2n —h n 图象的斜率k =2a ,而mg -F f =ma ,解得F f =m (g -k 2).11.已知半径为r 的小球在空气中下落时受到的粘滞阻力F f 满足如下规律:F f =6πηv r ,公式中η为空气与小球间的粘滞系数.一同学欲使用传感器通过实验测定粘滞系数,他将一个半径为r 0、质量为m 的小球从空中某位置由静止释放,测得小球速度为v 0时,加速度大小为a 0,若忽略空气浮力,已知当地重力加速度为g ,求: (1)粘滞系数η;(2)若测得小球下落h 高度时达到最大速度,求此过程中小球损失的机械能.答案 (1)m (g -a 0)6πv 0r 0 (2)mgh -mg 2v 22(g -a 0)2解析 (1)对小球下落过程受力分析 mg -F f0=ma 0 F f0=6πηv 0r 0 η=m (g -a 0)6πv 0r 0(2)达到最大速度时,有mg -F fm =0 F fm =6πηv m r 0 v m =g v 0g -a 0mgh -ΔE =12m v 2m -0ΔE =mgh -mg 2v 202(g -a 0)2.12.如图11所示,传送带A 、B 之间的距离为L =3.2 m ,与水平面间夹角θ=37°,传送带沿顺时针方向转动,速度恒为v =2 m/s ,在上端A 点无初速度放置一个质量为m =1 kg 、大小可视为质点的金属块,它与传送带的动摩擦因数为μ=0.5,金属块滑离传送带后,经过弯道,沿半径R =0.4 m 的光滑圆轨道做圆周运动,刚好能通过最高点E ,已知B 、D 两点的竖直高度差为h =0.5 m(取g =10 m/s 2).求:图11(1)金属块经过D 点时的速度大小;(2)金属块在BCD 弯道上克服摩擦力做的功. 答案 (1)2 5 m/s (2)3 J解析 (1)对金属块在E 点有 mg =m v 2E R ,解得v E =2 m/s在从D 到E 过程中,由动能定理得 -mg ·2R =12m v 2E -12m v 2D 解得v D =2 5 m/s.(2)金属块在传送带上运行时有, mg sin θ+μmg cos θ=ma 1, 解得a 1=10 m/s 2.设经位移x 1金属块与传送带达到共同速度,则 v 2=2ax 1解得x 1=0.2 m<3.2 m继续加速过程中mg sin θ-μmg cos θ=ma 2 解得a 2=2 m/s 2由v 2B -v 2=2a 2x 2,x 2=L -x 1=3 m 解得v B =4 m/s在从B 到D 过程中,由动能定理: mgh -W f =12m v 2D -12m v 2B 解得W f =3 J.。
高考总复习《与名师对话》新课标物理 课时作业:第五章 机械能及其守恒定律(试题+答案+解析 19
课时作业(十九)1.一个小球从高处自由落下,则球在下落过程中的动能() A.与它下落的距离成正比B.与它下落距离的平方成正比C.与它运动的时间成正比D.与它运动时间的平方成正比[解析]由动能定理:mgh=12m v2,可知A正确,又因为h=12gt21代入上式得:12mg2t2=12mυ2,所以D正确.[答案] AD2.(2012·中山模拟)如图所示,质量为m的小车在水平恒力F推动下,从山坡(粗糙)底部A处由静止起运动至高为h的坡顶B,获得速度为v,AB之间的水平距离为x,重力加速度为g.下列说法正确的是() A.小车克服重力所做的功是mghB.合外力对小车做的功是12m v2C.推力对小车做的功是12m v2+mghD.阻力对小车做的功是12m v2+mgh-Fx[解析]小车克服重力做功W=mgh,A正确;由动能定理,小车受到的合力做的功等于小车动能的增量,W合=ΔE k=12m v2,B正确;由动能定理,W合=W推+W重+W阻=12m v2,所以推力做的功W推=12m v2-W阻-W重=12m v2+mgh-W 阻,C 错误;阻力对小车做的功W 阻=12m v 2-W 推-W 重=12m v 2+mgh -Fx ,D正确.[答案] ABD3.如图所示,质量为m 0、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的滑动摩擦力为F f .物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是( )A .物块到达小车最右端时具有的动能为(F -F f )(L +s )B .物块到达小车最右端时,小车具有的动能为F f LC .物块克服摩擦力所做的功为F f (L +s )D .物块克服摩擦力所做的功为F f s[解析] 物块m 在水平方向受到拉力F 和摩擦力F f 的作用,合力为F -F f ,物块的位移为L +s ,合力对物块做的功为(F -F f )(L +s );物块到达小车最右端时具有的动能为(F -F f )(L +s ),A 正确,B 错误;摩擦力对物块做的功等于摩擦力的大小F f 与位移(L +s )的乘积,C 正确,D 错误.[答案] AC4.(2012·山东省济宁市期末)木块在水平恒定的拉力F 作用下,由静止开始在水平路面上前进x ,随即撤消此恒定的拉力,接着木块又前进了2x 才停下来.设运动全过程中路面情况相同,则木块在运动中获得动能的最大值为( )A.Fx 2B.Fx 3 C .Fx D.2Fx 3 [解析] 木块从静止开始在拉力F 和阻力(设为f )的作用下,先做匀加速直线运动,撤去拉力F 后木块在阻力f 的作用下做匀减速运动,所以撤去拉力F 的瞬间木块的动能最大.对全过程分析,由动能定理有Fx -f ·3x =0;对木块由静止开始到最大动能的过程,由动能定理得E km =Fx -fx ,由此二式解得:E km =23Fx ,D 正确.[答案] D5.如图所示,质量为m 的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F 时,转动半径为R .当拉力逐渐减小到F 4时,物体仍做匀速圆周运动,半径为2R ,则外力对物体做的功为 ( )A .-FR 4B.3FR 4C.5FR 2D.FR 4 [解析] F =m v 21R ,F 4=m v 222R ,由动能定理得W =12m v 22-12m v 21,联立解得W =-FR 4,即外力做功为-FR 4.A 项正确.[答案] A6.(2013·苏北四市期末联考)如下图甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时的动能为( )A .0B.12F m x 0C.π4F m x 0D.π4x 20[解析] 根据动能定理,小物块运动到x 0处时的动能为这段时间内力F 所做的功,物块在变力作用下运动,不能直接用功的公式来计算,但此题可用根据图象求“面积”的方法来解决.力F 所做的功的大小等于半圆的“面积”大小.E k=W =12S 圆=12π(x 02)2,又F m =x 02.整理得E k =π4F m x 0=π8x 20,C 选项正确.[答案] C7.(2012·南宁联考)“头脑风暴法”是上个世纪风靡美国的一种培养学生创新思维能力的方法,某学校的一个“头脑风暴实验研究小组”以保护鸡蛋为题,要求制作一个装置,让鸡蛋从高处落到地面而不被摔坏;鸡蛋要不被摔坏,直接撞击地面的速度最大不能超过1.5 m/s.现有一位学生设计了如右图所示的一个装置来保护鸡蛋,用A、B两块较粗糙的夹板夹住鸡蛋,鸡蛋夹放的位置离装置下端的距离s=0.45 m,A、B夹板与鸡蛋之间的摩擦力都为鸡蛋重力的5倍,现将该装置从距地面某一高度处自由下落,装置碰地后速度为0,且保持竖直不反弹,不计装置与地面作用时间.(g=10 m/s2)求:刚开始装置的末端离地面的最大高度H.[解析]解法一:分阶段:设装置落地瞬间速度为v1,鸡蛋着地瞬间速度为v2=1.5 m/s,则从装置开始下落到着地过程,对鸡蛋应用动能定理有:mgH=12m v21在装置着地到鸡蛋撞地过程,对鸡蛋应用动能定理有:mgs-2F f s=12m v22-12m v21,其中F f=5mg.代入相关数据解得:H=4.16 m.解法二:全过程:从装置开始下落到鸡蛋撞地全过程,对鸡蛋应用动能定理有:mg(H+s)-2F f s=12m v22-0,代入数据解得:H=4.16 m.[答案] 4.16 m8.一个小物块从底端冲上足够长的斜面后,又返回斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为E /2.若小物块冲上斜面的动能为2E ,则物块( )A .返回斜面底端时的动能为EB .返回斜面底端时的动能为3E /2C .返回斜面底端时的速度大小为2vD .返回斜面底端时的速度大小为v[解析] 设初动能为E 时,小物块沿斜面上升的最大位移为x 1,初动能为2E 时,小物块沿斜面上升的最大位移为x 2,斜面的倾角为θ,由动能定理得:-mgx 1sin θ-F f x 1=0-E,2F f x 1=E 2,E -E 2=12m v 2;而-mgx 2sin θ-F f x 2=0-2E ,可得:x 2=2x 1,所以返回斜面底端时的动能为2E -2F f x 2=E ,A 正确,B 错误;由E =12m v ′2可得v ′=2v ,C 、D 均错误.[答案] A9.如右图所示,斜面高h ,质量为m 的物块,在沿斜面向上的恒力F 作用下,能匀速沿斜面向上运动,若把此物块放在斜面顶端,在沿斜面向下同样大小的恒力F 作用下物块由静止向下滑动,滑至底端时其动能的大小为( )A .mghB .2mghC .2FhD .Fh [解析] 物块匀速向上运动,即向上运动过程中物块的动能不变,由动能定理知物块向上运动过程中外力对物块做的总功为0,即W F -mgh -W f =0①物块向下运动过程中,恒力F 与摩擦力对物块做功与上滑中相同,设滑至底端时的动能为E k ,由动能定理W F +mgh -W f =E k -0 ②将①式变形有W F -W f =mgh ,代入②有E k =2mgh .[答案] B 10.如右图所示,质量为m 1、长为L 的木板置于光滑的水平面上,一质量为m 的滑块放置在木板左端,滑块与木板间滑动摩擦力的大小为F f ,用水平的恒定拉力F 作用于滑块.当滑块从静止开始运动到木板右端时,木板在地面上移动的距离为s ,滑块速度为v 1,木板速度为v 2,下列结论中正确的是( )A .滑块克服摩擦力所做的功为F f (L +s )B .上述过程满足(F -F f )(L +s )=12m v 21+12m 1v 22C .其他条件不变的情况下,F 越大,滑块到达右端所用时间越长D .其他条件不变的情况下,F f 越大,滑块与木板间产生的热量越多[解析] 滑块运动到木板右端的过程中,滑块相对于地面的位移为(L +s ),所以滑块克服摩擦力做功为F f (L +s ),A 正确;上述过程中对滑块根据动能定理有(F -F f )(L +s )=12m v 21,对木板有F f s =12m 1v 22,所以(F -F f )(L +s )+F f s =12m v 21+12m 1v 22,故B 错误;对滑块根据牛顿第二定律有a 1=F -F f m ,对木板有a 2=F f m 1,滑块从静止开始运动到木板右端时有12a 1t 2-12a 2t 2=L ,可见F 越大,时间越短,C错误;由能量守恒定律可得滑块与木板间产生的热量为F f L ,D 正确.[答案] AD11.(2012·福建卷)如右图所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A,B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功W1;(2)小船经过B点时的速度大小v1;(3)小船经过B点时的加速度大小a.[解析](1)小船从A点运动到B点克服阻力做功W f=fd ①(2)小船从A点运动到B点,电动机牵引缆绳对小船做功W=Pt1 ②由动能定理有:W-W f=12m v21-12m v2③由①②③式解得v1=v20+2m(Pt1-fd)④(2)设小船经过B点时绳的拉力大小为F,绳与水平方向夹角为θ,电动机牵引绳的速度大小为u,则P=Fu ⑤u=v1cosθ⑥由牛顿第二定律有:F cosθ-f=ma ⑦由④⑤⑥⑦得,a=Pm2v20+2m(Pt1-fd)-fm.[答案] (1)fd(2) v20+2m(Pt1-fd)(3)Pm2v20+2m(Pt1-fd)-fm12.(2012·安徽名校模拟)玉树地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中常使用如图所示的传送带.已知某传送带与水平面成θ=37°角,传送带的AB部分长L=5.8 m,传送带以恒定的速率v=4 m/s按图示方向传送,若在B端无初速度地放置一个质量m=50 kg的救灾物资P(可视为质点),P与皮带之间的动摩擦因数μ=0.5(取g=10 m/s2,sin37°=0.6).求:(1)物资P从B端开始运动时的加速度;(2)物资P到达A端时的动能.[解析](1)P刚放上B端时,受到沿传送带向下的滑动摩擦力作用,根据牛顿第二定律有mg sin θ+F f =maF N =mg cos θF f =μF N联立解得加速度为a =g sin θ+μg cos θ=10 m/s 2(2)P 达到与传送带相同速度的位移x =v 22a =0.8 m以后物资P 受到沿传送带向上的滑动摩擦力作用,根据动能定理得(mg sin θ-F f )(L -x )=12m v 2A -12m v 2到A 端时的动能E k A =12m v 2A =900 J[答案] (1)10 m/s 2 (2)900 J。
高考物理一轮复习 第五章 机械能及其守恒定律 第三节 机械能守恒定律课件
2.如图所示,在光滑水平面上有一物体,它的左端接连 着一轻弹簧,弹簧的另一端固定在墙上,在力F作用下物体处 于静止状态,当撤去力F后,物体将向右运动,在物体向右运 动的过程中,下列说法正确的是( )
A.弹簧的弹性势能逐渐减少 B.物体的机械能不变 C.弹簧的弹性势能先增加后减少 D.弹簧的弹性势能先减少后增加
②定量关系:重力对物体做的功________物体重力势能的 ________量.即WG=-(Ep2-Ep1)=________.
③重力势能的变化量是绝对的,与参考面的选取无关. 2.弹性势能 (1)定义:发生________的物体的各部分之间,由于有弹力 的相互作用,而具有的势能.
(2)大小:与形变量及________有关. (3)弹力做功与弹性势能变化的关系:弹力做正功,弹性 势能________;弹力做负功,弹性势能________.
(1)只有重力和弹簧弹力做功时,物体与弹簧组成的系统机 械能守恒.
(2)物体 B 沿斜面下滑时,放在光滑水平面上的斜面体沿水 平面是运动的.
甲图中重力和弹力做功,物体A和弹簧组成的系统 机械能守恒,但物体A机械能不守恒,A错;乙图中物体B除受 重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量 特点看A、B组成的系统机械能守恒,B错;丙图中绳子张力对A 做负功,对B做正功,代数和为零,A、B机械能守恒,C对;丁 图中动能不变,势能不变,机械能守恒,D对.
突破考点02
机械能守恒条件的理解
分类例析
1.机械能守恒定律的内容 在只有________做功的物体系统内,动能与势能会发生 相互转化,但机械能的总量保持不变. 2.机械能守恒的条件 只有重力或弹力做功. 3.对守恒条件的理解
(1)只受重力作用,例如在不考虑空气阻力的情况下的各种 抛体运动,物体的机械能________.
2019届高三物理一轮复习基础自主梳理 要点研析突破 速效提升训练第五章 机械能及其守恒定律18
课时达标(十八) 动能 动能定理1.如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高;质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g 。
质点自P 滑到Q 的过程中,克服摩擦力所做的功为 ( )A.mgRB.mgRC.mgRD.mgR141312π4解析:质点在Q 点受到的支持力和重力提供向心力,即F N -mg =m ,F N =2mg ,求得v =,下落过程中重力做正功,v2R gR 摩擦力做负功,根据动能定理mgR -WF f =mv 2,解得克服摩擦12力做功为WF f =mgR ,C 项正确.12答案:C2.一长木板在光滑的水平面上匀速运动,在t =0时刻将一相对于地面静止的质量m =1 kg 的物块轻放在木板上,以后木板运动的速度时间图象如图所示。
已知物块始终在木板上,重力加速度g =10 m/s 2.则物块的最终动能E 1及木板动能的减小量ΔE 分别为 ( )A .E 1=0.5 J ,ΔE =2 JB .E 1=0.5 J ,ΔE =3 JC .E 1=1 J ,ΔE =2 JD .E 1=1 J ,ΔE =3 J解析:由vt 图象知,当t =0.5 s 时,木板开始做速度v =1 m /s 的匀速运动,此时,物块与木板的速度相同,物块与木板间无摩擦力作用,物块的最终动能E 1=mv 2=0.5 J ;对物块,由v =at12及F f =ma 得F f =2 N ,在0~0.5 s 内,木板的位移x =×(5+1)12×0.5 m =1.5 m ,由动能定理得木板动能的减小量ΔE =F f ·x =3 J ,选项B 正确.答案:B3.如图所示,小球以初速度v 0从A 点沿不光滑的轨道运动到高为h 的B 点后自动返回,其返回途中仍经过A 点,水平轨道与倾斜轨道之间用平滑圆弧连接(图中没画出).则经过A 点速度v 的大小为( )A. B.C.D.解析:由动能定理得,小球由A 到B 过程-mgh +WF f =0-mv ,小球由B 到A 过程有mgh +WF f =mv 2-0,联立解得v =122012,B 项正确.答案:B4.用竖直向上大小为30 N 的力F ,将2 kg 的物体由沙坑表面静止抬升1 m 时撤去力F ,经一段时间后,物体落入沙坑,测得落入沙坑的深度为20 cm.若忽略空气阻力,g 取10 m/s 2.则物体克服沙坑的阻力所做的功为( )A .20 JB .24 JC .34 JD .54 J解析:将物体由沙坑表面静止抬升1 m 的过程,由动能定理得Fh -mgh =mv 2,撤去力F 后由动能定理得mg(d +h)12-W =0-mv 2,解得W =Fh +mgd =30×1 J +2×10×0.2 J =34 12J ,C 项正确.答案:C5.ab 为紧靠着的且两边固定的两张相同薄纸,如图所示.一个质量为1 kg 的小球从距纸面高为60 cm 的地方自由下落,恰能穿破两张纸(即穿过后速度为零).若将a 纸的位置升高,b 纸的位置不变,在相同条件下要使小球仍能穿破两张纸,则a 纸距离b 纸不超过( )A .15 cmB .20 cmC .30 cmD .60 cm解析:设小球穿过一张纸时克服阻力做功为W ,根据动能定理,对小球从最高点到穿过a 、b 纸过程有mgh -2W =0.设从最高点到恰能穿过a 纸的过程,a 距离b 为x ,有mg(h -x)-W =0,解以上两式得x ==30 cm ,C 项正确.h2答案:C6.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是 ( )A.mgRB.mgRC.mgR D .mgR 141312解析:小球通过最低点时,绳的张力为F =7mg ①由牛顿第二定律可知:F -mg =②小球恰好过最高点,绳子拉力为零,由牛顿第二定律可知:mg =③小球由最低点运动到最高点的过程中,由动能定理得:-2mgR +WF f =mv -mv ④1221221由①②③④可得WF f =-mgR ,所以小球克服空气阻力所做12的功为mgR ,故C 项正确.12答案:C7.(多选)在海滨游乐场里有一种滑沙的游乐活动,某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为v 0,设人下滑时所受摩擦阻力不变,沙坡长度为l ,斜面倾角为α,人和滑沙板的总质量为m ,重力加速度为g ,则下列说法正确的是 ( )A .人沿沙坡下滑时所受摩擦阻力为mg sin α-B .人在下滑过程中重力功率的最大值为mg v 0C .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为2v 0D .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为v 02解析:对人进行受力分析,在人下滑过程中,根据动能定理得,mgl sin α-F f l =mv ,解得,F f =mg sin α-,A 项正确;1220重力功率的最大值为P m =mgv 0 sin α,B 项错误;滑沙过程为匀加速直线运动,所受阻力恒定不变则加速度不变,由运动规律得,v =2al ,v 2-v =2al ,解得,v =v 0,C 项错误,D 项正确.20202答案:AD8.如图所示,轻弹簧左端固定在竖直墙上,右端点在O 位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压倒O ′点位置后,A 又被弹簧弹回,A 离开弹簧后,恰好回到P 点,物块A 与水平面间的动摩擦因数为μ.求:(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功.(2)O 点和O ′点间的距离x 1.解析:(1)A 从P 点出发又回到P 点的过程中,只有摩擦力做功,根据动能定理得克服摩擦力所做的功为WF f =mv .1220(2)A 从P 点出发又回到P 点的过程中根据动能定理-2μmg(x 1+x 0)=0-mv 1220得:x 1=-x 0答案:(1)mv (2)-x 012209.(2015·山东卷)如图甲所示,物块与质量为m 的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接.物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l .开始时物块和小球均静止,将此时传感装置的示数记为初始值.现给小球施加一始终垂直于l 段细绳的力,将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍.不计滑轮的大小和摩擦,重力加速度的大小为g .求:(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功.解析:(1)设开始时细绳的拉力大小为T 1,传感装置的初始值为F 1,物块质量为M ,由平衡条件得对小球,T 1=mg ①对物块,F 1+T 1=Mg ②当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为T 2,传感装置的示数为F 2,据题意可知,F 2=1.25F 1,由平衡条件得对小球,T 2=mg cos 60°③对物块,F 2+T 2=Mg ④联立①②③④式,代入数据得M =3m ⑤(2)设小球运动至最低位置时速度的大小为v ,从释放到运动至最低位置的过程中,小球克服阻力所做的功为W f ,由动能定理得mgl(1-cos 60°)-W f =mv 2⑥12在最低位置,设细绳的拉力大小为T 3,传感装置的示数为F 3,据题意可知,F 3=0.6F 1,对小球,由牛顿第二定律得T 3-mg =m ⑦v2l 对物块,由平衡条件得F 3+T 3=Mg ⑧联立①②⑤⑥⑦⑧式,代入数据得W f =0.1mgl答案:(1)3m (2)0.1mgl。
高考物理一轮复习 第五章 机械能及其守恒定律 突破全国卷5 突破训练 力学压轴问题 新人教版
力学压轴问题【突破训练】1.一质量为8.00×104kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105 m 处以7.50×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s2.(结果保留2位有效数字)(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%.解析:(1)飞船着地前瞬间的机械能为E k0=12mv 20① 式中,m 和v 0分别是飞船的质量和着地前瞬间的速率.由①式和题给数据得 E k0=4.0×108 J②设地面附近的重力加速度大小为g . 飞船进入大气层时的机械能为E k =12mv 2h +mgh ③ 式中,v h 是飞船在高度1.60×105 m 处的速度大小.由③式和题给数据得E k =2.4×1012 J .④(2)飞船在高度h ′=600 m 处的机械能为 E h ′=12m (0.02v h )2+mgh ′⑤由功能原理得 W =E h ′-E k0 ⑥式中,W 是飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功.由②⑤⑥式和题给数据得W =9.7×108 J .⑦答案:见解析2.(2018·铜陵模拟)如图所示,半径为R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向的夹角θ=37°,另一端点C 为轨道的最低点. C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,g 取10 m/s 2.求:(1)物块经过C 点时的速率v C .(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析:(1)设物块在B 点的速度为v B ,从A 到B 物块做平抛运动,有: v B sin θ=v 0从B 到C ,根据动能定理有:mgR (1+sin θ)=12mv 2C -12mv 2B 解得:v C =6 m/s.(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起运动.设相对滑动时物块加速度大小为a 1,木板加速度大小为a 2,经过时间t 达到共同速度v ,则:μmg =ma 1,μmg =Ma 2,v =v C -a 1t ,v =a 2t根据能量守恒定律有:12(m +M )v 2+Q =12mv 2C 联立解得:Q =9 J.答案:(1)6 m/s (2)9 J 3.如图所示,倾角为θ的固定斜面的底端有一挡板M ,轻弹簧的下端固定在挡板M 上,在自然长度下,弹簧的上端在O 点处.质量为m 的物块A (可视为质点)从P 点以初速度v 0沿斜面向下运动,PO =x 0,物块A 与弹簧接触后将弹簧上端压到O ′点,然后A 被弹簧弹回.A 离开弹簧后,恰好能回到P 点.已知A 与斜面间的动摩擦因数为μ,重力加速度用g 表示.求:(1)物块A 运动到O 点的速度大小;(2)O 点和O ′点间的距离x 1;(3)在压缩过程中弹簧具有的最大弹性势能E p .解析:(1)物块A 从P 点运动到O 点,只有重力和摩擦力做功,由动能定理可知(mg sin θ-μmg cos θ)x 0=12mv 2-12mv 20 得:v =v 20+2g (sin θ-μcos θ)x 0.(2)物块A 从P 点向下运动再向上运动回到P 点的全过程中,根据动能定理:-μmg cosθ·2(x 1+x 0)=0-12mv 20,x 1=v 24μg cos θ-x 0.(3)物块A 从O ′点向上运动到P 点的过程中,由能量守恒定律可知: E p =(mg sin θ+μmg cos θ)·(x 1+x 0)解得E p =14mv 20·⎝ ⎛⎭⎪⎫1μtan θ+1.答案:(1) v 20+2g (sin θ-μcos θ)x 0 (2)v 24μg cos θ-x 0(3)14mv 20·⎝ ⎛⎭⎪⎫1μtan θ+1。
高考物理复习专题五 动能定理 能量守恒定律练习题(含详细答案)
高考物理复习专题五动能定理能量守恒定律一、单选题1.如图所示,在竖直平面内有一固定轨道,其中AB是长为R的粗糙水平直轨道,BCD是圆心为O,半径为R的3/4光滑圆弧轨道,两轨道相切于B点.在推力作用下,质量为m的小滑块从A 点由静止开始做匀加速直线运动,到达B点时即撤去推力,小滑块恰好能沿圆轨道经过最高点C。
重力加速度大小为g,取AB所在的水平面为零势能面。
则小滑块()A.在AB段运动的加速度为2gB.经B点时加速度为零C.在C点时合外力的瞬时功率为D.上滑时动能与重力势能相等的位置在直径DD′上方2.运输人员要把质量为,体积较小的木箱拉上汽车。
现将长为L的木板搭在汽车尾部与地面间,构成一固定斜面,然后把木箱沿斜面拉上汽车。
斜面与水平地面成30o角,拉力与斜面平行。
木箱与斜面间的动摩擦因数为,重力加速度为g。
则将木箱运上汽车,拉力至少做功()A.B.C.D.3.如图所示,轻质弹簧的一端固定在粗糙斜面的挡板O点,另一端固定一个小物块。
小物块从P1位置(此位置弹簧伸长量为零)由静止开始运动,运动到最低点P2位置,然后在弹力作用下上升运动到最高点P3位置(图中未标出)。
在此两过程中,下列判断正确的是()A.下滑和上滑过程弹簧和小物块系统机械能守恒B.下滑过程物块速度最大值位置比上滑过程速度最大位置高C.下滑过程弹簧和小物块组成系统机械减小量比上升过程小D.下滑过程克服弹簧弹力和摩擦力做功总值比上滑过程克服重力和摩擦力做功总值小4.如图所示,水平桌面上有一小车,装有砂的砂桶通过细绳给小车施加一水平拉力,小车从静止开始做直线运动。
保持小车的质量M不变,第一次实验中小车在质量为m1的砂和砂桶带动下由静止前进了一段距离s;第二次实验中小车在质量为m2的砂和砂桶带动下由静止前进了相同的距离s,其中。
两次实验中,绳对小车的拉力分别为T1和T2,小车,砂和砂桶系统的机械能变化量分别为和,若空气阻力和摩擦阻力的大小保持不变,不计绳,滑轮的质量,则下列分析正确的是()A.B.C.D.5.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速释放,在小球下摆到最低点的过程中,下列说法正确的是( )A.绳对球的拉力不做功B.球克服绳拉力做的功等于球减少的机械能C.绳对车做的功等于球减少的动能D.球减少的重力势能等于球增加的动能6.如图所示,自动卸货车静止在水平地面上,车厢在液压机的作用下,θ角缓慢增大,在货物相对车厢仍然静止的过程中,下列说法正确的是()A.货物受到的支持力变小B.货物受到的摩擦力变小C.货物受到的支持力对货物做负功D.货物受到的摩擦力对货物做负功7.一质量为0.6kg的物体以20m/s的初速度竖直上抛,当物体上升到某一位置时,其动能减少了18J,机械能减少了3J。
2019届高考物理总复习 第五章 机械能及其守恒定律 突破全国卷5 力学压轴问题测试题
突破全国卷5 力学压轴问题每年高考中都有一道力学综合计算题,通过近几年对全国卷试题的分析研究可以看出,力学计算题从考查直线运动逐渐转为结合牛顿运动定律考查板块模型问题、功能问题.这说明凡是《考试大纲》要求的,只要适合作为计算题综合考查的,都有可能设置为计算题.因此高考复习中不要犯经验主义错误,认为最近几年没有考查就不重点复习.一轮复习时全面复习知识点,夯实基础,是取得高考胜利的关键.【重难解读】对于力学压轴题主要考查方向有以下几点:1.不可或缺的受力分析和共点力平衡问题:整体法或隔离法的应用;正交分解法,矢量三角形法的应用;临界与极值问题的求解;连接体问题的分析都是潜在考点.2.值得重视的直线运动:传送带模型和滑块—滑板模型的分析与求解;多物体多过程运动中功能关系的应用;追及、相遇问题都是重点.3.体会曲线运动——抛体与圆周运动:结合动能定理、机械能守恒定律、能量守恒定律处理问题.【典题例证】(20分)过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C 间距与C、D间距相等,半径R1=2.0 m、R2=1.4 m.一个质量为m=1.0 kg的小球(视为质点),从轨道的左侧A点以v0=12.0 m/s的初速度沿轨道向右运动,A、B间距L1=6.0 m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度g=10 m/s2,计算结果保留小数点后一位数字.试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少?(3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离.[审题指导] 本题结合动能定理、机械能守恒定律分阶段分析小球的运动过程.[解析] (1)设小球经过第一个圆轨道的最高点时的速度为v1,根据动能定理-μmgL 1-mg ·2R 1=12mv 21-12mv 2①(2分)小球在最高点受到重力mg 和轨道对它的作用力F ,根据牛顿第二定律F +mg =m v 21R 1②(1分) 由①②得F =10.0 N .③(1分)(2)设小球在第二个圆轨道的最高点的速度为v 2,由题意mg =m v 22R 2, ④(1分)-μmg (L 1+L )-mg ·2R 2 =12mv 22-12mv 2⑤(2分) 由④⑤得L =12.5 m .⑥(1分)(3)要保证小球不脱离轨道,可分两种情况进行讨论:Ⅰ.轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足mg =m v 23R 3⑦(1分) -μmg (L 1+2L )-mg ·2R 3=12mv 23-12mv 2⑧(2分) 由⑥⑦⑧得R 3=0.4 m .(1分)Ⅱ.轨道半径较大时,小球上升的最大高度为R 3,根据动能定理 -μmg (L 1+2L )-mg ·R 3=0-12mv 2(2分)解得R 3 =1.0 m(1分)为了保证圆轨道不重叠,R 3最大值应满足 (R 2+R 3)2=L 2+(R 3-R 2)2(1分) 解得R 3=27.9 m .(1分)综合Ⅰ、Ⅱ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件 0<R 3≤0.4 m 或 1.0 m ≤R 3≤27.9 m .(1分)当0<R 3≤0.4 m 时,小球最终停留点与起始点A 的距离为L ′,则 -μmgL ′= 0-12mv 20,L ′=36.0 m .(1分)当1.0 m ≤R 3≤27.9 m 时,小球最终停留点与起始点A 的距离为L ″,则L ″=L ′-2(L ′-L 1-2L )=26.0 m . (1分)[答案] (1)10.0 N (2)12.5 m (3)当0<R 3≤0.4 m 时,L ′=36.0 m 当1.0 m ≤R 3≤27.9 m 时,L ″=26.0 m【突破训练】1.一质量为8.00×104kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105m 处以7.50×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s 2.(结果保留2位有效数字)(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%.解析:(1)飞船着地前瞬间的机械能为E k0=12mv 20①式中,m 和v 0分别是飞船的质量和着地前瞬间的速率. 由①式和题给数据得E k0=4.0×108 J②设地面附近的重力加速度大小为g .飞船进入大气层时的机械能为E k =12mv 2h +mgh ③式中,v h 是飞船在高度1.60×105m 处的速度大小. 由③式和题给数据得E k =2.4×1012 J . ④(2)飞船在高度h ′=600 m 处的机械能为E h ′=12m (0.02v h )2+mgh ′⑤由功能原理得W =E h ′-E k0 ⑥式中,W 是飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功.由②⑤⑥式和题给数据得W =9.7×108J .⑦答案:见解析2.(2018·铜陵模拟)如图所示,半径为R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向的夹角θ=37°,另一端点C 为轨道的最低点. C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,g 取10 m/s 2.求:(1)物块经过C 点时的速率v C .(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q . 解析:(1)设物块在B 点的速度为v B ,从A 到B 物块做平抛运动,有:v B sin θ=v 0从B 到C ,根据动能定理有:mgR (1+sin θ)=12mv 2C -12mv 2B解得:v C =6 m/s.(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起运动.设相对滑动时物块加速度大小为a 1,木板加速度大小为a 2,经过时间t 达到共同速度v ,则:μmg =ma 1,μmg =Ma 2,v =v C -a 1t ,v =a 2t根据能量守恒定律有: 12(m +M )v 2+Q =12mv 2C 联立解得:Q =9 J. 答案:(1)6 m/s (2)9 J 3.如图所示,倾角为θ的固定斜面的底端有一挡板M ,轻弹簧的下端固定在挡板M 上,在自然长度下,弹簧的上端在O 点处.质量为m 的物块A (可视为质点)从P 点以初速度v 0沿斜面向下运动,PO =x 0,物块A 与弹簧接触后将弹簧上端压到O ′点,然后A 被弹簧弹回.A 离开弹簧后,恰好能回到P 点.已知A 与斜面间的动摩擦因数为μ,重力加速度用g 表示.求:(1)物块A 运动到O 点的速度大小; (2)O 点和O ′点间的距离x 1;(3)在压缩过程中弹簧具有的最大弹性势能E p .解析:(1)物块A 从P 点运动到O 点,只有重力和摩擦力做功,由动能定理可知 (mg sin θ-μmg cos θ)x 0=12mv 2-12mv 2得:v =v 20+2g (sin θ-μcos θ)x 0.(2)物块A 从P 点向下运动再向上运动回到P 点的全过程中,根据动能定理:-μmg cos θ·2(x 1+x 0)=0-12mv 20,x 1=v 24μg cos θ-x 0.(3)物块A 从O ′点向上运动到P 点的过程中,由能量守恒定律可知:E p =(mg sin θ+μmg cos θ)·(x 1+x 0)解得E p =14mv 20·⎝ ⎛⎭⎪⎫1μtan θ+1. 答案:(1) v 2+2g (sin θ-μcos θ)x 0 (2)v 204μg cos θ-x 0(3)14mv 20·⎝ ⎛⎭⎪⎫1μtan θ+1。
高考物理复习 第五章 机械能及其守恒定律 第二节 课后达标能力提升
[学生用书P329(单独成册)](建议用时:40分钟)一、单项选择题1.(2020·湖北襄阳模拟)用竖直向上大小为30 N 的力F ,将2 kg 的物体从沙坑表面由静止提升1 m 时撤去力F ,经一段时间后,物体落入沙坑,测得落入沙坑的深度为20 cm.若忽略空气阻力,g 取10 m/s 2.则物体克服沙坑的阻力所做的功为( )A .20 JB .24 JC .34 JD .54 J解析:选C.对整个过程应用动能定理得:F ·h 1+mgh 2-W f =0,解得:W f =34 J ,C 对.2.(2020·北京101中学检测)如图所示,质量为m 的物体静置在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮,由地面上的人以速度v 0向右匀速拉动,设人从地面上平台的边缘开始向右行至绳与水平方向夹角为45°处,在此过程中人所做的功为( )A.m v 202 B .2m v 202 C.m v 204 D .m v 20解析:选C.由题意知,绳与水平方向夹角为45°时,沿绳方向的速度v =v 0cos 45°=2v 02,故质量为m 的物体速度等于2v 02,对物体应用动能定理可知,在此过程中人所做的功为W =12m v 2-0=m v 204,C 正确. 3.(2020·安徽合肥一模)A 、B 两物体分别在水平恒力F 1和F 2的作用下沿水平面运动,先后撤去F 1、F 2后,两物体最终停下,它们的v -t 图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是( )A .F 1、F 2大小之比为1∶2B .F 1、F 2对A 、B 做功之比为1∶2C .A 、B 质量之比为2∶1D .全过程中A 、B 克服摩擦力做功之比为2∶1解析:选C.由v -t 图象可知,A 、B 匀减速运动的加速度大小之比为1∶2,由牛顿第二定律可知,A 、B 所受摩擦力大小相等,所以A 、B 的质量之比是2∶1,由v -t 图象可知,A 、B 两物体加速与减速的位移之和相等,且匀加速位移之比为1∶2,匀减速运动的位移之比为2∶1,由动能定理可得,A 物体的拉力与摩擦力的关系,F 1·x -F f1·3x =0-0;B 物体的拉力与摩擦力的关系,F 2·2x -F f2·3x =0-0,因此可得:F 1=3F f1,F 2=32F f2,F f1=F f2,所以F 1=2F 2.全过程中摩擦力对A 、B 做功相等,F 1、F 2对A 、B 做功大小相等.故A 、B 、D 错误,C 正确.4.如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点 B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 点后,继续上升一段距离 D .W <12mgR ,质点到达Q 点后,继续上升一段距离 解析:选C.设质点到达N 点的速度为v N ,在N 点质点受到轨道的弹力为F N ,则F N -mg =m v 2N R ,已知F N =F ′N =4mg ,则质点到达N 点的动能为E k N =12m v 2N =32mgR .质点由开始至N 点的过程,由动能定理得mg ·2R +W f =E k N -0,解得摩擦力做的功为W f =-12mgR ,即克服摩擦力做的功为W =-W f =12mgR .设从N 到Q 的过程中克服摩擦力做功为W ′,则W ′<W .从N 到Q 的过程,由动能定理得-mgR -W ′=12m v 2Q -12m v 2N ,即12mgR -W ′=12m v 2Q ,故质点到达Q 点后速度不为0,质点继续上升一段距离.C 正确.5.如图,竖直平面内的轨道Ⅰ和Ⅱ都由两段细直杆连接而成,两轨道长度相等.用相同的水平恒力将穿在轨道最低点B的静止小球,分别沿Ⅰ和Ⅱ推至最高点A,所需时间分别为t1、t2;动能增量分别为ΔE k1、ΔE k2.假定球在经过轨道转折点前后速度的大小不变,且球与Ⅰ、Ⅱ轨道间的动摩擦因数相等,则()A.ΔE k1>ΔE k2;t1>t2B.ΔE k1=ΔE k2;t1>t2C.ΔE k1>ΔE k2;t1<t2D.ΔE k1=ΔE k2;t1<t2解析:选B.两轨道长度相等,球与Ⅰ、Ⅱ轨道间的动摩擦因数相等,W f=μ(mg cos α+F sin α)·s=μmgx+μFh,用相同的水平恒力使它们到达最高点,则水平恒力做功相等,摩擦力做功相等,重力做功相等,根据动能定理W F-mgh-W f=ΔE k知,动能的增量相等,即ΔE k1=ΔE k2.作出小球在轨道Ⅰ、Ⅱ上运动的v-t图象如图所示,则t1>t2.二、多项选择题6.质量为1 kg的物体静止在水平粗糙的地面上,在一水平外力F的作用下运动,如图甲所示.外力F和物体克服摩擦力F f做的功W与物体位移x的关系如图乙所示,重力加速度g取10 m/s2.下列分析正确的是()A.物体与地面之间的动摩擦因数为0.2B.物体运动的位移为13 mC.物体在前3 m运动过程中的加速度为3 m/s2D.x=9 m时,物体的速度为3 2 m/s解析:选ACD.由W f=F f x对应题图乙可知,物体与地面之间的滑动摩擦力F f=2 N,由F f=μmg可得μ=0.2,A正确;由W F=Fx对应题图乙可知,前3 m内,拉力F1=5 N,3~9 m 内拉力F 2=2 N ,物体在前3 m 内的加速度a 1=F 1-F f m =3 m/s 2,C 正确;由动能定理得:W F -F f x =12m v 2,可得:x =9 m 时,物体的速度为v =3 2 m/s ,D 正确;物体的最大位移x m =W F F f=13.5 m ,B 错误. 7.(2020·河北衡水中学模拟)如图所示,质量为0.1 kg 的小物块在粗糙水平桌面上滑行4 m 后以3.0 m/s 的速度飞离桌面,最终落在水平地面上,已知物块与桌面间的动摩擦因数为0.5,桌面高0.45 m ,若不计空气阻力,取g =10 m/s 2,则下列说法错误的是( )A .小物块的初速度是5 m/sB .小物块的水平射程为1.2 mC .小物块在桌面上克服摩擦力做8 J 的功D .小物块落地时的动能为0.9 J解析:选ABC.小物块在桌面上克服摩擦力做功W f =μmgL =2 J ,C 错;在水平桌面上滑行,由动能定理得-W f =12m v 2-12m v 20,解得v 0=7 m/s ,A 错;小物块飞离桌面后做平抛运动,有x =v t 、h =12gt 2,联立解得x =0.9 m ,B 错;设小物块落地时动能为E k ,由动能定理得mgh =E k -12m v 2,解得E k =0.9 J ,D 对. 8.2022年北京和张家口将携手举办冬奥会,因此在张家口建造了高标准的滑雪跑道,来迎接冬奥会的到来.如图所示,一个滑雪运动员从左侧斜坡距离坡底8 m 处自由滑下,当下滑到距离坡底s 1处时,动能和势能相等(以坡底为参考平面);到坡底后运动员又靠惯性冲上斜坡(不计经过坡底时的机械能损失),当上滑到距离坡底s 2处时,运动员的动能和势能又相等,上滑的最大距离为4 m .关于这个过程,下列说法中正确的是( )A .摩擦力对运动员所做的功等于运动员动能的变化量B .重力和摩擦力对运动员所做的总功等于运动员动能的变化量C .s 1<4 m ,s 2>2 mD .s 1>4 m ,s 2<2 m解析:选BC.运动员在斜坡上滑行的过程中有重力做功,摩擦力做功,由动能定理可知A 错误,B 正确.从左侧斜坡s 处滑至s 1处过程中,由动能定理得:mg (s -s 1)sin α-W f =12m v 2①(其中s =8 m ,s 1是距坡底的距离),因为下滑到距离坡底s 1处动能和势能相等,所以有:mgs 1sin α=12m v 2②,由①②式得:mg (s -s 1)sin α-W f =mgs 1sin α③,由③式得:s -s 1>s 1,即s 1<4 m ;同理,从右侧斜坡s 2处滑至s ′(s ′=4 m)处过程中,由动能定理得:-mg (s ′-s 2)sin θ-W ′f =0-12m v 21④,因为距坡底s 2处动能和势能相等,有mgs 2sin θ=12m v 21⑤,由④⑤式得:mg (s ′-s 2)sin θ+W ′f =mgs 2sin θ⑥,由⑥式得:s ′-s 2<s 2,即s 2>2 m .综上所述,C 正确,D 错误.三、非选择题9.如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度s =5 m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30 m 、h 2=1.35 m .现让质量为m 的小滑块自A 点由静止释放.已知小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块第一次到达D 点时的速度大小;(2)小滑块最终停止的位置距B 点的距离.解析:(1)小滑块从A →B →C →D 过程中,由动能定理得mg (h 1-h 2)-μmgs =12m v 2D-0 将h 1、h 2、s 、μ、g 代入得:v D =3 m/s.(2)对小滑块运动全过程应用动能定理,设小滑块在水平轨道上运动的总路程为s 总,有:mgh 1=μmgs 总将h 1、μ代入得:s 总=8.6 m故小滑块最终停止的位置距B 点的距离为2s -s 总=1.4 m.答案:(1)3 m/s (2)1.4 m10.(2020·湖南十校联考)如图所示,质量m =3 kg 的小物块以初速度v 0=4 m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道.圆弧轨道的半径为R =3.75 m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心O 的连线与竖直方向成37°角.MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑.最右侧是一个半径为r =0.4 m 的半圆弧轨道,C 点是半圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接.已知重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L =6 m ,求小物块通过C 点时对轨道的压力大小;(3)若小物块恰好能通过C 点,求MN 的长度L ′.解析:(1)根据平抛运动的规律有v 0=v A cos 37°解得小物块经过A 点时的速度大小v A =5 m/s小物块从A 点运动到B 点,根据动能定理有mg (R -R cos 37°)=12m v 2B -12m v 2A 小物块经过B 点时,有F N -mg =m v 2B R解得F N =62 N ,根据牛顿第三定律,小物块对轨道的压力大小是62 N.(2)小物块由B 点运动到C 点,根据动能定理有-μmgL -2mgr =12m v 2C -12m v 2B 在C 点F N ′+mg =m v 2C r解得F N ′=60 N ,根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60 N.(3)小物块刚好能通过C 点时,根据mg =m v C ′2r解得v C ′=2 m/s小物块从B 点运动到C 点的过程中,根据动能定理有-μmgL ′-2mgr =12m v C ′2-12m v 2B解得L′=10 m.答案:(1)62 N(2)60 N(3)10 m。
2022版高考物理一轮复习第五章机械能专题突破3功能关系能量守恒定律作业含解析新人教版
专题突破3 功能关系 能量守恒定律[A 组 根底题组]一、单项选择题1.起跳摸高是学生经常进行的一项体育活动。
一质量为m 的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h ,离地时他的速度大小为v 。
以下说法正确的选项是( ) A .起跳过程中该同学机械能增加了mgh B .起跳过程中该同学机械能增量为mgh +12mv 2C .地面的支持力对该同学做的功为mgh +12mv 2D .该同学所受的合外力对其做的功为12mv 2+mgh解析:该同学重心升高了h ,重力势能增加了mgh ,又知离地时获得动能为12mv 2,那么机械能增加了mgh +12mv 2,A 错误,B 正确;该同学在与地面作用过程中,在支持力方向上的位移为零,那么支持力对该同学做的功为零,C 错误;该同学所受合外力做的功等于其动能的增量,那么W 合=12mv 2,D 错误。
答案:B2.滑块静止于光滑水平面上,与之相连的轻质弹簧处于自然伸直状态。
现用恒定的水平外力F 作用于弹簧右端,在向右移动一段距离的过程中拉力F 做了10 J 的功。
在上述过程中( ) A .弹簧的弹性势能增加了10 J B .滑块的动能增加了10 JC .滑块和弹簧组成的系统机械能增加了10 JD .滑块和弹簧组成的系统机械能守恒解析:拉力F 做功的同时,弹簧伸长,弹簧的弹性势能增大,滑块向右加速运动,滑块动能增加,由功能关系可知,拉力做的功等于滑块的动能与弹簧弹性势能的增加量之和,C 正确,A 、B 、D 均错误。
答案:C3.如下图,木块A 放在木块B 的左端上方,用水平恒力F 将A 拉到B 的右端,第一次将B 固定在地面上,F 做功W 1,生热Q 1;第二次B 在光滑水平面上可自由滑动,F 做功W 2,生热Q 2。
以下关系正确的选项是( )A .W 1<W 2,Q 1=Q 2B .W 1=W 2,Q 1=Q 2C .W 1<W 2,Q 1<Q 2D .W 1=W 2,Q 1<Q 2解析:在A 、B 别离过程中,第一次和第二次A 相对于B 的位移是相等的,而产生的热量等于滑动摩擦力乘以相对位移,因此Q 1=Q 2;在A 、B 别离过程中,第一次A 的对地位移要小于第二次A 的对地位移,而功等于力乘以对地位移,因此W 1<W 2,A 正确。
机械能守恒定律的综合应用(原卷版)-2023年高考物理压轴题专项训练(全国通用)
压轴题09 机械能守恒定律的综合应用考向一/计算题:绳联系统的机械能守恒问题考向二/计算题:杆联系统的机械能守恒问题考向三/计算题:弹簧类的机械能守恒问题考向四/计算题:与曲线运动相结合的机械能守恒问题要领一:多物体机械能守恒问题的分析方法1.正确选取研究对象,合理选取物理过程。
2.对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒。
3.注意寻找用轻绳、轻杆或轻弹簧相连接的物体间的速度关系和位移关系。
4.列机械能守恒方程时,从三种表达式中选取方便求解问题的形式。
要领二:绳联系统、杆联系统和弹簧类的机械能守恒问题1.轻绳连接的物体系统在涉及圆周运动和抛体运动的多过程运动中,应用机械能守恒定律进行科学推理时应做好以下两点:1.临界点分析:对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口。
2.运动过程分析:对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动。
若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒;若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是哪个力。
1.如图所示,圆心为O、半径为R的圆环固定在竖直平面内,1O、2O为两个轻质定滑轮顶点,1O在O点正上方2R处,跨过定滑轮的轻绳一端连接着套在圆环上的小球A,另一端连接着小球B。
用一竖直向下的外力作用于B,A、B静止于图示位置,OP与竖直方向的夹角为60 ,撤去外力后,A、B开始运动,B始终不与滑轮碰撞。
已知A、B的质量分别为4m、m,重力加速度为g,圆环与绳不接触,不计一切摩擦。
(1)求外力的大小F;(2)当A运动到圆心等高处的Q点时,求A的向心力大小n F;(3)若撤去外力的同时给A施加沿轻绳斜向右下的瞬时冲量I,A恰能运动到圆环的最高点,求I的大小及A从圆环最低点运动到最高点过程中轻绳对A做的功W。
高三物理一轮复习 必考部分 第5章 机械能及其守恒定律章末过关练(2021年最新整理)
(江苏专用)2018届高三物理一轮复习必考部分第5章机械能及其守恒定律章末过关练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018届高三物理一轮复习必考部分第5章机械能及其守恒定律章末过关练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018届高三物理一轮复习必考部分第5章机械能及其守恒定律章末过关练的全部内容。
机械能及其守恒定律(时间:60分钟满分:100分)一、单项选择题(本题共5小题,每小题5分,共25分.每小题只有一个选项符合题意).1.如图1所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动.在以后的运动过程中,关于A、B两物体与弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)图1A.由于F1、F2所做的总功为零,所以系统的机械能始终不变B.当A、B两物体之间的距离减小时,系统的机械能增大C.当弹簧伸长到最长时,系统的机械能最大D.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物体速度为零C 从开始状态到弹簧拉到最长过程中,两拉力方向与其受力物体位移方向均相同,做正功,由功能关系可知,系统机械能增大,A项错;当两物体之间距离减小即A、B相向运动,力F和F2做负功,系统机械能减小,B项错误;当弹簧伸长到最长时,力F1和F2做正功最多,故1系统机械能最大,C项正确;分别对A、B应用动能定理,从开始到弹力与外力相等时,合外力分别对A、B做正功,两物体动能增加,速度一定大于零,D项错.2.一质点在0~15 s内竖直向上运动,其加速度-时间图象如图2所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()【导学号:96622448】图2A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能一直增加D.在t=15 s时质点的机械能大于t=5 s时质点的机械能D 质点竖直向上运动,0~15 s内加速度方向向下,质点一直做减速运动,B错;0~5 s 内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s内,a=8 m/s2,受重力和向上的力F1,F1做正功,机械能增加;10~15 s内,a=12 m/s2,质点受重力和向下的力F2,F2做负功,机械能减少,A、C错误;由F合=ma可推知F1=F2,由于做减速运动,5~10 s内通过的位移大于10~15 s内通过的位移,F1做的功大于F2做的功,5~10 s内增加的机械能大于10~15 s内减少的机械能,所以D正确.3.如图3甲所示,在倾角为θ的光滑斜面上,有一个质量为m的物体在沿斜面方向的力F的作用下由静止开始运动,物体的机械能E随位移x的变化关系如图乙所示.其中0~x1过程的图线是曲线,x1~x2过程的图线为平行于x轴的直线,则下列说法中正确的是( )甲乙图3A.物体在沿斜面向上运动B.在0~x1过程中,物体的加速度一直减小C.在0~x2过程中,物体先减速再匀速D.在x1~x2过程中,物体的加速度为g sin θD 由图乙可知,0~x1阶段,物体的机械能E随x减小,故力F一定对物体做负功,物体在沿斜面向下运动,A错误;由E=E0-Fx,即图乙中0~x1阶段图线的斜率大小为F,故力F减小,至x1后变为零.物体的加速度先增大,后不变,匀加速的加速度大小为a=g sin θ,B、C错误,D 正确.4.一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a和速度的倒数1v图象如图4所示.若已知汽车的质量,则根据图象所给的信息,不能求出的物理量是( )【导学号:96622449】图4A.汽车的功率B.汽车行驶的最大速度C.汽车所受到的阻力D.汽车运动到最大速度所需的时间D 由F-f=ma,P=Fv可得:a=错误!·错误!-错误!,对应图线可知,错误!=k=40,可求出汽车的功率P,由a=0时,错误!=0.05可得:v m=20 m/s,再由v m=错误!,可求出汽车受到的阻力f,但无法求出汽车运动到最大速度的时间.5.(2015·福建高考)如图5所示,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则()图5A.t1<t2B.t1=t2C.t1>t2D.无法比较t1、t2的大小A 在滑道AB段上取任意一点E,比较从A点到E点的速度v1和从C点到E点的速度v2易知,v1>v2。
近年届高考物理一轮复习第五章机械能及其守恒定律章末过关检测新人教版(2021年整理)
2019届高考物理一轮复习第五章机械能及其守恒定律章末过关检测新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第五章机械能及其守恒定律章末过关检测新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第五章机械能及其守恒定律章末过关检测新人教版的全部内容。
第五章机械能及其守恒定律章末过关检测(五)(时间:60分钟满分:100分)一、单项选择题(本题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一个选项正确)1.有一固定轨道ABCD如图所示,AB段为四分之一光滑圆弧轨道,其半径为R,BC段是水平光滑轨道,CD段是光滑斜面轨道,BC和斜面CD间用一小段光滑圆弧连接.有编号为1、2、3、4完全相同的4个小球(小球不能视为质点,其半径r〈R),紧挨在一起从圆弧轨道上某处由静止释放,经平面BC到斜面CD上,忽略一切阻力,则下列说法正确的是()A.四个小球在整个运动过程中始终不分离B.在圆弧轨道上运动时,2号球对3号球不做功C.在CD斜面轨道上运动时,2号球对3号球做正功D.在CD斜面轨道上运动时,2号球对3号球做负功解析:选A。
圆弧轨道越低的位置切线的倾角越小,加速度越小,故相邻小球之间有挤压力,小球在水平面上速度相同,无挤压不分离,在斜面上加速度相同,无挤压也不分离,故B、C、D错误,A正确.2。
(2018·江西南昌模拟)用一根绳子竖直向上拉一个物块,物块从静止开始运动,绳子拉力的功率按如图所示规律变化,0~t0时间内物块做匀加速直线运动,t0时刻后物体继续加速,t1时刻物块达到最大速度.已知物块的质量为m,重力加速度为g,则下列说法正确的是()A.物块始终做匀加速直线运动B.0~t0时间内物块的加速度大小为错误!C.t0时刻物块的速度大小为错误!D.0~t1时间内绳子拉力做的总功为P0错误!解析:选D.由图象知,t0时刻后拉力的功率保持不变,根据P0=Fv知,v增大,F减小,物块做加速度减小的加速运动,当加速度减小到零,物块做匀速直线运动,选项A错误;0~t0时间内,由P=Fv,v=at,F-mg=ma得P =m(g+a)at,则m(g+a)a=错误!,得a≠错误!,选项B错误;设在t1时刻速度达到最大值v m,拉力大小等于物块重力大小,则P0=mgv m,得速度v m=P 0mg,由于t0时刻物块的速度v0<v m,即v0<错误!,选项C错误;P-t图象中面积表示拉力做的功,得0~t1时间内绳子拉力做的总功为P0t1-错误!P0t0=P0错误!,选项D正确.3.(2018·吉大附中月考)如图所示为游乐场中过山车的一段轨道,P点是这段轨道的最高点,A、B、C三处是过山车的车头、中点和车尾,假设这段轨道是圆轨道,各节车厢的质量相等,过山车在运行过程中不受牵引力,所受阻力可忽略.那么过山车在通过P点的过程中,下列说法正确的是( )A.车头A通过P点时的速度最小B.车的中点B通过P点时的速度最小C.车尾C通过P点时的速度最小D.A、B、C通过P点时的速度一样大解析:选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
突破全国卷5 力学压轴问题
【突破训练】
1.一质量为8.00×104
kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度
1.60×105 m 处以7.50×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s
2.(结果保留2位有效数字)
(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;
(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%.
解析:(1)飞船着地前瞬间的机械能为E k0=12
mv 20① 式中,m 和v 0分别是飞船的质量和着地前瞬间的速率.
由①式和题给数据得 E k0=4.0×108 J
②
设地面附近的重力加速度大小为g . 飞船进入大气层时的机械能为E k =12
mv 2h +mgh ③ 式中,v h 是飞船在高度1.60×105 m 处的速度大小.
由③式和题给数据得E k =2.4×1012 J .
④
(2)飞船在高度h ′=600 m 处的机械能为 E h ′=12
m (0.02v h )2+mgh ′⑤
由功能原理得 W =E h ′-E k0 ⑥
式中,W 是飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功.由②⑤⑥式和题给数据得W =9.7×108 J .
⑦
答案:见解析
2.(2018·铜陵模拟)
如图所示,半径为R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向的夹角θ=37°,另一端点C 为轨道的最低点. C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg
的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,g 取10 m/s 2
.求:
(1)物块经过C 点时的速率v C .
(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .
解析:(1)设物块在B 点的速度为v B ,从A 到B 物块做平抛运动,有: v B sin θ=v 0
从B 到C ,根据动能定理有:
mgR (1+sin θ)=12mv 2
C -12
mv 2B 解得:v C =6 m/s.
(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起运动.设相对滑动时物块加速度大小为a 1,木板加速度大小为a 2,经过时间t 达到共同速度v ,则:μmg =ma 1,μmg =Ma 2,v =v C -a 1t ,v =a 2t
根据能量守恒定律有:
12(m +M )v 2+Q =12
mv 2C 联立解得:Q =9 J.
答案:(1)6 m/s (2)9 J
3.
如图所示,倾角为θ的固定斜面的底端有一挡板M ,轻弹簧的下端固定在挡板M 上,在自然长度下,弹簧的上端在O 点处.质量为m 的物块A (可视为质点)从P 点以初速度v 0沿斜面向下运动,PO =x 0,物块A 与弹簧接触后将弹簧上端压到O ′点,然后A 被弹簧弹回.A 离开弹簧后,恰好能回到P 点.已知A 与斜面间的动摩擦因数为μ,重力加速度用g 表示.求:
(1)物块A 运动到O 点的速度大小;
(2)O 点和O ′点间的距离x 1;
(3)在压缩过程中弹簧具有的最大弹性势能E p .
解析:(1)物块A 从P 点运动到O 点,只有重力和摩擦力做功,由动能定理可知
(mg sin θ-μmg cos θ)x 0=12mv 2-12
mv 20 得:v =v 2
0+2g (sin θ-μcos θ)x 0.
(2)物块A 从P 点向下运动再向上运动回到P 点的全过程中,根据动能定理:-μmg cos
θ·2(x 1+x 0)=0-12mv 20,x 1=v 204μg cos θ
-x 0. (3)物块A 从O ′点向上运动到P 点的过程中,由能量守恒定律可知: E p =(mg sin θ+μmg cos θ)·(x 1+x 0)
解得E p =14mv 20·⎝ ⎛⎭
⎪⎫1μtan θ+1. 答案:(1) v 2
0+2g (sin θ-μcos θ)x 0 (2)v 20
4μg cos θ
-x 0 (3)14mv 2
0·⎝ ⎛⎭⎪⎫1μtan θ+1。