高三数学平行与垂直问题1

合集下载

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解一、选择题1.设b 、c 表示两条不重合的直线,α、β表示两个不同的平面,则下列命题是真命题的是( )A.⎭⎪⎬⎪⎫b ⊂αc ∥α⇒b ∥c B.⎭⎪⎬⎪⎫b ⊂αb ∥c ⇒c ∥α C.⎭⎪⎬⎪⎫c ∥αc ⊥β⇒α⊥βD.⎭⎪⎬⎪⎫c ∥αα⊥β⇒c ⊥β[答案] C[解析] 选项A 中的条件不能确定b ∥c ;选项B 中条件的描述也包含着直线c 在平面α内,故不正确;选项D 中的条件也包含着c ⊂β,c 与β斜交或c ∥β,故不正确.[点评] 线线、线面、面面平行或垂直的性质定理和判定定理是解决空间图形位置关系推理的重要依据,在推理中容易把平面几何中的一些结论引用到立体几何中造成错误.对空间中位置关系的考虑不周,也是造成判断错误的因素,所以做这类题目应当考虑全面.2.定点A 和B 都在平面α内,定点P ∉α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC .那么,动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点 [答案] B[解析] 连接BC ,∵PB ⊥α,∴AC ⊥PB . 又∵PC ⊥AC ,∴AC ⊥BC .∴C 在以AB 为直径的圆上.故选B. 3.设α、β、γ为平面,给出下列条件: ①a 、b 为异面直线,a ⊂α,b ⊂β,a ∥β,b ∥α; ②α内不共线的三点到β的距离相等; ③α⊥γ,β⊥γ.其中能使α∥β成立的条件的个数是( ) A .0 B .1 C .2D .3[答案] B[解析]对于②,三个点不一定在同侧;对于③,面面的垂直关系不具有传递性.对于①,过b作平面γ∩α=b′,则b∥b′,∵a与b异面,∴a与b′相交,容易证明b′∥β,又∵a∥β,∴α∥β,故只有①正确.4.a、b、c是三条直线,α、β是两个平面,b⊂α,c⊄α,则下列命题不成立的是() A.若α∥β,c⊥α,则c⊥βB.“若b⊥β,则α⊥β”的逆命题C.若a是c在α内的射影,b⊥a,则b⊥cD.“若b∥c,则c∥α”的逆否命题[答案] B[解析]一条直线垂直于两个平行平面中的一个,则垂直于另一个,故A正确;若c∥α,∵a是c在α内的射影,∴c∥a,∵b⊥a,∴b⊥c;若c与α相交,则c与a相交,由线面垂直的性质与判定定理知,若b⊥a,则b⊥c,故C正确;∵b⊂α,c⊄α,b∥c,∴c∥α,因此原命题“若b∥c,则c∥α”为真,从而其逆否命题也为真,故D正确.如图,α⊥β,α∩β=l,b⊂α,b与l不垂直,则b与β不垂直,∴B不成立.5.(文)(2010·天津河东区)已知直线a⊂平面α,直线AO⊥α,垂足为O,P A∩α=P,若条件p:直线OP不垂直于直线a,条件q:直线AP不垂直于直线a,则条件p是条件q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C故OP⊥a⇔AP⊥a,从而p⇔q.(理)(2010·河南新乡调研)设α、β、γ为平面,l、m、n为直线,则m⊥β的一个充分条件为()A.α⊥β,α∩β=l,m⊥lB.n⊥α,n⊥β,m⊥αC.α∩γ=m,α⊥γ,β⊥γD.α⊥γ,β⊥γ,m⊥α[答案] B[解析]如图①知A错;如图②知C错;如图③在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错.6.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC[答案] D[解析]∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD ⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,故AB⊥平面ADC.∴平面ABC⊥平面ADC.7.(文)(2010·重庆文)到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个C.恰有4个D.有无穷多个[答案] D[解析]过两条互相垂直的异面直线的公垂线段中点且与两条直线都成45°角的直线上所有点到两条直线的距离都相等,故选D.(理)(2010·全国Ⅱ理)与正方体ABCD-A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个[答案] D[解析]如图连结B1D,可知B1D上的点到AB、CC1、A1D1的距离均相等,故选D.8.(文)平行四边形ABCD的对角线交点为O,点P在平面ABCD之外,且PA=PC,PD=PB,则PO与平面ABCD的关系是()A.斜交B.平行C.垂直D.无法确定[答案] C[解析]∵PA=PC,∴PO⊥AC,∵PB=PD,∴PO⊥BD,∵AC∩BD=O,∴PO⊥平面ABCD.(理)棱长都为2的直平行六面体(底面为平行四边形的棱柱)ABCD-A1B1C1D1中,∠BAD =60°,则对角线A1C与侧面DCC1D1所成角的正弦值为()A.12B.22C.34D.38[答案] C[解析] 如图所示,过点A 1作直线A 1M ⊥D 1C 1,交D 1C 1延长线于点M ,连结MC ,A 1C ,则可得A 1M ⊥面DD 1C 1C ,∠A 1CM 就是直线A 1C 与面DD 1C 1C 所成的角.∵所有棱长均为2,∠A 1D 1C 1=120°,∴A 1M =A 1D 1sin60°=3,又A 1C =AC 12+CC 12=(23)2+22=4, ∴sin ∠A 1CM =A 1M A 1C =34C. [点评] 求直线与平面所成角时,一般要先观察分析是否可以找(或作)出直线上一点到平面的垂线,若能找出则可以将线面角归结到一个直角三角形中求解.若不容易找出线面角,则可以考虑能否进行转化或借助于空间向量求解,请再练习下题:(2010·全国Ⅰ文)正方体ABCD -A 1B 1C 1D 1中BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63[答案] D[解析] 解法1:设BD 与AC 交于点O ,连结D 1O ,∵BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1成的角.∵AC ⊥BD ,AC ⊥DD 1,DD 1∩BD =D ,∴AC ⊥平面DD 1B ,平面DD 1B ∩平面ACD 1=OD 1,∴OD 1是DD 1在平面ACD 1内的射影,故∠DD 1O 为直线DD 1与平面ACD 1所成的角,设正方体的棱长为1,则DD 1=1,DO =22,D 1O =62,∴cos ∠DD 1O =DD 1D 1O =63,∴BB 1与平面ACD 1所成角的余弦值为63. 解法2:因为BB 1∥DD 1,所以BB 1与平面ACD 1所成角和DD 1与平面ACD 1所成角相等,设DO ⊥平面ACD 1,由等体积法得VD -ACD 1=VD 1-ACD ,即13S △ACD 1·DO =13S △ACD ·DD 1.设DD 1=a ,则S △ACD 1=12AC ·AD 1sin60°=12×(2a )2×32=32a 2,S △ACD =12·CD =122.所以DO =S △ACD ·DD 1S △ACD 1=a 33a2=33a ,设DD 1与平面ACD 1所成角为θ,则sin θ=DO DD 1=33, 所以cos θ=63.解法3:建立如图所示空间直角坐标系D -xyz ,设边长为1,BB 1→=(0,0,1),平面ACD 1的一个法向量n =(1,1,1),∴cos 〈BB 1→,n 〉=13·1=33,∴BB 1与面ACD 1所成角的余弦值为63. 9.(文)(2010·鞍山一中模拟)已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α⊥β,其中正确的是( ) A .①②③ B .②③④ C .②④ D .①③ [答案] D∵m ⊂β,∴此时推不出l ∥m ,故②错,排除A ,故选D. (理)若平面α与平面β相交,直线m ⊥α,则( ) A .β内必存在直线与m 平行,且存在直线与m 垂直 B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直 C .β内不一定存在直线与m 平行,但必存在直线与m 垂直 D .β内必存在直线与m 平行,不一定存在直线与m 垂直 [答案] C[解析] 若β内存在直线与m 平行,则必有β⊥α,但α与β不一定垂直,故否定A 、D ;在β内必存在与m 在β内射影垂直的直线,从而此线必与m 垂直,否定B ,故选C.10.(文)(2010·芜湖十二中)已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是( )A .若m ⊥α,n ⊥β,α⊥β,则m ⊥nB .若m ∥α,n ∥β,α∥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ∥α,n ⊥β,α⊥β,则m ∥n[答案] A[解析]如图(1),m⊥α,n⊥α满足n∥β,但m∥n,故C错;如图(2)知B错;如图(3)正方体中,m∥α,n⊥β,α⊥β,知D错.(理)(2010·浙江金华十校模考)设a,b为两条直线,α,β为两个平面,下列四个命题中真命题是()A.若a,b与α所成角相等,则a∥bB.若a∥α,b∥β,α⊥β,则a⊥bC.若a⊂α,b⊂β,a⊥b,则α⊥βD.若a⊥α,b⊥β,α⊥β,则a⊥b[答案] D[解析]正四棱锥P-ABCD中,PA、PC与底面ABCD所成角相等,但P A与PC相交,∴A错;如图(1)正方体中,a∥b∥c,满足a∥α,b∥β,α⊥β,故B错;图(2)正方体中,上、下底面为β、α,a、b为棱,满足a⊂α,b⊂β,a⊥b,但α∥β,故C错;二、填空题11.对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中真命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①④[解析] 本题考查四面体的性质,取BC 的中点E ,则BC ⊥AE ,BC ⊥DE ,∴BC ⊥面ADE ,∴BC ⊥AD ,故①正确.设O 为A 在面BCD 上的射影,依题意OB ⊥CD ,OC ⊥BD ,∴O 为垂心,∴OD ⊥BC ,∴BC ⊥AD ,故④正确,②③易排除,故答案为①④.12.(文)P 为△ABC 所在平面外一点,PA 、PB 、PC 与平面ABC 所成角均相等,又PA 与BC 垂直,那么△ABC 形状可以是________.①正三角形 ②等腰三角形 ③非等腰三角形 ④等腰直角三角形(将你认为正确的序号全填上) [答案] ①②④[解析] 设点P 在底面ABC 上的射影为O ,由P A 、PB 、PC 与平面ABC 所成角均相等,得OA =OB =OC ,即点O 为△ABC 的外心,又由P A ⊥BC ,得OA ⊥BC ,即AO 为△ABC 中BC 边上的高线,∴AB =AC ,即△ABC 必为等腰三角形,故应填①②④.(理)如图将边长为1的正方形纸板ABCD 沿对角线AC 折起,使平面ACB ⊥平面ACD ,然后放在桌面上,使点B 、C 、D 落在桌面,这时点A 到桌面的距离为________.[答案]63[解析] 取AC 中点O ,∵OB ⊥AC ,OD ⊥AC ,OB ∩OD =O ,∴AC ⊥平面BOD ,∴∠BOD =90°.又∵BO =OD =22,∴BD =1,S △BOD =14, ∴V A -BCD =13S △BOD ·AC =212,设A 到桌面距离为h ,V A -BCD =13S △BCD ·h =13×34×h =212,∴h =63,即A 到桌面距离为63. 13.(2010·安徽淮北一中)已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在的直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积;④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) [答案] ①③[解析] 由条件可得AB ⊥平面PAD ,所以AB ⊥PD ,故①正确;∵P A ⊥平面ABCD ,∴平面PAB 、平面P AD 都与平面ABCD 垂直,故平面PBC 不可能与平面ABCD 垂直,②错;S △PCD =12CD ·PD ,S △P AB =12·PA ,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点可得EF ∥CD ,又AB ∥CD ,所以EF ∥AB ,故AE 与BF 共面,故④错.14.(文)(2010·河北唐山)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,∠ADC =90°,且AA 1=AD =DC =2,M ∈平面ABCD ,当D 1M ⊥平面A 1C 1D 时,DM =________.[答案] 2 2[解析] ∵DA =DC =DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM 为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.(理)(2010·安徽巢湖市质检)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别是AB ,BC ,B 1C 1的中点.下列命题正确的是________(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形; ②P 在直线FG 上运动时,AP ⊥DE ;③Q 在直线BC 1上运动时,三棱锥A -D 1QC 的体积不变;④M 是正方体的面A 1B 1C 1D 1内到点D 和C 1距离相等的点,则M 点的轨迹是一条线段. [答案] ②③④[解析] 三棱锥A 1-ABC 的四个面都是Rt △,故①错;F 在FG 上运动时,PF ⊥平面ABCD ,∴PF ⊥DE ,又在正方体ABCD 中,E 、F 为AB 、BC 中点,∴AF ⊥DE ,∴DE ⊥平面PAF ,∴DE ⊥P A ,故②真;VA -D 1QC =VQ -AD 1C ,∵BC 1∥AD 1,∴BC 1∥平面AD 1C ,∴无论点Q 在BC 1上怎样运动,Q 到平面AD 1C 距离都相等,故③真;到点D 和C 1距离相等的点在经过线段C 1D 的中点与DC 1垂直的平面α上,故点M 为平面α与正方体的面A 1B 1C 1D 1相交线段上的点,这条线段即A 1D 1.三、解答题15.(文)(2010·江苏,16)如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°(1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC . 由∠BCD =90°知,BC ⊥DC , ∵PD ∩DC =D ,∴BC ⊥平面PDC , ∴BC ⊥PC .(2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1, ∴V P -ABC =13S △ABC ·PD =13∵PD ⊥平面ABCD ,∴PD ⊥DC , ∵PD =DC =1,∴PC =2, ∵PC ⊥BC ,BC =1, ∴S △PBC =12PC ·BC =22,∵V A -PBC =V P -ABC , ∴13S △PBC ·h =13,∴h =2, ∴点A 到平面PBC 的距离为 2.(理)如图,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ; (2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.[解析] (1)∵M 为AB 中点,D 为PB 中点,∴DM ∥AP ,又DM ⊄平面APC ,AP ⊂平面APC .∴DM ∥平面APC .(2)∵△PMB 为正三角形,且D 为PB 中点,∴MD ⊥PB ,又由(1)知MD ∥AP ,∴AP ⊥PB又已知AP ⊥PC ,∴AP ⊥平面PBC ,∴AP ⊥BC ,又∵AC ⊥BC∴BC ⊥平面APC∴平面ABC ⊥平面APC .(3)∵AB =20,∴MP =10,∴PB =10又BC =4,PC =100-16=221∴S △BDC =12S △PBC =14PC ·BC =14×4×221 =221又MD =12AP =12202-102=5 3 ∴V D -BCM =V M -BCD =13S △BDC ·DM =13×221×5 3 =107.16.(文)如图,已知在直四棱柱ABCD -A1B 1C 1D 1中,AD ⊥DC ,AB ∥DC ,DC =DD 1=2AD =2AB =2.(1)求证:DB ⊥平面B 1BCC 1;(2)设E 是DC 上一点,试确定E 的位置,使得D 1E ∥平面A 1BD ,并说明理由.[解析] (1)证明:∵AB ∥DC ,AD ⊥DC ,∴AB ⊥AD ,在Rt △ABD 中,AB =AD =1,∴BD =2,易求BC =2,又∵CD =2,∴BD ⊥BC .又BD ⊥BB 1,B 1B ∩BC =B ,∴BD ⊥平面B 1BCC 1.(2)DC 的中点即为E 点.∵DE ∥AB ,DE =AB ,∴四边形ABED 是平行四边形.∴AD 綊BE .又AD 綊A 1D 1,∴BE 綊A 1D 1,∴四边形A 1D 1EB 是平行四边形.∴D 1E ∥A 1B .∵D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD .∴D 1E ∥平面A 1BD .(理)在三棱锥P -ABC 中,△P AC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点.(1)在棱P A 上求一点M ,使得OM ∥平面PBC ;(2)求证:平面P AB ⊥平面ABC ;(3)求二面角P -BC -A 的余弦值.[解析] (1)当M 为棱P A 的中点时,OM ∥平面PBC .证明如下:∵M 、O 分别为P A 、AB 中点,∴OM ∥PB又PB ⊂平面PBC ,OM ⊄平面PBC∴OM ∥平面PBC .(2)连结OC 、OP∵AC =CB =2,O 是AB 中点,AB =2,∴OC ⊥AB ,OC =1.同理,PO ⊥AB ,PO =1.又PC =2,∴PC 2=OC 2+PO 2=2,∴∠POC =90°,∴PO ⊥OC .∵PO ⊥OC ,PO ⊥AB ,AB ∩OC =O ,∴PO ⊥平面ABC .∵PO ⊂平面PAB ,∴平面PAB ⊥平面ABC .(3)如图,建立空间直角坐标系O -xyz .则B (1,0,0),C (0,1,0),P (0,0,1),∴BC →=(-1,1,0),PB →=(1,0,-1).由(2)知OP →=(0,0,1)是平面ABC 的一个法向量.设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BC →=0n ·PB →=0⇒⎩⎪⎨⎪⎧-x +y =0x -z =0, 令z =1,则x =1,y =1,∴n =(1,1,1).∴cos 〈OP →,n 〉=OP →·n |OP →|·|n |=11×3=33. ∵二面角P -BC -A 的平面角为锐角,∴所求二面角P -BC -A 的余弦值为33. 17.(文)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且AE AC =AF AD=λ(0<λ<1).(1)判断EF 与平面ABC 的位置关系并给予证明;(2)是否存在λ,使得平面BEF ⊥平面ACD ,如果存在,求出λ的值,如果不存在,说明理由.[分析] (1)EF 与平面ABC 相交于点E ,故其关系只能是垂直或斜交,由条件AE AC =AF AD=λ易知,EF ∥CD ,由∠BCD =90°及AB ⊥平面BCD ,易证CD ⊥平面ABC .(2)∵EF ∥CD ,故问题相当于过点B 作一个平面与ACD 垂直,这样的平面一定存在,故只须计算出λ即可,由条件不难得到BE ⊥CD ,故只须BE ⊥AC .[解析] (1)EF ⊥平面ABC .证明:因为AB ⊥平面BCD ,所以AB ⊥CD ,又在△BCD 中,∠BCD =90°,所以BC ⊥CD ,又AB ∩BC =B ,所以CD ⊥平面ABC ,又在△ACD 中,E 、F 分别是AC 、AD 上的动点,且AEAC =AF AD=λ(0<λ<1),∴EF ∥CD ,∴EF ⊥平面ABC .(2)∵CD ⊥平面ABC ,BE ⊂平面ABC ,∴BE ⊥CD ,在Rt △ABD 中,∠ADB =60°,∴AB =BD tan60°=6,则AC =AB 2+BC 2=7,当BE ⊥AC 时,BE =AB ×BC AC =67,AE =AB 2-BE 2=367, 则AE AC =3677=67,即λ=AE AC =67时,BE ⊥AC , 又BE ⊥CD ,AC ∩CD =C ,∴BE ⊥平面ACD ,∵BE ⊂平面BEF ,∴平面BEF ⊥平面ACD .所以存在λ,且当λ=67时,平面BEF ⊥平面ACD . [点评] 高考整体降低了对立体几何的考查要求,故线线、线面、面面的位置关系成了主要的考查点,其中平行、垂直的证明题与探索题是重点,同时也要注意由三视图与几何体的结合进行表面积与体积的计算等问题.(理)已知四棱锥P -ABCD 的三视图如下图所示,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论;(3)若点E 为PC 的中点,求二面角D -AE -B 的大小.[解析] (1)由三视图可知,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC =2.∴V P -ABCD =13S 正方形ABCD ·PC =13×12×2=23,即四棱锥P -ABCD 的体积为23.(2)不论点E 在何位置,都有BD ⊥AE .证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC .∵PC ⊥底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥PC .又∵AC ∩PC =C ,∴BD ⊥平面PAC .∵不论点E 在何位置,都有AE ⊂平面P AC .∴不论点E 在何位置,都有BD ⊥AE .(3)解法1:在平面DAE 内过点D 作DF ⊥AE 于F ,连结BF .∵AD =AB =1,DE =BE =12+12=2,AE =AE =3,∴Rt △ADE ≌Rt △ABE ,从而△ADF ≌△ABF ,∴BF ⊥AE .∴∠DFB 为二面角D -AE -B 的平面角.在Rt △ADE 中,DF =AD ·DE AE =1×23=63, ∴BF =63. 又BD =2,在△DFB 中,由余弦定理得cos ∠DFB =DF 2+BF 2-BD 22DF ·BF =-12, ∴∠DFB =2π3, 即二面角D -AE -B 的大小为2π3. 解法2:如图,以点C 为原点,CD ,CB ,CP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系.则D (1,0,0),A (1,1,0),B (0,1,0),E (0,0,1),从而DA →=(0,1,0),DE →=(-1,0,1),BA→=(1,0,0),BE →=(0,-1,1).设平面ADE 和平面ABE 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),由⎩⎪⎨⎪⎧n 1·DA →=0n 1·DE →=0⇒⎩⎪⎨⎪⎧ y 1=0-x 1+z 1=0,取n 1=(1,0,1).由⎩⎪⎨⎪⎧n 2·BA →=0n 2·BE →=0⇒⎩⎪⎨⎪⎧ x 2=0-y 2+z 2=0,取n 2=(0,-1,-1). 设二面角D -AE -B 的平面角为θ,则 cos θ=n 1·n 2|n 1|·|n 2|=-12·2=-12,∴θ=2π3,即二面角D -AE -B 的大小为2π3。

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。

高三数学平行与垂直问题1

高三数学平行与垂直问题1

(2)BC 平面PEB;
例2:如图已知正方形 ABCD和矩形ACEF 所在的平面互相垂直, AB 2,AF 1 点M是线段EF的中点。
E M F C B
D
A
(1)解因为四边形 ACEF为矩形,所以 FA AC 又因为平面ACEF 平面ABCD,且平面ACEF 平面ABCD AC, 所以FA 平面ABCD.所以 1 三棱锥A BDF的体积为 , 3 (2)证明:连结BD, BD AC O, 连结EO, 则 O为AC的中点,因为 M是EF的中点,且四边形 EOAM为平行四边形。所以 EM // OA, EM OA 所以AM // EO.因为EO 平面BDE, AM 平面 BDE, 所以AM // 平面BDE.
又可证得,O是NN1的中点,所以 BM // OM 且BM ON ,即BMON是平行四边形,所以 BN // OM , 所以OM 平面CC1 D1 D,因为OM 平面DMC1 , 平面DMC1 平面CC1 D1 D
拓展:如图棱长为 1的正方体ABCD A1 B1C1 D1 (1)线段A1 B上是否存在一点 P,使得A1 B 平面 PAC ? 若存在,确定 P点的位置;若不存在, 说明理由; B1Q ,求 QD
平行与垂直问题
1.给出以下四个命题: ①如果一条直线和一个平面平行,经过这条直线的平面 和这个平面相交, 那么这条直线和交线平行; ②如果一条直线和一个平面内的两条相交直线都垂直, 那么这条直线垂直于这个平面。 ③如果两条直线都平行于一个平面,那么这两条 直线互相平行; ④如果一个平面平行于另一个平面的一条垂线,那么这 两个平面互相垂直。 正确的有
课前热身:
2.下面四个正方体图形中,A、B为正方体的两个顶点, M、N、P分别为其所在棱的中点, 能得出AB∥面MNP的图形序号是_______.(写出所有符合要求的 图形序号)

高中数学高考总复习立体几何平行与垂直的判断习题及详解

高中数学高考总复习立体几何平行与垂直的判断习题及详解

高中数学高考总复习立体几何平行与垂直的判断习题及详解一、选择题1.(文)(09·福建)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案] B[解析]如图(1),α∩β=l,m∥l,l1∥l,满足m∥β且l1∥α,故排除A;如图(2),α∩β=l,m∥n∥l,满足m∥β,n∥β,故排除C.在图(2)中,m∥n∥l∥l2满足m∥β,n∥l2,故排除D,故选B.[点评]∵l1与l2相交,m∥l1,n∥l2,∴m与n相交,由面面平行的判定定理可知α∥β;但当m、n⊂α,l1,l2⊂β,l1与l2相交,α∥β时,如图(3),得不出m∥l1且n∥l2.(理)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[答案] C[解析]对于A,如图正方体α、β分别为平面ABCD与平面ADD1A1,a、b分别为直线B1B和C1C.a与b也可能平行,对于B,∵a⊥α,α∥β,∴a⊥β,又b⊥β,∴a∥b,对于D,a与b也可能平行,故选C.2.(2010·郑州检测)已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个B.1个C.2个D.3个[答案] C[解析]依题意得,命题“a∥b,且a⊥γ⇒b⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a∥β,且a⊥c⇒β⊥c”是假命题(直线c可能位于平面β内,此时结论不成立);命题“α∥b,且α⊥c⇒b⊥c”是真命题(因为α∥b,因此在平面α内必存在直线b1∥b;又α⊥c,因此c∥b1,c⊥b).综上所述,其中真命题共有2个,选C.3.(2010·东北三校模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为A 1B 1,CD ,B 1C 1的中点,则下列命题正确的是( )A .AM 与PC 是异面直线B .AM ⊥PC C .AM ∥平面BC 1ND .四边形AMC 1N 为正方形 [答案] C[解析] 连接MP ,AC ,A 1C 1,AM ,C 1N ,由题易知MP ∥A 1C 1∥AC ,且MP =12AC ,所以AM 与PC 是相交直线,假设AM ⊥PC ,∵BC ⊥平面ABB 1A 1,∴BC ⊥AM ,∴AM ⊥平面BCC 1B 1,又AB ⊥平面BCC 1B 1矛盾,∴AM 与PC 不垂直.因为AM ∥C 1N ,C 1N ⊂平面BC 1N ,所以AM ∥平面BC 1N .又易得四边形AMC 1N 为菱形而不是正方形,故选C.4.(文)对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥αD .a ⊂α,b ⊥α[答案] B[解析] a 、b 异面时,A 错,C 错;若D 正确,则必有a ⊥b ,故排除A 、C 、D ,选B.(理)设a 、b 为两条直线,α、β为两个平面.下列四个命题中,正确的命题是( ) A .若a 、b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ⊂α,b ⊂β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b [答案] D[解析] 若直线a 、b 与α成等角,则a 、b 平行、相交或异面;对选项B ,如a ∥α,b ∥β,α∥β,则a 、b 平行、相交或异面;对选项C ,若a ⊂α,b ⊂β,a ∥b ,则α、β平行或相交;对选项D ,由⎭⎪⎬⎪⎫a ⊥αβ⊥α⇒a ∥β或a ⊂β,无论哪种情形,由b ⊥β都有b ⊥a .,故选D. 5.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ②AB 与CM 成60°③EF 与MN 是异面直线④MN ∥CD 其中正确的是( )A.①②B.③④C.②③D.①③[答案] D[解析]本题考查学生的空间想象能力,将其还原成正方体如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD.只有①③正确,故选D.6.(文)(2010·山东潍坊)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β[答案] D[解析]对于选项A,两平面β、γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α、β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,∵m∥n,m⊥α,∴n⊥α,又n⊥β,∴α∥β,故选D.(理)(2010·曲师大附中)已知两个不同的平面α,β和两条不重合的直线a,b,则下列四个命题中为真命题的是()A.若a∥b,b⊂α,则a∥αB.若α⊥β,α∩β=b,a⊥b,则a⊥βC.若a⊂α,b⊂α,a∥β,b∥β,则α∥βD.若α∥β,a⊄α,a⊄β,a∥α,则a∥β[答案] D[解析]选项A中,直线a可能在平面α内;选项B中,直线a可能在平面β内;选项C 中,直线a ,b 为相交直线时命题才成立.7.(2010·江苏南通)在正方体ABCD -A 1B 1C 1D 1中,P 、Q 分别是棱AA 1、CC 1的中点,则过点B 、P 、Q 的截面是( )A .邻边不等的平行四边形B .菱形但不是正方形C .邻边不等的矩形D .正方形 [答案] B[解析] 设正方体棱长为1,连结D 1P ,D 1Q ,则易得PB =PQ =D 1P =D 1Q =52,取D 1D 的中点M ,则D 1P 綊AM 綊BQ ,故截面为四边形PBQD 1,它是一个菱形,又PQ =AC =2,∴∠PBQ 不是直角,故选B.8.(文)(2010·山东日照、聊城模考)已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β; 其中真命题是( ) A .①② B .①③ C .①④D .②④[答案] C [解析][点评] 如图,α∩β=m ,则l ⊥m ,故(2)假;在上述图形中,当α⊥β时,知③假.(理)(2010·福建福州市)对于平面α和共面的直线m ,n ,下列命题是真命题的是( ) A .若m ,n 与α所成的角相等,则m ∥n B .若m ∥α,n ∥α,则m ∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案] D[解析]正三棱锥P-ABC的侧棱P A、PB与底面成角相等,但P A与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.9.(文)(2010·北京顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案] C[解析]如图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2010·广东罗湖区调研)已知相异直线a,b和不重合平面α,β,则a∥b的一个充分条件是()A.a∥α,b∥αB.a∥α,b∥β,α∥βC.a⊥α,b⊥β,α∥βD.α⊥β,a⊥α,b∥β[答案] C[解析]a∥α,b∥α时,a与b可相交可异面也可平行,故A错;a∥α,b∥β,α∥β时,a与b可异面,故B错;由α⊥β,a⊥α得,a∥β或a⊂β,又b∥β,此时a与b可平行也可异面,排除D.10.(2010·日照实验高中)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.二、填空题11.(文)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.[答案] M ∈线段FH[解析] 因为HN ∥BD ,HF ∥DD 1,所以平面NHF ∥平面B 1BDD 1,又平面NHF ∩平面EFGH =FH .故线段FH 上任意点M 与N 相连,有MN ∥平面B 1BDD 1,故填M ∈线段FH .(理)(2010·南充市模拟)已知两异面直线a ,b 所成的角为π3,直线l 分别与a ,b 所成的角都是θ,则θ的取值范围是________.[答案] [π6,π2]12.在四面体ABCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.[答案] 面ABC 和面ABD[解析] 连结AM 并延长交CD 于点E ,∵M 为△ACD 的重心,∴E 为CD 的中点, 又N 为△BCD 的重心,∴B 、N 、E 三点共线, 由EM MA =EN NB =12得MN ∥AB , 因此MN ∥平面ABC ,MN ∥平面ABD .13.如图是一正方体的表面展开图,B 、N 、Q 都是所在棱的中点,则在原正方体中, ①AB 与CD 相交;②MN ∥PQ ;③AB ∥PE ;④MN 与CD 异面;⑤MN ∥平面PQC . 其中真命题的序号是________.[答案] ①②④⑤[解析] 将正方体还原后如图,则N 与B 重合,A 与C 重合,E 与D 重合,∴①、②、④、⑤为真命题.14.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.[答案]223a [解析] ∵B 1D 1∥平面ABCD ,平面B 1D 1P ∩平面ABCD =PQ ,∴B 1D 1∥PQ , 又B 1D 1∥BD ,∴BD ∥PQ ,设PQ ∩AB =M ,∵AB ∥CD ,∴△APM ∽△DPQ ,∴PQ PM =PDAP=2,即PQ =2PM , 又△APM ∽△ADP ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .三、解答题15.(文)(2010·南京调研)如图,在四棱锥E -ABCD 中,四边形ABCD 为平行四边形,BE =EC ,AE ⊥BE ,M 为CE 上一点,且BM ⊥平面ACE .(1)求证:AE ⊥BC ;(2)如果点N 为线段AB 的中点,求证:MN ∥平面ADE .[解析] (1)因为BM ⊥平面ACE ,AE ⊂平面ACE ,所以BM ⊥AE .因为AE ⊥BE ,且BE ∩BM =B ,BE 、BM ⊂平面EBC ,所以AE ⊥平面EBC . 因为BC ⊂平面EBC ,所以AE ⊥BC . (2)解法1:取DE 中点H ,连接MH 、AH .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点. 所以MH 为△EDC 的中位线,所以MH 綊12DC .因为四边形ABCD 为平行四边形,所以DC 綊AB . 故MH 綊12AB .因为N 为AB 的中点,所以MH 綊AN .所以四边形ANMH 为平行四边形,所以MN ∥AH . 因为MN ⊄平面ADE ,AH ⊂平面ADE , 所以MN ∥平面ADE .解法2:取EB 的中点F ,连接MF 、NF .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点,所以MF ∥BC .因为N 为AB 的中点,所以NF ∥AE , 因为四边形ABCD 为平行四边形, 所以AD ∥BC .所以MF ∥AD .因为NF 、MF ⊄平面ADE ,AD 、AE ⊂平面ADE , 所以NF ∥平面ADE ,MF ∥平面ADE . 因为MF ∩NF =F ,MF 、NF ⊂平面MNF , 所以平面MNF ∥平面ADE .因为MN ⊂平面MNF ,所以MN ∥平面ADE .(理)(2010·厦门市质检)如图所示的几何体中,△ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE =AB =2,CD =1,F 为BE 的中点.(1)若点G 在AB 上,试确定G 点位置,使FG ∥平面ADE ,并加以证明;(2)在(1)的条件下,求三棱锥D -ABF 的体积. [解析] (1)当G 是AB 的中点时,GF ∥平面ADE . ∵G 是AB 的中点,F 是BE 的中点, ∴GF ∥AE ,又GF ⊄平面ADE ,AE ⊂平面ADE , ∴GF ∥平面ADE . (2)连接CG ,由(1)可知: GF ∥AE ,且GF =12AE .又AE ⊥平面ABC ,CD ⊥平面ABC ,∴CD ∥AE , 又CD =12AE ,∴GF ∥CD ,GF =CD ,∴四边形CDFG 为平行四边形, ∴DF ∥CG ,且DF =CG .又∵AE ⊥平面ABC ,CG ⊂平面ABC ,∴AE ⊥CG . ∵△ABC 为正三角形,G 为AB 的中点, ∴CG ⊥AB ,又AB ∩AE =A ,∴CG ⊥平面ABE . 又CG ∥DF ,且CG =DF ,∴DF 为三棱锥D -ABF 的高,且DF = 3. 又AE ⊥平面ABC ,AB ⊂平面ABC ,∴AE ⊥AB . ∵在Rt △ABE 中,AB =AE =2,F 为BE 的中点,∴S △ABF =12S △ABE =12×12×2×2=1.∴V D -ABF =13S △ABF ·DF =13×1×3=33,∴三棱锥D -ABF 的体积为33. 16.(文)(2010·安徽合肥质检)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ;若不存在,说明理由.[解析] (1)∵PO ⊥平面ABCD , BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP , ∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合. 取PO 的中点N ,连结EN 并延长交PB 于F , ∵EA =1,PO =2,∴NO =1,又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB , ∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面PBC .∴当M 与E 重合时即可.(理)在长方体ABCD -A 1B 1C 1D 1中,O 为底面正方形的中心,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1及其三视图.(1)求证:D1O∥平面A1BC1;(2)是否存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q?若存在,求出线段PQ的长;若不存在,请说明理由.[分析]要证D1O∥平面A1BC1,∵O为DB的中点,∴取A1C1中点E,只须证D1E綊OB,或利用长方体为正四棱柱的特性,证明平面ACD1∥平面A1C1B,假设存在平面A1PQ ⊥DC1,利用正四棱柱中,BC⊥平面DCC1D1,故有BC⊥DC1,从而平面A1PQ与平面BCC1的交线PQ⊥DC1,故只须在面DCC1D1的边CC1上寻找点Q,使D1Q⊥DC1即可.[解析](1)连接AC,AD1,D1C,易知点O在AC上.D1、四边形A1D1CB均为平行四边根据长方体的性质得四边形ABC Array 1形,∴AD1∥BC1,A1B∥D1C,又∵AD1⊄平面A1C1B,BC1⊂平面A1C1B,∴AD1∥平面A1C1B,同理D1C∥平面A1BC1,又∵D1C∩AD1=D1,∴根据面面平行的判定定理知平面ACD1∥平面A1BC1.∵D1O⊂平面ACD1,∴D1O∥平面A1BC1.(2)假设存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.D,过点D1作C1D的垂线交C1C于点Q,过点Q作PQ连接C Array 1∥BC交BC1于点P,连接A1P,A1Q.∵C1D⊥D1Q,C1D⊥A1D1,D1Q∩A1D1=D1,∴C1D⊥平面A1D1Q.∵A1Q⊂平面A1D1Q,∴C1D⊥A1Q.∵PQ∥BC∥A1D1,∴C1D⊥PQ,∵A1Q∩PQ=Q,∴C1D⊥平面A1PQ.∴存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.在矩形CDD 1C 1中,∵Rt △D 1C 1Q ∽Rt △C 1CD ,∴C 1Q CD =D 1C 1C 1C ,结合三视图得C 1Q 2=24,∴C 1Q =1. ∵PQ ∥BC ,∴PQ BC =C 1Q CC 1=14,∴PQ =14BC =12. 17.(文)(2010·东北师大附中)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1;(2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.[解析] (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1,又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1,即CF ⊥平面EFB 1,且CF =BF = 2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°,∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12·EF ·B 1F ·CF =13×12×3×6×2=1. (理)(2010·河北唐山)如图,在四棱锥V -ABCD 中,底面ABCD 是矩形,侧棱VA ⊥底面ABCD ,E 、F 、G 分别为VA 、VB 、BC 的中点.(1)求证:平面EFG ∥平面VCD ;(2)当二面角V -BC -A 、V -DC -A 依次为45°、30°时,求直线VB 与平面EFG 所成的角.[解析] (1)∵E 、F 、G 分别为VA 、VB 、BC 的中点,∴EF ∥AB ,FG ∥VC ,又ABCD 是矩形,∴AB ∥CD ,∴EF ∥CD ,又∵EF ⊄平面VCD ,FG ⊄平面VCD ,∴EF ∥平面VCD ,FG ∥平面VCD ,又EF ∩FG =F ,∴平面EFG ∥平面VCD .(2)∵VA ⊥平面ABCD ,CD ⊥AD ,∴CD ⊥VD .则∠VDA 为二面角V -DC -A 的平面角,∴∠VDA =30°.同理∠VBA =45°.作AH ⊥VD ,垂足为H ,由上可知CD ⊥平面VAD ,则AH ⊥平面VCD .∵AB ∥平面VCD ,∴AH 即为B 到平面VCD 的距离.由(1)知,平面EFG ∥平面VCD ,则直线VB 与平面EFG 所成的角等于直线VB 与平面VCD 所成的角,记这个角为θ.∵AH =VA sin60°=32VA ,VB =2VA ,∴sin θ=AH VB =64, 故直线VB 与平面EFG 所成的角是arcsin64.。

高中数学重难点归纳:立体几何中的平行与垂直

高中数学重难点归纳:立体几何中的平行与垂直

高中数学重难点归纳:立体几何中的平行与垂直
题型一:线线、线面位置关系的证明
(1)证明立体几何问题的主要方法是定理法,解题时必须按照定理成立的条件进行推理。

(2)证明立体几何问题,要精密结合图形,有时要利用平面几何的相关知识,因此需要多画出一些图形辅助使用。

题型二:两平面之间位置关系的证明
(1)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行。

(2)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直。

题型三:空间线面位置关系的综合问题
与平行、垂直有关的存在性问题注意解题的步骤。

高考数学平行垂直知识点

高考数学平行垂直知识点

高考数学平行垂直知识点高考数学中的平行垂直知识点高考是每个学生都无法绕过的一道坎。

而在这道坎上,数学一直被视为是考试重点科目之一。

其中,平行和垂直是数学中非常重要的概念和知识点。

在高考中,我们经常会遇到与平行垂直相关的问题。

本文将深入探讨高考数学中的平行垂直知识点。

一、平行线及其判定平行线是指在同一个平面上,永远不相交的两条直线。

在高中数学中,我们通常通过两个条件来判断两条直线是否平行:同一平面内,有且只有一对内角相等;同一平面内,有且只有一对对应角相等。

这两个条件可以帮助我们判定平面内任意两条直线的平行关系。

除了判定平行关系外,我们还经常会遇到一些与平行线相关的问题。

例如,两条平行线所夹的角等于180°减去这两条平行线与另一直线的两个内角,这个公式被广泛应用于解决许多与平行线夹角有关的题目。

二、垂直线及其判定垂直线是指在同一个平面上,相交沿特定角度交相垂直的两条直线。

在高中数学中,我们通常通过两个条件来判断两条直线是否垂直:两条直线的斜率乘积为-1;同一平面上,一条直线与另一直线的两个内角相加等于二直角的度数(90°)。

在实际应用中,我们还经常会用到垂直线的性质。

例如,在求解垂直线段的问题中,我们可以利用勾股定理来计算两条垂直线段之间的关系。

此外,我们还会遇到一些根据垂直线的性质来推论的问题,需要我们根据给定条件进行推断。

三、平行线与垂直线的性质平行线和垂直线在几何中有许多重要的性质。

其中,平行线的性质主要包括:平行线之间的夹角相等;两个平行线被一条横穿线切割,所形成的对应角、内错角以及同旁内角是相等的。

这些性质在解题过程中经常会被用到,它们帮助我们更好地理解平行线的特性。

垂直线的性质则包括:垂直直线之间的夹角为直角(90°);两条直线互相垂直,其中一条直线上的一条直线与另一条直线上的互相垂直。

这些性质在解决垂直问题时也起着重要的作用,它们可以帮助我们确定直角关系并简化问题。

新课标高中数学立体几何平行与垂直练习题

新课标高中数学立体几何平行与垂直练习题

立体几何-——平行与垂直练习题1. 空间四边形SABC 中,SO ⊥平面ABC ,O 为∆ABC 的垂心,求证: (1AB ⊥平面SOC (2平面SOC ⊥平面SABCA2. 如图所示,在正三棱柱ABC- A 1B 1C 1中,E ,M 分别为BB 1,A 1C 的中点,求证: (1 EM ⊥平面A A 1C 1C; (2平面A 1EC ⊥平面AA 1C 1C ;EMA 1B 1C 1AB C3. 如图,矩形ABCD 中,AD ⊥平面ABE ,BE=BC ,F 为CE 上的点,且BF ⊥平面ACE ,G 为 AC 与BD 的交点. (1求证:AE ⊥平面BCE. (2求证:AE ∥平面BFD.4. 设P 、Q 是边长为a 的正方体AC 1的面AA 1D 1D 、面A 1B 1C 1D 1的中心,如图, (1证明PQ ∥平面AA 1B 1B ;(2求线段PQ 的长.5. 如图,在四棱锥P —ABCD 中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.若M 为PA 的中点,求证:DM //面PBC .6. 已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点,求证:(1直线MF ∥平面ABCD ; (2平面AFC 1⊥平面ACC 1A 1.7. 如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点,求证:(1MN ∥平面PAD ;(2MN ⊥CD ;(3若二面角P-DC-A=45°,则MN ⊥平面PDC.8. 如图,在三棱柱ABC -A 1B 1C 1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB 1=2,M ,N 分别是AB ,A 1C 的中点.求证:(1MN ∥平面BCC 1B 1; (2 MN ⊥平面A 1B 1C ;9. 如图所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC ⊥底面ABCD , 且AB=2,SC=SD=2. 求证:平面SAD ⊥平面SBC.10. 如图所示,在直.三棱柱...ABC -A 1B 1C 1中,AC ⊥BC . (1 求证:平面AB 1C 1⊥平面AC 1;(2 若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,试确定点E 的位置;若不存在,请说明理由.11. 如图,把等腰Rt △ABC 沿斜边AB 旋转至△ABD 的位置,使CD =AC, (1求证:平面ABD ⊥平面ABC ; (2求二面角C-BD-A 的余弦值.12. 如图,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点. 求证:(1EN ∥平面PCD ; (2平面PBC ⊥平面ADMN ;11113.如图,AB 为⊙O 直径,C 为⊙O 上一点,PA ⊥平面ABC ,A 在PB 、PC 上的射影分别为E 、F ,求证:PB ⊥平面AFE.14.四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AB ⊥BC ,AB=BC=1,DC=2,点E 在PB 上. (1求证:平面AEC ⊥平面PAD. (2当PD ∥平面AEC 时,求PE ∶EB 的值.15. 如图,已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,D ,S 分别为PB ,AB ,BC 的中点.求证: (1 P A ∥平面CDM ; (2SN ⊥平面CDM .16. 一个多面体的直观图和三视图如图所示,其中M ,G 分别是AB ,DF 的中点. (1求证:CM ⊥平面FDM ;(2在线段AD 上(含A ,D 端点确定一点P ,使得GP ∥平面FMC ,并给出证明.。

高三数学二轮复习空间中的平行与垂直练习含试题答案

高三数学二轮复习空间中的平行与垂直练习含试题答案

空间中的平行与垂直[明考情]高考中对直线和平面的平行、垂直关系交汇综合命题,多以棱柱、棱锥、棱台或简单组合体为载体进行考查,难度中档偏下.[知考向]1.空间中的平行关系.2.空间中的垂直关系.3.平行和垂直的综合应用.考点一空间中的平行关系方法技巧(1)平行关系的基础是线线平行,比较常见的是利用三角形中位线构造平行关系,利用平行四边形构造平行关系.(2)证明过程中要严格遵循定理中的条件,注意推证的严谨性.1.如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.证明如图所示,作ME∥BC交BB1于点E,作NF∥AD交AB于点F,连接EF,则EF⊂平面AA1B1B.∵ME∥BC,NF∥AD,∴MEBC=B1MB1C,NFAD=BNBD.在正方体ABCD-A1B1C1D1中,∵CM=DN,∴B1M=NB.又B1C=BD,∴ME BC =BN BD =NFAD,又BC =AD ,∴ME =NF .又ME ∥BC ∥AD ∥NF ,∴四边形MEFN 为平行四边形, ∴MN ∥EF .又EF ⊂平面AA 1B 1B ,MN ⊄平面AA 1B 1B , ∴MN ∥平面AA 1B 1B .2.(2017·全国Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥PA ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD .(2)解 如图,在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD , 故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得PA =PD =AB =DC =2,AD =BC =22,PB =PC =22,可得四棱锥P -ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.3.(2017·龙岩市新罗区校级模拟)如图,O 是圆锥底面圆的圆心,圆锥的轴截面PAB 为等腰直角三角形,C 为底面圆周上一点.(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积. (1)证明 方法一 设BC ∩OD =E , ∵D 是弧BC 的中点, ∴E 是BC 的中点.又∵O 是AB 的中点,∴AC ∥OE . 又∵AC ⊄平面POD ,OE ⊂平面POD , ∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径, ∴AC ⊥BC .∵弧BC 的中点为D , ∴OD ⊥BC .又AC ,OD 共面,∴AC ∥OD . 又AC ⊄平面POD ,OD ⊂平面POD , ∴AC ∥平面POD .(2)解 设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形, ∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.4.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在?请说明理由.解存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形,∴AD∥CF.又AD⊂平面ADD1A1,CF⊄平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1.又CC1,CF⊂平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.考点二空间中的垂直关系方法技巧判定直线与平面垂直的常用方法(1)利用线面垂直定义.(2)利用线面垂直的判定定理,一条直线与平面内两条相交直线都垂直,则这条直线与平面垂直.(3)利用线面垂直的性质,两平行线中的一条垂直于平面,则另一条也垂直于这个平面.(4)利用面面垂直的性质定理,两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.5.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明(1)如图,取CE的中点G,连接FG,BG.∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GFAB 为平行四边形, ∴AF ∥BG .∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE .6.(2017·全国Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1)证明 如图,取AC 的中点O ,连接DO ,BO .因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO .又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt△AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.7.(2017·南京一模)如图,在六面体ABCDE 中,平面DBC ⊥平面ABC ,AE ⊥平面ABC .(1)求证:AE ∥平面DBC ;(2)若AB ⊥BC ,BD ⊥CD ,求证:AD ⊥DC . 证明 (1)过点D 作DO ⊥BC ,O 为垂足.∵平面DBC ⊥平面ABC ,平面DBC ∩平面ABC =BC ,DO ⊂平面DBC , ∴DO ⊥平面ABC .又AE ⊥平面ABC ,则AE ∥DO .又AE ⊄平面DBC ,DO ⊂平面DBC ,故AE ∥平面DBC .(2)由(1)知,DO ⊥平面ABC ,AB ⊂平面ABC , ∴DO ⊥AB .又AB ⊥BC ,且DO ∩BC =O ,DO ,BC ⊂平面DBC , ∴AB ⊥平面DBC . ∵DC ⊂平面DBC ,∴AB⊥DC.又BD⊥CD,AB∩DB=B,AB,DB⊂平面ABD,则DC⊥平面ABD.又AD⊂平面ABD,故可得AD⊥DC.8.已知四棱锥S-ABCD的底面ABCD为正方形,顶点S在底面ABCD上的射影为其中心O,高为3,设E,F分别为AB,SC的中点,且SE=2,M为CD边上的点.(1)求证:EF∥平面SAD;(2)试确定点M的位置,使得平面EFM⊥底面ABCD.(1)证明取SB的中点P,连接PF,PE.∵F为SC的中点,∴PF∥BC,又底面ABCD为正方形,∴BC∥AD,即PF∥AD,又PE∥SA,∴平面PFE∥平面SAD.∵EF⊂平面PFE,∴EF∥平面SAD.(2)解连接AC,AC的中点即为点O,连接SO,由题意知SO⊥平面ABCD,取OC的中点H,连接FH,则FH∥SO,∴FH⊥平面ABCD,∴平面EFH⊥平面ABCD,连接EH并延长,则EH与DC的交点即为M点.连接OE,由题意知SO=3,SE=2.∴OE =1,AB =2,AE =1,∴MC AE =HC HA =13, ∴MC =13AE =16CD ,即点M 在CD 边上靠近C 点距离为16的位置.考点三 平行和垂直的综合应用方法技巧 空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.9.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .证明 (1)在△PAD 中,∵E ,F 分别为AP ,AD 的中点, ∴EF ∥PD .又∵EF ⊄平面PCD ,PD ⊂平面PCD , ∴直线EF ∥平面PCD . (2)如图,连接BD .∵AB =AD ,∠BAD =60°, ∴△ADB 为正三角形. ∵F 是AD 的中点, ∴BF ⊥AD .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BF ⊂平面ABCD , ∴BF ⊥平面PAD . 又∵BF ⊂平面BEF , ∴平面BEF ⊥平面PAD .10.(2017·山东)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.11.(2017·汉中二模)如图,在棱长均为4的三棱柱ABC-A1B1C1中,D,D1分别是BC和B1C1的中点.(1)求证:A1D1∥平面AB1D;(2)若平面ABC⊥平面BCC1B1,∠B1BC=60°,求三棱锥B1-ABC的体积.(1)证明 连接DD 1,在三棱柱ABC -A 1B 1C 1中,∵D ,D 1分别是BC 和B 1C 1的中点, ∴B 1D 1∥BD ,且B 1D 1=BD , ∴四边形B 1BDD 1为平行四边形, ∴BB 1∥DD 1,且BB 1=DD 1. 又∵AA 1∥BB 1,AA 1=BB 1, ∴AA 1∥DD 1,AA 1=DD 1, ∴四边形AA 1D 1D 为平行四边形, ∴A 1D 1∥AD .又∵A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D , ∴A 1D 1∥平面AB 1D .(2)解 在△ABC 中,边长均为4,则AB =AC ,D 为BC 的中点, ∴AD ⊥BC .∵平面ABC ⊥平面B 1C 1CB ,交线为BC ,AD ⊂平面ABC , ∴AD ⊥平面B 1C 1CB ,即AD 是三棱锥A -B 1BC 的高. 在△ABC 中,由AB =AC =BC =4,得AD =23, 在△B 1BC 中,B 1B =BC =4,∠B 1BC =60°, ∴△B 1BC 的面积为4 3.∴三棱锥B 1-ABC 的体积即为三棱锥 A -B 1BC 的体积V =13×43×23=8.12.如图,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点.(1)求证:CD ⊥平面SAD ; (2)求证:PQ ∥平面SCD ;(3)若SA =SD ,M 为BC 的中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?并证明你的结论.(1)证明 ∵四边形ABCD 为正方形, ∴CD ⊥AD .又∵平面SAD ⊥平面ABCD ,且平面SAD ∩平面ABCD =AD ,CD ⊂平面ABCD , ∴CD ⊥平面SAD .(2)证明 取SC 的中点R ,连接QR ,DR .由题意知,PD ∥BC 且PD =12BC .在△SBC 中,Q 为SB 的中点,R 为SC 的中点, ∴QR ∥BC 且QR =12BC .∴QR ∥PD 且QR =PD , 则四边形PDRQ 为平行四边形, ∴PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD , ∴PQ ∥平面SCD .(3)解 存在点N 为SC 的中点,使得平面DMN ⊥平面ABCD .连接PC ,DM 交于点O ,连接PM ,SP ,NM ,ND ,NO , ∵PD ∥CM ,且PD =CM , ∴四边形PMCD 为平行四边形, ∴PO =CO .又∵N 为SC 的中点, ∴NO ∥SP . 易知SP ⊥AD .∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,且SP ⊥AD , ∴SP ⊥平面ABCD , ∴NO ⊥平面ABCD . 又∵NO ⊂平面DMN , ∴平面DMN ⊥平面ABCD .例 (12分)如图,四棱锥P -ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,点E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF . 审题路线图(1)E ,F 是中点―――→取PD 的中点M 构造▱AEFM ―→线线平行EF ∥AM ―→线面平行EF ∥平面PAD (2)面面垂直PAD ⊥ABCD ―――→PA ⊥AD 线面垂直PA ⊥底面ABCD ―→线线垂直PA ⊥DE―――――――――→Rt△ABH ≌Rt△DAE 线线垂直DE ⊥AH ―→线面垂直DE ⊥平面PAH ―→ 面面垂直平面PAH ⊥平面DEF 规范解答·评分标准证明 (1)取PD 的中点M ,连接FM ,AM .∵在△PCD 中,F ,M 分别为PC ,PD 的中点, ∴FM ∥CD 且FM =12CD .∵在正方形ABCD 中,AE ∥CD 且AE =12CD ,∴AE ∥FM 且AE =FM , 则四边形AEFM 为平行四边形,∴AM ∥EF .…………………………………………………………………………………4分 又∵EF ⊄平面PAD ,AM ⊂平面PAD ,∴EF ∥平面PAD .…………………………………………………………………………6分 (2)∵侧面PAD ⊥底面ABCD ,PA ⊥AD , 侧面PAD ∩底面ABCD =AD ,∴PA ⊥底面ABCD .∵DE ⊂底面ABCD ,∴DE ⊥PA . ∵E ,H 分别为正方形ABCD 边AB ,BC 的中点, ∴Rt△ABH ≌Rt△DAE ,则∠BAH =∠ADE ,∴∠BAH +∠AED =90°,则DE ⊥AH .…………………………………………………………………………………8分 ∵PA ⊂平面PAH ,AH ⊂平面PAH ,PA ∩AH =A ,∴DE ⊥平面PAH .…………………………………………………………………………10分 ∵DE ⊂平面DEF ,∴平面PAH ⊥平面DEF .…………………………………………………………………12分 构建答题模板[第一步] 找线线:通过三角形或四边形的中位线,平行四边形、等腰三角形的中线或线面、面面关系的性质寻找线线平行或线线垂直.[第二步] 找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系的性质找线面垂直或平行.[第三步] 找面面:通过面面关系的判定定理,寻找面面垂直或平行. [第四步] 写步骤:严格按照定理中的条件规范书写解题步骤.1.如图,在空间四面体ABCD 中,若E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点.(1)求证:四边形EFGH 是平行四边形; (2)求证:BC ∥平面EFGH .证明 (1)∵在空间四面体ABCD 中,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点, ∴EF 綊12AD ,GH 綊12AD ,∴EF 綊GH ,∴四边形EFGH 是平行四边形. (2)∵E ,H 分别是AB ,AC 的中点,∴EH ∥BC .∵EH ⊂平面EFGH ,BC ⊄平面EFGH , ∴BC ∥平面EFGH .2.(2017·北京)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 因为PA ⊥AB ,PA ⊥BC , 所以PA ⊥平面ABC .又因为BD ⊂平面ABC ,所以PA ⊥BD . (2)证明 因为AB =BC ,D 是AC 的中点, 所以BD ⊥AC . 由(1)知,PA ⊥BD , 所以BD ⊥平面PAC . 所以平面BDE ⊥平面PAC .(3)解 因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE . 因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.3.(2017·北京海淀区模拟)如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =2,E 是侧棱PA 上的动点.(1)求四棱锥P -ABCD 的体积;(2)如果E 是PA 的中点,求证:PC ∥平面BDE ;(3)是否不论点E 在侧棱PA 的任何位置,都有BD ⊥CE ?证明你的结论. (1)解 ∵PA ⊥底面ABCD , ∴PA 为此四棱锥底面上的高.∴V 四棱锥P -ABCD =13S 正方形ABCD ×PA =13×12×2=23.(2)证明 连接AC 交BD 于点O ,连接OE .∵四边形ABCD 是正方形, ∴AO =OC . 又∵AE =EP , ∴OE ∥PC .又∵PC ⊄平面BDE ,OE ⊂平面BDE , ∴PC ∥平面BDE .(3)解 不论点E 在侧棱PA 的任何位置,都有BD ⊥CE . 证明:∵四边形ABCD 是正方形, ∴BD ⊥AC .∵PA ⊥底面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD . 又∵PA ∩AC =A , ∴BD ⊥平面PAC . ∵CE ⊂平面PAC , ∴BD ⊥CE .4.如图,已知正方形ABCD 的边长为2,AC 与BD 交于点O ,将正方形ABCD 沿对角线BD 折起,得到三棱锥A -BCD .(1)求证:平面AOC ⊥平面BCD ; (2)若三棱锥A -BCD 的体积为63,且∠AOC 是钝角,求AC 的长.(1)证明 ∵四边形ABCD 是正方形, ∴BD ⊥AO ,BD ⊥CO .折起后仍有BD ⊥AO ,BD ⊥CO ,AO ∩CO =O , ∴BD ⊥平面AOC . ∵BD ⊂平面BCD , ∴平面AOC ⊥平面BCD . (2)解 由(1)知BD ⊥平面AOC , ∴V A -BCD =13S △AOC ·BD ,∴13×12OA ·OC ·sin∠AOC ·BD =63, 即13×12×2×2×sin∠AOC ×22=63, ∴sin∠AOC =32. 又∵∠AOC 是钝角, ∴∠AOC =120°.在△AOC 中,由余弦定理,得AC 2=OA 2+OC 2-2·OA ·OC ·cos∠AOC=(2)2+(2)2-2×2×2×cos 120°=6, ∴AC = 6.5.(2016·四川)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)求证:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD .所以PA ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD , 所以平面PAB ⊥平面PBD .。

高中数学如何求解垂直线和平行线问题

高中数学如何求解垂直线和平行线问题

高中数学如何求解垂直线和平行线问题在高中数学中,垂直线和平行线是常见的几何概念。

解决与垂直线和平行线相关的问题,需要掌握一些基本的几何知识和技巧。

本文将从垂直线和平行线的定义入手,通过具体的题目举例,分析解题思路和考点,并给出一些解题技巧,以帮助高中学生或他们的父母更好地理解和应用这些概念。

一、垂直线的定义和求解垂直线是指两条直线相交时,交角为90度的线。

求解垂直线问题,通常需要利用垂直线的性质和相关定理。

例题一:已知直线l1的斜率为k,求与l1垂直的直线l2的斜率。

解析:首先,我们知道垂直线的斜率乘积为-1。

设直线l2的斜率为m,则有k * m = -1。

解得m = -1/k,即l2的斜率为-1/k。

例题二:已知直线l1过点A(2, 3),且与直线l2垂直,直线l2过点B(4, 5),求直线l2的方程。

解析:由于l1与l2垂直,根据斜率的性质,我们可以得到l2的斜率为-1/k,其中k为l1的斜率。

根据点斜式,l2的方程为y - y1 = m(x - x1),代入点B的坐标和斜率-1/k,得到l2的方程为y - 5 = (-1/k)(x - 4)。

二、平行线的定义和求解平行线是指在同一个平面内,永远不会相交的直线。

求解平行线问题,需要利用平行线的性质和相关定理。

例题三:已知直线l1过点A(2, 3),且与直线l2平行,直线l2过点B(4, 5),求直线l2的方程。

解析:由于l1与l2平行,它们的斜率相等。

首先,我们可以通过点A和点B计算出l1的斜率k1和l2的斜率k2。

然后,根据点斜式,l2的方程为y - y1 = k2(x - x1),代入点B的坐标和斜率k2,即可得到l2的方程。

例题四:已知直线l1的方程为2x + 3y = 6,求与l1平行且过点(4, 5)的直线l2的方程。

解析:由于l1的斜率为-2/3,与l1平行的直线l2的斜率也为-2/3。

根据点斜式,l2的方程为y - y1 = k(x - x1),代入点(4, 5)的坐标和斜率-2/3,即可得到l2的方程。

高三数学一轮复习关于垂直与平行的问题

高三数学一轮复习关于垂直与平行的问题

2009届一轮复习关于垂直与平行的问题高考要求:垂直与平行是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解线面平行与垂直、面面平行与垂直的判定与性质,并能利用它们解决一些问题.重难点归纳:垂直和平行涉及题目的解决方法须熟练掌握两类相互转化关系:1.平行转化:线线平行线面平行面面平行.2.垂直转化:线线垂直线面垂直面面垂直.每一垂直或平行的判定就是从某一垂直或平行开始转向另一垂直或平行最终达到目的.例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.典型题例示范讲解:例1两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN∥平面BCE.命题意图:本题主要考查线面平行的判定,面面平行的判定与性质,以及一些平面几何的知识.知识依托:解决本题的关键在于找出面内的一条直线和该平面外的一条直线平行,即线(内)∥线(外) 线(外)∥面:或转化为证两个平面平行.错解分析:证法二中要证线面平行,通过转化P证两个平面平行,正确的找出MN 所在平面是一个关键.技巧与方法:证法一利用线面平行的判定来证明.证法二采用转化思想,通过证面面平行来证线面平行.证法一:作MP ⊥BC ,NQ ⊥BE ,P 、Q 为垂足,则MP ∥AB ,NQ ∥AB . ∴MP ∥NQ ,又AM =NF ,AC =BF , ∴MC =NB ,∠MCP =∠NBQ =45° ∴Rt △MCP ≌Rt △NBQ∴MP =NQ ,故四边形MPQN 为平行四边形 ∴MN ∥PQ∵PQ ⊂平面BCE ,MN 在平面BCE 外, ∴MN ∥平面BCE .证法二:如图过M 作MH ⊥AB 于H ,则MH ∥BC , ∴ABAH ACAM=连结NH ,由BF =AC ,FN =AM ,得ABAH BFFN =∴NH//AF//BE由MH//BC,.NH//BE 得:平面MNH//平面BCE∴MN ∥平面BCE .例2在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求C1证:截面MBC1⊥侧面BB1C1C;(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由.命题意图:本题主要考查线面垂直、面面垂直的判定与性质.知识依托:线面垂直、面面垂直的判定与性质.错解分析:(3)的结论在证必要性时,辅助线要重新作出.技巧与方法:本题属于知识组合题类,关键在于对题目中条件的思考与分析,掌握做此类题目的一般技巧与方法,以及如何巧妙作辅助线.(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC∵底面ABC⊥平面BB1C1C,∴AD⊥侧面BB1C1C∴AD⊥CC1.(2)证明:延长B1A1与BM交于N,连结C1N∵AM=MA1,∴NA1=A1B1∵A1B1=A1C1,∴A1C1=A1N=A1B1∴C1N⊥C1B1∵底面NB1C1⊥侧面BB1C1C,∴C1N⊥侧面BB1C1C∴截面C1NB⊥侧面BB1C1C∴截面MBC1⊥侧面BB1C1C.(3)解:结论是肯定的,充分性已由(2)证明,下面证必要性.过M作ME⊥BC1于E,∵截面MBC1⊥侧面BB1C1C∴ME⊥侧面BB1C1C,又∵AD⊥侧面BB1C1C.∴ME ∥AD ,∴M 、E 、D 、A 共面 ∵AM ∥侧面BB 1C 1C ,∴AM ∥DE ∵CC 1⊥AM ,∴DE ∥CC 1∵D 是BC 的中点,∴E 是BC 1的中点 ∴AM =DE =21211=CC AA 1,∴AM =MA 1.例3.已知斜三棱柱ABC —A 1B 1C 1中,A 1C 1=B 1C 1=2,D 、D 1分别是AB 、A 1B 1的中点,平面A 1ABB 1⊥平面A 1B 1C 1,异面直线AB 1和C 1B 互相垂直.(1)求证:AB 1⊥C 1D 1; (2)求证:AB 1⊥面A 1CD ;(3)若AB 1=3,求直线AC 与平面A 1CD 所成的角.(1)证明:∵A 1C 1=B 1C 1,D 1是A 1B 1的中点, ∴C 1D 1⊥A 1B 1于D 1,又∵平面A 1ABB 1⊥平面A 1B 1C 1, ∴C 1D 1⊥平面A 1B 1BA ,而AB 1⊂平面A 1ABB 1,∴AB 1⊥C 1D 1. (2)证明:连结D 1D , ∵D 是AB 中点,∴DD 1CC 1,∴C 1D 1∥CD ,由(1)得CD ⊥AB 1,又∵C 1D 1⊥平面A 1ABB 1,C 1B ⊥AB 1, 由三垂线定理得BD 1⊥AB 1,又∵A 1D ∥D 1B ,∴AB 1⊥A 1D 而CD ∩A 1D =D ,∴AB 1⊥平面A 1CD . (3)解:由(2)AB 1⊥平面A 1CD 于O ,1连结CO 1得∠ACO 为直线AC 与平面A 1CD 所成的角, ∵AB 1=3,AC =A 1C 1=2,∴AO =1,∴sin OCA =21=ACAO ,∴∠OCA =6π.学生巩固练习:1.在长方体ABCD —A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A 38 B 83 C 34 D 432.在直二面角α—l —β中,直线a ⊂α,直线b ⊂β,a 、b 与l 斜交,则( )A a 不和b 垂直,但可能a ∥bB a 可能和b 垂直,也可能a ∥bC a 不和b 垂直,a 也不和b 平行D a 不和b 平行,但可能a ⊥b3.设X 、Y 、Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的是_________(填序号).①X 、Y 、Z 是直线②X 、Y 是直线,Z 是平面③Z 是直线,X 、Y 是平面④X 、Y 、Z 是平面4.设a ,b 是异面直线,下列命题正确的是_________. ①过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交 ②过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直 ③过a 一定可以作一个平面与b 垂直 ④过a 一定可以作一个平面与b 平行5.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证:CD ⊥PD ; (2)求证:EF ∥平面PAD ;(3)当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD ? 6.如图,在正三棱锥A —BCD 中,∠BAC =30°,AB =a ,平行于AD 、BC 的截面EFGH 分别交AB 、BD 、DC 、CA 于点E 、F 、G 、H .(1)判定四边形EFGH 的形状,并说明理由. (2)设P 是棱AD 上的点,当AP 为何值时,平面PBC ⊥平面EFGH ,请给出证明.7.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相等,D 、E 分别是CC 1和AB 1的中点,点F 在BC 上且满足BF ∶FC =1∶3.(1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC ;(3)求二面角A 1—B 1D —C 1的大小. 8.如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面是菱形且∠C 1CB =∠C 1CD =∠BCD =60°,(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(3)当1CC CD 的值为多少时,可使A 1C ⊥面C 1BD ?1A1C1参考答案:1.解析:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1,故平面AA 1O 1⊥AB 1D 1,交线为AO 1,在面AA 1O 1内过A 1作A 1H ⊥AO 1于H ,则易知A 1H 长即是点A 1到平面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=2,AO 1=32,由A 1O 1·A 1A =h ·AO 1,可得A 1H =34.答案:C2.解析:如图,在l 上任取一点P ,过P 分别在α、β内作a ′∥a ,b ′∥b ,在a ′上任取一点A ,过A 作AC ⊥l ,垂足为C ,则AC ⊥β,过C 作CB ⊥b ′交b ′于B ,连AB ,由三垂线定理知AB ⊥b ′,∴△APB 为直角三角形,故∠APB 为锐角. 答案:C3.解析:①是假命题,直线X 、Y 、Z 位于正方体的三条共点棱时为反例,②③是真命题,④是假命题,平面X 、Y 、Z 位于正方体的三个共点侧面时为反例. 答案:②③4.④5.证明:(1)∵PA ⊥底面ABCD ,∴AD 是PD 在平面ABCD 内的射影,∵CD ⊂平面ABCD 且CD ⊥AD ,∴CD ⊥PD . (2)取CD 中点G ,连EG 、FG ,D1∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD∴平面EFG∥平面PAD,故EF∥平面PAD(3)解:当平面PCD与平面ABCD成45°角时,直线EF⊥面PCD证明:G为CD中点,则EG⊥CD,由(1)知FG⊥CD,故∠EGF为平面PCD与平面ABCD所成二面角的平面角.即∠EGF=45°,从而得∠ADP=45°,AD=AP由Rt△PAE≌Rt△CBE,得PE=CE又F是PC的中点,∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD.6.(1)证明:∵AD//面EFGH,面ACD∩面EFGH=HG,,AD⊂面ACD.∴AD//HG.同理EF∥FG,∴EFGH是平行四边形∵A—BCD是正三棱锥,∴A在底面上的射影O是△BCD的中心,∴DO⊥BC,∴AD⊥BC,∴HG⊥EH,四边形EFGH是矩形.(2)作CP⊥AD于P点,连结BP,∵AD⊥BC,∴AD⊥面BCP∵HG∥AD,∴HG⊥面BCP,HG⊂面EFGH.面BCP⊥面EFGH,3a.在Rt△APC中,∠CAP=30°,AC=a,∴AP=27. (1)证明:连结EM、MF,∵M、E分别是正三棱柱的棱AB和AB1的中点,∴BB1∥ME,又BB1⊄平面EFM,∴BB1∥平面EFM.(2)证明:取BC的中点N,连结AN由正三棱柱得:AN⊥BC,又BF ∶FC =1∶3,∴F 是BN 的中点,故MF ∥AN , ∴MF ⊥BC ,而BC ⊥BB 1,BB 1∥ME :∴ME ⊥BC ,由于MF ∩ME =M ,∴BC ⊥平面EFM , 又EFEFM ,∴BC ⊥EF .(3)解:取B 1C 1的中点O ,连结A 1O 知,A 1O ⊥面BCC 1B 1,由点O 作B 1D 的垂线OQ ,垂足为Q ,连结A 1Q ,由三垂线定理,A 1Q ⊥B 1D ,故∠A 1QD 为二面角A 1—B 1D —C 的平面角,易得∠A 1QO =arctan15.8. (1)证明:连结A 1C 1、AC ,AC 和BD 交于点O ,连结C 1O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CD又∵∠BCC 1=∠DCC 1,C 1C 是公共边,∴△C 1BC ≌△C 1DC ,∴C 1B =C 1D ∵DO =OB ,∴C 1O ⊥BD ,但AC ⊥BD ,AC ∩C 1O =O ∴BD ⊥平面AC 1,又C 1C ⊂平面AC 1,∴C 1C ⊥BD . (2)解:由(1)知AC ⊥BD ,C 1O ⊥BD , ∴∠C 1OC 是二面角α—BD —β的平面角. 在△C 1BC 中,BC =2,C 1C =23,∠BCC 1=60°,∴C 1B 2=22+(23)2-2×2×23×cos60°=413.∵∠OCB =30°,∴OB =21,BC =1,C 1O =23,即C 1O =C 1C .作C 1H ⊥OC ,垂足为H ,则H 是OC 中点且OH =23,∴cos C 1OC =33(3)解:由(1)知BD ⊥平面AC 1,∵A 1O ⊂平面AC 1,∴BD ⊥A 1C ,当1CC CD =1时,平行六面体的六个面是全等的菱形,同理可证BC 1⊥A 1C ,又∵BD ∩BC 1=B ,∴A 1C ⊥平面C 1BD .课前后备注:。

高考数学专题20 立体几何中的平行与垂直问题(解析版)

高考数学专题20 立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线例1、(2021南通、泰州、扬州一调〕如图,在四棱锥PABCD中,M,N分别为棱PA,PD的中点.侧面PAD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面PAB.【证明】(1)在四棱锥P-ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.(2分)又底面ABCD是矩形,所以BC∥AD.所以MN∥BC.(4分)又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面PAD.(8分)又MD⊂侧面PAD,所以AB⊥MD.(10分)因为DA=DP,又M为AP的中点,从而MD⊥PA. (12分)又PA,AB在平面PAB内,PA∩AB=A,所以MD⊥平面PAB.(14分)例2、(2021扬州期末〕如下图,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.标准解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E,F分别是侧面AA1B1B,BB1C1C对角线的交点,所以E,F分别是AB1,CB1的中点,所以EF∥AC.(4分)因为EF⊄平面ABC,AC⊂平面ABC,所以EF∥平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1⊥AB.因为平面AA1B1B⊥平面ABC,且平面AA1B1B∩平面ABC=AB,BB1⊂平面AA1B1B,所以BB1⊥平面ABC.(12分)因为AC⊂平面ABC,所以BB1⊥AC.(14分)例3、(2021南京、盐城二模〕如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E 分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.标准解答(1)连结A1B,在三棱柱ABCA1B1C1中,AA1∥BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在△BA1C中,D和E分别是BA1和BC的中点,所以DE∥A1C.又因为DE⊄平面ACC1A1,A1C⊂平面ACC1A1,所以DE∥平面ACC1A1.(6分)(2)由(1)知DE∥A1C,因为A1C⊥BC1,所以BC1⊥DE.(8分)又因为BC1⊥AB1,AB1∩DE=D,AB1,DE⊂平面ADE,所以BC1⊥平面ADE.又因为AE⊂平在ADE,所以AE⊥BC1.(10分)在△ABC中,AB=AC,E是BC的中点,所以AE⊥BC.(12分)因为AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1,BC⊂平面BCC1B1,所以AE⊥平面BCC1B1. (14分)例4、(2021苏锡常镇调研〕如图,三棱锥DABC中,AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE..标准解答(1)三棱锥DABC中,因为E为DB的中点,F为DC的中点,所以EF∥BC,(3分)因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(6分)(2)因为AC⊥BC,AC⊥DC,BC∩DC=C,BC,DC⊂平面BCD所以AC⊥平面BCD,(8分)因为BD⊂平面BCD,所以AC⊥BD,(10分)因为DC=BC,E为BD的中点,所以CE⊥BD,(12分)因为AC∩CE=C,AC,CE⊂平面ACE,所以BD⊥平面ACE.(14分)例5、(2021苏州三市、苏北四市二调〕如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1) DE∥平面ABB1A1;(2) BC1⊥平面A1B1C.标准解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.(3分)又AB⊂平面ABB1A1,DE⊄平面ABB1A1,所以DE∥平面ABB1A1.(6分)(2)因为三棱柱ABCA1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.(8分)又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1=B1,所以A1B1⊥平面BCC1B1.(10分)又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.(12分)又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C=B1,A1B1,B1C⊂平面A1B1C,所以BC1⊥平面A1B1C.(14分)例6、(2021苏北四市一模〕如图,在正三棱柱ABCA1B1C1中,D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:(1) 直线A1E∥平面ADC1;(2) 直线EF⊥平面ADC1.标准解答(1) 证法1 连结ED,因为D,E分别为BC,B1C1的中点,所以B1E∥BD且B1E=BD,所以四边形B1BDE是平行四边形,(2分)所以BB1∥DE且BB1=DE.又BB1∥AA1且BB1=AA1,所以AA1∥DE且AA1=DE,所以四边形AA1ED是平行四边形,所以A1E∥AD.(4分)又因为A1E⊄平面ADC1,AD⊂平面ADC1,所以直线A1E∥平面ADC1.(7分)证法2 连结ED ,连结A 1C ,EC 分别交AC 1,DC 1于点M ,N ,连结MN ,那么因为D ,E 分别为BC ,B 1C 1的中点,所以C 1E ∥CD 且C 1E =CD ,所以四边形C 1EDC 是平行四边形,所以N 是CE 的中点.(2分) 因为A 1ACC 1为平行四边形,所以M 是A 1C 的中点,(4分) 所以MN ∥A 1E .又因为A 1E ⊄平面ADC 1,MN ⊂平面ADC 1,所以直线A 1E ∥平面ADC 1.(7分) (2) 在正三棱柱ABCA 1B 1C 1中,BB 1⊥平面ABC . 又AD ⊂平面ABC ,所以AD ⊥BB 1.又△ABC 是正三角形,且D 为BC 的中点,所以AD ⊥BC .(9分) 又BB 1,BC ⊂平面B 1BCC 1,BB 1∩BC =B , 所以AD ⊥平面B 1BCC 1,又EF ⊂平面B 1BCC 1,所以AD ⊥EF .(11分)又EF ⊥C 1D ,C 1D ,AD ⊂平面ADC 1,C 1D ∩AD =D , 所以直线EF ⊥平面ADC 1.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

平行垂直练习题及答案

平行垂直练习题及答案

平行垂直练习题及答案在数学学科中,平行和垂直是基本的几何概念。

理解和掌握平行和垂直的性质对于解决几何问题至关重要,因此平行和垂直的练习题是学习过程中必不可少的。

本文将提供一些平行和垂直的练习题,并附上详细的解答。

练习题一:判断平行关系1. 已知线段AB和线段CD的中点分别为E和F,若AE=CF且BE=DF,试判断AB和CD的关系。

2. ∠ABC = ∠PQR,∠BCD = ∠QRS,若线段AB和线段PQ平行,试判断线段CD和线段RS的关系。

3. 已知线段AB平行于线段CD,∠EAC = 70°,若∠ACD = x°,试判断∠ECA和∠ADC的大小关系。

答案一:1. 根据条件可知AE=CF,BE=DF,又根据中点划分线段的性质,且E和F分别是线段AB和线段CD的中点,所以EF=EF。

根据SAS准则可得△AEB≌△CFD,根据三角形的等边性质可知线段AB和线段CD平行。

2. 根据条件可知∠ABC = ∠PQR,∠BCD = ∠QRS,又根据等角定理可得△ABC ≌△PQR。

根据三角形的等边性质可知线段AB和线段PQ平行,所以线段CD和线段RS平行。

3. 已知线段AB平行于线段CD,所以利用平行线性质可得∠ECA = ∠ACD。

又根据答案一的证明可知线段AB和线段CD平行,所以△EAC ≌△ACD。

根据三角形的等边性质可知∠ECA = ∠ADC。

练习题二:判断垂直关系1. 线段AB与线段CD相交于点O,若∠AOB = 70°,∠COB = 110°,试判断线段AB和线段CD的关系。

2. 直线l与平面P相交于点A,若直线l垂直于线段AB,试判断直线l与平面P的关系。

3. 已知直线l垂直于平面P,线段AB在平面P内且与直线l相交于点C,试判断线段AB与平面P的关系。

答案二:1. ∠AOB = 70°,∠COB = 110°,根据角和定理可知∠AOB +∠COB = 180°。

版高考数学一轮总复习解析几何中的平行与垂直问题解析

版高考数学一轮总复习解析几何中的平行与垂直问题解析

版高考数学一轮总复习解析几何中的平行与垂直问题解析在版高考数学一轮总复习解析几何中,平行与垂直问题是考试中常见的题型之一。

在解析几何中,平行与垂直是两种特殊的关系,对于学生来说,掌握这些关系的判定方法和性质是非常重要的。

本文将重点介绍解析几何中的平行与垂直问题的解析方法和应用。

一、平行的判定方法在解析几何中,平行是指两条直线或两个平面永不相交。

我们可以通过判定斜率和方向向量来确定两条直线是否平行。

具体而言,如果两条直线的斜率相等且方向向量不相等,则可以判定这两条直线是平行的。

以直线的方程为例,设直线L1的方程为y = k1x + b1,直线L2的方程为y = k2x + b2,其中k1和k2分别为两条直线的斜率,b1和b2分别为两条直线的截距。

如果k1 = k2且(k1 ≠ 0或k2 ≠ 0),则可以判定直线L1与直线L2是平行的。

同样的方法也适用于判断平面是否平行。

假设平面P1的方程为Ax + By + Cz + D1 = 0,平面P2的方程为Ax + By + Cz + D2 = 0,如果A1/A2 = B1/B2 = C1/C2且(A1/A2 ≠ 0或B1/B2 ≠ 0或C1/C2 ≠ 0),则可以判定平面P1与平面P2是平行的。

除此之外,有时候我们还可以利用向量的性质来判断平行关系。

对于直线而言,如果两条直线的方向向量共线,则可以判断这两条直线是平行的。

对于平面而言,如果两个平面的法向量平行,则可以判断这两个平面是平行的。

二、垂直的判定方法在解析几何中,垂直是指两条直线或两个平面相互成直角的关系。

垂直关系的判定方法与平行关系类似,同样可以通过斜率和方向向量来确定。

对于直线而言,如果两条直线的斜率之积为-1,则可以判断这两条直线是垂直的。

设直线L1的斜率为k1,直线L2的斜率为k2,如果k1 * k2 = -1,则可以判断直线L1与直线L2是垂直的。

同样的方法也适用于判断平面是否垂直。

假设平面P1的法向量为(n1, m1, p1),平面P2的法向量为(n2, m2, p2),如果n1*n2 + m1*m2 + p1*p2 = 0,则可以判断平面P1与平面P2是垂直的。

高三数学一轮复习关于垂直与平行的问题

高三数学一轮复习关于垂直与平行的问题

2009届一轮复习关于垂直与平行的问题高考要求:垂直与平行是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解线面平行与垂直、面面平行与垂直的判定与性质,并能利用它们解决一些问题.重难点归纳:垂直和平行涉及题目的解决方法须熟练掌握两类相互转化关系:1.平行转化:线线平行线面平行面面平行.2.垂直转化:线线垂直线面垂直面面垂直.每一垂直或平行的判定就是从某一垂直或平行开始转向另一垂直或平行最终达到目的.例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.典型题例示范讲解:例1两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN∥平面BCE.命题意图:本题主要考查线面平行的判定,面面平行的判定与性质,以及一些平面几何的知识.知识依托:解决本题的关键在于找出面内的一条直线和该平面外的一条直线平行,即线(内)∥线(外) 线(外)∥面:或转化为证两个平面平行.错解分析:证法二中要证线面平行,通过转化P证两个平面平行,正确的找出MN 所在平面是一个关键.技巧与方法:证法一利用线面平行的判定来证明.证法二采用转化思想,通过证面面平行来证线面平行.证法一:作MP ⊥BC ,NQ ⊥BE ,P 、Q 为垂足,则MP ∥AB ,NQ ∥AB . ∴MP ∥NQ ,又AM =NF ,AC =BF , ∴MC =NB ,∠MCP =∠NBQ =45° ∴Rt △MCP ≌Rt △NBQ∴MP =NQ ,故四边形MPQN 为平行四边形 ∴MN ∥PQ∵PQ ⊂平面BCE ,MN 在平面BCE 外, ∴MN ∥平面BCE .证法二:如图过M 作MH ⊥AB 于H ,则MH ∥BC , ∴ABAH ACAM=连结NH ,由BF =AC ,FN =AM ,得ABAH BFFN =∴NH//AF//BE由MH//BC,.NH//BE 得:平面MNH//平面BCE∴MN ∥平面BCE .例2在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求C1证:截面MBC1⊥侧面BB1C1C;(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由.命题意图:本题主要考查线面垂直、面面垂直的判定与性质.知识依托:线面垂直、面面垂直的判定与性质.错解分析:(3)的结论在证必要性时,辅助线要重新作出.技巧与方法:本题属于知识组合题类,关键在于对题目中条件的思考与分析,掌握做此类题目的一般技巧与方法,以及如何巧妙作辅助线.(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC∵底面ABC⊥平面BB1C1C,∴AD⊥侧面BB1C1C∴AD⊥CC1.(2)证明:延长B1A1与BM交于N,连结C1N∵AM=MA1,∴NA1=A1B1∵A1B1=A1C1,∴A1C1=A1N=A1B1∴C1N⊥C1B1∵底面NB1C1⊥侧面BB1C1C,∴C1N⊥侧面BB1C1C∴截面C1NB⊥侧面BB1C1C∴截面MBC1⊥侧面BB1C1C.(3)解:结论是肯定的,充分性已由(2)证明,下面证必要性.过M作ME⊥BC1于E,∵截面MBC1⊥侧面BB1C1C∴ME⊥侧面BB1C1C,又∵AD⊥侧面BB1C1C.∴ME ∥AD ,∴M 、E 、D 、A 共面 ∵AM ∥侧面BB 1C 1C ,∴AM ∥DE ∵CC 1⊥AM ,∴DE ∥CC 1∵D 是BC 的中点,∴E 是BC 1的中点 ∴AM =DE =21211=CC AA 1,∴AM =MA 1.例3.已知斜三棱柱ABC —A 1B 1C 1中,A 1C 1=B 1C 1=2,D 、D 1分别是AB 、A 1B 1的中点,平面A 1ABB 1⊥平面A 1B 1C 1,异面直线AB 1和C 1B 互相垂直.(1)求证:AB 1⊥C 1D 1; (2)求证:AB 1⊥面A 1CD ;(3)若AB 1=3,求直线AC 与平面A 1CD 所成的角.(1)证明:∵A 1C 1=B 1C 1,D 1是A 1B 1的中点, ∴C 1D 1⊥A 1B 1于D 1,又∵平面A 1ABB 1⊥平面A 1B 1C 1, ∴C 1D 1⊥平面A 1B 1BA ,而AB 1⊂平面A 1ABB 1,∴AB 1⊥C 1D 1. (2)证明:连结D 1D , ∵D 是AB 中点,∴DD 1CC 1,∴C 1D 1∥CD ,由(1)得CD ⊥AB 1,又∵C 1D 1⊥平面A 1ABB 1,C 1B ⊥AB 1, 由三垂线定理得BD 1⊥AB 1,又∵A 1D ∥D 1B ,∴AB 1⊥A 1D 而CD ∩A 1D =D ,∴AB 1⊥平面A 1CD . (3)解:由(2)AB 1⊥平面A 1CD 于O ,1连结CO 1得∠ACO 为直线AC 与平面A 1CD 所成的角, ∵AB 1=3,AC =A 1C 1=2,∴AO =1,∴sin OCA =21=ACAO ,∴∠OCA =6π.学生巩固练习:1.在长方体ABCD —A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A 38 B 83 C 34 D 432.在直二面角α—l —β中,直线a ⊂α,直线b ⊂β,a 、b 与l 斜交,则( )A a 不和b 垂直,但可能a ∥bB a 可能和b 垂直,也可能a ∥bC a 不和b 垂直,a 也不和b 平行D a 不和b 平行,但可能a ⊥b3.设X 、Y 、Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的是_________(填序号).①X 、Y 、Z 是直线②X 、Y 是直线,Z 是平面③Z 是直线,X 、Y 是平面④X 、Y 、Z 是平面4.设a ,b 是异面直线,下列命题正确的是_________. ①过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交 ②过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直 ③过a 一定可以作一个平面与b 垂直 ④过a 一定可以作一个平面与b 平行5.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证:CD ⊥PD ; (2)求证:EF ∥平面PAD ;(3)当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD ? 6.如图,在正三棱锥A —BCD 中,∠BAC =30°,AB =a ,平行于AD 、BC 的截面EFGH 分别交AB 、BD 、DC 、CA 于点E 、F 、G 、H .(1)判定四边形EFGH 的形状,并说明理由. (2)设P 是棱AD 上的点,当AP 为何值时,平面PBC ⊥平面EFGH ,请给出证明.7.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相等,D 、E 分别是CC 1和AB 1的中点,点F 在BC 上且满足BF ∶FC =1∶3.(1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC ;(3)求二面角A 1—B 1D —C 1的大小. 8.如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面是菱形且∠C 1CB =∠C 1CD =∠BCD =60°,(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(3)当1CC CD 的值为多少时,可使A 1C ⊥面C 1BD ?1A1C1参考答案:1.解析:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1,故平面AA 1O 1⊥AB 1D 1,交线为AO 1,在面AA 1O 1内过A 1作A 1H ⊥AO 1于H ,则易知A 1H 长即是点A 1到平面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=2,AO 1=32,由A 1O 1·A 1A =h ·AO 1,可得A 1H =34.答案:C2.解析:如图,在l 上任取一点P ,过P 分别在α、β内作a ′∥a ,b ′∥b ,在a ′上任取一点A ,过A 作AC ⊥l ,垂足为C ,则AC ⊥β,过C 作CB ⊥b ′交b ′于B ,连AB ,由三垂线定理知AB ⊥b ′,∴△APB 为直角三角形,故∠APB 为锐角. 答案:C3.解析:①是假命题,直线X 、Y 、Z 位于正方体的三条共点棱时为反例,②③是真命题,④是假命题,平面X 、Y 、Z 位于正方体的三个共点侧面时为反例. 答案:②③4.④5.证明:(1)∵PA ⊥底面ABCD ,∴AD 是PD 在平面ABCD 内的射影,∵CD ⊂平面ABCD 且CD ⊥AD ,∴CD ⊥PD . (2)取CD 中点G ,连EG 、FG ,D1∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD∴平面EFG∥平面PAD,故EF∥平面PAD(3)解:当平面PCD与平面ABCD成45°角时,直线EF⊥面PCD证明:G为CD中点,则EG⊥CD,由(1)知FG⊥CD,故∠EGF为平面PCD与平面ABCD所成二面角的平面角.即∠EGF=45°,从而得∠ADP=45°,AD=AP由Rt△PAE≌Rt△CBE,得PE=CE又F是PC的中点,∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD.6.(1)证明:∵AD//面EFGH,面ACD∩面EFGH=HG,,AD⊂面ACD.∴AD//HG.同理EF∥FG,∴EFGH是平行四边形∵A—BCD是正三棱锥,∴A在底面上的射影O是△BCD的中心,∴DO⊥BC,∴AD⊥BC,∴HG⊥EH,四边形EFGH是矩形.(2)作CP⊥AD于P点,连结BP,∵AD⊥BC,∴AD⊥面BCP∵HG∥AD,∴HG⊥面BCP,HG⊂面EFGH.面BCP⊥面EFGH,3a.在Rt△APC中,∠CAP=30°,AC=a,∴AP=27. (1)证明:连结EM、MF,∵M、E分别是正三棱柱的棱AB和AB1的中点,∴BB1∥ME,又BB1⊄平面EFM,∴BB1∥平面EFM.(2)证明:取BC的中点N,连结AN由正三棱柱得:AN⊥BC,又BF ∶FC =1∶3,∴F 是BN 的中点,故MF ∥AN , ∴MF ⊥BC ,而BC ⊥BB 1,BB 1∥ME :∴ME ⊥BC ,由于MF ∩ME =M ,∴BC ⊥平面EFM , 又EFEFM ,∴BC ⊥EF .(3)解:取B 1C 1的中点O ,连结A 1O 知,A 1O ⊥面BCC 1B 1,由点O 作B 1D 的垂线OQ ,垂足为Q ,连结A 1Q ,由三垂线定理,A 1Q ⊥B 1D ,故∠A 1QD 为二面角A 1—B 1D —C 的平面角,易得∠A 1QO =arctan15.8. (1)证明:连结A 1C 1、AC ,AC 和BD 交于点O ,连结C 1O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CD又∵∠BCC 1=∠DCC 1,C 1C 是公共边,∴△C 1BC ≌△C 1DC ,∴C 1B =C 1D ∵DO =OB ,∴C 1O ⊥BD ,但AC ⊥BD ,AC ∩C 1O =O ∴BD ⊥平面AC 1,又C 1C ⊂平面AC 1,∴C 1C ⊥BD . (2)解:由(1)知AC ⊥BD ,C 1O ⊥BD , ∴∠C 1OC 是二面角α—BD —β的平面角. 在△C 1BC 中,BC =2,C 1C =23,∠BCC 1=60°,∴C 1B 2=22+(23)2-2×2×23×cos60°=413.∵∠OCB =30°,∴OB =21,BC =1,C 1O =23,即C 1O =C 1C .作C 1H ⊥OC ,垂足为H ,则H 是OC 中点且OH =23,∴cos C 1OC =33(3)解:由(1)知BD ⊥平面AC 1,∵A 1O ⊂平面AC 1,∴BD ⊥A 1C ,当1CC CD =1时,平行六面体的六个面是全等的菱形,同理可证BC 1⊥A 1C ,又∵BD ∩BC 1=B ,∴A 1C ⊥平面C 1BD .课前后备注:。

高中数学向量平行与垂直性质应用题详解

高中数学向量平行与垂直性质应用题详解

高中数学向量平行与垂直性质应用题详解在高中数学中,向量平行与垂直性质是一个重要的概念。

它不仅在几何中有着广泛的应用,也在解决实际问题中起到了关键的作用。

本文将通过具体的题目来详细解析向量平行与垂直性质的应用,帮助高中学生更好地理解和应用这一知识点。

题目一:已知向量a=2i+3j,向量b=4i-6j,求向量a与向量b的夹角。

解析:要求两个向量的夹角,可以利用向量的点乘公式来解决。

向量a与向量b的点乘公式为:a·b=|a||b|cosθ,其中θ为夹角。

首先计算|a|和|b|,分别为√(2^2+3^2)=√13和√(4^2+(-6)^2)=2√13。

然后计算a·b=2*4+3*(-6)=-12。

代入公式得到-12=√13*2√13*cosθ,化简得cosθ=-12/(2√13*√13)=-6/13。

因此,夹角θ的cos值为-6/13,可以通过反余弦函数求得夹角θ的大小。

即θ=arccos(-6/13)≈2.56弧度。

题目二:已知向量a=3i+4j,向量b=4i-3j,求向量a与向量b的夹角。

解析:同样利用向量的点乘公式来求解。

首先计算|a|和|b|,分别为√(3^2+4^2)=5和√(4^2+(-3)^2)=5。

然后计算a·b=3*4+4*(-3)=0。

代入公式得到0=5*5*cosθ,化简得cosθ=0/25=0。

因此,夹角θ的cos值为0,即θ=arccos(0)=π/2弧度。

从以上两个例题可以看出,当两个向量的点乘为0时,它们的夹角为90度,即两个向量垂直。

题目三:已知平面上有三个点A(1,2)、B(3,4)和C(5,6),求向量AB和向量AC的夹角。

解析:首先计算向量AB和向量AC的坐标表示。

向量AB=(3-1)i+(4-2)j=2i+2j,向量AC=(5-1)i+(6-2)j=4i+4j。

然后利用向量的点乘公式计算夹角。

AB·AC=(2i+2j)·(4i+4j)=2*4+2*4=16。

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题【根底学问点】一、平行问题1.直线及平面平行的断定及性质定义断定定理性质性质定理图形条件a∥α结论a∥αb∥αa∩α=a∥b2. 面面平行的断定及性质断定性质定义定理图形条件α∥β,a⊂β结论α∥βα∥βa∥b a∥α平行问题的转化关系:二、垂直问题一、直线及平面垂直1.直线与平面垂直的定义:直线l及平面α内的都垂直,就说直线l及平面α相互垂直.2.直线及平面垂直的断定定理及推论文字语言图形语言符号语言断定定理一条直线及一个平面内的两条相交直线都垂直,那么该直线及此平面垂直推论假如在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3.直线及平面垂直的性质定理文字语言图形语言符号语言性质定理垂直于同一个平面的两条直线平行4.直线与平面垂直的常用性质①直线垂直于平面,那么垂直于平面内随意直线.②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面及平面垂直1.平面及平面垂直的断定定理【典例探究】 类型一、平行及垂直例1、如图,三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D为PB 中点,且△PMB 为正三角形。

〔Ⅰ〕求证:DM ∥平面APC ;〔Ⅱ〕求证:平面ABC ⊥平面APC ;〔Ⅲ〕假设BC 4=,20AB =,求三棱锥D BCM -的体积。

F D C1B1A1C例2. 如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =,22AB =M ,N 分别是棱1CC ,AB 中点.〔Ⅰ〕求证:CN ⊥平面11ABB A ; 〔Ⅱ〕求证://CN 平面1AMB ;〔Ⅲ〕求三棱锥1B AMN -的体积.【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。

高中数学知识点总结及公式大全立体几何中的平行与垂直问题

高中数学知识点总结及公式大全立体几何中的平行与垂直问题

高中数学知识点总结及公式大全立体几何中的平行与垂直问题高中数学知识点总结及公式大全:立体几何中的平行与垂直问题在高中数学中,几何是一个重要的分支,而立体几何更是其中的重要内容之一。

在立体几何中,平行和垂直是我们经常遇到的问题。

本文将对高中数学中的立体几何知识点进行总结,并提供一些常用的公式。

一、平行与垂直的概念在几何中,平行和垂直是两个基本的关系。

平行指的是两条直线永远不会相交的情况,可以想象成两条铁轨永远平行。

垂直则指的是两条直线相互成直角,可以想象成两根彼此垂直的木棍。

二、平行与垂直的判定方法1. 平行关系的判定方法:(1) 同位角相等定理:如果两条直线被一组相交线段所切割,且这些相交线段的对应角相等,则这两条直线是平行的。

(2) 平行线的性质定理:如果一条直线上的两个点分别与另一条直线上的两个点相连,且相连的线段互相平行,则这两条直线是平行的。

(3) 平行线的判定定理:如果两条直线的斜率相等且不相交,则这两条直线是平行的。

2. 垂直关系的判定方法:(1) 两条直线相交且相交角为90度,则这两条直线是垂直的。

(2) 垂直线的性质定理:如果一条直线与另一条直线相互垂直,且这两条直线各自还与第三条直线相交,则第三条直线与这两条直线也是垂直的。

(3) 垂直线的判定定理:如果两条直线的斜率互为负倒数,则这两条直线是垂直的。

三、常用公式在立体几何中,我们经常使用一些公式来求解问题。

下面是一些常用的公式:1. 立方体的表面积公式:立方体的表面积等于6倍的边长平方。

2. 立方体的体积公式:立方体的体积等于边长的立方。

3. 正方体的表面积公式:正方体的表面积等于6倍的边长平方。

4. 正方体的体积公式:正方体的体积等于边长的立方。

5. 圆柱体的表面积公式:圆柱体的表面积等于2πr² + 2πrh,其中r为底面半径,h为高。

6. 圆柱体的体积公式:圆柱体的体积等于πr²h,其中r为底面半径,h为高。

平行与垂直的探索性问题 高中数学课件 专题提升课一

平行与垂直的探索性问题 高中数学课件  专题提升课一
BC=2 3.折叠后,因为 DB⊥平面 PMN,
所以 DB⊥MN,△PDB 为等边三角形,
PD=PB=DB=2,
又因为点 M 为 BD 的中点,所以 DM=BM=1.
在直角三角形 BMN 中,∠DBC=30°,
所以 BN=

=
cos30 °
2 3
3
,所以 λ=


1
= .
3
(2)不存在.理由如下:
不存在.
【即学即练】
如图,已知在四棱锥 P-ABCD 中,PA⊥平面 ABCD,底面 ABCD 是菱形,且 PA=AB=2,
∠ABC=60°,BC,PD 的中点分别为 E,F.在线段 AB 上是否存在一点 G,使得 AF∥平
面 PCG?若存在,指出 G 在 AB 上的位置并给出证明;若不存在,请说明理由.
所以 =+=( 3λ,-λ,-2).
设平面 PCG 的法向量为 n=(x,y,z),
·
= 0,


·
ห้องสมุดไป่ตู้ 0,
令 y=1,得 n=
3--2 = 0,
3 + -2 = 0,
+1
3(-1)
,1,

-1
.
1
因为 AF∥平面 PCG,所以 ·
n=0,解得 λ= ,
(1)求证:B1E⊥AD1;
(2)在棱 AA1 上是否存在一点 P,使得 DP∥平面 B1AE?若存在,求 AP 的长;若不存在,
说明理由.
【解析】如图所示,以 A 为坐标原点,AB,AD,AA1 所在直线分别为 x 轴,y 轴,z 轴建立
空间直角坐标系.

设 AB=a,则 A(0,0,0),A1(0,0,1),D(0,1,0),D1(0,1,1),E ,1,0 ,B1(a,0,1),

立体几何平行垂直问题专题复习

立体几何平行垂直问题专题复习

立体几何平行垂直问题专题复习一、平面平行问题1. 平行线基础定义平行线是在同一平面内不相交的两条直线。

两条平行线之间的距离是它们之间所有直线段中最短的。

平行线符号为“||”。

2. 垂直平分线垂直平分线是将一条线段分成两个相等的部分,并且垂直于线段的线。

3. 平行四边形平行四边形是指两组相互平行的边构成的四边形,它的对边长度相等,对边平等,对角线互相平分。

4. 平行线判定定理对于两条直线l, m以及平面内的任意一条直线n,若n与l平行,则n与m 平行;若n与l垂直,则n与m垂直。

5. 平行线和对角线的关系平行线所构成的平行四边形的对角线互相平分。

二、垂直问题1. 垂线基础定义垂线是指与一条直线或平面呈直角的线段。

2. 垂线距离垂线距离是垂线所代表的点到直线的最短距离。

3. 垂心垂心是指在三角形的一个顶点下,作该点到对边的垂线并与对边相交的点。

4. 直角三角形直角三角形是指三角形中有一角为90度的。

5. 正方体中垂直面的距离正方体中两个垂直面的距离为边长。

三、立体几何应用问题1. 立方体立方体的六个面都是正方形。

每个面都有相同的面积,边长相等。

2. 长方体长方体是指六个面中有一个面是长方形,其余五个面都是正方形。

3. 圆柱体圆柱体是指由一个矩形和两个相等的圆所组成的立体,其中矩形是圆柱体的腰,两个圆为圆柱体的顶底面。

4. 圆锥体圆锥体是由一个圆和一个尖端共同组成的立体,圆锥体的侧面是一条射线和圆的切线。

圆锥体中心角为360度。

5. 球体球体是由一个半径相等的圆旋转所得到的立体,其表面上所有点到球心的距离都是相等的。

以上就是关于立体几何中的平行垂直问题专题复习的内容,包括了平面平行问题、垂直问题、立体几何应用问题,希望对大家在学习立体几何时有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.已知两条直线m,n,两个平面 ,
,给出下列四个命题:其中正确命题的序号是
① m ∥n,m⊥ n
② 平行,m , n m平行n
③ m平行n, m平行 n平行
④ 平行,m平行n,m n
;单创:https:///article/20190920/925754.shtml ;
章第④段的“对我来说,去圆明园是一种凭吊,一种拜谒,甚至是一种提醒。”简要说说作者要“凭吊、拜谒”什么? “提醒”什么呢? 5、简要分析第⑤段中划线句在文中有什么作用? ? 6、请你为圆明园遗址准备一条宣传语,要能揭示遗址给人的警示。(不超过20字,至少用一种
修辞手法) ? 参考答案: 1、A 理由:用拟人手法,容易引起读者的注意;更能表达作者对成这种现象的悲痛心情(主题)。 2、相同点:都有对祖国的深切的爱。 不同点:艾青是目睹山河破碎、人民涂炭的现实,心中的痛苦。 本文作者是因为部分国人不知铭记历史而十分伤心、
在三角形PDC中,PD DC, E是PC的中点, 所以DE垂直PC,因此有DE垂直平面PCB, 因为DE在平面DEB内,所以平面BDE垂直 平面PBC
变式:将三角形PDC改为正三角形,但仍与 底面垂直,且底面为2的菱形,BAD 60 E是CD中点,M , N是PB, PA中点, (1)EN平行平面PDC; (2)BC 平面PEB; (3)平面PBC 平面MNAD
女孩子就这样一边流泪一边嚼着被雨水浸泡过的馒头。 ⑤女孩子还没有吃完一个馒头,同学们就回来了。她没有料到她们会回来得这么快,来不及藏起湿透了的馒头,只好匆忙地往还没有干的背包里塞。班长突然说:“哎呀,我还没有吃饱呢,能给我吃一个馒头吗?”女孩子不好意思
摇头也没有点头,班长已经打开她的背包啃起馒头来。其他几个同学也纷纷走过来拿起馒头一边嚼一边说,其实还是学校食堂做的馒头好吃。转眼,女孩带来的馒头都被同学们吃完了,女孩子看着空了的背包只有无声地落泪。 ⑥第二天,到了吃早饭的时候,女孩子偷偷一个人走了出去。
亲吻示爱干嘛到这大水法遗址面前呢?在这样残破颓败的乱石间,怎么笑得出来?要唱歌蛮好去那桃红柳绿的绮春园、长春园或是泛舟福海啊!看着这群在破碎的石块遗址前欢笑的老老少少,仰首凝视那高高而破残的罗马柱,眼眶和心口就都隐隐地疼起来。历史呢?耻辱呢?血性呢?! ⑨前些
年,曾经围绕这圆明园需不需要重建有过争论,结果是理智的人们理解了废墟的价值,尊重了历史留给我们残酷的真实,这片废墟留下了。当时,我是为留下拍案叫好。可今日见到这么多在废墟上在遗址前欢笑嘻闹的人群,我有点怀疑留下的必要了,在经过那么多岁月之后,眼前这般断
难过。 3、“扑”表现风来得猛,“砸”表现雨下得大,这样写更能突出作者对人们不理解废墟价值的一种愤怒与悲哀。(言之有理,可酌情给分) 4、凭吊、拜谒无数在此长眠的死难者(中华民族屈辱的历史) 提醒自己不忘历史的耻辱,不能让悲剧重演。(意同即可) 5、一方面突
出圆明园今非昔比,另一方面突出对遗址前欢笑的老老少少的痛心和强烈的不满。 6、符合要求即可,例如:知耻而后勇,知耻而后进。 千岛湖春游 ①高一那年,我们学校组织去千岛湖春游。 ②新来的李老师一宣布这个令人兴奋的消息,教室里马上被大家的喧闹声炸响。同学们纷纷
问起一些关于春游要注意的事项和所交的费用等问题。最后,李老师问了一句:“大家还有什么问题吗?”很长时间,没有人举手也没有人站起来,谁也没有注意到角落里来自山区的那个女孩子,(甲)她犹豫着举起手,手指颤抖着却没有张开来,嘴张了几张却没有声音。但她还是站了
起来,用极低的声音问:“老师,我可以带馒头吗?”一阵其实并没有恶意的笑声刺激着女孩,她的脸通红通红的,低着头默默地坐下,眼泪沿着脸颊流了下来。李老师走过去,抚摸着她的头说:“你放心,可以带馒头的。” ③出发的前一天,女孩子拿着饭票在学校食堂买了六个馒头,
她的自尊心 4、先是自卑怯懦后来变得自信开朗 同学们真诚的帮助改变了她的性格 5、(写出感动的地方1分,写出理由2分) 磨难,人生的一份财富 ? 追求生活的圆满是人生的良好愿望,然而真正实现这个愿望,又何其难呀!漫漫人生,失缺和倾斜几乎是永远的,于是出现了不满足,
出现了苦痛。在形式上,你有满意的爱人和美满的家庭,但事业不一定顺利;你事业上大有可为,却不免失去家庭的温馨;你有平稳的家庭生活,不一定懂得爱;你有爱,但并非拥有幸福。人常常遭遇到意想不到的磨难。在内涵上,你当怎样把握生活的哲学命题?你当怎样直面严肃的人
(2)求证:平面 BDE 平面PBC
P Ej C
D
B A
(1)证明:连结A C, 设A C与B D交点为O,连结 OE,在三角形PCA中,OE是三角形PCA的 中位线,所以PA平行OE, PA不在平面EDB 内,所以PA平行平面EDB.
(2)证明:因为PD垂直底面ABCD,所以 CB垂直PD,又BC垂直DC,所以BC垂直 平面PDC,所以DE垂直BC.
正确的有
2.下面四个正方体图形中,A、B为正方体的两个顶点, M、N、P分别为其所在棱的中点, 能得出AB∥面MNP的图形序号是_______.(写出所有符合要求的 图形序号)
3.在正四面体P-ABC中,点D,E,F分别是AB,BC,CA的中点, 则下面结论中正确的有
①BC//平面PDF; ②DF⊥平面PAE; ③平面PDF⊥平面ABC; ④平面PAE⊥平面ABC
然后低着头好像作贼似的跑回宿舍。宿舍里几个女同学正在收拾春游要带的零食,一边唧唧喳喳地议论着什么。女孩子直奔自己的床,迅速地用一个塑料袋把馒头装了进去,女同学的议论声似乎小了一些,女孩子的a眼圈红了。? ④出发的那天下起了雨,女孩子没有带伞,只好和别的同
学挤在一把伞下,为了不因为自己而使同学淋湿,女孩子不住地把伞往同学那边移,等到达目的地千岛湖时,女孩子身上的背包也已湿漉漉的了。大家纷纷冲向饭馆吃饭去了,女孩子一个人呆在招待所里,从背包里取出馒头。可是,由于塑料袋破了一个洞,湿透背包的雨水将馒头泡透了,
我肯定要去。 ③是阴凄凄的天,是冷嗖嗖的细雨,和着秋风如刀子一般刮在脸上。沿着浩淼的湖水,我走啊走的,不见一个人影儿。最后,终于走到了那大水法遗址——尽管多少次从上,从教科书中见过这遗址的照片,可当我立在苍苍的天空下,真实地面对着这一片一地一旷野的玉白
石块时,仍感到那来自心底的震撼!依旧华美——我抚摸着那冰冰凉凉的玉石纹理;依旧精致——那欧式的曲线流畅又不羁;依旧贵族——断碎的罗马石柱在苍天下笔直出一派伟岸和傲然。后来我就流泪了,好在周围没人,我没带相机,但那些石块、石柱、石雕连同那灰苍苍的天空一起
沿着湖边再往前,穿过紫藤架,右拐,是了,是遗址,大水法遗址。 ⑦想不到的是西洋楼遗址这儿,竟也有这许多的人!一群系着红领巾的孩子尖叫着互掷着石子,一群看来是高中生或是中专生的少男少女咬着棒棒糖儿在海宴堂遗址前高声唱着“对面的女孩走过来走过来”;几位看上去
似干部样的人笑眯眯地摆好阵势在镌刻着“圆明园”字样的大理石碑前照像,那捧着相机的说:笑!笑啊!这群人就腆着发福的肚皮蠢蠢地笑了。在大水法遗址前,就是那小时在书中看到,十年前在那儿哭泣的五根大罗马柱那儿,一对情侣旁若无人地拥抱亲吻! ⑧刹那,我有点不知所措。
B、今非昔比的圆明园 标题:_________(填序号) 理由:______________________________________________________________________ 2、艾青在
《我爱这土地》中写“为什么我的眼里常含泪水”,上文结尾也写到了“流泪”,简要分析“眼泪”背后两位作者思想感情的异同。 3、文中的语言富有表现力,请结合句中加点的词语作简要分析。 一阵沙尘扑面而来,豆大的雨点砸了下来,劈头劈脸,欢笑的人群直往外冲。 ? 4、文
雨已经停了,女孩子的心却在落泪,本来可以不来的,干吗非要央求父亲借钱交春游费呢?女孩子一边后悔一边默默地落泪。班长找到女孩子,拉起她的手就走,说:我们吃了你带来的馒头,你这几天的饭当然要我们解决呀!女孩子喝着热腾腾的粥,吃着软软的馒头,b眼圈红红的。 ⑦
后来总有人以吃了女孩子的馒头为理由请她吃饭,使她不再嚼干涩难咽的馒头,使她可以和所有其他同学一样吃着炒菜和米饭。女孩子的脸上渐渐有了笑容,她默默接受了同学们不着痕迹的馈赠,默默地享受着这份单纯却丰厚的友谊。 ⑧回来之后,女孩子变了。(乙)她的脸上总是洋
从甲、乙两句可以看出女孩子的性格前后有什么不同?为什么会有这样的变化? 答: 5.这篇文章哪个地方或细节最让你感动?为什么? 答: 参考答案: 1、①以极平常的馒头为题目,引起读者的兴趣 ②六个馒头是本文的线索(故事围绕这六个馒头展开)③六个馒头凝聚了同学之间
丰厚的友谊,使文章主题得以表现(答出两点即可,每点2分) 2、a:自卑而敏感的她觉得同学们在背后议论自己,自尊心受到了伤害,心里很难过 b:领受了同学们善良的帮助,感动、感激(意思对即可。一处2分。) 3、湿透了的馒头当然不好吃,,同学们是想要帮助她,还要呵护
溢着明媚的笑容,更加努力地学习,积极地去帮助别人。后来,这个女孩不仅是班里学习最好的一个,也是人缘最好的一个。 ⑨因为女孩子知道,同学们给她的是金钱所不能买到的善良和真诚。她们的友谊就像春天里最明媚的那一缕阳光,照射在她以后的人生道路上。 1.仔细阅读全文,
说说文章为什么要以“六个馒头”为题目? 答:? 2.第③段a处和第⑥段b处加点词语分别表现了女孩子怎样的心情?请结合上下文分析。 a.眼圈红了:? b.眼圈红红的: 3.第⑤段中同学们说“其实还是学校食堂做的馒头好吃”,“馒头”真的好吃吗?同学们为什么这样说? 答: 4.
生?面对生活的考验,你当怎样摆放自己的位置? 人不怕痛苦,只怕丢掉刚强;人不怕磨难,只怕失去希望。面对风风雨雨,有这样的路可走——去认识大海。这是人生旅途中一条清醒畅通的路。
例1:在四棱锥P ABCD中, 底面ABCD是正方形, 侧棱PD 底面ABCD PD DC, E是PC的中点。
(1)证明PA ∥ 平面EDB;
该题分层赋分 (1)不存在关联。 第一层:理解肤浅,只是笼统地说二者无关系。 示例一:父女的善良和文字的力量是两回事。 实例 现代文阅读训练题及答案 圆明园 ? 阅读下面文章,完成文后问题。 ①一直以为,圆明园是哭泣的。英法联军蹂躏着她的肌体,摧毁着她的骨骼,冲
相关文档
最新文档