大学物理上册复习试卷

合集下载

大学普通物理复习题(10套)带答案

大学普通物理复习题(10套)带答案

普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。

3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。

(选填:变大、变小、不变。

)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。

33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。

二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。

(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。

大学物理期末考试题(上册)10套附答案

大学物理期末考试题(上册)10套附答案

n 3上海电机学院 200_5_–200_6_学年第_二_学期《大学物理 》课程期末考试试卷 1开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟考生姓名: 学号: 班级 任课教师一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为3262xt t m ,则质点在运动开始后4s 内位移的大小为___________,在该时间内所通过的路程为_____________。

2.如图所示,一根细绳的一端固定,另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________,法向加速度大小为____________。

(210g m s =)。

3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为:2155.010cos(5t )6x m 、2113.010cos(5t )6x m 。

则其合振动的频率为_____________,振幅为 ,初相为 。

4、如图所示,用白光垂直照射厚度400d nm 的薄膜,若薄膜的折射率为 21.40n ,且12n n n 3,则反射光中 nm ,波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。

5.频率为100Hz ,传播速度为sm 300的平面波,波 长为___________,波线上两点振动的相差为3π,则此两点相距 ___m 。

6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。

二、选择題(共18分,每小题3分) 1.一质点运动时,0=n a ,ta c (c 是不为零的常量),此质点作( )。

(A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D )不能确定 2.质量为1mkg 的质点,在平面内运动、其运动方程为x=3t ,315t y -=(SI 制),则在t=2s 时,所受合外力为( )(A) 7j; (B) j 12- ; (C) j 6- ; (D) j i +6 3.弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的41时,其动能为振动 总能量的( )(A )916 (B )1116 (C )1316 (D )15164. 在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍 射角为300的方向上,若单逢处波面可分成3个半波带,则缝宽度a 等于( ) (A.) λ (B) λ (C) 2λ (D) 3λ5. 一质量为M 的平板车以速率v 在水平方向滑行,质量为m 的物体从h 高处直落到车子里,两者合在一起后的运动速率是( ) (A.)M M mv+ (B).M m 2v gh + (C). m 2gh (D).v6. 一平面简谐波在弹性媒质中传播,媒质中的某质元从其平衡位置运动到最大位移处的过程中( )(A) 它的动能转化为势能(B) 它的势能转化为动能(C) 它从相邻的媒质质元获得能量,其能量逐渐增加 (D)它从相邻的媒质质元传出能量,其能量逐渐减少 三、計算題(52分)1、(12分)如图所示,路灯离地面高度为H ,一个身高为h 的人,在灯下水平路面上以匀速度0v 步行,求他的头顶在地面上的影子移动的速度大小。

大学物理上册复习题

大学物理上册复习题

复习题一、简答题 1.|Δ|与Δr 有无不同?||和有无不同?||和有无不同? 2.简述简谐振动与平面简谐波的能量特点。

3. 刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同?刚体定轴转动的特点是:轴上所有各点都保持不动,轴外所有各点都在作圆周运动,且在同一时间间隔内转过的角度都一样;刚体上各质元的角量相同,而各质元的线量大小与质元到转轴的距离成正比。

因此各质元的角速度相同,而线速度、向心加速度、切向加速度不一定相同。

4.狭义相对论的相对性原理的内容是什么?5.简述狭义相对论的两条基本原理的内容6.简述多普勒效应。

7.狭义相对论的时间和空间有什么特点?8.两列波产生干涉需要具备哪些条件?9.用热力学第一定律说明,有没有可能:1)对物体加热而物体的温度不升高?2) 系统与外界不作任何热交换,而使系统的温度发生变化?二、判断题1.一对作用力和反作用力的功之和一定为零。

2.牛顿运动定律成立的参照系叫非惯性参照系。

3.牛顿运动定律只在惯性参照系中成立。

4.一对作用力和反作用力的冲量之和不一定为零。

5.牛顿运动定律在所有的参照系中都成立。

6.一对作用力和反作用力对同一轴的力矩之和不为零。

7.气体处于平衡态时,分子的每一个自由度上都具有的平均动能。

8.温度反映系统大量分子无规则运动的剧烈程度。

9.理想气体的温度和压强都是对大量分子而言的。

10.P-V 图上的一个点代表一个平衡态,一条连续曲线代表一个准静态过程。

11.热平衡态是指系统的宏观性质不随时间变化的稳定状态。

12.理想气体的内能仅仅是温度的单值函数。

判断题:FFTFFFTTTTFT三、填空题1. 某质点在力(SI )的作用下沿x 轴作直线运动。

在从x=0移动到x=10m 的过程中,力所做功为 。

因为F 与X 成一次函数关系所以可以用平均作用力来表示F =(4+54)/2=29N 位移S =10M所以W =FS =290Jr dtr d dt dr dt v d dt dv 1kT 2i x F )54(+=F当然也可以作出F 关于X 的图像:所包围的面积就是功W =(4+54)×10/2=290J2.一物体在水平面内从A 点出发,向东走5m ,再向北走5m ,历时5S ,则它在这段时间里发生的位移大小是,平均速率是,平均速度大小是。

大学物理上册试卷及答案(完整版)

大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总《大学物理》(上)统考试题一、填空题(52分)1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________;(2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2214πt +=θ (SI) 则其切向加速度为t a =__________________________.3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________.4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v=_______.6、一电子以0.99 c 的速率运动(电子静止质量为9.11×10-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________.7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比热c = 501.6 J ·kg -1·K -1)8、某理想气体在温度为T = 273 K 时,压强为p =1.0×10-2 atm ,密度ρ = 1.24×10-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.013×105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________.11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.12、折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.13、平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________.14、一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.15、用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上,以光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的5倍,则入射光中,自然光强I 0与线偏振光强I 之比为__________.16、假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.二、计算题(38分)17、空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)18、3 mol 温度为T 0 =273 K 的理想气体,先经等温过程体积膨胀到原来的5倍,然后等容加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为Q = 8×104 J .试画出此过程的p -V 图,并求这种气体的比热容比γ = C p / C V 值. (普适气体常量R =8.31J·mol -1·K -1)19、一质量为0.20 kg 的质点作简谐振动,其振动方程为 )215cos(6.0π-=t x (SI).求:(1) 质点的初速度; (2) 质点在正向最大位移一半处所受的力.17、20、一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程; (2) 求此波的波动表达式;(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.21、在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.22、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?三、问答题(5分)23、两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球.它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?《大学物理》(下)物探统考试题一、填空题1,如图所示,在边长为a的正方形平面的中垂线上,距中心0点21a处,有一电量为q的正点电荷,则通过该平面的电场强度通量为____________.2_______________________。

大学基础教育《大学物理(上册)》真题练习试题 附解析

大学基础教育《大学物理(上册)》真题练习试题 附解析

大学基础教育《大学物理(上册)》真题练习试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。

2、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。

3、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。

4、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。

一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。

5、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。

6、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。

抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。

()7、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。

大学物理(上)复习要点及重点试题

大学物理(上)复习要点及重点试题

刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。

大学物理1试卷

大学物理1试卷

大学物理1试卷11。

一质点在力F = 5m(5- 2t )(SI)的作用下,t=0时从静止开始作直线运动,式中m为质点的质量,t为时间,则当t = 5 s时,质点的速率为(A)50 m·s—1.。

(B) 25 m·s-1.(C) 0.(D) -50 m·s—1.[ ]2一人造地球卫星到地球中心O的最大距离和最小距离分别是R A和R B.设卫星对应的角动量分别是L A、L B,动能分别是E KA、E KB,则应有(A)L B〉L A,E KA〉E KB.(B)L B > L A,E KA = E KB.(C) L B = L A,E KA = E KB.(D) L B < L A,E KA = E KB.(E) L B = L A,E KA〈E KB.[ ] 3.(质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ,顺时针.(B) ,逆时针.(C) ,顺时针.(D),逆时针.[]4.根据高斯定理的数学表达式可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.[]5. 一空心导体球壳,其内、外半径分别为R1和R2,带电荷q,如图所示.当球壳中心处再放一电荷为q的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A).(B) .(C)。

(D).[]6. 电流由长直导线1沿半径方向经a点流入一电阻均匀的圆环,再由b点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I,圆环的半径为R,且a、b与圆心O三点在一直线上.若载流直导线1、2和圆环中的电流在O点产生的磁感强度分别用、和表示,则O点磁感强度的大小为(A)B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B1≠0、B2≠0,但,B3 = 0.(C)B≠0,因为虽然,但B3≠0.(D)B≠0,因为虽然B3 = 0,但.[]7.两个同心圆线圈,大圆半径为R,通有电流I1;小圆半径为r,通有电流I2,方向如图.若r〈〈R(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) .(B).(C).(D) 0.[]8。

大学物理上试卷(有答案)

大学物理上试卷(有答案)

一、选择题(每题3分,共10题)1.一质点在平面上作一般曲线运动,其瞬时速度为υ,瞬时速率υ为,某一段时间内的平均速度为υ ,平均速率为υ,它们之间的关系必定有:( D )A υ=υ,υ= υ B υ≠υ, υ=υC υ ≠υ,υ ≠υD υ =υ,υ ≠υ 3.一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. ( A ) A 动量增量大小为0v m,方向竖直向下. B 动量增量大小为v m ,方向竖直向上. C 动量增量大小为0v m 2 ,方向竖直向下. D 动量增量大小为v m 2 ,方向竖直向上.4.地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的轨道角动量为( A )。

A GMR mB R GMmC R GMmD R GMm25.一刚体以每分钟60转绕Z 轴做匀速转动(ω沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r 543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( C )A υ =94.2i +125.6j +157.0k ;B υ =34.4k ;C υ=-25.1i +18.8j ; D υ=-25.1i -18.8j ;6.刚体角动量守恒的充分而必要的条件是:( B )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变 7.一质点在X 轴上作简谐振动,振幅A=4cm 。

周期T=2s 。

其平衡位置取作坐标原点。

若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( B )。

A 1sB 32sC 34s D 2s8.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( D )。

大学物理复习题及解答

大学物理复习题及解答

大学物理(一)复习题及解答一、选择题1.某质点的运动方程为)(6532SI t t x +-=,则该质点作( )。

A 、匀加速直线运动,加速度沿x 轴正方向;B 、匀加速直线运动,加速度沿x 轴负方向;C 、变加速直线运动,加速度沿x 轴正方向;D 、变加速直线运动,加速度沿x 轴负方向。

2.下列表述中正确的是( )。

A 、质点沿x 轴运动,若加速度0<a ,则质点必作减速运动;B 、在曲线运动中,质点的加速度必定不为零;C 、若质点的加速度为恒矢量,则其运动轨道必为直线;D 、当质点作抛体运动时,其法向加速度n a 、切向加速度t a 是不断变化的;因此, 22t n a a a +=也是不断变化的。

3.下列表述中正确的是:A 、质点作圆周运动时,加速度方向总是指向圆心;B 、质点作抛体运动时,由于加速度恒定,所以加速度的切向分量和法向分量也是恒定的;C 、质点作曲线运动时,加速度方向总是指向曲线凹的一侧;D 、质点作曲线运动时,速度的法向分量总是零,加速度的法向分量也应是零。

4.某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数;当t =0时,初速为0v ,则速度v 与时间t 的函数关系是( )。

A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v -=。

5.质点在xoy 平面内作曲线运动,则质点速率的正确表达式为( )。

A 、dt dr v =;B 、dt r d v =;C 、dtds v =;D 、22)()(dt dy dt dx v += ;E 、dt r d v =。

6.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =;(2)v dt dr =;(3)v dtds =;(4)t a dt v d = |; A 、只有(1)、(4)是对的; B 、只有(2)、(4)是对的;C 、只有(2)是对的;D 、只有(3)是对的。

大学物理试卷及答案解析1

大学物理试卷及答案解析1

大学物理试卷班级:_____________ 姓名:_____________ 学号:_____________日期:__________年_______月_______日成绩:_____________一、选择题:(每题3分,共33分)1、在恒定不变的压强下,气体分子的平均碰撞频率Z与气体的热力学温度T的关系为(A) Z与T无关.(B) Z与T成正比.(C) Z与T成反比.(D) Z与T成正比.[ ]2、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C)(2)、(4).(D)(1)、(4).[]3、如图,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体作功与吸收热量的情况是:(A) b1a过程放热,作负功;b2a过程放热,作负功.pO Vb12ac(B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功. (C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功.[ ]4、如图所示,设某热力学系统经历一个由c →d →e 的过程,其中,ab 是一条绝热曲线,a 、c 在该曲线上.由热力学定律可知,该系统在过程中(A) 不断向外界放出热量.(B) 不断从外界吸收热量.(C) 有的阶段吸热,有的阶段放热,整个过程中吸的热量等于放出的热量.(D) 有的阶段吸热,有的阶段放热,整个过程中吸的热量大于放出的热量.(E) 有的阶段吸热,有的阶段放热,整个过程中吸的热量小于放出的热量. [ ]5、气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,问气体分子的平均速率变为原来的几倍? (A) 22/5. (B) 22/7.(C) 21/5. (D) 21/7. [ ]6、一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J ,此摆作微小振动的周期为abcd eVpO(A) g l π2. (B) gl 22π. (C) g l 322π. (D) gl 3π. [ ]7、一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A) T /4. (B) 2/T . (C) T . (D) 2 T . (E) 4T . [ ]8、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 (A) π23. (B) π.(C) π21. (D) 0. [ ]9、在简谐波传播过程中,沿传播方向相距为λ21(为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]10、两相干波源S 1和S 2相距 /4,(为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) π21. (C) . (D)π23. [ ]11、若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:(A)]21)10(2cos[10.01π+-π=x t y]21)10(2cos[10.02π++π=x t y (SI).(B) ]50.0)10(2cos[10.01π--π=x t y]75.0)10(2cos[10.02π++π=x t y (SI). (C) ]21)10(2cos[10.01π+-π=x t y S 1S 2Pλ/4xt O A/ -Ax 1x 2]21)10(2cos[10.02π-+π=x t y (SI). (D) ]75.0)10(2cos[10.01π+-π=x t y]75.0)10(2cos[10.02π++π=x t y (SI). [ ]二、填空题:(共25分)12、两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为 30 K ,当水银滴在正中不动时,N 2和O 2的温度为2N T = ___________,2O T =__________.(N 2气的摩尔质量M mol =28×10-3 kg ·mol 1)13、在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 ________________分布律来描述.如果气体处于外力场中,气体分子在空间的分布规律,可用__________分布律来描述.14、 图示的两条f (v )~v 曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线.由此可得氢气分子的最概然速率为________________;氧气分子的最概然速率为________________.v (m./s )2000O15、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.16、一平面余弦波沿Ox 轴正方向传播,波动表达式为 ])(2cos[φλ+-π=xT t A y , 则x = -处质点的振动方程是____________________________________;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标 轴,该波的波动表达式是_______________________________________________.17、如图所示,在平面波传播方向上有一障碍物AB ,根据惠更斯原理,定性地绘出波绕过障碍物传播的情况.18、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________. (真空介电常量 0 = 8.85×10-12 F/m ,真空磁导率0 =4×10-7 H/m )x (cm)t (s)O 12波线波阵面A Bλ三、计算题:(共42分)19、有 2×103 m 3刚性双原子分子理想气体,其内能为6.75×102 J .(1) 试求气体的压强; (2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度.(玻尔兹曼常量k =1.38×1023 J ·K1)20、汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?21、如图所示,有一定量的理想气体,从初状态a (p 1,V 1)开始,经过一个等体过程达到压强为p 1/4的b 态,再经过一个等压过程达到状态c ,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功W 和所吸的热量Q .22、如图,劲度系数为k 的弹簧一端固定在墙上,另一端连接一质量为M 的容器,容器可在光滑水平面上运动.当弹簧未变形时容器位于O 处,今使容器自O 点左侧l 0处从静止开始运动,每经过O 点一次时,从上方滴管中滴入一质量为m 的油滴,求: (1) 容器中滴入n 滴以后,容器运动到距O 点的最远距离; (2) 容器滴入第(n +1)滴与第n 滴的时间间隔.p p 1p 1/4V 1a c bMxl 0 O大 学 物 理 试 卷 解 答一、选择题:(共33分)二、填空题:(共25分)12、 210 K 2分240 K 2分13、 麦克斯韦 2分玻尔兹曼 2分14、 2000 m ·s -1 1分 500 m ·s -1 2分15、 0.5(2n +1) n = 0,1,2,3,… 1分 n n = 0,1,2,3,… 1分 0.5(4n +1) n = 0,1,2,3,… 1分16、 ]/2cos[1φ+π=T t A y 2分 ])//(2cos[2φλ++π=x T t A y 3分17、 答案见图子波源、波阵面、波线各3分占1分18、 ])/(cos[754π+--=c z t E y ω (SI) 3分三、计算题:(共42分)19(10分)、解:(1) 设分子数为N .据 E = N (i / 2)kT 及 p = (N / V )kT得 p = 2E / (iV ) = 1.35×105 Pa 4分(2) 由 kT N kT Ew2523=得 ()21105.75/3-⨯==N E w J 3分又 kT N E 25=得 T = 2 E / (5Nk )=362k 3分20(10分)、解:据 iRT M M E mol 21)/(=, RT M M pV mol )/(= 2分 得 ipV E 21=变化前 11121V ip E =, 变化后22221V ip E = 2分绝热过程 γγ2211V p V p =即1221/)/(p p V V=γ 3分题设 1221p p =, 则 21)/(21=γV V 即 γ/121)21(/=V V∴)21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ3分21(10分)、解:设c 状态的体积为V 2,则由于a ,c 两状态的温度相同,p 1V 1= p 1V 2 /4 故 V 2 = 4 V 1 2分 循环过程 ΔE = 0 , Q =W . 而在a →b 等体过程中功 W 1= 0. 在b →c 等压过程中功W 2 =p 1(V 2-V 1) /4 = p 1(4V 1-V 1)/4=3 p 1V 1/4 2分在c →a 等温过程中功W 3 =p 1 V 1 ln (V 2/V 1) = -p 1V 1ln 4 2分 ∴ W =W 1 +W 2 +W 3 =[(3/4)-ln4] p 1V 1 1分 Q =W=[(3/4)-ln4] p 1V 1 3分22(12分)、解:(1) 容器中每滴入一油滴的前后,水平方向动量值不变,而且在容器回到O 点滴入下一油滴前, 水平方向动量的大小与刚滴入上一油滴后的瞬间后的相同。

大学物理上册复习题1

大学物理上册复习题1

一、单项选择题 1、对质点系有以下几种说法:①质点系总动量的改变与内力无关;②质点系总动能的改变与内力无关;③质点系机械能的改变与保守内力无关。

在上述 说法中: ( B ) A. 只有①是正确的; B. ①、③ 是正确的; C. ①、②是正确的; D. ②、③ 是正确的。

2、合外力对质点所作的功一定等于质点: (B ) A. 动量的增量; B. 动能的增量; C. 角动量的增量; D. 势能增量的负值。

3、一刚体绕定轴转动的转动惯量: ( C ) A. 只与转轴位置有关; B. 只与质量分布有关,与转轴位置无关; C. 与转轴位置和质量分布都有关; D. 与转轴位置和质量分布都无关。

4、关于势能的值,下列叙述中正确的是: ( D )A.重力势能总是正的;B. 弹性势能总是正的;C.万有引力势能总是负的;D. 势能的正负只是相对于势能零点而言。

5、弹簧振子作简谐振动时,位移与加速度的关系是: ( D ) A. 大小成反比且方向相同; B. 大小反正比且方向相反;C. 大小成正比且方向相同;D. 大小成正比且方向相反。

6、一质点沿X 轴作简谐振动,其振动方程用正弦函数表示。

如果t = 0时,该质点 处于平衡位置且向X 轴正方向运动,那么它的振动初相为: ( A ) A. 0 ; B. π/2 ; C. –π/2 ; D. π 。

7、波速为2m/s 的平面余弦波沿X 轴的负方向传播。

如果这列波使位于原点的质点作y=3cos t 2π (m )的振动,那么,位于x=2m 处质点的振动方程为: ( D )A. y=3cos t 2π;B. y= -3cos t 2π;C. y=3sin t 2π;D. y= -3sin t 2π 。

8、摩尔数相同的三种气体,He 、N 2、CO 2(都作为理想气体),它们从相同的初始状态出发,都经过等体吸热过程,并且温度的升高量△T 相同,则它们吸收的热量为:( C ) A. Q He =Q N2=Q CO2 ; B. Q He ﹥Q N2﹥Q CO2 ; C. Q He ﹤Q N2﹤Q CO2 ; D. Q He =Q N2﹤Q CO2 。

大学物理1考试试卷及答案解析

大学物理1考试试卷及答案解析

第 3 页 共 14 页
大学物理 1 总复习资料
第三章 动量守恒定律和能量守恒定律
1. 对功的概念有以下几种说法: (1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作
的功为零.;(3)作用力和反作用力大小相等、方向相反,两者所做功的代数和必为零。其中正 确的说法是 [ B ]
示. 当圆环以恒定角速度w 转动,小环偏离圆环转轴而且相对圆环静止时, 小环所在处圆环 半径偏离竖直方向的角度q 为[ B ]
(A) q = π 2 (B) q = arccos(g w 2R)
R
(C) q = arctan(w 2R g) (D) 需由小环质量决定
5. 一只质量为 m 的猴子抓住一质量为 M 的直杆,杆与天花板用一线相连,若悬线突然断开
13. 在相对地面静止的坐标系内, A、B 二船都以 3ms­1 的速率匀速行驶, A 船沿 x 轴正向,
B 船沿 y 轴正向,今在船 A 上设置与静止坐标系方向相同的坐标系( x、y 方向单位矢量用
vv
vv
i , j 表示), 那么在 A 船上的坐标系中, B 船的速度为: - 3i + 3 j (m∙s­1)
A2 1
(C) = + (D) v = - +
t v t v 0
2
0
v2
2
v v 0
0
9. 有一质点沿 x 轴作直线运动,t 时刻的坐标为 x = 5t2 ­ 3t3 (SI). 则(1)在第 2 秒内的平
均速度为 - 6m/s ;(2)第 2 秒末的瞬时速度为 -16 m/s ;(3)第 2 秒末的加速度 - 26 m/s 2 .
大学物理 1 总复习资料

大学物理复习

大学物理复习

物理上册复习题集 一、力学习题2. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 - 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程. 7. 质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间, A 的加速度大小a A =_______,B 的加速度的大小a B =_______.Bm ACθ8.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比T : T ′=____________________.9.θ l m一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_______________; (2) 摆锤的速率v=_______________. 12. 一光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]αm13. 质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°. [ ]15. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]AMBF16. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]18. 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]22.一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.一、力学答案2. 解:(1) 5.0/-==∆∆t x v m/s 1分 (2) v = d x /d t = 9t - 6t 2 1分v (2) =-6 m/s 1分(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2分7. 0 2分 2 g 2分 8. l/cos 2θ 3分 13 B 15 C 16 C 18. C 22. 8 rad ·s 1 3分静电场1. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球心为r 的P 点处电场强度的大小与电势分别为:OR 1R 2Pr Q(A) E =204r Q επ,U =r Q 04επ.(B) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-πr R Q 11410ε. (C) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-π20114R r Q ε. (D) E =0,U =204R Qεπ. [ ]4. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. [ ]6 图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(A) 半径为R 的均匀带电球面. (B) 半径为R 的均匀带电球体. (C) 半径为R 、电荷体密度ρ=Ar (A 为常数)的非均匀带电球体.(D) 半径为R 、电荷体密度ρ=A/r (A 为常数)的非均匀带电球体.[ ]10.O ErE /1∝ rR图中曲线表示一种轴对称性静电场的场强大小E 的 分布,r 表示离对称轴的距离,这是由______________ ______________________产生的电场.14. 一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________. 15. 一半径为R 的绝缘实心球体,非均匀带电,电荷体密度为ρ=ρ 0 r (r 为离球心的距离,ρ0为常量).设无限远处为电势零点.则球外(r >R )各点的电势分布为U =_____ r R 0404ερ _____________.16.O ErE /1∝ rR图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 成反比关系,该曲线可描述_无限长均匀带电直线______________的电场的E~r 关系,也可描述___正点电荷 __________的电场的U~r 关系.(E 为电场强度的大小,U 为电势)17.LdqP如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.18 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ]25.A B+σσ1σ2一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ.(B) σ 1 = σ21-, σ 2 =σ21+.(C) σ 1 = σ21-, σ 1 = σ21-.(D) σ 1 = - σ, σ 2 = 0. [ ]26. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 32r U R . (B) R U 0.(C) 20r RU . (D) r U 0. [ ]27.dbahh如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ.(C) 0εσh . (D) 02εσh. [ ]28. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷. (C) 高斯面的D 通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]31. 如果某带电体其电荷分布的体密度ρ 增大为原来的2倍,则其电场的能量变为原来的 (A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ ]32.qqR 1R 2一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A) 104R q επ . (B) 204R qεπ .(C) 102R q επ . (D) 20R qε2π . [ ]36. 一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =___)4/(21R q π-___________.38. 地球表面附近的电场强度为 100 N/C .如果把地球看作半径为6.4×105m 的导体球,则地球表面的电荷Q =__ 4.55×105 C _________________. (2/C m N 10941290⋅⨯=πε)40. 地球表面附近的电场强度约为 100 N /C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面带__负___电,电荷面密度σ =__8.85×10-10 C/m 2 ________. (真空介电常量 ε0 = 8.85×10-12 C 2/(N ·m 2) )41.12σdab厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.43 半径分别为R 1和R 2 (R 2 > R 1 )的两个同心导体薄球壳,分别带有电荷Q 1和Q 2,今将内球壳用细导线与远处半径为r 的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q .二、静电场答案1 C 4 B 6 D 18 B 25 B 26 C 27 A 28 C 31 C 32 D 10. 半径为R 的无限长均匀带电圆柱面14. R σ / ε0 3分15.r R 0404ερ 3分 16. 无限长均匀带电直线 2分正点电荷 2分17. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q +π=04ε3分 方向沿x 轴,即杆的延长线方向.36. )4/(21R q π- 38. 4.55×105 C 40. 负 8.85×10-10 C/m 241. 解:选坐标如图.由高斯定理,平板内、外的场强分布为:12σd abxOE = 0 (板内) )2/(0εσ±=x E (板外) 2分1、2两点间电势差⎰=-2121d xE U U xxx d b d d d a d 2d 22/2/02/)2/(0⎰⎰+-+-+-=εσεσ)(20a b -=εσ43. 解:设导体球带电q ,取无穷远处为电势零点,则导体球电势:r qU 004επ=2分 内球壳电势:10114R q Q U επ-=2024R Q επ+2分 二者等电势,即r q04επ1014R q Q επ-=2024R Q επ+2分解得 )()(122112r R R Q R Q R r q ++=2分三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90.(B) 1.00.(C) 1.11.(D) 1.22.[]2. AII边长为l的正方形线圈中通有电流I,此线圈在A点(见图)产生的磁感强度B为(A) lIπ42μ.(B) lIπ22μ.(C) lIπ2μ.(D) 以上均不对.[]3.aIIIaaaa2aIP QOIa通有电流I的无限长直导线有如图三种形状,则P,Q,O各点磁感强度的大小B P,B Q,B O间的关系为:(A) B P> B Q > B O . (B) B Q> B P > B O.(C) B Q > B O> B P.(D) B O > B Q > B P.[]4.aOBbr(A)OBbr(C)aOBbr(B)aOBbr(D)a无限长载流空心圆柱导体的内外半径分别为a、b,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r的关系定性地如图所示.正确的图是[]7. a bdI1OI2c电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B、3B ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ ]11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场______ ____________________. (2) 圆线圈轴线上各点的磁场________13.B xA aL y P如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ____________.(2) 磁感强度B 沿图中环路L 的线积分=⎰⋅L l B d _____ ________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为_____________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电 流为_________________________.15.b ⊗⊙ c I I c a两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB d 等于:________ ____________________________(对环路a )._______________ ____________________(对环路b ). __________________________________(对环路c ).16.a 0v设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v方向相反 2分③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI1 2 34 R ROIa β2一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B +++= ∵ 1B 、4B均为0,故32B B B += 2分)2(4102R I B μ= 方向 ⊗ 2分242)s i n (s i n 401203R Ia IB π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β2/2)4/s i n (s i n1-=π-=β ∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分19.ISRl OO ′S一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学物理学考试真题试卷

大学物理学考试真题试卷

大学物理学考试真题试卷第一部分:选择题(共30题,每题2分,共60分)在每题的括号内写出你认为正确答案的字母。

1. 在物理学中,力常用哪个字母表示?()A. FB. PC. ED. M2. 车辆在匀速行驶时,哪个物理量为零?()A. 加速度B. 速度C. 位移D. 质量3. 以下哪个物理量是标量?()A. 加速度B. 力C. 速度D. 位移4. 哪个物理量可以通过测量长度和时间得到?()A. 加速度B. 力C. 速度D. 位移5. 哪个物理量可以通过测力计得到?()A. 加速度B. 力C. 速度D. 位移6. 物体的重力加速度在地球上的近似取值是多少?()A. 10 m/s^2B. 5 m/s^2C. 20 m/s^2D. 9.8 m/s^27. 惯性是指物体的哪个性质?()A. 质量B. 速度C. 加速度D. 长度8. 根据牛顿第一定律,当作用在物体上的合外力为零时,物体的运动状态将保持不变。

这个定律也被称为什么定律?()A. 质量守恒定律B. 动量守恒定律C. 运动定律D. 能量守恒定律9. 牛顿第二定律可以表示为哪个等式?()A. F = maB. m = FaC. a = F/mD. Fm = a10. 力的单位是什么?()A. 千克B. 米C. 秒D. 牛顿11. 一个物体质量为3 kg,在重力作用下所受的重力为多少牛顿?()A. 9.8 NB. 29.4 NC. 0.3 ND. 30 N12. 如图,一质量为2 kg的物体以3 m/s^2的加速度受到一个力F的作用。

求力的大小。

()13. 如图,一个物体受到一个10 N的力和一个5 N的力作用于同一方向,请计算物体的合力大小。

()14. 如图,一个物体受到一个10 N的力和一个5 N的力作用于相反方向,请计算物体的合力大小。

()15. 一个物体质量为2 kg,在重力作用下所受的重力为多少牛顿?()A. 9.8 NB. 29.4 NC. 0.3 ND. 30 N16. 当一个物体受到的合外力增大时,其加速度会如何变化?()A. 加速度增大B. 加速度减小C. 加速度不变D. 无法确定17. 在恒力作用下,质点的位移与哪个物理量成正比?()A. 加速度B. 速度C. 力D. 时间18. 哪个定律描述了两个物体之间互相作用的力相等、方向相反的性质?()A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 费马定律19. 一个物体的质量为3 kg,所受的加速度为2 m/s^2,则作用在该物体上的合力大小为多少牛顿?()20. 一个质量为5 kg的物体所受的合力为20 N,则该物体的加速度大小为多少 m/s^2?()21. 一个物体的质量为5 kg,所受的合力为20 N,则该物体的加速度大小为多少 m/s^2?()22. 力和加速度的关系可以由哪个等式表示?()A. F = maB. m = FaC. a = F/mD. Fm = a23. 在等速圆周运动中,物体的加速度指向何方向?()A. 向心方向B. 切线方向C. 与速度方向相反D. 与加速度无关24. 矢量的乘法有哪两种?()A. 叉乘和点乘B. 双乘和单乘C. 外乘和内乘D. 向量和标量乘25. 已知一个物体的加速度为2 m/s^2,速度为3 m/s,请计算该物体的位移。

大学物理试题和答案

大学物理试题和答案

《大学物理》试题及答案一、填空题(每空1分,共22分)1.基本的自然力分为四种:即强力、、、。

2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。

3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。

4.静电场的环路定理公式为:。

5.避雷针是利用的原理来防止雷击对建筑物的破坏。

6.无限大平面附近任一点的电场强度E为7.电力线稀疏的地方,电场强度。

稠密的地方,电场强度。

8.无限长均匀带电直导线,带电线密度+λ。

距离导线为d处的一点的电场强度为。

9.均匀带电细圆环在圆心处的场强为。

10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。

求其后它们的运动速度为________m/s。

11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆的转轴转动时,它的转动惯量为_____Kgm2。

13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。

14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。

在距球心6厘米处的电势为____________V。

15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。

此时线圈所受的磁力矩最。

16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,则12/B B = 。

17.半径为R 的导线圆环中载有电流I ,置于磁感应强度为B 的均匀磁场中,若磁场方向与环面垂直,则圆环所受的合力为 。

二、选择题(每题2分,共14分)1.电量为q 的粒子在均匀磁场中运动,下列说法正确的是( )。

广西大学《大学物理》2020-2021学年第一学期期末复习题

广西大学《大学物理》2020-2021学年第一学期期末复习题

广西大学2020-2021学年第一学期期末复习题《大学物理》第1章质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是(D)(A)单摆的运动。

(B)匀速率圆周运动。

(C)行星的椭圆轨道运动。

(D)抛体运动。

(E)圆锥摆运动。

2.下面表述正确的是(B )(A)质点作圆周运动,加速度一定与速度垂直;(B)物体作直线运动,法向加速度必为零;(C)轨道最弯处法向加速度最大;(D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是(C)(A)质点的速度不变;(B)质点的加速度不变(C)质点的角速度不变;(D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r ,的端点处,其速度大小为(D)()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA 5.一质点在平面上运动,运动方程为:j t i t r 222+=,则该质点作(B)(A)匀速直线运动(B)匀加速直线运动(C)抛物线运动(D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是(B)(A)dtdrv =(B)dtdsv =(C)dtdva =(D)dtvd a t =7.某质点的运动方程为3723+-=t t X (SI),则该质点作[D ](A)匀加速直线运动,加速度沿x 轴正方向;(B)匀加速直线运动,加速度沿x 轴负方向;(C)变加速直线运动.加速度沿x 轴正方向;(D)变加速直线运动,加速度沿x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在(A )(A)加速(B)减速(C)匀速(D)静止1.D 2.B 3.C 4.D5.B,6B,7A 8A二、填空题1.一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r )64(22-+=,t =1s ,加速度j a8=,轨迹方程为x x y 32-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理上册复习试卷(1)一. 选择题 (每题3分,共30分)1.一质点沿x 轴运动,其速度与时间的关系为:24m/s t =+v ,当3s t =时,质点位于9m x =处,则质点的运动方程为(A) 31412m 3x t t =+- (B) 214m2x t t =+。

(C) m 32+=t x (D) 31412m3x t t =++ [ ]2.如图所示,一光滑细杆上端由光滑铰链固定,杆可绕其上端在任意角度的锥面上绕竖直轴OO '作匀角速度转动。

有一小环套在杆的上端处。

开始使杆在一个锥面上运动起来,而后小环由静止开始沿杆下滑。

在小环下滑过程中,小环、杆和地球系统的机械能以及小环与杆对轴OO '的角动量这两个量中(A) 机械能、角动量都守恒; (B) 机械能守恒、角动量不守恒;(C) 机械不守恒、角动量守恒;(D) 机械能、角动量都不守恒. [ ]3.一均质细杆可绕垂直它且离其一端/4l (l 为杆长)的水平固定轴O 在竖直平面内转动。

杆的质量为m ,当杆自由悬挂时,给它一个起始角速度0ω,如杆恰能持续转动而不作往复摆动则需要(已知细杆绕轴O 的转动惯量2(7/48)J ml =,一切摩擦不计).(A)43/7g l ω≥0 (B) 4/g l ω≥0(C) (4/3)/g l ω≥0 (D) 12/g l ω≥0. [ ]4.一个未带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。

用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为(A) 0 (B) 04πq d ε (C)04πq R ε- (D) 011()4πq d R ε- [ ]5. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:(A) 12U 减小,E 减小,W 减小;(B) 12U 增大,E 增大,W 增大;(C)12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. [ ]6.一原长为L 的火箭,以速度1v 相对地面作匀速直线运动,火箭上有一个人从火箭的后端向火箭前端的一个靶子发射一颗子弹,子弹相对于火箭的速度为2v .在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中的光速)(A)12()+L/v v (B) 2L/v(C) 21()-L/v v (D) 2111(/)c -L/v v [ ]7.如图,在一圆形电流I 所在的平面内,选一个同心圆形闭合回路L(A) ⎰=⋅L l B 0d ,且环路上任意一点0B =(B) ⎰=⋅L l B 0d ,且环路上任意一点0B ≠(C) ⎰≠⋅L l B 0d ,且环路上任意一点0B ≠(D) ⎰≠⋅L l B 0d ,且环路上任意一点B =常量. [ ]8.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。

现测得导体上下两面电势差为V ,则此导体的霍尔系数等于(A) IBV DS (B) BVSID(C) VD IB (D) IVSBD [ ]9.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l 。

当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点间的电势差a c U U -为(A)20,a c U U B l εω=-= (B)20,/2a c U U B l εω=-=- (C)22,/2a c B l U U B l εωω=-=(D)22,a c B l U U B l εωω=-=[ ]10. 对位移电流,有下述四种说法,请指出哪一种说法正确(A) 位移电流是由变化的电场产生的;(B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律;(D) 位移电流的磁效应不服从安培环路定理. [ ]二 填空题 (共30分)1.(本题3分) 质量为m 的物体,初速极小,在外力作用下从原点起沿x 轴正向运动,所受外力方向沿x 轴正向,大小为F kx =。

物体从原点运动到坐标为0x 点的过程中所受外力冲量的大小为 .2.(本题5分) 一维保守力的势能曲线如图所示,则总能量E 为12J 的粒子的运动范围为;在x = 时,粒子的动能K E 最大;x = 时,粒子的动能K E 最小。

3.(本题3分) 长为l 、质量为M 的均质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为2/3Ml ,开始时杆竖直下垂,如图所示。

现有一质量为m 的子弹以水平速度0v 射入杆上A 点,并嵌在杆中. 2/3OA l =,则子弹射入后瞬间杆的角速度ω= .4.(本题5分) 若静电场的某个区域电势等于恒量,则该区域的电场强度为 ,若电势随空间坐标作线性变化,则该区域的电场强度分布为 .5.(本题5分) 一个绕有500匝导线的平均周长50cm 的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B 的大小为 ;铁芯中的磁场强度H 的大小为 。

(7104π10T m A μ--=⨯⋅⋅)6.(本题3分) 一个半径为R 、面密度为σ的均匀带电圆盘,以角速度ω绕过圆心且垂直盘面的轴线AA '旋转;今将其放入磁感应强度为B 的均匀外磁场中,B 的方向垂直于轴线AA '。

在距盘心为r 处取一宽度为d r 的圆环,则该带电圆环相当的电流为 ,该电流所受磁力矩的大小为 ,圆 盘所受合力矩的大小为 。

7.(本题3分)一长直导线旁有一长为a ,宽为b 的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流I ,则距长直导线为r 处的P 点的磁感应强度B为 ;线圈与导线的互感系数 为 .三 计算题 (共40分)1.(本题10分) 如图所示,已知滑轮的半径为r ,转动惯量为 J ,弹簧的劲度系数为k ,物体的质量为m . 设开始时物体静止且弹簧无伸长,在物体下落过程中绳与滑轮无相对滑动,轴间摩擦不计. 试求:(1)物体下落的距离为l 时,物体的速率. (2)物体能够下落的最大距离.2.(本题10分) 一半径为R 、电荷量为Q 的均匀带电球体,设无穷远处为电势零点。

试求(1)球体内外电场强度的分布;(2)球体内外电势的分布。

3.(本题10分) 如图所示,一平行板电容器两极板相距为d ,面积为S ,在极板间平行地放一面积与极板相等、厚度为 t 的均匀电介质板,它的相对介电常数为r ε. 设两极板分别带有Q ±的电荷,不计边缘效应。

试求:(1)电介质中电场强度和电位移的大小; (2)两极板间的电势差; (3)电容器的电容.4.(本题10分) 如图所示,在半径10.0=R m 的区域内有均匀磁场B,方向垂直纸面向外,设磁场以100d d =t B T/s 的匀速率增加。

已知3π=θ,04.0===r ob oa m ,试求:(1)半径为 r 的导体圆环中的感应电动势及P 点处有旋电场强度的大小; (2)等腰梯形导线框abcd 中的感应电动势,并指出感应电流的方向.大学物理复习试卷(1)参考答案一、选择题:1.A 2.A 3.A 4.D 5.C 6.B 7.B 8.C 9.B 10.A 二、填空题 1.20mkx 2.(-,10m)∞+②; 6m ②;10m ①; 3. 6/(43/)M m l +0v ,4.处处为零③;均匀分布② 5 . 0.226T ③; 300A/m ②; 6.d r r σω①;3πd r B r σω①;4π/4R B σω① 7.02πIl μ①;0ln2b a dd μπ+②1.2222121210ωJ kl mgl m ++-=v ④ (1) ωr =v解得:=v ② (2) 2m m102mgl kl =-+②m 2mgl k =②2.(1)02/)(π4εr q E r = R r > Q R q =)(20π4r Q E ε=③R r < 33)(r R Q r q = r R Q E 30π4ε=③ (2) R r >r Q u 0π4ε=② R r <32002230d d d 4π4π(3)8πRrRQ Qu E r r r r Rr Q R r Rεεε∞=⋅=+=-⎰⎰⎰②3.(1)0QD S σ==③00rr DQE S εεεε==③(2)000DQ E S εε==000()()r U E d t Et Q Q d t t S S εεε=-+=-+②(3)0()r r S QC u d t t εεε==-+②4. 1.2πd d r t B i =εV 0.500.04π1002=⨯=④2d 2ππd V B E r r t ⋅=-d 1N/C 2d V r BE t =-=-③2.)2121(d d 2h ab R t B i ⋅-=θε2100(π106-=-⨯③感应电流沿顺时针方向。

大学物理上册复习试卷(2)一.选择题(30分,每题3分)1、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动.(D) 变减速运动.(E) 匀速直线运动. [ ]2、有一劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1伸长至l 2的过程中,弹性力所作的功为(A) ⎰-21d l l x kx . (B)⎰21d l l x kx .(C) ⎰---0201d l l l l x kx . (D)⎰--0201d l l l l x kx . [ ]3、质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B) 22R GMm(C) 2121R R R R GMm -(D) 2121R RR GMm -(E) 222121R R R R GMm-[ ]4、质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如图所示.当它由静止开始下滑到球面上B 点时,它的加速度的大小为 (A) )cos 1(2θ-=g a . (B) θsin g a =. (C) g a =.(D) θθ2222sin )cos 1(4g g a +-=. [ ] 5、如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带电荷Q 2 .设无穷远处为电势零点,则在两个球面之间、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+ (B)20210144R Q R Q εεπ+π(C)2020144R Q r Q εεπ+π (D) rQ R Q 0210144εεπ+π[ ]6、面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)Sq 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202S q ε. [ ]7、 一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0. (B) 21v Bl .(C) v Bl . (D) 2v Bl . [ ]8、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ ] 9、有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关.(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的.(D) 三种说法都是正确的. [ ] 10、一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0.由此可算出其面积密度为m 0 /ab .假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A) ab c m 20)/(1v - (B) 20)/(1c ab m v -(C) ])/(1[20c ab m v - (D) 2/320])/(1[c ab m v - [ ] 二、填空题(28分) 11、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2214πt +=θ (SI)II则其切向加速度为t a =__________________________.12、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.13、设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.14、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为_____________ .15、静电场中有一质子(带电荷e =1.6×10-19) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =________________;若设a 点电势为零,则b 点电势U b =_________ .16、一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电 流为__________________________.17、四根辐条的金属轮子在均匀磁场B 中转动,转轴与B平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处.18、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为⎰⎰⋅=VSV S D d d ρ, ①⎰⎰⋅⋅∂∂-=SL S t B l Ed d , ②0d =⎰⋅SS B, ③⎰⋅⎰⋅∂∂+=SL S t DJ l Hd )(d . ④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________三、计算题(32分)19、质量为m ,速率为v 的小球,以入射角α斜向与墙壁相碰,又以原速率沿反射角α方向从墙壁弹回.设碰撞时间为t ∆,求墙壁受到的平均冲力.20、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).21、如图所示,长直导线中电流为i ,矩形线框abcd 与长直导线共面,且ad ∥AB ,dc 边固定,ab 边沿da 及cb 以速度v 无摩擦地匀速平动.t = 0时,ab 边与cd 边重合.设线框自感忽略不计. (1) 如i =I 0,求ab 中的感应电动势.ab 两点哪点电势高? (2)如i =I 0cos ωt ,求ab 边运动到图示位置时线框中的总感i应电动势.v0.99c (c为真空中光速)的速率运动.试求:22、一电子以(1) 电子的总能量是多少?(2) 电子的经典力学的动能与相对论动能之比是多少?(电子静止质量m e=9.11×10-31 kg)四、证明题(5分)23、在一任意形状的空腔导体内放一任意形状的带电体,总电荷为q,如-q.五、问答题(5分)24、电荷为q 1的一个点电荷处在一高斯球面的中心处,问在下列三种情况下,穿过此高斯面的电场强度通量是否会改变?电场强度通量各是多少?(1) 将电荷为q 2的第二个点电荷放在高斯面外的附近处; (2) 将上述的q 2放在高斯面内的任意处; (3) 将原来的点电荷移离高斯面的球心,但仍在高斯面内.大学物理上册复习试卷(2)参考答案一、选择题(30分,每题3分)1、C ;2、C ;3、C ;4、D ;5、C ;6、B ;7、A ;8、B ;9、D ;10、C 二、填空题(28分)11、0.1 m/s 2 3分 12、 θcos /mg 1分 θθcos sin gl2分 13、 18 N ·s 3分 14、d 211λλλ+ 3分15、-8×10-15 J 2分-5×104 V 2分16、 4×10-6 T 2分5 A 2分17、 πBnR 2 3分 O 2分18、 ② 1分 ③ 1分 ① 1分三、计算题(32分)19、解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下:x 方向:x x x v v v m m m t F x 2)(=--=∆ ① 1分 y 方向:0)(=---=∆y y y m m t F v v ② 1分 ∴ t m F F x x ∆==/2vv x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向. 1分 根据牛顿第三定律,墙受的平均冲力 F F =' 1分 方向垂直墙面指向墙内. 1分解法二:作动量矢量图,由图知αcos )(v v m m 2=∆方向垂直于墙向外 2分由动量定理:)(vm t F ∆∆=得t m F ∆=/cos 2αv 1分不计小球重力,F 即为墙对球冲力 1分由牛顿第三定律,墙受的平均冲力 F F =' 1分方向垂直于墙,指向墙内20、解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分21、解:(1)ab 所处的磁场不均匀,建立坐标ox ,x 沿ab 方向,原点在长直导线处,则x 处的磁场为 xiB π=20μ , i =I 0 2分沿a →b 方向⎰⎰⋅-=⨯=ba ba l B l B d d )(v vx x I l l l d 210000⎰+π-=μv 01000ln 2l l l I +π-=v μ 3分故 ba U U > 1分(2) t I i ωcos 0=,以abcda 作为回路正方向,⎰=x Bl d 2Φx xil l l l d 210020⎰+π=μ 2分上式中t l v =2, 则有 )d 2(d d d d 10020x xil t t ll l ⎰+π-=-=μΦ)cos sin )((ln201000t t t l l l I ωωωμ-+π=v 4分 22、解:(1) 222)/(1/c c m mc E e v -== =5.8×10-13 J 2分 (2) 20v 21e K m E == 4.01×10-14 J T rβTmgm v m v aa)(v m ∆22c m mc E e K -=22]1))/(1/1[(c m c e --=v = 4.99×10-13 J∴ =K K E E /08.04×10-2 3分四、证明题(5分)23、证:设内表面上感生电量为q '.在导体内部作一包围内表面的高斯面S .在静电平衡时,导体内部场强处处为零,按高斯定理0/)(d 0='+=⎰⋅εq q S E S于是得 q q -=' 5分五、问答题(5分)24、答:根据高斯定理,穿过高斯面的电通量仅取决于面内电量的代数和,而与面内电荷的分布情况及面外电荷无关,故:(1) 电通量不变, Φ1=q 1 / ε0; 2分 (2) 电通量改变,由Φ1变为Φ2=(q 1+q 2 ) / ε0; 2分 (3) 电通量不变,仍为Φ1. 1分。

相关文档
最新文档