分式方程的应用评价作业
分式方程复习课--点评
复习课《分式方程》点评稿
听了老师的这节数学《分式方程》复习课,充分体现了我校进行高效课堂实践的成果,感受很深,亮点较多,本节课的亮点有以下三方面:
1.融合度高,李老师用问题串的形式,设计了知识框架图。
直观明了地把分式方程的相关知识进行了系统的复习,教师把学习的主动权交给了学生,效果明显。
2.精心设计复习题,设计内容全面,循序渐进,由易到难,有梯度、且有典型性,容量适中、重点突出、难点突破、环节齐全,最后使学生形成了较强的解题能力,还注重了学生思维能力的训练和培养。
3.小组建设很有成效,课堂气氛活跃,小组合作交流,氛围浓厚,学生展示阳光,点评精彩。
尤其对学生及时评价,激励了学生的积极性,形成了小组竞争意识。
教师点拨到位。
整节课学生真正的“动”了起来,思维真正的“活”了起来,总之李老师这堂课数学理念高,教学设计新颖,很好地激发了学生学习知识的积极性,使学生在独学、对学、群学中获取知识,着眼于学生综合能力,着眼于学生的发展的课堂,是难以多得的好课。
此外,本人以为,鉴于学生的基础差异比较大,如果本节课能体现出分层教学和分层训练会更完美,以防止学生“吃不了”“吃不饱”的现象。
这只是本人的一些拙见,不当之处,尽请谅解。
分式方程应用题评价量规使用过程与效果的总结与反思
分式方程应用题评价量规使用过程与效果的总结与反思问题:分式方程应用题评价量规使用过程与效果的总结与反思,但这些都只是表面上看起来很好而已,并没有实际操作中那么神奇。
例如:在一次对课堂练习册中《梯形》一课进行学生测试时发现,虽然同样都属于等腰三角形,但题型不同导致所给出的直角边长度和腰长度都各不相同。
这时就需要家长去仔细观察,利用工具查找答案或者自己计算来确定结果了。
另外有一部分内容还可以采取多种方法解决,不拘泥于固定模式,最重要的是培养孩子们的动手能力。
再比如在数字的运算当中,由于孩子计算能力参差不齐,为了避免孩子因数字大小引起纠纷而常采用小数点后数字合并的方法来求值。
其他的类似工具也会因此被遗忘。
所以如何更加高效地掌握运用工具是必须要认真研究的一个重要问题。
二、提倡互动交流教师每天布置了学习任务之后,往往都是把知识简单讲完,有意无意间缺少和孩子的沟通,尤其是错误率较高的地方。
下午到了第二节课,趁着老师不在场,孩子们马上把学习情况向老师汇报,让优秀的孩子帮助基础薄弱的学生,让成绩好的带领不懂的,让聪明的学生告诉问题多的孩子……就这样交换过程,你传授,我接受,既轻松又快乐。
经过一段时间的训练,这种良性循环逐渐形成了,全班的成绩慢慢稳步上升,教师脸上笑容越来越灿烂。
不过从近期听到家长朋友抱怨说孩子上课注意力难集中,走神严重,分心的情况也很普遍。
特别是在分析几何图形,函数的变化趋势,理解抽象概念等课上常有出现“捣乱”现象,有些孩子甚至开始厌烦这门学科。
针对这种状况我建议:除了按照学校教育安排保质保量完成好课本及配套练习之外,建议老师尽量在上课前留一些时间给学生自由活动,尤其是坐姿端正,不东张西望,眼睛盯住黑板,即便遇到问题也可举手提问,不耻下问。
其次鼓励优秀学生回答问题,增强学生的自信心。
最后教师可根据情况,请平时基础差的孩子也参与到分组讨论的环节中,达到共同进步的目的。
分层设计作业,既能满足优秀学生继续深入探索知识的欲望,也可减少他们产生骄傲情绪,克服学习浮躁的弊病,让他们潜下心来扎扎实实学好功底,增强责任感和荣誉感,消除畏惧心理,改掉随意抄袭的坏毛病。
《12.5分式方程的应用》作业设计方案-初中数学冀教版12八年级上册
《分式方程的应用》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《分式方程的应用》的学习,使学生能够理解分式方程的基本概念,掌握分式方程的解法,并能解决与实际生活相关的问题,提升学生的数学思维和解决实际问题的能力。
二、作业内容本课时的作业内容主要分为以下四个部分:1. 理解与认识:要求学生通过预习课本和查阅资料,明确分式方程的基本概念,了解其在实际生活中的应用场景。
2. 基础知识练习:包括分式方程的标准形式、解法步骤等基本知识点的练习,通过一定量的习题加深学生对分式方程基础知识的理解。
3. 实际问题应用:设计几个与分式方程相关的实际问题,如工程问题、经济问题等,要求学生运用所学知识进行建模并求解。
此部分旨在培养学生的数学建模能力和解决问题的能力。
4. 拓展提高:提供一些具有挑战性的题目,要求学生运用所学知识进行创新思考和解答,以提高学生的思维深度和广度。
三、作业要求1. 准时完成:学生需在规定时间内完成作业,以保证学习进度。
2. 独立思考:作业过程中应独立思考,尽量自己解决问题,培养自主学习的能力。
3. 规范书写:解题过程需规范,答案要清晰明了,方便教师批改。
4. 错题反思:对于做错的题目,学生需进行反思,找出错误原因并加以改正。
5. 拓展延伸:对于拓展提高部分的题目,学生可与同学或老师进行讨论,共同探讨解题方法。
四、作业评价1. 评价标准:根据学生完成作业的准确性、解题思路的清晰度、书写规范的程度等方面进行评价。
2. 及时反馈:教师需在规定时间内完成批改,并及时给予学生反馈,指出学生的优点和不足。
3. 鼓励表扬:对于表现优秀的学生给予表扬和鼓励,激发学生的积极性。
五、作业反馈1. 学生自查:学生完成作业后,应自行检查答案是否正确,解题过程是否规范。
2. 教师点评:教师根据批改情况,对全班学生的作业进行总体评价,并针对个别学生的问题进行单独指导。
3. 课堂讨论:在下一课时的开始,安排一段时间让学生们就作业中的问题展开讨论,互相学习,共同进步。
分式方程应用题及答案
分式方程应用题及答案分式应用题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?3、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?4、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
5、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。
⑴试销时该品种苹果的进价是每千克多少元?⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?6、某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导。
分式方程的应用(展评会)
乌龟先生: 我与你进行比赛,兔子先生做裁判,同时从小 柳树下跑到相距12米外的大柳树下,比赛枪声响 后,先到是冠军。请你务必赏脸,不见不散!!! 蚂蚁
比赛结束后,蚂蚁并没有取胜,已知 乌龟的速度是蚂蚁的1.2倍,提前1分钟 跑到终点,请你算算它们各自的速度。
而这次则是30元,已知这次比上次多买5千克,求这次的价格。
1 2、某种商品价格,每千克上涨上次价格的 3 ,上次用了15元,
试根据上面对话和王阿姨的发现,分别求出梨和苹果的单价。
1.
通过本节课的学习,你有什么 收获? 2. 你还有什么程,需要在规定日期内完成,如果甲队独做,恰好如期
完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2 天,剩下的由乙队独做,也刚好在规定日期内完成.问规定日期是 几天?
只设、列不解方程
阅读下面对话: 王阿姨 :“售货员,请帮我买些梨。” 售货员:“王阿姨,您上次买的那种梨都卖完了, 我们还没 来得及进货。我建议您买些新进的苹果,价格比梨贵一点,不过 苹果的营养价值更高。” 王阿姨:“好,你们很讲信用,这次我和上次一样,也花30 元钱。” 对照前后两次购物的电脑小票,王阿姨发现:每千克苹果的 价钱是梨的1.5倍,所买的苹果的总质量比梨轻25千克。
选手
路程(米) 速度(米/分)
时间(分)
12 x
12 1 .2 x
蚂蚁
乌龟
12 12
x 1.2x
4、列出方程。
列分式方程解应用题的一般步骤
1.审题;
2.设未知数;
3.列方程; 4.解方程; 5.检验; 6.写答案.
分式方程的应用问题
分式方程的应用问题分式方程是包含了分数形式的方程,可以用来解决很多与比例、比率和分数有关的实际问题。
在本文中,将探讨分式方程在不同应用问题中的实际应用。
1. 比例问题比例问题是分式方程的一种常见应用。
比如,假设小明每小时跑步的速度是x米,而小红每小时跑步的速度是y米,我们可以得到以下方程:x / y = 4 / 5其中4 / 5是两者速度的比例。
通过解这个分式方程,我们可以计算出小明和小红的速度。
这种应用问题通常涉及到多个变量之间的比例关系。
2. 比率问题比率问题是另一种使用分式方程的应用。
比如,假设一个容器中有3升柠檬汁和2升橙汁,我们可以得到以下方程:3 / 2 = x / 10其中3 / 2是柠檬汁和橙汁的比率,而10是容器中液体的总量。
通过解这个分式方程,我们可以计算出柠檬汁的数量x。
这种应用问题通常涉及到比率和总量之间的关系。
3. 速度、时间和距离问题在许多速度、时间和距离相关的问题中,分式方程也经常被使用。
假设小华以每小时60公里的速度行驶,并且需要2个小时到达目的地。
我们可以得到以下方程:60 * 2 / x = 1其中60 * 2是小华总共行驶的距离,而x是小华的速度。
通过解这个分式方程,我们可以计算出小华的速度。
这种应用问题通常涉及到速度、时间和距离之间的关系。
4. 货币兑换问题货币兑换问题也可以使用分式方程进行建模和解决。
假设1美元可以兑换85日元,而小明用400美元兑换了多少日元。
我们可以得到以下方程:1 / 85 = 400 / x其中1 / 85是兑换比率,而400是小明用来兑换的美元数量。
通过解这个分式方程,我们可以计算出小明兑换的日元数量。
这种应用问题通常涉及到不同货币之间的比率关系。
通过以上几个例子,我们可以看到分式方程在比例、比率、速度、时间、距离以及货币兑换等方面的广泛应用。
通过建立适当的数学模型,并解决相应的分式方程,我们能够更好地理解和解决各种实际问题。
分式方程的应用问题不仅能够提高学生的数学能力,还能够加深对实际问题的理解和分析能力。
5.4分式方程(第2课时)导读——评价单
课题《§5.4分式方程(2)》问题导读——评价单设计人: 龙 燕 审核人: 序号:班 级: 八(2) 组 名: 姓名:【学习目标】1、理解分式方程的意义2、了解解分式方程的基本思路和解法3、理解解分式方程时,可能无解的原因,并掌握解分式方程的验根方法 【学习重点】1、 掌握解分式方程的基本方法和步骤.2、掌握将分式方程转化为整式方程的方法及其中的转化思想. 【学习难点】1、解分式方程的基本方法和步骤.2、检验分式方程的解.【复习巩固】1、下列代数式中,哪些是分式?哪些是整式?(4)502x +, (5)135x +, (6)35x+, (7)48052x x +2、写出214x -与42x x -的最简公分母3、解一元一次方程21134x x +-=【探索新课】 探究一:(1)方程xx 332=-与上面第三小题所学的整式方程有何不同? (2)满足什么特点的方程叫分式方程?2、练习辨析下列方程中,哪些是分式方程?探究三:在方程(1)中为什么去分母后所得整式方程的解是它的解,而在方程(2)中去分母所得整式方程的解却不是它的解呢?问题1:分式方程无解的原因是什么? 问题2:如何检验分式方程的解?思考:解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么? ,13(1)2x x --4(2)11215x x ++=31(3)3x x x +-=2236(4)111x x x +=+--63(5)3x -=(2)180(6)172n -⨯=例2:解方程练习:解下列分式方程(1) (2) 思考1:解分式方程有哪些误区警示?思考2:增根的价值体现在哪些题型中? (1) 若关于x 的方程1101ax x +-=-有增根, 则a 的值为多少?(2) 若关于x 的方程3554+-=--x mx x 无解, 则m 的值为多少?【课堂小结】对知识:对自己在本节课的学习情况进行反思总结. 1、解分式方程的基本思路是什么? 2、解分式方程有哪几个步骤? 3、什么是分式方程的增根? 4、 验根有哪几种方法? 对自己:1、在探索中遇到挫折,你是怎么办的?2、本节课你和同伴一起提出什么问题?有什么收获?【当堂检测】1、关于x 的方程 的解是( )A.x =4B.x =3C.x =2D.x =12、分式方程 的解为 ( )A.x =1B.x =2C.x =3D.x =43、方程 的根是 .4、解方程 (1) (2) (3)22162242x x x x x -+-=+--480600452x x-=542332x x x +=--22510x x x x-=+-211x =-532x x=+231x x =+2110525x x =--311(1)(2)x x x x -=--+。
分式方程及其应用(含答案)
分式方程及其应用【分类解析】 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。
解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。
解:由原方程得:3143428932874145--++-=--++-x x x x即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。
2020年人教版八年级数学上册 分层练习作业本 《分式方程的应用》(含答案)
第2课时 分式方程的应用1.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.=B.=C.=D.=600x +50450x 600x -50450x 600x 450x +50600x 450x -502.A ,B 两地相距180 km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车的平均车速提高了50%,而从A 地到B 地的时间缩短了1 h .若设原来的平均车速为x km/h ,则根据题意可列方程为( )A.-=1B.-=1180x 180(1+50%)x 180(1+50%)x 180xC.-=1D.-=1180x 180(1-50%)x 180(1-50%)x 180x3.一根蜡烛在凸透镜下成一实像,物距u (蜡烛到凸透镜中心的距离)、像距v(像到凸透镜中心的距离)和凸透镜的焦距f 满足关系+=,若u =24 cm ,v =8 cm ,则该凸透镜的1u 1v 1f焦距f =__ __.4.A ,B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A 型机器加工400个零件所用的时间与B 型机器加工300个零件所用的时间相同.求A 型机器每小时加工零件的个数.5.济宁市在“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合作,两队又共同工作了36天完成.求乙工程队单独完成这项工作需要多少天.6.[2016·聊城]为加快城市群的建设与发展,在A ,B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120 km 缩短至114 km ,城际铁路的设计平均时速要比现行的平均时速快110 km ,运行时间仅是现行时间的,求建成后的城际铁路在A ,B 两地的运行时25间.7.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该13项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少要施工多少天才能完成该项工程?参考答案【归类探究】例1 排球的单价为50元,篮球的单价为80元.例2 公司应选择甲工程队,付工程队费用 30 000 元.【当堂测评】1.D 2.B 3.=60x +845x 【分层作业】1.A 2.A 3.6 cm4.A 型机器每小时加工零件80个.5.乙工程队单独完成这项工作需要80天.6.建成后的城际铁路在A ,B 两地的运行时间为0.6 h.7.(1)乙队单独施工需要30天完成.(2)乙队至少要施工18天才能完成该项工程.。
分式方程应用题专项练习50题
分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进展招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;假设由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进展了技术改良,提高了生产效率,每天比原方案增产25%,结果提前10天完成了任务.原方案每天生产多少个零件3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,那么要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、 某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完 成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 假设工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间一样,水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王教师家、学校在同一条路上,小明家到王教师家的路程为3km ,王教师家到学校的路程为0.5km ,由于小明的父母战斗在抗“非典〞第一线,为了使他能按时到校,王教师每天骑自行车接小明上学.王教师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min ,问王教师的步行速度及骑自行车的速度各是多少9、一小船由A 港到B 顺流航行需6小时,由B 港到A 港逆流航行需8小时,小船从早晨6时由A 港到B 港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
分式方程应用题(含答案)
分式方程应用题1.某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.2.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?3.甲地到乙地的距离约为210 km,小刘开着小轿车,小张开着大货车,都从甲地去乙地,小刘比小张晚出发1小时,最后两车同时到达乙地,已知小轿车的速度是大货车速度的1.5倍.(1)小轿车和大货车的速度各是多少?(2)当小刘出发时,小张离乙地还有多远?4.某商家预测一种衬衫能畅销市场,就用12 000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26 400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元?5.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,若两个工程队修路总费用恰好为5.2万元,则甲工程队修路用了多少天?6.某工厂对零件进行检测,引进了检测机.已知一台检测机的工作效率相当于一名检测员的20倍.若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.(1)一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过7小时检测完3 450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?1.解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得750x -9003x=30,解方程,得x =15. 经检验,x =15是原方程的根,且符合题意.答:跳绳的单价是15元.2.解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x -3601.6x=4, 解得x =33.75. 经检验,x =33.75是原分式方程的解.则1.6x =1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米.(2)设平均每年绿化面积增加a 万平方米,根据题意得54×3+2(54+a )≥360,解得a ≥45.答:实际平均每年绿化面积至少还要增加45万平方米.3.解:(1)设大货车速度为x km /h ,则小轿车的速度为1.5x km/h ,根据题意得210x -2101.5x=1,解得x =70. 经检验,x =70是原分式方程的解.则1.5x =105. 答:大货车速度为70 km /h ,小轿车的速度为105 km/h.(2)210-70×1=140(km). 答:当小刘出发时,小张离乙地还有140 km.4.解:(1)设第一批衬衫x 件,则第二批衬衫为2x 件,根据题意得12 000x =26 4002x-10,解得x =120. 经检验,x =120是原分式方程的解. 答:该商家购进的第一批衬衫是120件.(2)12 000÷120=100,100+10=110.两批衬衫全部售完后的利润为120×(150-100)+240×(150-110)=15 600(元). 答:两批衬衫全部售完后的利润是15 600元.5.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米,根据题意,可列方程1.5×15x =15x -0.5,解得x =1.5. 经检验,x =1.5是原方程的解,且x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路用了a 天,则乙工程队还需修路(15-1.5a )千米,∴乙工程队需要修路15-1.5a 1=15-1.5a (天). 由题意可得0.5a +0.4(15-1.5a )=5.2,解得a =8.答:甲工程队修路用了8天.6.解:(1)设一名检测员每小时检测零件x 个,由题意得 90015x -90020x=3,解得x =5. 经检验x =5是分式方程的解.20x =20×5=100.答:一台零件检测机每小时检测零件100个.(2)设该厂再调配a 台检测机才能完成任务,由题意得 (2×100+30×5)×7+100a ×(7-3)≥3450,解得a ≥2.5.∵a 为正整数,∴a 的最小值为3.答:该厂至少再调配3台检测机才能完成任务.。
初中数学分式方程应用例题分析含答案
分式方程应用例题分析一.解答题(共30小题)1.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?2.某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么该工程施工费用是多少?3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.4.某地在进入防汛期间,准备对4800米长的河堤进行加固,在加固工程中,该地驻军出色地完成了任务,它们在加固600米后,采用了新的加固模式,每天加固的长度是原来的2倍,结果只用9天就完成了加固任务.(1)求该地驻军原来每天加固大坝的米数;(2)由于汛情严重,该驻军部队又接到了加固一段长4200米大坝的任务,他们以上述新的加固模式进行了2天后,接到命令,必须在4天内完成剩余任务,求该驻军每天至少还要再多加固多少米?5.武汉某道路改造工程,若由甲、乙两工程队合作20天可完成;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,并且要求整个工期不能超过30天,问如何安排甲、乙工程队做这项工程使得花费最少?6.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.7.雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天清理道路的米数.8.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?9.某市政工程队承担着1200米长的道路维修任务.为了减少对交通的影响,在维修了240米后通过增加人数和设备提高了工程进度,工作效率是原来的4倍,结果共用了6小时就完成了任务.求原来每小时维修多少米?10.A、B两地相距18千米,甲工程队要在A、B两地间铺设一条送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知乙工程队的工作效率是甲队的1.5倍,甲队提前3周开工,结果两队同时完成任务,求甲、乙两队每周各铺设多少千米管道?11.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)12.老张用400元购买了若干只种兔,老李用440元也购买了相同只数的种兔,但单价比老张购买的种兔的单价贵5元.(1)老张与老李购买的种兔共有多少只?(2)一年后,老张养兔数比买入种兔数增加了2只,老李养兔数比买入种兔数的2倍少1只,两人将兔子全部售出,则售价至少为多少元时,两人所获得的总利润不低于960元?13.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.14.“军运会”期间,某纪念品店老板用5000元购进一批纪念品,由于深受顾客喜爱,很快售完,老板又用6000元购进同样数目的这种纪念品,但第二次每个进价比第一次每个进价多了2元.(1)求该纪念品第一次每个进价是多少元?(2)老板以每个15元的价格销售该纪念品,当第二次纪念品售出时,出现了滞销,于是决定降价促销,若要使第二次的销售利润不低于900元,剩余的纪念品每个售价至少要多少元?15.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)?16.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机.某自行车行销售A型,B型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:A自行车销售总额为8万元.每辆B型自行车的售价比每辆A型自行车的售价少200元,B型自行车销售数量是A自行车的1.25倍,B自行车销售总额比A型自行车销售总额多12.5%.(1)求每辆B型自行车的售价多少元.(2)若每辆A型自行车进价1400元,每辆B型自行车进价1300元,求此自行车行2019年销售A,B型自行车的总利润.17.春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?18.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?19.某服装店老板到厂家选购A、B两种品牌的羽绒服,B品牌羽绒服每件进价比A品牌羽绒服每件进价多200元,若用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍.(1)求A、B两种品牌羽绒服每件进价分别为多少元?(2)若A品牌羽绒服每件售价为800元,B品牌羽绒服每件售价为1200元,服装店老板决定一次性购进A、B两种品牌羽绒服共80件,在这批羽绒服全部出售后所获利润不低于30000元,则最少购进B品牌羽绒服多少件?20.某商场第一次用22000元购进某款智能清洁机器人进行销售,很快销售一空,商家又用48000元第二次购进同款智能清洁机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进智能清洁机器人多少台?(2)若所有智能清洁机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每台智能清洁机器人的标价至少是多少元?21.张康和李健两名运动爱好者周末相约到丹江环库绿道进行跑步锻炼.(1)周日早上6点,张康和李健同时从家出发,分别骑自行车和步行到离家距离分别为6千米和1.6千米的绿道环库路入口汇合,结果同时到达,且张康每分钟比李健每分钟多行220米,求张康和李健的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李健的跑步速度是张康跑步速度的a倍,两人在同起点,同时出发,结果李健先到目的地b分钟.①当a=1.2,b=6时,求李健跑了多少分钟?②求张康的跑步速度多少米/分?(直接用含a,b的式子表示)22.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m倍,两人在同起点,同时出发,结果小强先到目的地n分钟.①当m=3,n=6时,求小强跑了多少分钟?②小明的跑步速度为米/分(直接用含m,n的式子表示).23.为了全面推进青少年素质教育,我市某中学组织八年级学生前往距学校10km的“示范性综合实践基地”开展社会实践活动.一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.24.近年来骑自行车运动成为时尚,甲、乙两人相约由A地出发骑自行车去B景区游玩(匀速骑行),已知甲骑行180千米与乙骑行200千米所用的时间相同,且乙每小时比甲每小时多骑行5千米.(1)求甲、乙两人的速度各是多少;(2)如果A地到B景区的路程为180千米,甲、乙两人到达B景区游玩一段时间后,甲按原速返回A地,同时乙按原速骑行1.5小时后,因体力消耗,每小时骑行速度减少m 千米,如果甲回到A地时,乙距离A地不超过25千米,求乙的速度每小时最多减少多少千米.25.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结束后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?26.甲、乙两地相距120千米,一辆大巴车从甲地出发,行驶1小时后,一辆小汽车从甲地出发,小汽车和大巴车同时到达到乙地,已知小汽车的速度是大巴车的2倍,求大巴车和小汽车的速度.27.用分式方程解决问题:元旦假期有两个小组去攀登一座高h米的山,第二组的攀登速度是第一组的a倍.(1)若h=450,a=1.2,两小组同时开始攀登,结果第二组比第一组早15min到达顶峰求两个小组的攀登速度.(2)若第二组比第一组晚出发30min,结果两组同时到达顶峰,求第二组的攀登速度比第一组快多少?(用含a,h的代数式表示)28.八年级为筹备红色研学旅行活动,王老师开车前往距学校180km的研学训练营地考察,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了40min到达研学训练营地.求王老师前一小时行驶速度.29.某次列车现阶段的平均速度是200千米/小时,未来还将提速,在相同的时间内,列车现阶段行驶a千米,提速后列车比现阶段多行驶150千米.(1)求列车平均提速多少千米/小时?(2)若提速后列车的平均速度是300千米/小时,则题中的a为多少千米?30.某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m的值.分式方程应用例题分析参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:﹣=2,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤220,解得:m≥10.答:至少安排甲队工作10天.2.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×10+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(5000+3000)=144000(元),答:该工程的费用为144000元.3.【解答】解:设规定日期为x天.由题意得+=1,3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.4.【解答】解:(1)设原来每天加固x米,解得:x=300,经检验x=300是原方程的解,答:原来每天加固300米;(2)设每天还要再多加固a米,4(600+a)+2×600≥4200,解得:a≥150,答:至少比之前多加固150米.5.【解答】解:(1)设甲工程队单独完成此项工程需要x天,则乙工程队单独完成此项工程需要天,根据题意得:+=1,解得:x=60,经检验,x=60是原方程的解,∴=30.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲工程队施工m天,则乙工程队施工(30﹣0.5m)天,∵整个工期不能超过30天,∴m≤30.设甲、乙工程队完成这项工程需付施工费w万元,根据题意得:w=m+2.5×(30﹣0.5m)=﹣0.25m+75,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值=﹣0.25×30+75=67.5,此时30﹣0.5m=30﹣0.5×30=15.答:安排甲、乙工程队同时施工,甲工程队施工30天、乙工程队施工15天,施工费最低,最低施工费为67.5万元.6.【解答】解:(1)设甲需要x天,则乙需要1.5x天,根据题意可得:,解得:x=20,经检验x=20是原分式方程的解,则1.5x=30,答:甲单独完成这项工程需20天,乙队单独完成这项工程各需30天;(2)设甲每天的费用是y元;乙每天的费用是(y﹣250)元根据题意可得:12y+12(y﹣250)=27720解得:y=1280元.1280﹣250=1030元甲单独完成共需要费用:1280×20=25600元乙单独完成共需要费用:1030×30=30900元.因此甲单独完成需要的费用低.选甲工程队单独完成.7.【解答】解:设原来每天清理道路x米,,解得,x=300检验:当x=300时,2x≠0,∴x=300是原方程的解,答:该地驻军原来每天清理道路300米.8.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得﹣=4解得:x=50经检验:x=50是原方程的解所以甲工程队每天能完成绿化的面积是50×2=100(m2)答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.9.【解答】解:设原来每小时维修x米.根据题意得+=6,解得x=80,经检验,x=80是原方程的解,且符合题意.答:原来每小时维修80米.10.【解答】解:设甲工程队每周铺设管道x千米,则乙工程队每周铺设管道1.5x千米,根据题意得:﹣=3,解得:x=2,经检验x=2是原方程的解,则乙工程队每周铺设管道1.5×2=3千米管道,答:甲工程队每周铺设管道2千米,则乙工程队每周铺设管道3千米.11.【解答】解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.12.【解答】解:(1)设老张买的种兔共有x只,∴=﹣5,解得:x=8,经检验,x=8是原分式方程的解,∴8+8=16,答:老张与老李购买的种兔共有16只.(2)设售价为a元,由题意可知:(8+2)a+(8×2﹣1)a﹣400﹣400≥960,解得:a≥72,答:售价至少为72元时,两人所获得的总利润不低于960元13.【解答】解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.14.【解答】解:(1)设该纪念品第一次每个进价是x元,∴第二次每个进价是(x+2)元,∴根据题意可知:=,解得:x=10,经检验,x=10是方程的解,答:该纪念品第一次进价为10元.(2)设剩余的纪念品每个售价要y元,×500×(y﹣12)+×500×(15﹣12)≥900,解得:y≥12,答:剩余的纪念品每个售价至少12元.15.【解答】解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.16.【解答】解:(1)设每辆B型自行车的售价为x元,则每辆A型自行车的售价为(x+200)元.依题意,得方程两边乘x(x+200),得80000×1.25x=80000×(1+12.5%)(x+200)解得x=1800经检验,x=1800是原分式方程的解,且符合实际意义.答:每辆B型自行车的售价为1800元.(2)每辆A型自行车的售价为1800+200=2000元,销售数量为80000÷2000=40辆;B型自行车的总销售额为80000×(1+12.5%)=90000元,销售数量为40×1.25=50辆.总利润为(80000+90000)﹣(1400×40+1300×50)=49000元.答:此自行车行2019年销售A,B型自行车的总利润为.49000元17.【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y+0.8×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.18.【解答】解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.19.【解答】解:(1)设A种羽绒服每件的进价为x元,根据题意的解得x=500经检验x=500是原方程的解x+200=700(元)答:A种羽绒服每件的进价为500元,B种羽绒服每件的进价为700元.(2)设购进B品牌的羽绒服m件,根据题意的(800﹣500)(80﹣m)+(1200﹣700)m≥30000解得m≥30∵m为整数∴m的最小值为30.答:最少购进B品牌的羽绒服30件.20.【解答】解:(1)设该商家第一次购进智能清洁机器人x台,则第二次购进智能清洁机器人2x台,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:该商家第一次购进智能清洁机器人200台.(2)设每台智能清洁机器人的标价为y元,依题意,得:(200+200×2)y﹣(22000+48000)≥(22000+48000)×20%,解得:y≥140.答:每台智能清洁机器人的标价至少为140元.21.【解答】解:(1)设李健的速度为x米/分,则张康的速度为(x+220)米/分,根据题意,得:,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李健的速度为80米/分,张康的速度为300米/分.(2)①∵a=1.2,b=6,∴6÷(1.2﹣1)=30(分钟).答:李健跑了30分钟;②李健跑了的时间为分钟,张康跑了的时间为分钟,张康的跑步速度为米/分.22.【解答】解:(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据题意得:.解得:x=80.经检验,x=80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y米/分,∵m=3,n=6,∴,解之得.∴小强跑的时间为:(分)②小强跑的时间:分钟,小明跑的时间:分钟,小明的跑步速度为:分.故答案为:.23.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,依题意,得:﹣=,解得:x=15,经检验,x=15是原分式方程的解,且符合题意.答:骑车学生的速度是15km/h.24.【解答】解:(1)设甲的速度为x千米/时,则乙的速度为(x+5)千米/时,依题意,得:=,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x+5=50.答:甲的速度为45千米/时,乙的速度为50千米/时.(2)依题意,得:180﹣50×1.5﹣(180÷45﹣1.5)(50﹣m)≤25,解得:m≤18.答:乙的速度每小时最多减少18千米.25.【解答】解:设小雪的速度是x米/分钟,则珂铭速度是 1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.26.【解答】解:设大巴车速度为x千米/小时,则小汽车的速度为2x千米/小时.依题意,得﹣1=,解得:x=60,经检验,x=60是原分式方程的解,且符合题意,∴2x=120.答:大巴车速度为60千米/小时,小轿车的速度为120千米/小时.27.【解答】解:(1)设第一组的速度为xm/min,则第二组的速度为1.2xm/min,由题意得,﹣=15,解得:x=5,经检验:x=5是原分式方程的解,且符合题意,则1.2x=6.答:第一组的攀登速度5m/min,第二组的攀登速度6m/min;(2)设第一组的平均速度为ym/min,则第二组的平均速度为aym/min,由题意得,﹣=30,解得:y=,经检验:y=是原分式方程的解,且符合题意,则ay﹣y=﹣=,答:第二组的平均攀登速度比第一组快m/min.28.【解答】解:设王老师前一小时行驶速度为xkm/h,则一小时后的行驶速度为1.5xkm/h,依题意,得:﹣(1+)=,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:王老师前一小时行驶速度为60km/h.29.【解答】解:(1)设列车平均提速x千米/小时,依题意,得:=,解得:x=,经检验,x=是原方程的解,且符合题意.答:列车平均提速千米/小时.(2)依题意,得:200+=300,解得:a=300,经检验,a=300是原方程的解,且符合题意.答:题中的a为300千米.30.【解答】解:(1)设这批零件有x个,则由题意得:﹣=5,解得:x=3000,答:设这批零件有3000个.(2)由题意得:,解得:m=2000答:m的值是2000.。
分式方程的应用
分式方程的应用1、甲、乙两人做某种机器零件。
已知甲每天比乙多做6个零件,甲做90个零件所用的时间与乙做60个零件的时间相同。
求甲乙每小时各做多少个零件?2、某人现在平均每天比原计划多做功20%个零件,已知现在做4000个零件和原计划做3000个零件所用的时间相同,求现在平均每天做多少个零件?3、王明和李刚做机器零件。
王明做150个零件与李刚做120个零件所用的时间相同。
已知每小时两人一共做50个零件。
求两人每小时各做多少个零件?4、一辆收割机,它的收割速度是人工的120倍,收割100亩地比人工少用了15天,求人工与收割机每天各收割多少亩地?5、一辆汽车,先以一定的速度行驶160千米,后来把速度每小时加快5千米,继续行驶180千米,结果行驶的两段路程所用的时间相同,求汽车先后行驶的速度各是多少?6、一列火车要行驶450千米。
当它开出4小时后,因有任务多停了一会,耽误了30分钟,后来把每小时的速度提高到原来的1.1倍,结果准时到达目的地,求这列火车现在的速度?7、A、B两地相距1440千米,贷车和客车提前出发5小时,贷车比客车晚到1小时,已知客车与贷车的速度比为5:4,求两车的速度各是多少?8、A、B两地相距19千米,某人从A地到B地,先步行,后又骑自行车,一共用了2 小时,已知骑自行车的速度是步行的4倍,求两者的速度?9、有三堆数量相同的矿石,用小车独运一堆的天数是用大车独运一堆天数的一半的3倍,第三堆大、小车同时运6天运完了这堆石头的一半,求大、小车独运各需多少天运完?10、A、B两个小组合修一台机器2小时可以完成,已知A小组独修需3小时,求B小组独修需要几小时?11、一件工程需按时完成。
如A组独做正好按时完成,B组独做则比原定时间提前3天完成,如两组合做2天后,剩余的由B组独做,正好按时完成。
求原定多少天完成?12、两人合做检修机器,20小时完成,已知两人的工作效率之比为5:4,求甲、乙二人单独检修各需多少小时?13、一船从A地顺流航行至B地用了2.5小时再由B地逆流航行至距A地尚有2千米处,已用了3小时,已知水流速度为每小时2千米,求船在静水中的速度?。
分式方程应用题练习
分式方程应用题等量关系:工程问题:工作量=工作效率×工作时间(工作量一般用1代替)行程问题:路程=速度×时间销售问题:总价=单价×数量,利润=售价-进价顺逆水问题:逆水速度=静水速度-水流速度,顺水速度=静水速度+水流速度,1、一台甲型拖拉机4天耕完一块地的一半,加入乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、A 做90个零件所需要的时间和B 做120个零件所用的时间相同,又知每小时A 、B 两人共做35个机器零件。
求A 、B 每小时各做多少个零件。
3、要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
原来每天能装配多少台机器4、金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.5、赵强同学借了一本书,共280页,要在两周借读期内读完。
当他读了一半时,发现平均每天要多读21页才能在借期内读完。
他读前一半时,平均每天读多少页?6、甲乙两个水管同时向一个水池注水,一小时能注满水池的87,如果甲管单独注水40分钟,再由乙管单独注水半小时,共注水池的21,甲乙两管单独注水各需多少时间才能注满水池?7、乙两辆汽车同时分别从A 、B 两城沿同一条高速公路驶向C 城.已知A 、C 两城的距离为450千米,B 、C 两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C 城.求两车的速度.8、某人往返于A 、B 两地,去时先步行2千米,再乘汽车行10千米,回来时骑自行车,来回所用时间恰好相等.已知汽车每小时比这人步行多走16千米,步行又比骑车每小时少走8千米. 若来回完全乘汽车能节约多少时间?9、天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.10、2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修。
5.4 分式方程(第3课时 列分式方程解应用题)北师大版八年级数学下册课时作业基础卷(含答案)
5.4 第3课时 列分式方程解应用题知识点 分式方程的应用1.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .80(1+35%)x-80x =40B .80(1+35%)x -80x =40C .80x -80(1+35%)x =40D .80x -80(1+35%)x =402.甲、乙两船从相距300 km 的A,B 两地同时出发,相向而行,甲船从A 地顺流航行180 km 时与从B 地逆流航行的乙船相遇,水流的速度为6 km/h .若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A .180x +6=120x -6B .180x -6=120x +6C .180x +6=120x D .180x =120x -63.某市为治理污水,需要铺设一条全长为550 m 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工作效率比原计划增加10%,结果提前5天完成这一任务.则原计划每天铺设 m .4.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.5.刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40 kg .这种大米的原价是每千克多少元?6.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进,这样120 t水可多用3天,求现在每天用水量是多少后,现在每天用水量是原来每天用水量的45吨.7.某学校食堂需采购部分餐桌,现有A,B两个商家,A商家每张餐桌的售价比B商家每张餐桌的售价优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为( )A.117元B.118元C.119元D.120元8.某校学生去距学校20 km的白水寺参观,一部分学生骑自行车先走,过了40 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,则骑车学生的速度是 km/h.9.某公司会计欲查询乙商品的进价,发现进货单已被墨水污染(如下表).进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.10.为厉行节能减排,倡导绿色出行,2018年3月“共享单车”登陆某市中心城区.某公司拟在甲、乙两个街道社区投放一批“共享单车”,这批“共享单车”包括A,B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A,B两种款型“共享单车”各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元/辆,A,B两种款型“共享单车”的成本单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“共享单车”,乙街区每1000人投放8a+240辆“共享单车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两a个街区共有15万人,试求a的值.参考答案1.A2.A3.10 [解析] 设原计划每天铺设x m,实际施工时每天铺设(1+10%)x m,由题意,得550x -550(1+10%)x=5,解得x=10.经检验,x=10是原分式方程的根,且符合题意,所以原计划每天铺设10 m .4.解:设乙每小时做x 个零件,则甲每小时做(x+6)个零件.根据题意,得90x +6=60x ,解得x=12.经检验,x=12是原方程的根,且符合题意,故乙每小时做12个零件.5.解:设这种大米的原价是每千克x 元.根据题意,得105x +1400.8x =40,解得x=7.经检验,x=7是原方程的根,且符合题意.故这种大米的原价是每千克7元.6.解:设原来每天用水量是x t,则现在每天用水量是45x t .依题意,得12045x -120x =3,解得x=10.经检验,x=10是原方程的根,且符合题意,∴45x=8.故现在每天用水量是8 t .7.A [解析] 设A 商家每张餐桌的售价为x 元,则B 商家每张餐桌的售价为(x+13)元.根据题意,得20000x +13=18000x ,解得x=117.经检验,x=117是原方程的根,且符合题意.故选A .8.15 [解析] 设骑车学生的速度为x km/h,则汽车的速度为2x km/h .根据题意,得20x -202x =4060,解得x=15.经检验,x=15是原方程的根,且符合题意.故答案为15.9.解:设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件.依题意,得7200(1+50%)x -3200x =40,解得x=40.经检验,x=40是原方程的根,且符合题意,∴(1+50%)x=60,3200x=80,7200(1+50%)x =120.故甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.补全进货单略.10.解:问题1:设A 型车的成本单价为x 元/辆,则B 型车的成本单价为(x+10)元/辆.依题意,得50x+50(x+10)=7500,解得x=70,所以x+10=80.故A,B 两种款型“共享单车”的单价分别是70元/辆和80元/辆.问题2:由题意,得1500a ×1000+ 1200 8a +240a×1000=150000,解得a=15.经检验,a=15是所列方程的根,且符合题意.故a 的值为15.。
测评分式方程的应用
【测评】分式方程的应用适用年级:八年级建议时长:45分钟试卷总分:100.0分一、单选类1.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是().(10.0分)(单选)A. 8B. 7C. 6D. 52.某小组手工生产一种葫芦丝,计划在30天内完成.若每天多生产6个,则25天完成,且还多生产10个.设原计划每天生产x个葫芦丝,则可列方程为(). (10.0分)(单选)A. =25+10B. =25C. =25D. =25-103.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?设原计划每天修x米,所列方程正确的是()(10.0分)(单选)A.B.C.D.4.在2010年抗震赈灾活动中,小明统计了自己所在年级的甲、乙两班的捐款情况,得到三个信息:①甲班捐款2 500元,乙班捐款2 700元;②乙班平均每人捐款数比甲班平均每人捐款数多;③甲班比乙班多5人,设甲班有x人,根据以上信息列方程得().(10.0分)(单选)A.B.C.D.5.某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()(10.0分)(单选)A.B.C.D.6.(2014北京,7)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是().(10.0分)(单选)A.B.C.D.7.(2014青岛,6)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()(10.0分)(单选)A. ﹣=2B. ﹣=2C. ﹣=2D. ﹣=28.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,根据题意列方程为()(10.0分)(单选)A.B.C.D.二、填空类1.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m−2]的一次函数是正比例函数,则关于x的方程的解为x=____.(10.0分)2.(2014厦门,16)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产____个零件.(10.0分)。
沪科版七年级数学下册《分式方程的运用》评课稿
沪科版七年级数学下册《分式方程的运用》评课稿一、课程背景数学是一门基础学科,也是培养学生逻辑思维和问题解决能力的重要工具。
《分式方程的运用》是沪科版七年级数学下册的一堂课程,它涵盖了分式方程在实际问题中的应用。
此课程旨在通过引入实际问题和生活案例,帮助学生理解分式方程的概念以及其在解决实际问题时的运用方法。
通过学习分式方程在生活中的实际运用,学生将更好地理解数学的价值和应用。
二、教学目标•通过学习本课程,学生将能够理解分式方程的定义和基本概念。
•学生将能够运用分式方程解决实际问题。
•学生将能够培养逻辑思维和问题解决能力。
三、教学内容本课程的主要内容包括以下几个方面:1.什么是分式方程:引入分式方程的基本概念,通过例题和解题过程,帮助学生理解分式方程的定义和特点。
2.实际问题的转化:将生活中的实际问题转化为分式方程的形式,通过具体的案例让学生将问题抽象化,并在解决问题的过程中理解分式方程的实际应用。
3.解决分式方程:引入解分式方程的方法,包括清分、去分母和求解等步骤,通过例题和练习,帮助学生掌握解决分式方程的基本技巧。
4.实际问题的解决:通过实际问题的解答,让学生更好地理解分式方程在解决实际问题中的应用,培养学生的问题解决能力。
四、教学方法在本课程中,教师将采用以下教学方法:1.问题导入:通过引入真实问题,引发学生对分式方程的兴趣和思考,激发学生的学习动机。
2.讲解示范:教师将详细讲解分式方程的概念和解题方法,并通过例题的演示,帮助学生理解和掌握相关知识和技巧。
3.分组合作:将学生分为小组,让他们共同研究和解决实际问题,通过小组合作促进学生之间的互动和合作能力。
4.讨论交流:教师将鼓励学生在课堂上积极发言和互相交流,分享解题思路和答案,促进学生之间的学习互助。
5.总结归纳:教师将在课程结束前对本堂课的内容进行总结和归纳,并提醒学生课后复习和巩固相关知识。
五、教学评价在本课程中,将采用以下方式对学生的学习情况进行评价:1.检查作业:教师将检查学生的课后作业,评估学生对分式方程的理解和应用能力。
最新初中人教版数学人教八年级上册《15.3分式方程(第3课时)》测试与评价
《15.3分式方程(第3课时)》测试与评价本课时的主要内容是分式方程的应用.以下题目分为三个水平等级:水平1(用★☆☆表示):运用基本知识、基本技能就能解决的题目;水平2(用★★☆表示):灵活运用基本知识、基本技能,并要具备一定的运算能力和推理能力才能解决的题目;水平3(用★★★表示):综合运用基本知识、基本技能、方法技巧,并要具备一定的运算能力和推理能力才能解决的题目.一、选择题1.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依题意列方程正确的是().A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+考查目的:本题考查分式方程的应用.水平等级:★☆☆.解析:由“甲、乙两车所用的时间相同”可列出方程:304015x x=+.答案:C.2.一工厂生产某种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个,设原计划每天生产x个,根据题意可列分式方程为().A.2010154xx+=+B.2010154xx-=+C.2010154xx+=-D.2010154xx-=-考查目的:本题考查分式方程的应用.水平等级:★☆☆.解析:依据“工作时间=工作总量÷工作效率”可列出方程:2010154xx+=+.答案:A.二、填空题3.为改善环境,张村拟在荒山上种植960棵树,由于共青团的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植x棵树,根据题意列方程.考查目的:本题考查分式方程的应用.解析:依据“实际所用时间比原计划所用时间少4天”可列出方程:960960420x x -=+. 答案:960960420x x -=+. 4.小明计划用80元去书店选购图书(假设所购图书每本价格相同).“六·一”期间, 书店推出优惠政策,图书一律8折销售,这样,小明比原计划多买了2本,求每本书的原价?设每本书的原价为x 元,可列方程为 .考查目的:本题考查分式方程的应用.水平等级:★☆☆.解析:依据“实际所买书比原计划多2本”可列出方程:808020.8x x -=. 答案:808020.8x x-=. 三、解答题5.学校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.篮球与足球的单价各是多少元?考查目的:本题考查分式方程的应用.水平等级:★★☆.解析:列方程解实际应用问题的关键是找出等量关系.本题若设足球单价为x 元,依据“篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等”可列出方程:150090040x x=+,进而可求得篮球与足球的单价. 解:设足球单价为x 元,根据题意得:150090040x x=+. 解得:x =60.经检验,x =60是原方程的解.则:x +40=100.答:篮球的单价是100元,足球的单价是60元.6.从甲城到乙城乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车平均速度的3倍,乘坐高速列车所用的时间比乘坐普通列车要少2小时.高速列车的平均速度是每小时多少千米?考查目的:本题考查分式方程的应用.解析:列方程解实际应用问题的关键是找出等量关系. 本题若设普通列车的平均速度为每小时x千米(也可以直接设高速列车的平均速度),依据“乘坐高速列车所用的时间比乘坐普通列车要少2小时”可列出方程:24018023x x-=,进而可求得高速列车的平均速度.解:设普通列车的平均速度为每小时x千米,根据题意得:24018023x x-=.解得:x=90.经检验,x=90是原方程的解.则:3x=270.答:高速列车的平均速度是每小时270千米.。
分式方程的应用典型试题综合训练(含解析)印刷版
分式方程的应用典型试题综合训练一.选择题(共9小题)1.2018年10月20日“襄阳马拉松”如期举行,本次活动共设置“全马”、“半马”和“健康跑”三个组别在此次活动中,某公司承担了制作600个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务根据题意,下列方程正确的是()A.﹣=10B.﹣=10C.﹣=5D.+10=2.甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元,若设甲单位有x人捐款,则所列方程是()A.=+1B.=+1C.=﹣1D.=﹣13.“某学校改造过程中整修门口1500m的道路,但是在实际施工时,……,求实际每天整修道路多少米?”在这个题目中,若设实际每天整修道路xm,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多修5m,结果延期10天完成B.每天比原计划多修5m,结果提前10天完成C.每天比原计划少修5m,结果延期10天完成D.每天比原计划少修5m,结果提前10天完成4.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.5.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.6.某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配加强第一线人力使每天完成的校服比原计划多20%,结果提前4天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服x套,则可列出方程()A.B.C.D.7.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做40个所用的时间与师傅做60个所用的时间相同.如果设徒弟每天做x个,那么可列方程为()A.B.C.D.8.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.某车间加工1200个零件后采用了新工艺,工效提高了50%,这样加工同样多的零件少用10h,求采用新工艺前、后每小时分别加工多少个零件?若设采用新工艺前每小时加工x个零件,则可列方程为()A.=10B.﹣=10C.﹣=10D.=10二.填空题(共10小题)10.甲、乙两个工程队共同完成一项工程,乙队先单独做5天,再由两队合作3天就完成全部工程,已知甲队与乙队单独完成这项工程所需时间之比是3:2,求甲乙两队单独完成此项工程各需多少天?若设甲、乙单独完成此项工程分别需3x天、2x天,则可列方程为.11.工程队计划用14天修完一条长2800米的公路,修了一半时发现每天需多修40米才能在规定时间内完成,如果修前一半时,工程队每天修x米,则可列方程.12.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为.13.某圾处理厂日处理垃圾3600吨,实施垃圾分类后,每小时垃圾的处理量比原来提高20%,这样日处理同样多的垃圾就少用3h.若设实施垃圾分类前每小时垃圾的处理量为x吨,则可列方程.14.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为.15.为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意,可列方程为.16.帐篷厂原计划生产7200顶帐篷,后来为了支援灾区,要求工厂生产的帐篷比原计划多20%,并需要提前4天完成任务.已知实际生产时每天比原计划多生产720顶帐篷,设实际每天生产x顶帐篷,根据题意可列方程为17.甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的,设步行速度为x千米/时,则根据题意可以列出方程.18.新能源汽车环保节能,越来越受到消费者的喜爱.某品牌新能源汽车2017年销售总额为500万元,2018年销售总额为960万元,2018年每辆车的销售价格比2017年降低1万元,2018年销售量是2017年销售量的2倍.求2018年每辆车的销售价格是多少万元?若设2018年每辆车的销售价格x万元,则可列出方程为.19.某工程队依据城市规划轨道交通计划,为地铁二号线修建一条长4800米的隧道.在打通1200米隧道后,为了尽快减少施工对城市交通造成的影响,该工程队增加了人力,故现在每天打通隧道的长度是原来的1.2倍,最终40天完成任务.若设该工程队原来每天打通隧道x米,则列出的方程为:.三.解答题(共11小题)21.某校为美化校园,计划安排甲乙两个施工队共同进行绿化.已知甲队每天完成绿化面积是乙队每天完成绿化面积的2倍;且甲乙两队分别完成400m2的绿化面积时,甲队比乙队少用4天.(1)求甲、乙两队每天能完成的绿化面积分别是多少m2?(2)学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元.已知学校计划绿化面积1800m2,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?22.列方程解应用题2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达,已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?23.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A超市购买的数量多5个.请求出这种篮球的标价.24.列方程解应用题某商场经市场调查,预计一款夏季童装能获得市场青睐,便花费15000元购进了一批此款童装,上市后很快售罄.该店决定继续进货,由于第二批进货数量是第一批进货数量的2倍,因此单价便宜了10元,购进第二批童装一共花费了27000元.那该店所购进的第一批童装的价格是多少元?25.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?26.积极推行节能减排,倡导绿色出行,“共享单车”、“共享助力车”先后上市,为人们出行提供了方便某人去距离家8千米的单位上班骑“共享助力车”可以比骑“共享单车”少用10分钟已知他骑“共享助力车”的速度是骑“共享单车”的1.5倍,求他骑“共享助力车”上班需多少分钟?27.一辆轿车和一辆货车同时从甲地出发,已知轿车的速度比货车的速度每小时快20千米.当轿车行驶到距甲地360千米的丙地时,货年恰好行驶到距离甲地300千米的乙地,问轿车与货车的速度分别是多少?28.某校为了更好的开展校园综合实践活动,准备购买一批篮球和足球.已知篮球的单价比足球的单价贵40元,花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等.(1)篮球和足球的单价各是多少元?(2)若学校恰好用完1000元购买篮球和足球,则篮球和足球购买的都有的方案有哪几种?29.题目:为了美化环境,某地政府计划对辖区内60km2的土地进付绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.甲同学所列的方程为﹣=2乙同学所列的方程为=1.5×(1)甲同学所列方程中的x表示.乙同学所列方程中的y表示.(2)任选甲、乙两同学的其中一个方法解答这个题目.30.因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?分式方程的应用典型试题综合训练参考答案与试题解析一.选择题(共9小题)1.2018年10月20日“襄阳马拉松”如期举行,本次活动共设置“全马”、“半马”和“健康跑”三个组别在此次活动中,某公司承担了制作600个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务根据题意,下列方程正确的是()A.﹣=10B.﹣=10C.﹣=5D.+10=【分析】直接利用实际平均每天多制作了10个,得出等式进而得出答案.【解答】解:设原计划x天完成,根据题意可得:﹣=10,故选:B.2.甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元,若设甲单位有x人捐款,则所列方程是()A.=+1B.=+1C.=﹣1D.=﹣1【分析】设甲单位有x人捐款,乙单位有(x+50)人捐款,根据甲单位人均捐款数比乙单位多1元列方程.【解答】解:设甲单位有x人捐款,则乙单位有(x+50)人捐款,由题意,得=+1.故选:A.3.“某学校改造过程中整修门口1500m的道路,但是在实际施工时,……,求实际每天整修道路多少米?”在这个题目中,若设实际每天整修道路xm,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多修5m,结果延期10天完成B.每天比原计划多修5m,结果提前10天完成C.每天比原计划少修5m,结果延期10天完成D.每天比原计划少修5m,结果提前10天完成【分析】由x代表的含义找出(x﹣5)代表的含义,再分析所列方程选用的等量关系,即可找出结论.【解答】解:设实际每天整修道路xm,则(x﹣5)m表示:实际施工时,每天比原计划多修5m,∵方程,其中表示原计划施工所需时间,表示实际施工所需时间,∴原方程所选用的等量关系为实际施工比原计划提前10天完成.故选:B.4.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【解答】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.5.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.【分析】设原计划每天施工x米,实际每天施工(x+50)米,根据工作时间=工作总量÷工作效率结合实际比原计划少用3天,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天施工x米,实际每天施工(x+50)米,依题意,得:﹣=3.故选:C.6.某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配加强第一线人力使每天完成的校服比原计划多20%,结果提前4天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服x套,则可列出方程()A.B.C.D.【分析】设原来每天完成校服x套,则实际每天完成校服(1+20%)x套,根据工作时间=工作总量÷工作效率结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,此题得解.【解答】解:设原来每天完成校服x套,则实际每天完成校服(1+20%)x套,依题意,得:=4+.故选:C.7.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做40个所用的时间与师傅做60个所用的时间相同.如果设徒弟每天做x个,那么可列方程为()A.B.C.D.【分析】根据题目中数量关系徒弟做40个所用的时间与师傅做60个所用的时间相同,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:A.8.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.【分析】设甲每小时走xkm,则乙每小时走(x﹣1)km,根据时间=路程÷速度结合甲比乙早到半小时,即可得出关于x的分式方程,此题得解.【解答】解:设甲每小时走xkm,则乙每小时走(x﹣1)km,依题意,得:=+.故选:A.9.某车间加工1200个零件后采用了新工艺,工效提高了50%,这样加工同样多的零件少用10h,求采用新工艺前、后每小时分别加工多少个零件?若设采用新工艺前每小时加工x个零件,则可列方程为()A.=10B.﹣=10C.﹣=10D.=10【分析】设新工艺前每小时分别加工x个零件,则新工艺前加工时间为:;新工艺加工时间为:,然后根据题意列出方程即可.【解答】解:设新工艺前每小时分别加工x个零件,则新工艺前加工时间为:;新工艺加工时间为:可得出:﹣=10故选:B.二.填空题(共10小题)10.甲、乙两个工程队共同完成一项工程,乙队先单独做5天,再由两队合作3天就完成全部工程,已知甲队与乙队单独完成这项工程所需时间之比是3:2,求甲乙两队单独完成此项工程各需多少天?若设甲、乙单独完成此项工程分别需3x天、2x天,则可列方程为+=1.【分析】设甲、乙单独完成此项工程分别需3x天、2x天,根据甲队完成的部分+乙队完成的部分=总工程(单位1),即可得出关于x的分式方程,此题得解.【解答】解:设甲、乙单独完成此项工程分别需3x天、2x天,依题意,得:+=1.故答案为:+=1.11.工程队计划用14天修完一条长2800米的公路,修了一半时发现每天需多修40米才能在规定时间内完成,如果修前一半时,工程队每天修x米,则可列方程+=14.【分析】设工程队每天修x米,根据工作时间=工作总量÷工作效率,即可得出关于x的分式方程,此题得解.【解答】解:设工程队每天修x米,依题意,得:+=14,即+=14.故答案为:+=14.12.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为=.【分析】设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,根据工作时间=工作总量÷工作效率结合甲做90个零件所用的时间与乙做60个零件所用的时间相等,即可得出关于x的分式方程,此题得解.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,依题意,得:=.故答案为:=.13.某圾处理厂日处理垃圾3600吨,实施垃圾分类后,每小时垃圾的处理量比原来提高20%,这样日处理同样多的垃圾就少用3h.若设实施垃圾分类前每小时垃圾的处理量为x吨,则可列方程﹣3=.【分析】设实施垃圾分类前每小时垃圾的处理量为x吨,根据“日处理同样多的垃圾就少用3h”找到等量关系并列出方程.【解答】解:设实施垃圾分类前每小时垃圾的处理量为x吨,根据题意,得﹣3=.故答案是:﹣3=.14.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为﹣=.【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【解答】解:设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:﹣=.故答案是:﹣=.15.为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意,可列方程为=4×.【分析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程.【解答】解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×,故答案是:=4×.16.帐篷厂原计划生产7200顶帐篷,后来为了支援灾区,要求工厂生产的帐篷比原计划多20%,并需要提前4天完成任务.已知实际生产时每天比原计划多生产720顶帐篷,设实际每天生产x顶帐篷,根据题意可列方程为【分析】关键描述语为:“实际每天比原计划每天多生产720顶”;等量关系为:计划完成帐篷的天数﹣实际完成帐篷的天数=4,若设实际每天生产x顶帐篷,则有:.【解答】解:设实际每天生产x顶帐篷根据题意得:.故答案是:.17.甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的,设步行速度为x千米/时,则根据题意可以列出方程﹣=.【分析】设步行速度为x千米/时,则骑自行车的速度为3x千米/时,根据时间=路程÷速度结合骑自行车比步行少用半小时,即可得出关于x的分式方程,此题得解.【解答】解:设步行速度为x千米/时,则骑自行车的速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.18.新能源汽车环保节能,越来越受到消费者的喜爱.某品牌新能源汽车2017年销售总额为500万元,2018年销售总额为960万元,2018年每辆车的销售价格比2017年降低1万元,2018年销售量是2017年销售量的2倍.求2018年每辆车的销售价格是多少万元?若设2018年每辆车的销售价格x万元,则可列出方程为,.【分析】设2018年每辆车的销售价格x万元,则2017的销售价格为(x+1)万元/辆,根据“2018年销售量是2017年销售量的2倍”可列方程.【解答】解:设2018年每辆车的销售价格x万元,根据题意列方程得:,故答案为:.19.某工程队依据城市规划轨道交通计划,为地铁二号线修建一条长4800米的隧道.在打通1200米隧道后,为了尽快减少施工对城市交通造成的影响,该工程队增加了人力,故现在每天打通隧道的长度是原来的 1.2倍,最终40天完成任务.若设该工程队原来每天打通隧道x米,则列出的方程为:+=40.【分析】设该工程队原来每天打通隧道x米,则现在每天打通隧道1.2x米,根据工作时间=工作总量÷工作效率,即可得出关于x的分式方程,此题得解.【解答】解:设该工程队原来每天打通隧道x米,则现在每天打通隧道1.2x米,依题意,得:+=40.故答案为:+=40.三.解答题(共11小题)21.某校为美化校园,计划安排甲乙两个施工队共同进行绿化.已知甲队每天完成绿化面积是乙队每天完成绿化面积的2倍;且甲乙两队分别完成400m2的绿化面积时,甲队比乙队少用4天.(1)求甲、乙两队每天能完成的绿化面积分别是多少m2?(2)学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元.已知学校计划绿化面积1800m2,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2的绿化面积时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.22.列方程解应用题2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达,已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?【分析】设大巴车的速度x公里/小时,则私家车的速度是1.2x公里/小时,根据时间=路程÷速度结合开私家车比乘大巴车少用5分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设大巴车的速度x公里/小时,则私家车的速度是1.2x公里/小时,依题意,得:﹣=,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:大巴车的速度是60公里/小时.23.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A超市购买的数量多5个.请求出这种篮球的标价.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.24.列方程解应用题某商场经市场调查,预计一款夏季童装能获得市场青睐,便花费15000元购进了一批此款童装,上市后很快售罄.该店决定继续进货,由于第二批进货数量是第一批进货数量的2倍,因此单价便宜了10元,购进第二批童装一共花费了27000元.那该店所购进的第一批童装的价格是多少元?【分析】设该店所购进的第一批童装的价格是x元/件,则购进的第二批童装的价格是(x﹣10)元/件,根据数量=总价÷单价结合第二批进货数量是第一批进货数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程的应用评价作业
(12分钟 满分:100分)
一、[必做题](60分)
1、学校用420元钱购买“84”消毒液,经过讨价还价,每瓶比标价便宜了0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出的方程是( )
205.0420420.
=--x x A 204205.0420.=--x x B 5.020420420.=--x x C 5.042020420.=--x x D 2、甲、乙两人同时从A 地出发,骑自行车行30KM 到B 地,甲比乙每小时少骑3KM ,结果乙早到40分钟,若设乙每小时走xKM 则可列方程( )
3233030.
=--x x A 3233030.=+-x x B 3230330.=-+x x C 3230330.=--x x D 3、甲计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加入此项工作,且甲、乙两人的工作效率相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )
A 、8
B 、7
C 、6
D 、5
4、甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙。
那么甲的速度是乙的速度的 倍。
5、一个分数的分母比它的分子大5,如果这个分数的分子加上14,分母减去1,所得的分数是原分数的倒数,求这个分数。
二、[选做题](20分)
6、2008年5.12汶川大地震,我校师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款的人数比第一天捐款的人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?
三、[思考题]
7、(2009•桂林)(20分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成
该工程省钱?。