2021专题5 三角函数与解三角形(解析版)
三角函数与解三角形-新高考数学新情景、新文化问题(新高考地区专用)(解析版)
三角函数与解三角形一、单选题1.(2021·云南昆明市·高三(文))东寺塔与西寺塔为“昆明八景”之一,两塔一西一东,遥遥相对,已有1100多年历史.东寺塔基座为正方形,塔身有13级,塔顶四角立有四只铜皮做成的鸟,俗称金鸡,所以也有“金鸡塔”之称.如图,在A 点测得:塔在北偏东30°的点D 处,塔顶C 的仰角为30°,且B 点在北偏东60°.AB 相距80(单位:m ),在B 点测得塔在北偏西60°,则塔的高度CD 约为( )mA .69B .40C .35D .23【答案】B 【分析】根据题意构造四面体C -ABD ,再运用线面位置关系及三角形相关知识求解出相应的线段长即可. 【详解】如图,根据题意,图中CD ⊥平面ABD ,30CAD ∠=︒,30,60,80BAD ABD AB ∠=︒∠=︒=ABD 中,30,60BAD ABD ∠=︒∠=︒, 90ADB ∴∠=︒cos 80?cos30AD AB BAD ∴=∠=︒=又CD ⊥平面ABD ,ACD ∴是直角三角形Rt ACD中,30,90,CAD ADC AD ∠=︒∠=︒=·tan 3040CD AD ∴=︒==,选项B 正确,选项ACD 错误 故选:B.2.(2021·山东枣庄八中高一期中)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求积"中提出了已知三角形三边a ,b ,c 求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =现在有周长为10+ABC满足sin :sin :sin 2:A B C =,则用以上给出的公式求得ABC 的面积为( ) A.B.C.D .12【答案】A 【分析】利用正弦定理结合三角形的周长可求得ABC 的三边边长,利用题中公式可求得ABC 的面积. 【详解】由题意结合正弦定理可得:::sin :sin :sin 2:a b c A B C ==ABC周长为10+10a b c ++=+4a ∴=,6b =,c =所以S == 故选:A.3.(2021·安徽淮北一中高一月考)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图),若大、小正方形的面积分别为25和1,直角三角形中较大的锐角为θ,则cos2θ等于( )A .725B .725-C .925D .925-【答案】B 【分析】根据题意可得出1sin cos 5θθ-=,平方可得24sin 225θ=,即可求出.【详解】因为大正方形的面积为25,小正方形的面积为1,所以大正方形的边长为5,小正方形的边长为1, 所以5sin 5cos 1θθ-=,即1sin cos 5θθ-=,两边平方得11sin 225θ-=,即24sin 225θ=. 因为θ是直角三角形中较大的锐角,所以42ππθ<<,所以22πθπ<<,所以7cos 225θ==-. 故选:B.4.(2021·蚌埠铁路中学高三开学考试(文))勒洛三角形是一种特殊三角形,指分别以正三角形的三个顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形.勒洛三角形的特点是:在任何方向上都有相同的宽度,即能在距离等于其圆弧半径(等于正三角形的边长)的两条平行线间自由转动,并且始终保持与两直线都接触.机械加工业上利用这个性质,把钻头的横截面做成勒洛三角形的形状,就能在零件上钻出正方形的孔来.如在勒洛三角形ABC 内随机选取一点,则该点位于正三角形ABC 内的概率为( )AB C D 【答案】A 【分析】由题意可得曲边三角形的面积为一个扇形加两个拱形的面积,或者3个扇形面积减去2个三角形的面积,然后由几何概型的概率公式求出概率. 【详解】解:由题意可得正三角形的边长为半径的三段圆弧组成的曲边三角形的面积S 曲=S 扇形CAB +2S 拱=123π⋅⋅22+2(S 扇形﹣S △ABC )=23π⋅3﹣2⋅22=2π﹣三角形ABC 的面积S △ABC 22所以由几何概型的概率公式可得:所求概率=ABCS S ∆曲 故选:A .5.(2021·江苏高一期中)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它表现了恰到好处的和谐,0.618≈,这一比值也可以表示为2sin18m =︒,若228m n +=,=( ) A.2 B .4 C .D .【答案】C 【分析】由题知28cos 18n =,再根据二倍角公式化简整理即可得答案. 【详解】解:因为2sin18m =︒,228m n +=, 所以2228288sin 188cos 18n m =-=-=,2sin1822cos1822sin 3622cos54cos54⨯===故选:C6.(2021·贵州贵阳·高三开学考试(文))水车(如图1),又称孔明车,是我国最古老的农业灌溉工具,主要利用水流的动力灌溉农作物,是先人们在征服世界的过程中创造出来的高超劳动技艺,是珍贵的历史文化遗产,相传为汉灵帝时毕岚造出雏形,经三国时孔明改造完善后在蜀国推广使用,隋唐时广泛用于农业灌溉,有1700余年历史.下图2是一个水车的示意图,它的直径为3m ,其中心(即圆心)O 距水面0.75m .如果水车每4min 逆时针转3圈,在水车轮边缘上取一点P ,我们知道在水车匀速转动时,P 点距水面的高度h(单位:m )是一个变量,它是时间t (单位:s )的函数.为了方便,不妨从P 点位于水车与水面交点Q 时开始记时()0t =,则我们可以建立函数关系式()()sin h t A t k ωϕ=++(其中0A >,0>ω,2πϕ<)来反映h 随t 变化的周期规律.下面关于函数()h t 的描述,正确的是( )A .最小正周期为80πB .一个单调递减区间为[]30,70C .()y h t =的最小正周期为40D .图像的一条对称轴方程为403t =- 【答案】D 【分析】首先求得()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞,然后结合选项由三角函数的图象和性质判断即可.【详解】依题意可知,水车转动的角速度32(rad /s)46040ππω⨯==⨯, 3324A k +=+,3324A k -+=-+,解得32A =,34k =,由()330sin sin 024h A k ϕϕ=+=+=得1sin 2ϕ=-,又2πϕ<,则6πϕ=-,所以()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞.对于选项A :函数()h t 的最小正周期为2=8040ππ,故A 错误;对于选项B :当[]30,70t ∈时,719,4061212t ππππ⎡⎤-∈⎢⎥⎣⎦,因为3719,21212πππ⎡⎤∈⎢⎥⎣⎦, 所以函数()h t 在[]30,70上不具有单调性,故B 错误; 对于选项C :()()353340sin 02642h h π=+=≠,所以C 错误;对于选项D :40333sin 32244h π⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭(最小值),所以D 正确.故选:D.7.(2021·江苏南京市·高一期中)托勒密(C .Ptolemy ,约90-168),古希腊人,是天文学家、地理学家、地图学家、数学家,所著《天文集》第一卷中载有弦表.在弦表基础上,后人制作了正弦和余弦表(部分如下图所示),该表便于查出0°~90°间许多角的正弦值和余弦值,避免了冗长的计算.例如,依据该表,角2°12′的正弦值为0.0384,角30°0′的正弦值为0.5000,则角34°36′的正弦值为( )A .0.0017B .0.0454C .0.5678D .0.5736【答案】C 【分析】先看左边列找34︒,再往右找对第一行的36'即可. 【详解】由题意查表可得3436︒'的正弦值为0.5678. 故选:C .8.(2021·江苏镇江·高一期中)今年是伟大、光荣、正确的中国共产党成立100周年.“红星闪闪放光彩”,正五角星是一个非常优美的几何图形,庄严美丽的国旗和国徽上的大五角星是中国共产党的象征,如图为一个正五角星图形,由一个正五边形的五条对角线连结而成,已知C ,D 为AB 的两个黄金分割点,即AC BD AB AB =.则cos DEC ∠=( )ABCD【答案】A 【分析】根据图形和已知条件表示出,,CE DE CD ,然后用余弦定理求解即可 【详解】由正五角星的对称性知:BC CE DE AD ===, 不妨设BC CE DE AD x ====,则CD AC AD =-, 又AC BC AC AD AB +=+=,AB AC ==则AC AD AC +=,所以AD =,AC AD AD ==,CD AC AD x x =-=-=22222224cos 122x DE CE CDDEC DE CEx +-∠===⨯ 故选:A二、多选题9.(2021·河北唐山·高三开学考试)声音是由物体振动产生的波,每一个音都是由纯音合成的.已知纯音的数学模型是函数sin y A t ω=.我们平常听到的乐音是许多音的结合,称为复合音.若一个复合音的数学模型是函数()1sin sin 22f x x x =+,则( )A .()f x 的最大值为32B .2π为()f x 的最小正周期C .π2x =为()y f x =曲线的对称轴 D .()π,0为曲线()y f x =的对称中心【答案】BD 【分析】分析函数sin y x =与1sin 22y x =不能同时取得最大值可判断A ;由sin y x =的最小正周期是2π,1sin 22y x=的最小正周期是2ππ2=可判断B ;计算ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭是否成立可判断C ;计算()()2π0f x f x +-=是否成立可判断D ;进而可得正确选项. 【详解】对于A :若()f x 的最大值为32,则sin y x =与1sin 22y x =同时取得最大值,当sin y x =取得最大值1时,cos 0x =,可得1sin 2sin cos 02y x x x ===取不到12,若1sin 22y x =取得最大值12时,sin 21x =,此时()ππZ 4x k k =+∈,而πsin sin π4y x k ⎛⎫==+= ⎪⎝⎭1,所以sin y x =与1sin 22y x =不可能同时取得最大值,故选项A 不正确;对于B :因为sin y x =的最小正周期是2π,1sin 22y x =的最小正周期是2ππ2=, 且()()()()112πsin 2πsin 22πsin sin 222f x x x x x f x +=+++=+=,()()()()11πsin πsin 2πsin sin 222f x x x x x f x +=+++=-+≠所以2π为()f x 的最小正周期,故选项B 正确;对于C :ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫+=+++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫-=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭不恒成立,即ππ22f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以π2x =不是曲线()y f x =的对称轴,故选项C 不正确;对于D :()()()112πsin 2πsin 22πsin sin 222f x x x x x -=-+-=--,所以()()2π0f x f x +-=对于任意的x 恒成立,所以()π,0为曲线()y f x =的对称中心,故选项D 正确; 故选:BD.10.(2021·江苏)由倍角公式2cos 22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.一般地,存在一个n (n *∈N )次多项式()12012n n n n n P t a t a ta t a --=+++⋅⋅⋅+(012,,,n a a a a ⋅⋅⋅∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得( )A .()3343P t t t =-+ B .()424881P t t t =-+C .sin18︒=D .cos18︒=【答案】BC 【分析】通过求cos3,cos 4,cos5x x x ,来判断出正确选项. 【详解】()cos3cos 2cos2cos sin 2sin =+=-x x x x x x x()222cos 1cos 2sin cos x x x x =-- ()()222cos 1cos 21cos cos x x x x =--- 34cos 3cos x x =-,所以()3343P t t t =-,A 错误.()()222222cos 4cos 22cos 2sin 22cos 14sin cos x x x x x x x =⋅=-=--()42224cos 4cos 141cos cos x x x x =-+--428cos 8cos 1x x =-+,所以()424881P t t t =-+,B 正确.()cos5cos 4cos4cos sin 4sin x x x x x x x =+=- ()428cos 8cos 1cos 2sin 2cos2sin x x x x x x =-+- ()53228cos 8cos cos 4sin 2cos 1cos x x x x x x =-+--()()53228cos 8cos cos 41cos 2cos 1cos x x x x x x =-+--- 5316cos 20cos 5cos x x x =-+.所以()53cos90cos 51816cos 1820cos 185cos180︒=⨯︒=︒-︒+︒=,由于cos180︒≠,所以4216cos 1820cos 1850︒-︒+=,由于cos18cos30︒>︒,所以223cos 18cos 304︒>︒=,所以由4216cos 1820cos 1850︒-︒+=解得2cos 18︒=,所以sin18︒=,C正确. 2=≠⎝⎭,所以D 错误. 故选:BC 【点睛】三角函数化简求值问题,关键是根据题意,利用三角恒等变换的公式进行化简.11.(2021·全国)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m.安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某季节每天几个时刻的水深.若选用一个三角函数()f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( ) A .() 2.5cos 56x x f π⎛⎫=+⎪⎝⎭B .() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭C .该货船在2:00至4:00期间可以进港D .该货船在13:00至17:00期间可以进港 【答案】BCD 【分析】依据题中所给表格,写出()f x 的表达式而判断选项A ,B ;再根据船进港的条件列出不等式,求解即可判断选项C ,D. 【详解】依据表格中数据知,可设函数为()sin f x A x k ω=+,由已知数据求得 2.5A =,5k =,周期12T =,所以26T ππω==﹐ 所以有() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭,选项A 错误;选项B 正确; 由于船进港水深至少要6.25,所以 2. 5sin 5 6.256x π⎛⎫+ ⎪⎝⎭≥,得1sin 62x π⎛⎫⎪⎝⎭≥, 又024046x x ππ≤≤⇒≤≤,则有5666x πππ≤≤或1317666x πππ≤≤,从而有1 5 x ≤≤或1317x ≤≤,选项C ,D 都正确. 故选:BCD 【点睛】解三角不等式sin()(||1)x m m ωϕ+≥<关键在于:找准不等式中的函数值m 所对角; 长为一个周期的区间内相位x ωϕ+所在范围.12.(2020·全国高三月考)斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD AB BC ⎛= ⎝⎭中作正方形ABFE ,以F 为圆心,AB 长为半径作弧BE ;然后在黄金矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作弧EG ;;如此继续下去,这些弧就连接成了斐波那契螺线.记弧BE ,EG ,GI 的长度分别为l ,m ,n ,则下列结论正确的是( )A .l m n =+B .2m l n =⋅C .2m l n =+D .111m l n=+ 【答案】AB 【分析】设1AB =,则2BC =,再由14圆弧分别求得l ,m ,n ,然后再逐项判断.【详解】不妨设1AB =,则2BC =,所以121)4l π=⨯⨯=.因为3ED =所以12(34m π=⨯⨯=.同理可得124)4n π=⨯⨯=所以l m n =+,2m l n =⋅,2m l n ≠+,111m l n≠+,所以A ,B 正确,C ,D 错误. 故选:AB三、填空题13.(2021·安徽高三开学考试(理))正割(secant )及余割(cosecant )这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后经欧拉采用得以通行.在三角中,定义正割1sec cos αα=,余割1csc sin αα=.已知0t >,且22sec csc 16x t x +≥对任意的实数,2k x x k Z π⎛⎫≠∈ ⎪⎝⎭均成立,则t 的最小值为__________. 【答案】9 【分析】根据正余割的定义,得到和为1,结合基本不等式1的代入即可求解 【详解】 由题得:22111sec csc x x+=, 所以()22222211sec csc sec csc 16sec csc x t x x t x x x ⎛⎫+=++≥ ⎪⎝⎭即:2222csc sec 11sec csc t x xt x x t ≥+++++116t ++5-3,所以9t ≥故答案为:914.(2021·江苏仪征中学高一月考)赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》,作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =ABD △的面积为____________.【答案】【分析】设BD x =,可得出3AD x =,23ADB π∠=,利用余弦定理求出x 的值,再利用三角形的面积公式可求得ABD △的面积. 【详解】设BD x =,则3AD x =,因为DEF 为等边三角形,则3ADE π∠=,故23ADB π∠=, 在ABD △中,由余弦定理得()222252323cos3AB x x x x π==+-⨯⨯⨯,解得2x =,故6AD =,2BD =,因此,ABD △的面积为1226sin23ABD S π=⨯⨯⨯=△故答案为:15.(2021·安徽阜阳·高一期末)筒车是一种水利灌溉工具(如图1所示),筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转轮的中心为O ,筒车的半径为r ,筒车转动的周期为24s ,如图2所示,盛水桶M在0P 处距水面的距离为0h .4s 后盛水桶M 在1P 处距水面的距离为1h ,若10h h -=,则直线0OP 与水面的夹角为______.【答案】π12【分析】根据题意构建平面几何模型,在借助三角函数求解答案. 【详解】如图,过O 作直线l 与水面平行,过0P 作0P A l ⊥于A ,过1P 作1PB l ⊥于B . 设0AOP α∠=,1BOP β∠=,则,4π2π243βα-=⨯=,π3βα∴=+由图知,0sin P A r α=,1sin PB r β=,0101sin sin P A h h PB r r r βα--=-==,所以πsin sin 3αα⎛⎫+-= ⎪⎝⎭πsin 3α⎛⎫-= ⎪⎝⎭,则ππ34α-=-,即π12α=.故答案为:π12. 16.(2021·广东深圳·高三)著名的费马问题是法国数学家皮埃尔德费马(1601-1665)于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当ABC 的三个内角均小于120︒时,则使得120APB BPC CPA ∠=∠=∠=︒的点P 即为费马点.已知点P 为ABC 的费马点,且AC BC ⊥,若||||||PA PB PC λ+=,则实数λ的最小值为_________.【答案】2 【分析】根据题意120APB BPC CPA ∠=∠=∠=︒,不妨设PCB α∠=,故,,326CBP ACP CAP πππααα∠=-∠=-∠=-,进而得,63ππα⎛⎫∈ ⎪⎝⎭,所以在BCP 和ACP △中,由正弦定理得sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭,故sin sin 2sin sin 36πααλππαα⎛⎫- ⎪⎝⎭=+⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,在结合三角恒等变换化简整理求函数最值即可.【详解】根据题意, 点P 为ABC 的费马点,ABC 的三个内角均小于120︒, 所以120APB BPC CPA ∠=∠=∠=︒,设PCB α∠=,所以在BCP 和ACP △中,,,3236CBP ACP CAP ACP ππππααα∠=-∠=-∠=-∠=-,且均为锐角,所以,63ππα⎛⎫∈ ⎪⎝⎭所以由正弦定理得:sin sin 3BPPC παα=⎛⎫- ⎪⎝⎭,sin sin 26PA PCππαα=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,所以sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭, 因为||||||PA PB PC λ+=所以sin cos sin sin cos sin 2sin sin 36πααααααλππαα⎛⎛⎫- - ⎪⎝⎭=+==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭11==,因为,63ππα⎛⎫∈ ⎪⎝⎭,所以22,33ππα⎛⎫∈ ⎪⎝⎭,所以(2sin 20,2α,)12,⎡∈+∞⎣故实数λ的最小值为2.故答案为:2【点睛】本题考查数学文化背景下的解三角形,三角恒等变换解决三角函数取值范围问题,考查运算求解能力,数学建模能力,化归转化思想,是难题.本题解题的关键在于根据题目背景,通过设PCB α∠=,进而建立解三角形的模型,再根据正弦定理及三角恒等变换化简求最值即可.四、解答题17.(2021·海安市南莫中学高一期中)下图所示的毕达格拉斯树画是由图(i )利用几何画板或者动态几何画板Geogebra 做出来的图片,其中四边形ABCD ,AEFG ,PQBE 都是正方形.如果改变图(i )中EAB ∠的大小会得到更多不同的“树形”.(1)在图(i )中,21AB ,AE ==,且AE AB ⊥,求AQ ;(2)在图(ii )中,21AB ,AE ==,设(0)EAB θθπ∠=<<,求AQ 的最大值.【答案】(1(2)9. 【分析】(1)由已知条件结合诱导公式求得cos ABQ ∠,在ABQ △中,利用余弦定理,即可求解;(2)由已知条件结合余弦定理,求得BE ,再利用正弦定理、余弦定理及三角函数的性质,即可求解. 【详解】(1)当AE AB ⊥时,BE BQ ==则()cos cos2ABQ ABE π∠=+∠sin AE ABE BE =-∠=-=在ABQ △中,由余弦定理可得2222cos 45413AQ AB BQ AB BQ ABQ =+-⋅∠=++=,所以AQ =(2)在ABE △中,由余弦定理知,2222cos 54cos BE AB AE AB AE θθ⋅=-⋅=+-,所以BE BQ ==在ABE △中,由正弦定理知sin sin AE BEABE θ=∠,可得sin ABE ∠=在ABQ △中,由余弦定理可得2222cos()2AQ AB BQ AB BQ ABE π=+-⋅⋅+∠454cos 4θ=+-+4(sin cos )994πθθθ⎛⎫=-+=-+ ⎪⎝⎭,所以当3(0,)4πθπ=∈时,AQ 的取最大值9.答:(1)AQ =(2)AQ 的最大值为9.18.(2021·昆明·云南师大附中高一期中)仰望星空,时有流星划过天际,令我们感叹生命的短暂,又深深震撼我们凡俗的心灵.流星是什么?从古至今,人们作过无数种猜测.古希腊亚里士多德说,那是地球上的蒸发物,近代有人进一步认为,那是地球上磷火升空后的燃烧现象.10世纪波斯著名数学家、天文学家阿尔·库希设计出一种方案,通过两个观测者异地同时观察同一颗流星,来测定其发射点的高度.如图,假设地球是一个标准的球体,O 为地球的球心,AB 为地平线,有两个观测者在地球上的A ,B 两地同时观测到一颗流星S ,观测的仰角分别为SAD α∠=,SBD β∠=,其中,90DAO DBO ∠=∠=︒,为了方便计算,我们考虑一种理想状态,假设两个观测者在地球上的A ,B 两点测得30α=︒,15β=︒,地球半径为R 公里,两个观测者的距离3RAB π=. 1.73 1.5≈)(1)求流星S 发射点近似高度ES ;(2)在古希腊,科学不发达,人们看到流星以为这是地球水分蒸发后凝结的固体,已知对流层高度大约在18公里左右,若地球半径6370R ≈公里,请你据此判断该流星S 是地球蒸发物还是“天外来客”?并说明理由.【答案】(1)0.5ES R =公里;(2)该流星不是地球蒸发物,而是“天外来客”,理由见解析. 【分析】(1)由已知条件在ASB △中利用正弦定理求出1)AS R =,在SAC 中再利用余弦定理求出OS ,从而可得ES OS R =-;(2)由(1)求出的值可得流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,从而可得结论 【详解】 (1)因为3AB R π=,则60AOB ∠=︒,所以AOB 为等边角形,所以AB R =.又因为90DAO DBO ∠=∠=︒,所以30∠=∠=︒DAB DBA ,所以30∠=∠=︒DAB DBA ,所以60SAB ∠=︒,45SBA ∠=︒,75ASB ∠=︒.在ASB △中,由正弦定理:sin 75sin 45AB AS =︒︒,得()sin 4530sin 45R AS ︒=︒+︒, 解得1)AS R =,在SAC 中,由余弦定理:2222222212cos 1)1)(42OS SA OA SA OA SAO R R R R ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭.所以 1.5OS R =≈≈,所以0.5ES OS R R =-=公里.(2)0.53185ES R ≈≈公里,所以流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,所以该流星不是地球蒸发物,而是“天外来客”.(言之有理即可).19.(2021·奉新县第一中学高一月考)重庆是我国著名的“火炉”城市之一,如图,重庆某避暑山庄O 为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知π6AOB ∠=,弓形花园的弦长AB =M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,才使得喷泉M 与山庄O 的距离的值最大?【答案】(1)OA θ=,6OB πθ⎛⎫=+ ⎪⎝⎭;(2)当OA OB =OM 取最大值4+ 【分析】(1)本题可通过正弦定理得出OA θ=、6OB πθ⎛⎫=+ ⎪⎝⎭;(2)本题首先可根据题意得出2AM BM ==,然后通过余弦定理得出2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,通过转化得出222283OM πθ⎛⎫=-++ ⎪⎝⎭,最后通过50,6πθ⎛⎫∈ ⎪⎝⎭以及正弦函数的性质即可求出最值.【详解】(1)因为sin sin sin OA OB AB OAB AOBθ==∠∠,π6AOB ∠=,AB =所以56OAB πθ∠=-,OA θ=,566OB ππθθ⎛⎫⎛⎫=-=+⎪ ⎪⎝⎭⎝⎭.(2)因为AB =π6MAB MBA ∠=∠=,所以2AM BM ==, 在OMB △中,由余弦定理易知2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,即2248sin 4cos 666OM πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭248sin 2428224cos 22286333ππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+=-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭122sin 2282283233πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦,因为50,6πθ⎛⎫∈ ⎪⎝⎭,所以2272,333πππθ⎛⎫+∈ ⎪⎝⎭,2sin 23πθ⎡⎛⎫+∈-⎢⎪⎝⎭⎣⎭, 当2sin 213πθ⎛⎫+=- ⎪⎝⎭,即512πθ=时, 2OM 取最大值28+OM 取最大值4+此时51264OA πππ⎛⎫==+= ⎪⎝⎭ 512643OB ππππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭故当OA OB =时,OM 取最大值4+ 【点睛】关键点点睛:本题考查解三角形的实际应用,考查正弦定理与余弦定理的应用,考查三角恒等变换,考查根据正弦函数的性质求最值,考查化归与转化思想,体现了综合性,是难题.20.(2021·江苏省镇江中学)古希腊数学家普洛克拉斯曾说:“哪里有数学,哪里就有美,哪里就有发现……”,对称美是数学美的一个重要组成部分,比如圆,正多边形……,请解决以下问题:(1)魏晋时期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,求sin3︒的近似值(结果保留π).(2)正n 边形的边长为a ,内切圆的半径为r ,外接圆的半径为R ,求证:2tan2a R r nπ+=.【答案】(1)60π;(2)详见解析.【分析】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒,再根据120个等腰三角形的面积之和近似等于圆的面积求解;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,易知 1,2AB a nπθ==,然后在Rt OAB 中,利用三角函数的定义求得R ,r ,利用三角恒等变换证明.【详解】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒, 因为这120个等腰三角形的面积之和近似等于圆的面积, 所以11211sin 32π⨯⨯⨯⨯≈ sin 360π≈;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,则,OA R OB r ==, 如图所示:所以1,2AB a nπθ==, 在Rt OAB 中,sin AB OAθ=,即12sin an Rπ=,所以2sin a R n π=, cos OB OA θ=,即cos r n Rπ=,所以coscos 2sin a n r R n nπππ==, 所以1cos cos2sin 2sin 2sina a a n n R r n n nπππππ⎛⎫+ ⎪⎝⎭+=+=, 22cos 24sincos2tan222a a nnnnππππ==.21.(2021·上海徐汇·高一期末)主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线f(x)=Asin (2π3x +φ)(A >0,0≤φ<π),其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式f(x)以及降噪芯片生成的降噪声波曲线的解析式g(x); (2)证明:g(x)+g(x +1)+g(x +2)为定值. 【答案】(1)f(x)=2sin (2π3x +5π6), g(x)=−2sin (2π3x +5π6);(2)证明见解析.【分析】(1)首先根据振幅为2求出A ,将点(1,-2)代入解析式即可解得; (2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A >0,∴A =2,f(x)=2sin (2π3x +φ),将点(1,-2)代入得:−2=2sin (2π3+φ)⇒sin (2π3+φ)=−1,∵0≤φ<π,∴2π3+φ∈[2π3,5π3),∴2π3+φ=3π2⇒φ=5π6,∴f(x)=2sin (2π3x +5π6),易知g(x)与f(x)关于x 轴对称,所以g(x)=−2sin (2π3x +5π6).(2)由(1)g(x)=−2sin (2π3x +5π6)=−2sin (2π3x +π3+π2)=−2cos (2π3x +π3)g(x)+g(x +1)+g(x +2)=−2cos (2π3x +π3)−2cos (2π3x +π)−2cos (2π3x +2π3+π)=−2cos (2π3x +π3)+2cos2π3x +2cos (2π3x +2π3)=−2(cos2π3x ⋅12−sin2π3x ⋅√32)+2cos2π3x +2[cos2π3x ⋅(−12)−sin2π3x ⋅√32]=0.即定值为0.22.(2021·合肥市第六中学高一期末)合肥逍遥津公园是三国古战场,也是合肥最重要的文化和城市地标,是休闲游乐场,更是几代合肥人美好记忆的承载地.2020年8月启动改造升级工作,欲对该公园内一个平面凸四边形ABCD 的区域进行改造,如图所示,其中4DC a =米,2DA a =米,ABC 为正三角形.改造后BCD △将作为人们旅游观光、休闲娱乐的区域,ABD △将作为对三国历史文化的介绍区域.(1)当3ADC π∠=时,求旅游观光、休闲娱乐的区域BCD △的面积;(2)求旅游观光、休闲娱乐的区域BCD △的面积的最大值.【答案】(1)()22m ;(2)(()224m a +.【分析】(1)由余弦定理求得AC ,再由正弦定理求得ACD ∠,求出BC BC ⊥,易得面积;(2)不妨设ADC θ∠=,ACD α∠=,用余弦定理表示出2AC ,用正弦定理表示出sin α,再用余弦定理表示出cos α,然后表示出BCD △的面积,利用两角和的正弦公式展开代入2sin ,cos ,AC αα,再利用两角差的正弦公式化简,然后利用正弦函数性质得最大值. 【详解】解析:(1)2222cos3AC AD DC AD DC π=+-⋅⋅,∴AC =,又sin sin3ACADACD π=∠,∴1sin 2ACD ∠=,易知ACD ∠是锐角,所以6π∠=ACD ,∴2BCD π∠=,()2214m 2BCD S a =⨯⨯=△,(2)不妨设ADC θ∠=,ACD α∠=,于是由余弦定理得()222016cos AC a θ=-①,22sin sin sin sin AC a a ACθαθα=⇒=②, 22222124168cos cos 8AC a a AC a aAC a a aAC+=+-⋅⇒=③, ∴14sin 23BCDS a AC πα⎛⎫=⨯⨯⋅+ ⎪⎝⎭△2(sin cos cos sin )33a AC ππαα=⋅+2222sin 128a AC a AC AC AC θ⎡⎤+=⋅⎢⎥⎣⎦((2222sin 4sin 43a a a πθθθ⎛⎛⎫=-+=-++ ⎪ ⎝⎝≤⎭,当且仅当5 326πππθθ-=⇒=时取等号,∴BCD S △最大值为(()224m a +.【点睛】本题考查解三角形的应用,解题关键是选用一个角为参数,然后把其他量表示为参数的三角函数,这里注意正弦定理和余弦定理的应用,然后利用三角函数恒等变换公式化简变形,最后利用正弦函数性质求得最值.。
2021届高考数学模拟试卷汇编:三角函数与解三角形综合(含答案解析)
【答案】(1) ;(2) .
【解析】
(1)在 中,
,
解得 ,
.
(2)
在 中, ,
.
.
4.(2020届河南省驻马店市高三第二次模拟)a,b,c分别为△ABC内角A,B,C的对边.已知a=3, ,且B=60°.
(1)求△ABC的面积;
(2)若D,E是BC边上的三等分点,求 .
【答案】(1) ;(2)
2021年高考数学模拟试卷汇编:三角函数与解三角形综合答案解析
1.(2020届山西省大同市第一中学高三一模)已知 , ,
(1)求 的最小正周期及单调递增区间;
(2)已知锐角 的内角 , , 的对边分别为 , , ,且 , ,求 边上的高的最大值.
【答案】(1) 的最小正周期为: ;函数 单调递增区间为:
2021年高考数学模拟试卷汇编:三角函数与解三角形综合
1.(2020届山西省大同市第一中学高三一模)已知 , ,
(1)求 的最小正周期及单调递增区间;
(2)已知锐角 的内角 , , 的对边分别为 , , ,且 , ,求 边上的高的最大值.
2.(2020届湖南省长沙市长郡中学高三第三次适应性考试)已知 , , 分别为 内角 , , 的对边,若 同时满足下列四个条件中的三个:① ;② ;③ ;④ .
(1)求角 ;
(2)若 , ,求 的面积.
【答案】(1)
(2)
【解析】
(1)由 ,得 .
所以由余弦定理,得 .
又因为 ,所以 .
(2)由 ,得 .
由正弦定理,得 ,因为 ,所以 .
又因 ,所以 .
所以 的面积 .
7.(2020届河南省天一大联考“顶尖计划”高三二联)如图,在 中,角 的对边分别为 ,且满足 ,线段 的中点为 .
高考数学(理)总复习:解三角形(解析版)
高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
三角函数、解三角形——2024届高考数学试题分类汇编(解析版)
2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
专题5三角函数与解三角形(含答案解析)
数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周
合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正 n 边形等分
成 n 个等腰三角形(如图所示),当 n 变得很大时,这 n 个等腰三角形的面积之和近似等于圆的面积,运用割
2
月月考)要得到
y
cos
2x
的图象
C1
,只要将
y
sin
2x
3
图象
C2
怎样变化得到( )
A.将
y
sin
2x
3
的图象
C2
沿
x
轴方向向左平移
12
个单位
B.将
y
sin
2
x
3
的图象 C2 沿
x
11
轴方向向右平移
12
个单位
C.先作 C2
f (x) 2m n 3 1,下列命题,说法正确的选项是( )
3
A.
f
6
x
2
f
(x)
B.
f
6
x
的图像关于
x
4
对称
C.若 0
x1
x2
2
,则
f
( x1 )
f
(x2 )
D.若 x1, x2 , x3
3
,
2
,则
f
(x1)
f
(x2 )
f
( x3 )
15.(2020
届山东省菏泽一中高三
CB 2CD, cos CDB 5 ,则( 5
A. sin CDB 3 10
)
B. ABC 的面积为 8
2021届高考数学一轮复习第五章三角函数解三角形第3节两角和与差的正弦余弦和正切公式含解析
第3节两角和与差的正弦、余弦和正切公式考试要求掌握两角和与差的正弦、余弦、正切公式.知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos__β±cos__αsin__β.cos(α∓β)=cos__αcos__β±sin__αsin__β.tan(α±β)=错误!。
2.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β)。
(2)tan αtan β=1-错误!=错误!-1.3。
式子f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=错误! sin(α+φ)错误!或f(α)=错误!·cos(α-φ)错误!.特别地,sin α±cos α=错误!sin错误!.[常用结论与易错提醒]1.重视三角函数的“三变”:“三变”是指“变角、变名、变式”. (1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等。
2。
运用公式时要注意审查公式成立的条件,要注意和、差角的相对性,要注意“1"的各种变通.如tan错误!=1,sin2α+cos2α=1等。
3。
在(0,π)范围内,sin α=错误!所对应的角α不是唯一的.4。
在三角求值时,常需要确定角的范围.诊断自测1。
判断下列说法的正误.(1)两角和与差的正弦、余弦公式中的角α,β是任意的。
()(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立。
()(3)在两角和、差的正切公式中,使两端分别有意义的角的范围不完全相同。
()(4)公式tan(α+β)=错误!可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立。
()解析(4)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+kπ,k∈Z.答案(1)√(2)√(3)√(4)×2.(2019·全国Ⅰ卷)tan 255°=()A.-2-错误!B.-2+错误!C.2-错误!D。
2021年安徽省高考数学二轮解答题专项复习:三角函数及解三角形(含答案解析)
(Ⅰ)若 ,求tanA的值.
(Ⅱ)若△ABC的面积为 ,求a+b的值.
6.在△ABC中, , .
(1)求tanB;
(2)若△ABC的面积 ,求△ABC的周长.
7.在△ABC中,角A,B,C的对边分别为a,b,c.已知bsinA=a(2 cosB).
(1)求角C的大小;
(2)若b a,△ABC的面积为 sinAsinB,求sinA及c的值.
33.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=2,b ,B=2A.
(2)若a=4,且b+c=6,求△ABC的面积.
12.在△ABC中,角A,B,C的对边分别为a,b,c(a,b,c互不相等),且满足bcosC=(2b﹣c)cosB.
(1)求证:A=2B;
(2)若 ,求cosB.
13.已知△ABC中内角A、B、C所对的边分别为a、b、c,且bcosC+ccosB=﹣4cosA,a=2.
(2)若c=6 ,且AB边上的高等于 AB,求sinC的值.
22.函数f(x)=(sinx+cosx)2 cos(2x+π).
(1)求函数f(x)的最小正周期;
(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若 ,且a=2,求△ABC的面积.
23.在△ABC中,内角A,B,C满足 .
(1)求内角A的大小;
(1)求B;
(2)若a=2 ,b ,求△ABC的面积.
8.已知△ABC的内角A,B,C的对边分别为a,b,c.满足2c=a+2bcosA.
(1)求B;
(2)若a+c=5,b=3,求△ABC的面积.
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)
专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
2023年新高考重难点汇编重难点:三角函数与解三角形(解析版)
新高考中,三角函数与解三角形依然会作为一个重点参与到高考试题中,熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化。
1、三角函数的图象与性质1、已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2、求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再分别应用公式T =2|| ,T =2|| ,T =||求解.3、对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.4、若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2(k Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0.2、利用正、余弦定理求边和角的方法(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.重难点02三角函数与解三角形3、求三角形面积的方法:1)若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.热点1、新题型的考查(1)以数学文化和实际为背景的题型;(2)多选题的题型;(3)多条件的解答题题型。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
2021年高三冲刺备考【新题型】——三角函数与解三角形-解析
2022年高三备考【新题型】——三角函数与解三角形青岛青奥教育——见识新情况,扩展宽思路一、解答题1.如图,在四边形ABCD中,CD =BC =cos 14CBD ∠=-.(1)求BDC ∠; (2)若3A π∠=,求ABD △周长的最大值. 【答案】(1)6π;(2)12 【分析】(1)在BCD △中,利用正弦定理可求得结果;(2)在BCD △中,由余弦定理可求得4BD =,在ABD △中,3A π∠=,设,AB x AD y ==,由余弦定理得22161cos 22x y A xy -+==,即2216x y xy -+=,利用基本不等式求得()max x y +,进而求出 ABD △周长的最大值. 【详解】(1)在BCD △中,cos CBD ∠=sin 14CBD ∠∴== 利用正弦定理得:sin sin CD BCCBD BDC=∠∠,sin 1sin 2BC CBDBDC CD⋅∠∴∠===又CBD ∠为钝角,BDC ∴∠为锐角,6BDC π∴∠=(2)在BCD △中,由余弦定理得2222cos2BC BD CD CBD BC BD ∠+===⋅-解得:4BD =或5BD =-(舍去) 在ABD △中,3A π∠=,设,AB x AD y ==由余弦定理得22222161cos 222AB AD D x y A AB B AD xy -+=⋅-+==,即2216x y xy -+= 整理得:()2163x y xy +-=,又0,0x y >>利用基本不等式得:()()2231346x y x y xy +=≤-+,即()2416x y +≤,即()264x y +≤,当且仅当4x y ==时,等号成立,即()max 8x y +=,所以()max 8412AB AD BD ++=+= 所以 ABD △周长的最大值为12 【点睛】方法点睛:本题考查利用正余弦定理解三角形,及利用基本不等式求三角形周长的最值,利用条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值,考查学生的转化能力与运算解能力,属于中档题.2.已知函数()cos 14f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域; (2)是否同时存在实数a 和正整数n ,使得函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点?若存在,请求出所有符合条件的a 和n 的值;若不存在,请说明理由.【答案】(1)⎡⎣;(2)答案见解析. 【分析】(1)利用三角恒等变换得出()24f x x π⎛⎫=+ ⎪⎝⎭,根据正弦型函数的值域求解;(2)由题意可知,函数()y f x =与直线y a =在[]0,n π上恰有2021个交点,然后对实数a 的取值进行分类讨论,考查实数a 在不同取值下两个函数的交点个数,由此可得出结论.【详解】(1)()cos 12(sin cos )cos 14f x x x x x x π⎛⎫=+-=+⋅- ⎪⎝⎭22sin cos 2cos 1sin 2cos 224x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭,当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,20,42x ππ⎡⎤+∈⎢⎥⎣⎦,∴[]sin 20,14x π⎛⎫+∈ ⎪⎝⎭,则()f x ⎡∈⎣. (2)假设同时存在实数a 和正整数n 满足条件,函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点,即函数()y f x =与直线y a =在[]0,n π上恰有2021个交点. 当[]0,x π∈时,92,444x πππ⎡⎤+∈⎢⎥⎣⎦,作出函数()f x 在区间[]0,π上的图象如下图所示:①当a >a <()y f x =与直线y a =在[]0,n π上无交点,②当a =a =()y f x =与直线y a =在[]0,π上有一个交点,此时要使函数()y f x =与直线y a =在[]0,n π上恰有2021个交点, 则2021n =;③当1a <<或1a <<时,函数()y f x =与直线y a =在[]0,π上有两个交点,此时函数()y f x =与直线y a =在[]0,n π上有偶数个交点,不符合题意; ④当1a =时,函数()y f x =与直线y a =在[]0,π上有三个交点,此时要使函数()y f x =与直线y a =在[]0,n π上恰有2021个交点,则1010n =;综上所述,存在实数a 和n 满足题设条件:a =2021n =;a =2021n =;1a =时,1010n =.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,利用函数在区间上的零点个数求参数,解本题第(2)问的关键就是要注意到函数()y f x =与直线y a =的图象在区间[]0,π上的图象的交点个数,结合周期性求解.3.如图是一“T ”型水渠的平面视图(俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m m (从拐角处,即图中A ,B 处开始).假定渠内的水面始终保持水平位置(即无高度差).(1)在水平面内,过点A 的一条直线与水渠的内壁交于P ,Q 两点,且与水渠的一边的夹角为02πθθ⎛⎫<<⎪⎝⎭,将线段PQ 的长度l 表示为θ的函数; (2)若从南面漂来一根长为7m 的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?请说明理由.【答案】(1)4sin cos l θθ=+π02θ⎛⎫<< ⎪⎝⎭;(2)这根竹竿能从拐角处一直漂向东西向的水渠,理由详见解析. 【分析】(1)计算sin PA θ=,4cos QA θ=,得到函数解析式.(2)设4()sin cos f θθθ=+,求导得到单调区间,计算函数的最小值7>,得到答案.【详解】 (1)PA =,4cos QA θ=,所以l PA QA =+,即4cos l θ=π02θ⎛⎫<< ⎪⎝⎭.(2)设4()sin cos f θθθ=+,π0,2θ⎛⎫∈ ⎪⎝⎭,由)332222cos 4sin ()sin cos sin cos f θθθθθθθθθ-'=-+=, 令()0f θ'=,得0tan 2θ=, 且当()00,θθ∈,()0f θ'<;当0π,2θθ⎛⎫∈ ⎪⎝⎭,()0f θ'>, 所以()f θ在()00,θ上单调递减;在0π,2θ⎛⎫⎪⎝⎭上单调递增, 所以当0θθ=时,()f θ取得极小值,即为最小值.当0tan θ=sin θ=,0cos θ=所以min 0()()4f f θθ===即这根竹竿能通过拐角处的长度的最大值为.因为7>,所以这根竹竿能从拐角处一直漂向东西向的水渠. 【点睛】本题考查了三角函数的应用,利用导数求最值,意在考查学生的计算能力和综合应用能力.4.如图,在平面直角坐标系xOy 中,点P ,Q 是以AB 为直径的上半圆弧上两点(点P 在Q 的右侧),点O 为半圆的圆心,已知2AB =,BOP θ∠=,POQ α∠=.(1)若点P 的横坐标为45,点Q 的纵坐标为12,求cos α的值; (2)若1PQ =,求AQ BP ⋅的取值范围.【答案】(1(2)10,2⎡⎤⎢⎥⎣⎦【分析】(1)计算3sin 5θ=,4cos 5θ=,()1sin 2αθ+=,()cos 2αθ+=-,利用和差公式计算得到答案. (2)3πα=,故()cos ,sin P θθ,cos ,sin 33Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1sin 62AQ BP πθ⎛⎫⋅=+- ⎪⎝⎭,计算得到答案. 【详解】(1)根据题意:3sin 5θ=,4cos 5θ=,()1sin 2αθ+=,()sin sin αθθ+<,故,2παθπ⎛⎫+∈ ⎪⎝⎭,()cos αθ+=故()()()cos cos cos cos sin sin ααθθαθθαθθ=+-=+++=. (2)1OP OQ PQ ===,故3πα=,故()cos ,sin P θθ,cos ,sin 33Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ()10B ,,()1,0A -,故()cos 1,sin cos 1,sin 33AQ BP ππθθθθ⎛⎫⎛⎫⎛⎫⋅=+++⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1cos 1cos 1sin sin sin 3362πππθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫=++-++=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.20,3πθ⎡⎤∈⎢⎥⎣⎦,则5,666πππθ⎡⎤+∈⎢⎥⎣⎦,故11sin 0,622πθ⎛⎫⎡⎤+-∈ ⎪⎢⎥⎝⎭⎣⎦.【点睛】本题考查了三角恒等变换,向量的数量积,意在考查学生的计算能力和综合应用能力.5.如图,某污水处理厂要在一正方形污水处理池ABCD 内修建一个三角形隔离区以投放净化物质,其形状为三角形APQ ,其中P 位于边CB 上,Q 位于边CD 上,已知20AB =米,6PAQ π∠=,设PAB θ∠=,记()ABCD fPAQ θ=∆正方形面积面积,当()f θ越大,则污水净化效果越好.(1)求()f θ关于的函数解析式,并求定义域; (2)求()fθ最大值,并指出等号成立条件?【答案】(1)()=4cos cos()3f πθθθ-,()124;(2) =6πθ时,()fθ最大值是3【分析】(1)在ABP △中求AP ,在ADQ △中求AQ ,再求出PAQ ∆面积得解. (2要求()f θ最大值,恒等转化成sin()A x k 型利用三角函数性质可得解.【详解】(1)在ABP △中,PAB θ∠=, 20AB =∴ 20=coscos ABAP ; 在ADQ △中3DAQ πθ∠=-,∴20=cos()cos()33AD AQ1100sin 26cos cos()3PAQ S AP AQ ππθθ∆=⋅=-()400=4cos cos()1003cos cos()3f πθθθπθθ=--由题知04πθ<<,且034∴124ππθ<<()=4cos cos()3f πθθθ∴-,()124(2)()=4cos cos()=2sin(2)136f ππθθθθ-++124ππθ<< ,22363∴ 当2=62ππθ+时,即=6πθ时()f θ最大值是3【点睛】本题考查三角恒等变换在三角函数图象和性质中的应用.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成sin()A x k 或cos()A x k 的形式;(2)根据自变量的范围确定x ωϕ+的范围,根据相应的正弦曲线或余弦曲线求值域或最值.6.某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O 及其内接等腰三角形ABC 绕底边BC 上的高所在直线AO 旋转180︒而成,如图2.已知圆O 的半径为10cm ,设BAO θ∠=,02πθ<<,圆锥的侧面积为2cm S (S 圆锥的侧面积RI π=(R -底面圆半径,I -母线长))(1)求S 关于θ的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积S 最大.求S 取得最大值时腰AB 的长度【答案】(1)2400sin cos S πθθ=,(02πθ<<);(2 【分析】(1)根据题意,设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E ,分析可得220cos AB AE θ==,sin 20sin cos BD AB θθθ==,由圆锥的侧面积公式可得S 的表达式,即可得答案;(2)由(1)可得S 的表达式可得231400sin cos 400(sin sin )2S πθθπθθ==-,设3()=-f x x x ,(01)x <<,求导求出其在区间(0,1)上的最大值,求出x 的值,即可得当sin θ=,即cos θ=时,侧面积S 取得最大值,计算即可得答案. 【详解】解:(1)根据题意,设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E , 在AOE ∆中,10cos AE θ=,220cos AB AE θ==, 在ABD ∆中,sin 20sin cos BD AB θθθ=⋅=,所以21220sin cos 20cos 400sin cos 2S πθθθπθθ=⨯⨯⨯=,(02πθ<<). (2)由(1)得:()231400sin cos 400sin sin 2S πθθπθθ==-,设()3f x x x =-,(01x <<),则()213f x x '=-,令()2130f x x '=-=,可得x =当0,3x ⎛∈ ⎝⎭时,()0f x '>,函数()f x 在区间0,3⎛⎝⎭上单调递增,当,13x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,函数()f x 在区间3⎛⎫⎪ ⎪⎝⎭上单调递减,所以()f x 在3x =时取得极大值,也是最大值;所以当sin θ=,即cos θ=时,侧面积S 取得最大值,此时等腰三角形的腰长20cos AB θ==答:侧面积S 取得最大值时,等腰三角形的腰AB 的长度为cm 3.【点睛】本题考查导数的实际应用,利用导数求函数的单调性、极值和最值,还涉及圆锥的侧面积公式和三角函数的恒等变形,关键是求出S 的表达式.7.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求证:()()f x g x ≤; (2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值. 【答案】(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果. (2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果.【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤, 所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤.(2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”. 令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时, 因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<, 所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减. 从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立. 当01c <<时, 存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=. ()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为()M x 在区间[]00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立” 当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤, 综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立. 所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立, 则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.8.如图,半圆O 的直径为2,A 为直径延长线上的一点,2OA =,B 为半圆上任意一点,以AB 为一边作等边三角形ABC .设AOB θ∠=.(1)当56πθ=,求四边形OACB 的面积; (2)当θ为何值时,线段OC 最长并求最长值.【答案】(12)当23πθ=时,OC 的最大值为3【分析】(1)利用余弦定理求出AB ,分别求出OAB ABC ∆∆,的面积即可;(2)根据余弦定理,正弦定理用θ表示出,sin ,cos AB OAB OAB ,利用余弦定理得出OC 关于θ的函数,根据三角恒等变换求出最值. 【详解】解:(1)在OAB ∆中,由余弦定理得2222cos AB OA OB OA OB θ=+-⋅514212cos 6π=+-⨯⨯5=+于是四边形OACB 的面积为21sin 2AOB ABC S S S OA OB AB θ∆∆=+=⋅+111222=⨯⨯⨯+=(2)在OAB ∆中,由余弦定理得2222cos AB OA OB OA OB θ=+-⋅14212cos 54cos θθ=+-⨯⨯⨯=-,∴AB =∴AC =在OAB ∆中,由正弦定理得sin sin AB OBOABθ=∠, 即sin sinOB OAB AB θ∠==又OB OA <,所以OAB ∠为锐角,∴cosOAB ∠==∴cos cos cos cos sin sin 333OAC OAB OAB OAB πππ⎛⎫∠=∠+=∠-∠ ⎪⎝⎭=-在OAC ∆中,由余弦定理得:2222cos OC OA AC OA CA OAC =+-⋅∠454cos 22θ⎛⎫=+--⨯52cos 54sin 6πθθθ⎛⎫=+-=+- ⎪⎝⎭.∵(0,)θπ∈, ∴当23πθ=时,OC 的最大值为3. 【点睛】本题考查了解三角形和三角函数的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.9.已知向量()2cos ,1a x =,()3sin cos ,1b x x =+-,函数()f x a b =⋅.(1)若()065f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值; (2)若函数()y fx ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数,求正数ω的取值范围.【答案】(1(2)104ω<≤ 【分析】(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由()065f x =,结合026x π+的范围以及平方关系得出0cos 26x π⎛⎫+ ⎪⎝⎭的值,由002266x x ππ⎛⎫+- ⎪⎝⎭=结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间2,33ππ⎛⎫⎪⎝⎭应该包含在()y f x ω=的一个增区间内,根据包含关系列出不等式组,求解即可得出正数ω的取值范围. 【详解】(1)())2cos cos 12cos 22sin 26f x a b xx x x x x π⎛⎫=⋅=+-=+=+ ⎪⎝⎭因为()065f x =,所以062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭.因为0,42x ππ⎡⎤∈⎢⎥⎣⎦,所以0272366x πππ≤+≤所以04cos 265x π⎛⎫+==- ⎪⎝⎭.所以00001cos 2cos 2cos 2sin 2662626x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦413525⎛⎫=-+⨯=⎪⎝⎭(2)()2sin 26y f x x πωω⎛⎫==+ ⎪⎝⎭. 令222262k x k ππππωπ-≤+≤+,k Z ∈得36k k x ππππωωωω-≤≤+,k Z ∈ 因为函数()y fx ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数所以存在0k Z ∈,使得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+⎪ ⎪⎝⎭⎝⎭所以有0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩ 因为0>ω,所以016k >- 又因为2123322πππω-≤⨯,所以302ω<≤,则03312k ≤+,所以056k ≤从而有01566k -<≤,所以00k =,所以104ω<≤. 【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.10.已知向量()()sin ,cos 3a x x ωωω=>,()cos ,sin 2b πϕϕϕ⎛⎫=<⎪⎝⎭,函数()5f x a b π=⋅+满足2445f x f x πππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,且在区间2,189ππ⎛⎫⎪⎝⎭上单调,又不等式()4f x f π⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立.(1)求函数()f x 的解析式; (2)若函数()20205y f x x ππ=--+在区间[](),0m m m ->的零点为123100,,,,x x x x ,求()10011ii x f x =+⎡⎤⎣⎦∑的值.【答案】(1)()sin(5)+45f x x+ππ=;(2)15π.【分析】(1)根据()5f x a b π=⋅+利用向量数量积公式与正弦的和角公式化简,再根据题意可得()f x 的对称轴与对称中心等.同时利用()f x 在区间2()189ππ,上单调求出关于周期的不等式,继而求得解析式.(2)将题意转换为函数()y f x =的图象与1+520y x ππ=+的图象在区间[,]m m -上有100个交点.再利用函数的对称点分析求解即可. 【详解】(1)()sin cos cos sin sin()555f x a b x x x πππωϕωϕωϕ=⋅+=++=++因为()()044f +x f x ππ-+--=,所以(0)4π-,是函数()f x 的一个对称中心, 由()()4f x f π≤,得4x π=为函数()f x 的一条对称轴,所以()4424k T T ,k ππ--=+∈Z ,即(21)22k ,k ,ππω+=∈Z 所以21=k ,k ω+∈Z . 又因为函数()f x 在区间2()189ππ,上单调,所以2=91862T ππππω-=≤, 即6ω≤,又3ω>,所以5ω=. 又因为542+k ,k Z ,ππϕπ⨯=+∈所以34k ,k Z ,πϕπ=-∈又2,πϕ≤所以4πϕ=. 所以()sin(5)+45f x x+ππ=.(2)由题意,方程1()+520f x x ππ=+在区间[,]m m -上有100个实根,即函数()y f x =的图象与1+520y x ππ=+的图象在区间[,]m m -上有100个交点.由5=,,4x+k k ππ∈Z 得,520k x k ππ=-∈Z , 所以(,)205ππ-为函数()y f x =的图象的一个对称中心.易知(,)205ππ-也是函数1+520y x ππ=+的图象的对称中心,所以()y f x =与1+520y x ππ=+的图象交点成对出现,且每一对均关于点(,)205ππ-对称, 所以1231002()50520x x x x ππ++++=⨯-⨯=-.123100()()()()250205f x f x f x f x ππ++++=⨯⨯=,所以1001[+()]i i i x f x =∑=123100123100+++++()()()()=15x x x x f x f x f x f x π++++.【点睛】本题主要考查了三角函数的性质综合运用,需要根据条件得出三角函数的对称轴、对称点以及周期范围等信息,进而列出参数的不等式进行求解.同时也考查了三角函数的对称点的求和应用.属于难题.11.如图,已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,点,A B 分别是()f x 的图象与y 轴、x 轴的交点,,C D 分别是()f x 的图象上横坐标为3π、2π的两点,//CD x 轴,,,A B D 三点共线.(1)求,ωϕ的值;(2)若关于x的方程()3f x k x =+在区间,123ππ⎡⎤⎢⎥⎣⎦上恰有两个实根,求实数k 的取值范围. 【答案】(1) 3ω=,=4πϕ;(2)12k -<≤-【分析】(1)结合AB BD =及中点坐标可求B ,根据点C 与点D 对称性求出对称轴512x π=,然后可求()f x 的最小正周期T ,进而可求ω,再由点B 代入解析式求出ϕ;(2)由(1)可知,()3f x k x =+,可求得sin 33cos 344k x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,设()cos 3,,4123g x x x πππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦,结合y k =与()g x 的图象即可求出k 的取值范围.【详解】根据题意,点A 与点D 关于点B 对称,则点B 的横坐标为0+2=24ππ,又点C 与点D 关于直线532212x πππ+==对称,f x 的最小正周期T 满足541246T πππ=-=,解得23T π=,即3ω=, 由五点法做图可知,3+=4πϕπ⨯,且0ϕπ<<, =4πϕ∴;由(1)知,函数()sin 34f x x π⎛⎫=+⎪⎝⎭,由()3f x k x =+得sin 334x k x π⎛⎫+= ⎪⎝⎭, sin 33cos 344k x x x ππ⎛⎫⎛⎫∴=+=+ ⎪ ⎪⎝⎭⎝⎭设()cos 3,,4123g x x x πππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦, 画出()g x 在,123x ππ⎡⎤∈⎢⎥⎣⎦上的函数图象,如图所示; 根据题意, y k =与()g x 恰有两个交点,实数k 应满足1k -<≤. 【点睛】本题考查三角函数的图象性质及其应用,同时考查了数形结合的思想和计算求解的能力,难度较难. 12.如图,已知点O 为直线l 外一点,直线l 上依次排列着A ,B ,C ,D 四点,满足:(1)∠AOC 为锐角,BOC COD ∠=∠; (2)2tan tan tan AOB AOD AOC ∠⋅∠=∠ (3)112tan tan tan AOC BOC AOB+=∠∠∠.(Ⅰ)求∠AOC 的值;(Ⅱ)若1AB BC ==,求CD 的值. 【答案】(Ⅰ)4π(Ⅱ)2 【分析】(1))设AOC α∠=,BOC COD β∠=∠=,得到2tan()tan()tan αβαβα-+=,化简得到答案.(2)根据正弦定理得到(2)sin()sin()CD CD αβαβ+-=+,将tan 1α=和1tan 3β=代入计算得到答案.【详解】(1)设AOC α∠=,BOC COD β∠=∠=.由2tan tan tan AOB AOD AOC ∠⋅∠=∠,得2tan()tan()tan αβαβα-+=,即22222tan tan tan 1tan tan αβααβ-=-, 所以2tan 1α=,4πα=.(2)在OCD 中,由角平分线定理得CD ODBC OB=, 在OAD ∆中,由正弦定理得2sin sin()sin()OD AD CDA αβαβ+==++, 在OAB ∆中,由正弦定理得1sin sin()sin()OB AB A αβαβ==--, 两式相除得(2)sin()sin()OD CD OB αβαβ+-=+.即(2)sin()sin()CD CD αβαβ+-=+. 将tan 1α=代入112tan tan tan AOC BOC AOB+=∠∠∠得1tan 3β=.将tan 1α=和1tan 3β=代入(2)sin()sin()CD CD αβαβ+-=+. 解得2CD =. 【点睛】本题考查了正弦定理,三角恒等变换,意在考查学生的综合应用能力和转化能力.13.已知O 为坐标原点,对于函数()sin cos f x a x b x =+,称向量(),a M b O =为函数()f x 的伴随向量,同时称函数()f x 为向量OM 的伴随函数.(1)设函数3())sin 2g x x x ππ⎛⎫=+--⎪⎝⎭,试求()g x 的伴随向量OM ;(2)记向量(1,ON =的伴随函数为()f x ,求当()85f x =且,36x ππ⎛⎫∈- ⎪⎝⎭时sin x 的值; (3)由(1)中函数()g x 的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移23π个单位长度得到()h x 的图象,已知()2,3A -,()2,6B ,问在()y h x =的图象上是否存在一点P ,使得AP BP ⊥.若存在,求出P 点坐标;若不存在,说明理由.【答案】(1)OM (=-(2(3)存在,()0,2P 【分析】(1)利用三角函数诱导公式化简函数得()cos g x x x =+,根据题意写出伴随向量; (2)根据题意求出函数()f x ,再由()85f x =及,36x ππ⎛⎫∈- ⎪⎝⎭求出sin()3x π+及cos()3x π+,由sin sin 33x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦展开代入相应值即可得解;(3) 根据三角函数图像变换规则求出()h x 的解析式,设1,2cos 2P x x ⎛⎫⎪⎝⎭,由AP BP ⊥得0AP BP ⋅=列出方程求出满足条件的点P 的坐标即可. 【详解】(1)∵3()sin )2g x x x ππ⎛⎫=--++⎪⎝⎭∴()cos cos g x x x x x =-=+∴()g x 的伴随向量OM (=-(2)向量(1,ON =的伴随函数为()sin f x x x =,()8sin 2sin()35f x x x x π=+=+=,4sin()35x π∴+=,(0,)3632x x ππππ⎛⎫∈-∴+∈ ⎪⎝⎭,,3cos()35x π∴+=14sin sin sin cos 33232310x x x x ππππ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(3)由(1)知:()cos 2sin 6g x x x x π⎛⎫=+=--⎪⎝⎭将函数()g x 的图像(纵坐标不变)横坐标伸长为原来的2倍,得到函数12sin 26y x π⎛⎫=-- ⎪⎝⎭再把整个图像向右平移23π个单位长得到()h x 的图像,得到 1211()2sin 2sin 2cos 236222h x x x x πππ⎛⎫⎛⎫⎛⎫=---=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设1,2cos2P x x ⎛⎫⎪⎝⎭,∵(2,3),(2,6)A B - ∴12,2cos32AP x x ⎛⎫=+- ⎪⎝⎭,12,2cos 62BP x x ⎛⎫=-- ⎪⎝⎭又∵AP BP ⊥,∴0AP BP ⋅=∴11(2)(2)2cos32cos 6022x x x x ⎛⎫⎛⎫+-+--= ⎪⎪⎝⎭⎝⎭221144cos 18cos 18022x x x -+-+= ∴2219252cos 224x x ⎛⎫-=- ⎪⎝⎭(*) ∵122cos22x -≤≤,∴131952cos 2222x -≤-≤- ∴225191692cos 4224x ⎛⎫≤-≤ ⎪⎝⎭ 又∵2252544x -≤∴当且仅当0x =时,2192cos 22x ⎛⎫- ⎪⎝⎭和2254x -同时等于254,这时(*)式成立∴在()y h x =的图像上存在点()0,2P ,使得AP BP ⊥. 【点睛】本题主要考查平面向量坐标形式与三角函数的综合应用,涉及三角函数诱导公式,三角恒等变换,求三角函数图像变换后的解析式,向量垂直的数量积关系,属于中档题.14.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围. 【答案】(1)证明见解析;(2)(1,2) 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+,即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+, sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去), 2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=, 022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.15.如图,半径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中AB BE <,设AOB θ∠=.(1)将十字形的面积S 表示为θ的函数; (2)求十字形的面积S 的最大值.【答案】(1)28sin cos4sin 222S θθθ=-(2)max 2S =.【分析】(1)由题意,根据三角函数和圆的半径表达2sin 2AB θ=,2cos2BE θ=,再计算十字形的面积;(2)由(1)中十字形的面积28sin cos4sin 222S θθθ=-,根据三角恒等变换,化简函数解析式,即可求解最大值. 【详解】解:(1)由题意,2sin2AB θ=,2cos2BE θ=,因为AB BE <,所以0,2πθ⎛⎫∈ ⎪⎝⎭.所以222sin 2cos 2sin 222S θθθ⎛⎫⎛⎫=⋅- ⎪ ⎪⎝⎭⎝⎭. 即28sincos4sin 222S θθθ=-,0,2πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)得:4sin 2cos 2S θθ=+-1)2tan 2θϕϕ⎛⎫=+-= ⎪⎝⎭所以max 2S =. 答:(1)28sincos4sin 222S θθθ=-;(2)max 2S =. 【点睛】本题考查(1)三角函数在几何图形中的应用;(2)三角恒等变换求最值问题;考察计算能力,实际操作能力,综合性较强,有一定难度.16.如图,某污水处理厂要在一个矩形ABCD 的池底水平铺设污水净化管道(直角EFG ∆,E 是直角顶点)来处理污水,管道越长,污水净化的效果越好.设计要求管道的接口E 是AB 的中点,F ,G 分别落在AD ,BC 上,且20AB m =,AD =,设GEB θ∠=.(1)当θ为何值时,EFG ∆的面积S 最小,并求出最小值;(2)试将污水管道的长度l 表示成θ的函数,并写出定义域; (3)当θ为何值时,污水净化的效果最好,并求此时管道l 的长度. 【答案】(1)4πθ=,100(2)10sin 10cos 10,,sin cos 63l θθππθθθ++⎡⎤=∈⎢⎥⎣⎦(3)当θ取6π或3π时效果最好,此时()20l m =. 【分析】(1)利用三角函数定义表示出EG 和FE 的长度,利用三角形的面积公式和二倍角的正弦公式可求得面积的最小值;(2)根据(1)中的表示出EG 和FE 的长度,利用勾股定理可得长度FG.三边之和可得污水管道的长度l. (3)根据(2)中的关系式利用三角函数公式化简,利用三角函数的有界限可得l 的最大值,即污水净化效果最好. 【详解】(1)由题意,,90GEB GEF θ︒∠=∠=.则90AEF θ︒∠=-, E 是AB 的中点,20AB mAD ==,()101010cos sin cos 90EG EF θθθ︒∴===-,, 所以11101010022cos sin sin 2EFG S EG EF θθθ∆=⨯⨯=⨯⨯=,当sin 21,4πθθ==时, EFG ∆的面积S 最小,最小值为100EFGS =,所以当4πθ=时,EFG ∆的面积S 最小,最小值为100;(2)由(1)得10cos sin FG θθ==,则101010sin cos sin cos l θθθθ=++, 其中当G 与点C 重合时,3πθ=,当F 与点D 重合时,6πθ=,所以63ππθ≤≤,所以污水管道的长度l 表示成θ的函数为10(sin cos )10sin cos l θθθθ++=,其定义域为,63ππθ⎡⎤∈⎢⎥⎣⎦;(3)由(2)可知则10(sin cos )10,sin cos 63l θθππθθθ⎛⎫++⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,令sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,,63ππθ⎡⎤∈⎢⎥⎣⎦,57,41212πππθ⎡⎤∴+∈⎢⎥⎣⎦, 可得sin 4πθ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,则:t ∈⎣ 又21sin cos 2t θθ-=,且1t ≠那么:22101020(1)201112t t l t t t ++===---当12t =时,长度l取得最大值为20,此时:4t πθ⎛⎫=+= ⎪⎝⎭,即5412ππθ+=或712π,6πθ∴=或3π, 故得6πθ=或3π时,污水净化效果最好,此时管道的长度为()20m ;【点睛】本题考查运用三角函数解决生活实际问题中的最值问题,关键在于设合理的角度,将所求的问题转化为此角的三角函数,属于中档题.17.定义在R 上的函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>>≤≤ ⎪⎝⎭,若已知其在()0,7x π∈内只取到一个最大值和一个最小值,且当x π=时函数取得最大值为3;当6x π=,函数取得最小值为3-. (1)求出此函数的解析式;(2)若将函数()f x 的图像保持横坐标不变纵坐标变为原来的13得到函数()g x ,再将函数()g x 的图像向左平移()000ϕϕ>个单位得到函数()h x ,已知函数()lg ()g x y eh x =+的最大值为e ,求满足条件的0ϕ的最小值;(3)是否存在实数m,满足不等式()()sinsin A A ϕϕ>若存在,求出m 的范围(或值),若不存在,请说明理由. 【答案】(1)()133sin 510f x x π⎛⎫=+ ⎪⎝⎭;(2)10π;(3)存在,1,22m ⎛⎤∈ ⎥⎝⎦【分析】(1)利用最大值和最小值确定A 和T ,进而得到ω;利用()3f π=可求得ϕ的取值,进而得到所求函数解析式;(2)由图象平移和伸缩变换原则得到()(),g x h x ,由xy e =与函数lg y x =的单调性可知只有当()1g x =,()1h x =同时取得时,函数取最大值,由此可得到010k ϕπ=,根据00ϕ>得到最终结果;(3)由偶次根式被开方数大于等于零可确定m 的范围,进而得到两角整体所处范围,根据函数单调性可. 【详解】 (1)()()max 3f x f π==,()()min 63f x f π==-3A ∴=,()22610T ππππω==⨯-= 15ω∴=()3sin 35f ππϕ⎛⎫=+= ⎪⎝⎭252k ππϕπ∴+=+,k Z ∈解得:3210k πϕπ=+,k Z ∈,又02πϕ≤≤ 310πϕ∴= ()133sin 510f x x π⎛⎫∴=+ ⎪⎝⎭(2)由题意知:()13sin 510g x x π⎛⎫=+⎪⎝⎭,()0131sin 5105h x x πϕ⎛⎫=++ ⎪⎝⎭ 函数xy e =与函数lg y x =均为单调增函数,且()11g x -≤≤,()01h x <≤∴当且仅当()13sin 1510g x x π⎛⎫=+= ⎪⎝⎭与()0131sin 15105h x x πϕ⎛⎫=++=⎪⎝⎭同时取得才有函数的最大值为e由()13sin 1510g x x π⎛⎫=+= ⎪⎝⎭得:1321025x k πππ+=+,k Z ∈ 又()0131sin 15105h x x πϕ⎛⎫=++=⎪⎝⎭ 01cos 15ϕ⎛⎫∴= ⎪⎝⎭010k ϕπ∴=,k Z ∈又00ϕ> 0ϕ∴的最小值为10π(3)m 满足2223040m m m ⎧-++≥⎨-+≥⎩,解得:12m -≤≤ ()2223144m m m -+=--++≤ 02∴≤≤同理02≤≤15ω=,310πϕ=323,10510ππϕ⎡⎤∈+⎢⎣∴⎥⎦,323,10510ππϕ⎡⎤∈+⎢⎥⎣⎦由(1)知函数在[]4,ππ-上递增若有()()sinsin A A ϕϕ>>,即12m >成立即可∴存在1,22m ⎛⎤∈ ⎥⎝⎦,使()()sin sin A A ϕϕ>成立【点睛】本题考查三角函数与函数部分知识的综合应用问题,涉及到根据函数性质求解函数解析式、三角函数的平移和伸缩变换、根据函数最值求解参数值、利用单调性求解函数不等式的问题;本题综合性较强,属于较难题.18.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为 90 米,最低点距离地面 10 米,摩天轮上均匀设置了 36 个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1) 经过t 分钟后游客甲距离地面的高度为H 米,已知H 关于t 的函数关系式满足H (t )=A sin(ωt +φ)+B 其中A >0,ω> 0),求摩天轮转动一周的解析式 H (t );(2) 问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为 30 米?(3) 若游客乙在游客甲之后进入座舱,且中间相隔 5 个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为 h 米,求 h 的最大值. 【答案】(1)()40cos 50(030)15H t t t π=-+≤≤;(2)答案见解析;(3)h 的最大值为40米【分析】(1)设()sin()H t A t B ωϕ=++,根据最高点和最低点可得A 与B ,由周期求ϕ值,即得函数解析式;(2)高度为30米,代入解析式求出t ;(3)分析出相邻两个座舱到达最低点的时间间隔为3036,甲,乙中间相隔5个座舱,则时间间隔5分钟,由此列出两人距离地面的高度差h 关于t 的函数关系式,利用三角函数的性质求出最大值. 【详解】(1)由题意可设()sin()(0,0,0)H t A t B A B ωϕω=++>>≥,摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,9010A B A B +=⎧⎨-+=⎩,得40,50A B ==. 又函数周期为30,23015ππω==, ()40sin()5015H t t πϕ=++(030t ≤≤),又0t =时,()10H t =,所以1040sin(0)5015πϕ=⨯++,即sin 1ϕ=-,ϕ可取2π-, 所以()40sin()5040cos 50(030)15215H t t t t πππ=-+=-+≤≤ (2) ()40cos 503015H t t π=-+=,1cos 152t π=解得5t =,所以游客甲坐上摩天轮5分钟后,距离地面的高度恰好为30米;(3)由题意知相邻两个座舱到达最低点的时间间隔为3036,游客甲,乙中间相隔5个座舱, 则游客乙在游客甲之后5分钟进入座舱,若甲在摩天轮上坐了t (530t ≤≤)分钟,则游客乙在摩天轮上坐了5t -分钟,所以高度差为: 40cos 50[40cos(5)50]1515140[coscos(5)]40[cos cos ]151521521540cos()153h t t t t t t t ππππππππ=-+---+=---=--=-+ 当153t πππ+=即10t =时,h 取得最大值40.【点睛】本题考查利用三角函数的性质求解析式,以及三角函数性质的实际应用,属于中档题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查数学知识,解决这类问题的关键是将实际问题转化为数学模型进行解答. 19.如图,一个角形海湾,2AOB AOB θ∠=(常数θ为锐角).拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择:方案一:如图1,围成扇形养殖区OPQ ,其中PQ l =;方案二:如图2,围成三角形养殖区OCD ,其中CD l =.(1)求方案一中养殖区的面积1S ;(2)求方案二中养殖区的最大面积(用l θ,表示);(3)为使养殖区的面积最大,应选择何种方案?并说明理由.【答案】(1)21,0,42l S πθθ⎛⎫=∈ ⎪⎝⎭;(2)224tan l S θ=;(3)应选择方案一. 【分析】(1)设此扇形所在的圆的半径为r ,则2l r θ=⋅,可得2lr θ=.利用扇形面积计算公式可得1S . (2)设OC x =,OD y =,利用余弦定理与基本不等式的性质可得:2222cos 222cos 2l x y xy xy xy θθ=+-≥-,可得:224l xy sin θ≤,即可得出. (3)由于12tan S S θθ=,令()tan f θθθ=-,求导,可得()f θ在(0,)2π上单调递增.即可得出结论. 【详解】(1)设OP r =,则2l r θ=⋅,即2lr θ=,所以 211,0,242l S lr πθθ⎛⎫==∈ ⎪⎝⎭.(2)设,OC a OD b ==.由余弦定理,得2222cos 2l a b ab θ=+-,所以22cos2l ab ab θ≥-.所以22(1cos 2)l ab θ≤-,当且仅当a b =时等号成立.所以221sin 2sin 224(1cos 2)4tan OCDl l S ab θθθθ∆=≤=-,即224tan l S θ=.(3)221114(tan ),0,2S S l πθθθ⎛⎫-=-∈ ⎪⎝⎭, 令()tan f θθθ=-,则22sin sin ()1cos cos f θθθθθ''⎛⎫=-= ⎪⎝⎭. 当0,2πθ⎛⎫∈ ⎪⎝⎭时,()0f θ'>,所以()f θ在区间0,2π⎛⎫ ⎪⎝⎭上单调递增. 所以,当0,2πθ⎛⎫∈ ⎪⎝⎭时,总有()(0)0f f θ>=,即21110S S ->,即12S S >. 答:为使养殖区面积最大,应选择方案一.【点睛】本题考查扇形的面积计算公式、余弦定理、基本不等式的性质,考查函数与方程思想、分类讨论思想的应用,考查逻辑推理能力和运算求解能力,注意利用基本不等式求最值时,记得验证等号成立的条件. 20.ABC ∆的内角,,A B C 的对边分别为,,a b c ,设(sin sin sin )(sin sin sin )A B C A B C ++⋅+-2sin sin A B =.(1)求C ;(2)若D 为BC 边上的点,M 为AD 上的点,1CD =,CAB MBD DMB ∠=∠=∠.求AM .【答案】(1) 90C =;(2)2【分析】(1)根据正弦定理进行边角互化,利用余弦定理即可求解;(2)设=CAB MBD DMB θ∠=∠=∠,将三角形中其余角用θ表示出来,结合1CD =,表示边长,即可解出.【详解】(1)由(sin sin sin )(sin sin sin )A B C A B C ++⋅+-2sin sin A B =,得()222a b c ab +-=,即222+=a b c∴90C =;(2)令CAB MBD DMB θ∠=∠=∠=,则在AMB ∆中,902,180MBA BMA θθ∠=-∠=-由正弦定理得:()()sin 902sin 180AM AB θθ=--, 即cos 2sin AB AM θθ⋅= 在ACD ∆中,90,2ACD CDA θ∠=∠=由正切定义:tan 2AC θ= 在ACB ∆中,90,ACB BAC θ∠=∠= 由正切定义:tan 2cos cos AC AB θθθ==, ∴tan 2cos 2cos 2sin AM θθθθ⋅== 【点睛】此题考查正余弦定理在解三角形中的应用,其中不乏对平面几何知识中角的关系的考查,综合应用能力要求较高.。
高考数学复习热点06 三角函数与解三角形(解析版)-2021年高考数学专练(新高考)
热点06 三角函数与解三角形【命题形式】新高考环境下,三角函数与解三角形依然会作为一个热点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考。
1、题目分布:"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题。
2、考察的知识内容:(1)三角函数的概念;(2)同角三角函数基本关系式与诱导公式及其综合应用;(3)三角函数的图像和性质及综合应用;(4)三角恒等变换及其综合应用;(5)利用正、余弦定理求解三角形;(6)与三角形面积有关的问题;(7)判断三角形的形状;(8)正余弦定理的应用。
3、新题型的考察:(1)以数学文化和实际为背景的题型;(2)多选题的题型;(3)多条件的解答题题型。
4、与其它知识交汇的考察:(1)与函数、导数的结合;(2)与平面向量的结合;(3)与不等式的结合;(4)与几何的结合。
【满分技巧】1、夯实基础,全面系统复习,深刻理解知识本质从三角函数的定义出发,利用同角三角函数关系式、诱导公式进行简单的三角函数化简、求值,结合三角函数的图像,准确掌握三角函数的单调性、奇偶性、周期性、最值、对称性等性质,并能正确地描述三角函数图像的变换规律。
要重视对三角函数图像和性质的深入研究,三角函数,是高考考查知识的重要载体,是三角函数的基础。
“五点法”画正弦函数图像是求解三角函数中的参数及正确理解图像变换的关键,因此复习时应精选典型例题(选择题、填空题、解答题)加以训练和巩固,把解决问题的方法技巧进行归纳、整理,达到举一反三、触类旁通。
2、切实掌握两角差的余弦公式的推导及其相应公式的变换规律以两角差的余弦公式为基础,掌握两角和与两角差的正余弦公式、正切公式、二倍角公式,特别是用一种三角函数表示二倍角的余弦,掌握公式的正用、逆用、变形应用,迅速正确应用这些公式进行化简、求值与证明,即以两角差的余弦公式为基础.推出三角恒等变换的相应公式,掌握公式的来龙去脉。
2021届高考数学二轮复习专题五三角函数与解三角形梳理纠错预测学案文
三角函数与解三角形1.三角函数(1)以正弦函数、余弦函数、正切函数为载体,考查函数的定义域、最值、单调性、对称性、周期性.(2)考查三角函数式的化简,三角函数的图象的性质以及平移和伸缩变换. 2.解三角形(1)利用正余弦定理进行三角形边和角的计算,三角形形状的判断、面积的计算,以及有关的参数的范围.(2)考查运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、三角函数 1.公式(1)诱导公式:(2)同角三角函数关系式:22sin cos 1αα+=,sin tan cos ααα=(3)两角和与差的三角函数:sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(4)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- 22tan tan 21tan ααα=- (5)降幂公式:21cos2sin2αα-=,21cos2cos2αα+=2.三角函数性质3.函数y=A sin(ωx+φ)的图象及变换(1)φ对函数y=sin(x+φ)的图象的影响(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响(3)A(A>0)对y=A sin(ωx+φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形 1.正余弦定理(为外接圆半径); ;,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在ABC△中,已知,和角A时,解得情况如下:上表中A为锐角时,,无解.A为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.若1sin 33πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .79-B .23C .23-D .79【答案】A【解析】1sin cos cos 32363ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 2217cos 2cos 22cos 12136639πππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选A .【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想, 属于基础题.2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为()A.1BC. D .3【答案】B【解析】因为()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭,所以()2sin sin 22sin 2sin cos 44444f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令4x πθ=+,则()2sin 2sin cos 2sin sin 2f θθθθθθ=+=+,则()()222cos 2cos 222cos 12cos 4cos 2cos 2f θθθθθθθ'=+=-+=+-,令f ′(θ)=0,得cos 1θ=-或1cos 2θ=,经典训练题(70分钟)当11cos 2θ-<<时,f ′(θ)<0;1cos 12θ<<时,f ′(θ)>0,所以当1cos 2θ=时,f (θ)取得最大值,此时sin 2θ=,所以()max2f x =,故选B .【点评】本题考查三角恒等变换及三角函数的性质的应用,解答的关键是利用导数研究函数的单调性从而求出函数的最值. 3.已知锐角ϕ满足cos 1ϕϕ-=.若要得到函数()()21sin 2f x x ϕ=-+的图象,则可以将函数1sin 22y x =的图象() A .向左平移7π12个单位长度B .向左平移π12个单位长度C .向右平移7π12个单位长度D .向右平移π12个单位长度【答案】A 【解析】由cos 1ϕϕ-=,知2sin()16πϕ-=,即1sin()62πϕ-=, ∴锐角3πϕ=,故()()221112sin sin cos(2)22323f x x x x ππϕ⎛⎫=-+=-+=+ ⎪⎝⎭,又12117cos(2)sin(2)sin(2)232626x x x πππ+=-+=+, ∴()17sin(2)26f x x π=+,故f(x)是将1sin 22y x =向左平移7π12个单位长度得到,故选A .【点评】由辅助角公式化简已知条件求锐角ϕ,根据f(x)的函数式,应用二倍角、诱导公式将f(x)化为正弦型函数,即可判断图象的平移方式.4.已知函数f (x )=2sin (ωx +φ),(0,)2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .−√2B .√2C .−√3D .−1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=, ∴f (x )=2sin (x +φ),将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=- ⎪⎝⎭, 将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x xπππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考查三角函数图象,需要利用三角函数的周期性以及对称性进行处理,再结合图象的平移,三角函数的单调性进行解题,本题属于中档题.5.已知函数f (x )=sin ωx −√3cos ωx (0ω>,x ∈R )的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数g (x )的图象,则下列关于函数g (x )的命题中正确的是() A .函数g (x )是奇函数B .g (x )的图象关于直线6x π=对称C .g (x )在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数D .当,66ππx ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[0,2] 【答案】B【解析】()πsin 2sin 3f x x x x ωωω⎛⎫==- ⎪⎝⎭,由题意知函数周期为π,则2T ππω==,2ω=,从而()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()2sin π3g x x ⎛⎫=+ ⎪⎝⎭,g (x )不是奇函数,A 错;g (x )在,36ππ⎡⎤-⎢⎥⎣⎦是单调递增,C 错;,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[1,2],D 错;g (x )的图象关于直线π6x =对称,B 对,只有选项B 正确,故选B .【点评】本题考查三角函数,图象的变换,以及图象的性质,属于中档题.6.在△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若3A π=,b =4,△ABC的面积为3√3,则sin B =()A BC .13D 【答案】A【解析】1sin 2S bc A ===c =3,由余弦定理可得2222cos 13ab c bc A =+-=,得a =√13,又由正弦定理可得sin sin a b A B=,所以sin sin 13b A B a ==,故选A .【点评】本题主要考了三角形的面积公式以及余弦定理公式的运用,属于基础题型.7.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为() A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin sin cos C B A <, 由内角和定理可得sin()cos sin A B A B +<,化简可得sin cos 0A B <,cos 0B ∴<,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.二、填空题.8.已知(0,π)α∈,且有1−2sin 2α=cos 2α,则cos α=_________.【答案】5【解析】2212sin 2cos 214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,π)α∈,所以sin 0α≠, 因此由2πsin 2sin cos sin 2cos tan 20,2ααααααα⎛⎫=⇒=⇒=⇒∈ ⎪⎝⎭,而()22sincos 11αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=2π0,α⎛⎫∈ ⎪⎝⎭,因此cos 5α=,故答案为5.【点评】本题考查了三角恒等变换与三角函数求值问题,是基础题.9.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边经过点P (3,4),则tan π2α⎛⎫+= ⎪⎝⎭___________.【答案】34-【解析】由三角函数的定义可得4sin 5α==,3cos 5α==,因此,3sin cos 325tan 42sin 4cos 52παπααπαα⎛⎫+ ⎪⎛⎫⎝⎭+====- ⎪-⎛⎫⎝⎭-+ ⎪⎝⎭, 故答案为34-.【点评】本题考查任意角的三角函数的应用,诱导公式的应用,是基本知识的考查.三、解答题.10.已知函数2()cos 222x x xf x =+.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围. 【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)()2πcos 2sin()2224x x x f x x x x =+-=+=+,令4U x π=+,[]0,x π∈,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4πx ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 2π4x ⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>, ∵f(ωx)=√3,2sin()4x πω∴+=,即sin()42x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z , 由于方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥, 所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭. 【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin (ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.11.已知函数()2sin 2cos 232f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭.(1)求函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调区间;(2)若0,2πβ⎛⎫∈ ⎪⎝⎭,1123f πβ⎛⎫-= ⎪⎝⎭,求cos 26πβ⎛⎫+ ⎪⎝⎭的值.【答案】(1)递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦,递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦;(2)3-.【解析】(1)由题意得()21sin 2cos 2cos 2sin 2sin 23222f x x x x x x ππ⎛⎫⎛⎫=++-=-+ ⎪ ⎪⎝⎭⎝⎭12sin 2sin 223x x x π⎛⎫=+=+ ⎪⎝⎭, 因为5,66x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]20,23x ππ+∈, 令0232x ππ≤+≤,解得,612x ππ⎡⎤∈-⎢⎥⎣⎦; 令32232x πππ≤+≤,解得7,1212x ππ⎡⎤∈⎢⎥⎣⎦;令32223x πππ≤+≤,得75,126x ππ⎡⎤∈⎢⎥⎣⎦. 所以函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦, 单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦.(2)由(1)知1sin 21263f ππββ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭.因为2π0,β⎛⎫∈ ⎪⎝⎭,所以7π2,66ππ6β⎛⎫+∈ ⎪⎝⎭, 又因为1π1sin 2632β⎛⎫+=< ⎪⎝⎭,所以2,π62ππβ⎛⎫+∈ ⎪⎝⎭,所以cos 2π6β⎛⎫+== ⎪⎝⎭.【点评】三角函数的化简求值的规律总结:1.给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题; 2.给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系; 3.给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围). 12.在四边形ABCD 中,AB //CD ,AD =CD =BD =1. (1)若32AB =,求BC ;(2)若AB =2BC ,求cos BDC ∠.【答案】(1)2BC =;(2)cos 1BDC ∠=.【解析】(1)在△ABD 中,由余弦定理可得2223cos 24AB BD AD ABD AB BD +-∠==⋅,∵CD //AB,∴∠BDC =∠ABD ,在△BCD 中,由余弦定理可得22212cos 2BC BD CD BD CD BDC =+-⋅∠=,2BC =.(2)设BC =x ,则AB =2x ,在△ABD 中,22224cos 24AB BD AD x ABD x AB BD x +-∠===⋅, 在△BCD 中,22222cos 22BD CD BC x BDC BD CD +--∠==⋅,由(1)可知,∠BDC =∠ABD ,所以,cos ∠BDC =cos ∠ABD ,即222x x -=,整理可得x2+2x −2=0,因为x >0,解得x =√3−1, 因此,cos cos 1BDC ABD x ∠=∠==.【点评】在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角"或“角化边",变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角"; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(2b −c )cos A =acosC.(1)求角A ;(2)若a =√13,b +c =5,求△ABC 的面积. 【答案】(1)π3A =;(2)√3.【解析】(1)在三角形ABC 中,∵(2b −c )cos A =acos C , 由正弦定理得()2sin sin cos sin cos B C A A C -=,化为:()2sin cos sin cos sin cos sin sin B A C C A C A C B =+=+=, 三角形中sin 0B ≠,解得1cos 2A =,A ∈(0,π),∴π3A =.(2)由余弦定理得2222cos ab c bc A =+-,∵a =√13,b +c =5,∴13=(b +c )2−3cb =52−3bc,化为bc =4,所以三角形ABC 的面积11sin 4222S bc A ==⨯⨯=【点评】本题考查正余弦定理和三角形面积公式的综合运用,涉及三角函数恒等变换,属基础题.熟练掌握利用正弦定理边化角,并结合三角函数两角和差公式化简,注意余弦定理与三角形面积公式的综合运用.14.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin (A +B −C )=c sin (B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为2√3,求△ABC 的周长.【答案】(1)π3C =;(2)6+2√3.【解析】(1)∵a sin(A +B −C)=c sin(B +C),sin sin(π2)sin sin A C C A ∴-=,2sin sin cos sin sin A C C C A ∴=, sin sin 0A C ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得c2=12,c =2√3,此时周长为6+2√3.【点评】本题主要考查了三角形的内角及诱导公式在三角形化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2c sin B =3a sin C ,1cos 3C =. (1)求证:△ABC 为等腰三角形;(2)若△ABC 面积为2√2,D 为AB 中点,求线段CD 的长. 【答案】(1)证明见解析;(2).【解析】(1)由2c sin B =3a sin C ,根据正弦定理可得2cb =3ac ,所以2b =3a ,则32b a =, 又1cos 3C =,根据余弦定理可得222222222913144cos 332322a a c a c abc C ab a a a +--+-====⋅,则222134aa c =-,所以32c a b ==, 因此△ABC 为等腰三角形.(2)因为角C是三角形内角,所以sin C>0,则sin C==因为△ABC面积为2√2,所以113sin222ab C a a==⋅a=2,所以b=c=3,又D为AB中点,所以cos cosADC BDC∠=-∠,则222222333222332222CD CDCD CD⎛⎫⎛⎫+-+-⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯,整理得2174CD=,所以CD=.【点评】本题主要考查正余弦定理、三角形的面积公式的综合运用,利用正弦定理进行边角转换等,属于中档题型.16.△ABC的内角A,B,C的对边分别为a,b,c.已知sin cos2Aa C c=.(1)求A;(2)已知b=1,c=3,且边BC上有一点D满足3ABD ADCS S=△△,求AD.【答案】(1)π3A=;(2)4AD=.【解析】(1)因为sin cos2Aa C c=,由正弦定理得sin sin sin cos2AA C C=,因为sin C≠0,所以sin cos2AA=,所以2sin cos cos222A A A=,因为0π22A<<,所以cos02A≠,所以1sin22A=,即π26A=,所以π3A=.(2)设△ABD的AB边上的高为ℎ1,△ADC的AC边上的高为ℎ2,因为3ABD ADCS S=△△,c=3,b=1,所以1211322c h b h⋅=⨯⋅,所以ℎ1=ℎ2,AD 是△ABC 角A 的内角平分线,所以π6BAD ∠=,因为S△ABD=3S △ADC,可知34ABDABC SS =△△, 所以131sin sin 26423ππAB AD AB AC ⨯⨯=⨯⨯⨯,所以4AD =.【点评】关键点点睛:本题考查了正弦定理的边角互化、三角形的面积公式,解题的关键是确定AD 是△ABC 角A 的内角平分线,考查了运算能力.一、选择题.1.已知函数()2sin 2π6f x x ⎛⎫=+ ⎪⎝⎭,现将()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为()A .221124x y +=B .πsin 3y x ⎛⎫=+ ⎪⎝⎭C .2sin 4π3y x ⎛⎫=+ ⎪⎝⎭D .π2sin 3y x ⎛⎫=+ ⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移π12个单位得2sin 22sin 21πππ263y x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2in 4πs 3y g x x ⎛⎫==+ ⎪⎝⎭,高频易错题故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin [ω(x +φ)]=sin (ωx +ωφ),而不是y =sin (ωx +ϕ),考查运算求解能力,是基础题.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________. 【答案】(2√2,2√3)【解析】由sin2sin b aA A=,得b =4cos A ,由0290045A A ︒<<︒⇒︒<<︒, 01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos 2A A ︒<<︒⇒<<,cos A <<b =4cos A ∈(2√2,2√3).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.一、选择题.1.如图,角α,β的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 分别交于A ,B 两点,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =()A .cos(α−β)B .cos(α+β)C .sin(α−β)D .sin(α+β)精准预测题【答案】A【解析】由图可知()cos ,sin A αα,()cos ,sin B ββ, 所以cos cos sin sin cos()OA OB αβαβαβ⋅=+=-,故选A .【点评】本题考查运用向量进行余弦定理的证明,属于基础题型.2.已知()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,则tan π4α⎛⎫-= ⎪⎝⎭()A .4-B .4C .13-D .13【答案】C【解析】因为()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,利用诱导公式可得()sin 2cos αα-=⨯-,即tan 2α=,所以tantan 1214tan 41231tan 4πta πn πααα--⎛⎫-===- ⎪+⎝⎭+⋅,故选C .【点评】本题主要考查诱导公式,正切的两角和差公式的应用,属于基础题.二、解答题. 3.已知函数()22cos 12xf x x =-+. (1)若()π6f αα⎛⎫=+ ⎪⎝⎭,求tan α的值;(2)若函数f(x)图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数g(x)的图象,求函数g(x)在0,π2⎡⎤⎢⎥⎣⎦得的值域.【答案】(1);(2)[−1,2].【解析】(1)()22cos 1cos π2sin 26x f x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,因为()π6f αα⎛⎫=+ ⎪⎝⎭,所以πsin 6αα⎛⎫-= ⎪⎝⎭,即1cos 22ααα-=,所以−3√3sin α=cos α,所以tan 9α=-.(2)f(x)图象上所有点横坐标变为原来的12倍得到函数g(x)的图象,所以g(x)的解析式为()()π22sin 26g x f x x ⎛⎫==- ⎪⎝⎭,因为π02x ≤≤,所以ππ5π2666x -≤-≤,则1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭,所以−1≤g(x)≤2,故g(x)在0,π2⎡⎤⎢⎥⎣⎦上的值域为[−1,2].【点评】本题主要考查三角恒等变换,同角三角函数的基本关系,函数y =A sin (ωx +φ)的图象变换规律,正弦函数的定义域和值域,属于中档题. 4.设函数()212coscos 5f x x x x =--.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=−5,a =√3,求△ABC 周长的取值范围.【答案】(1)π,[−4√3+1,4√3+1](2)(3+√3,3√3]. 【解析】(1)()2212coscos 512cos 25f x x x x x x =--=--6cos 221π216x x x ⎛⎫=-+=++ ⎪⎝⎭,πT ∴=,值域为[−4√3+1,4√3+1].(2)由f(A)=−5,可得212coscos A A A=,因为三角形为锐角△ABC ,sin A A=,即tan A =π3A =,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,2π2sin 2sin()3c C B ==-,所以2π12sin sin()2(sin sin )322a b c B B B B B ⎡⎤++=+-=++⎢⎥⎣⎦32(sin cos ))22π6B B B =++=++.因为△ABC 为锐角三角形,所以π02B <<,π02C <<, 即022π3π02πB B ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得π6π2B <<, 所以ππ2π363B <+<sin()16πB <+≤,即3)6πB ++≤,所以周长的取值范围为区间(3+√3,3√3].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域, 求周长的取值范围,是常用解法.。
高考数学复习专题训练—三角函数与解三角形解答题(含解析)
高考数学复习专题训练—三角函数与解三角形解答题1.(2021·山东滨州期中)已知向量a=(cos x,sin x),b=(4√3sin x,4sin x),若f(x)=a·(a+b).(1)求f(x)的单调递减区间;]上的最值.(2)求f(x)在区间[0,π22.(2021·北京丰台区模拟)如图,△ABC中,∠B=45°,N是AC边的中点,点M在AB边上,且MN⊥AC,BC=√6,MN=√3.(1)求∠A;(2)求BM.3.(2021·山东潍坊二模)如图,D为△ABC中BC边上一点,∠B=60°,AB=4,AC=4√3.给出如下三种数值方案:①AD=√5;②AD=√15;③AD=2√7.判断上述三种方案所对应的△ABD的个数,并求△ABD唯一时,BD的长.4.(2021·海南海口月考)在△ABC中,已知a,b,c分别是角A,B,C的对边,b cos C+c cos B=4,B=π.请再在下4列三个条件:①(a+b+c)(sin A+sin B-sin C)=3a sin B;②b=4√2;③√3c sin B=b cos C中,任意选择一个,添加到题目的条件中,求△ABC的面积.5.(2021·辽宁大连一模)如图,有一底部不可到达的建筑物,A为建筑物的最高点.某学习小组准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度).(1)请你利用准备好的工具(可不全使用),设计一种测量建筑物高度AB的方法,并给出测量报告;注:测量报告中包括你使用的工具,测量方法的文字说明与图形说明,所使用的字母和符号均需要解释说明,并给出你最后的计算公式.(2)该学习小组利用你的测量方案进行了实地测量,并将计算结果汇报给老师,发现计算结果与该建筑物实际的高度有误差,请你针对误差情况进行说明.6.(2021·湖北武汉3月质检)在△ABC中,它的内角A,B,C的对边分别为a,b,c,且B=2π3,b=√6.(1)若cos A cos C=23,求△ABC的面积;(2)试问1a +1c=1能否成立?若能成立,求此时△ABC的周长;若不能成立,请说明理由.7.(2021·湖南长沙模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b-c)sinCb+a=sin B-sin A.(1)求角A;(2)若a=2,求1tanB +1tanC的最小值.8.(2021·江苏南京期中)如图,某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB.在OC上有一座观赏亭Q,其中∠AQC=2π3.计划在BC⏜上再建一座观赏亭P,记∠POB=θ(0<θ<π2).(1)当θ=π3时,求∠OPQ的大小;(2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,当游客在观赏亭P处的观赏效果最佳时,求sin θ的值.答案与解析1.解由于f(x)=a·(a+b)=|a|2+a·b=1+4√3sin x cos x+4sin2x=1+2√3sin 2x+4·1-cos2x2=2√3sin 2x-2cos 2x+3=4sin(2x-π6)+3.(1)由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ(k∈Z),所以f(x)的单调递减区间是[π3+kπ,5π6+kπ](k∈Z).(2)由于x∈[0,π2],所以2x-π6∈[-π6,5π6],故当2x-π6=π2即x=π3时,函数f(x)取最大值7;当2x-π6=-π6即x=0时,函数f(x)取最小值1.2.解(1)如图,连接MC,因为N是AC边的中点,且MN⊥AC, 所以MC=MA.在Rt△AMN中,MA=MNsinA=√3sinA,所以MC=√3sinA.在△MBC中,由正弦定理可得MCsinB=BCsin∠BMC,而∠BMC=2∠A,所以√3sinA·sin45°=√6sin2A,即√3sinA·√22=√62sinAcosA,所以cos A=12,故∠A=60°.(2)由(1)知MC=MA=√3sin60°=2,∠BMC=2∠A=120°.在△BCM中,由余弦定理得BC2=BM2+MC2-2BM·MC·cos∠BMC,所以(√6)2=BM2+22-2BM·2·cos 120°,解得BM=√3-1(负值舍去).3.解过点A作AE⊥BC,垂足为点E(图略),则AE=4·sin 60°=2√3,当AD=√5时,AD<AE,所以方案①对应△ABD无解,当AD=√15时,AE<AD<AB<AC ,所以方案②对应△ABD 有两解, 当AD=2√7时,AB<AD<AC ,所以方案③对应△ABD 只有一解. 由方案③知AD=2√7,设BD=x (x>0),所以在△ABD 中由余弦定理得(2√7)2=42+x 2-2×4×x×cos 60°,即x 2-4x-12=0,解得x=6或x=-2(舍去).又因为在△ABC 中易得BC=8,BD=6<BC ,符合题意, 所以BD 的长为6.4.解 若选择条件①,则(a+b+c )(sin A+sin B-sin C )=3a sin B ,由正弦定理可得(a+b+c )(a+b-c )=3ab ,所以(a+b )2-c 2=3ab ,整理得a 2+b 2-c 2=ab ,所以cos C=12,故C=π3.又B=π4,所以A=π-π3−π4=5π12. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,即a=4.由正弦定理可得asinA =bsinB , 所以b=asinB sinA=4sin π4sin 5π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π3=4(3-√3). 若选择条件②,则b=4√2. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b22ac =4,即a=4.又B=π4,所以由正弦定理可得asinA =bsinB , 所以sin A=asinBb=4sin π44√2=12,所以A=π6或A=5π6.由于b>a ,所以B>A ,因此A=5π6不合题意舍去,故A=π6,从而C=π-π6−π4=7π12. 故△ABC 的面积S=12ab sin C=12×4×4√2×sin 7π12=4(√3+1). 若选择条件③,因为b cos C+c cos B=4, 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,所以a=4.因为√3c sin B=b cos C ,所以√3sin C sin B=sin B cos C ,所以tan C=√33,于是C=π6,从而A=π-π6−π4=7π12,所以由正弦定理可得a sinA =bsinB , 所以b=asinB sinA=4sin π4sin 7π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π6=4(√3-1). 5.解 (1)选用测角仪和米尺,如图所示.①选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上;②在H ,G 两点用测角仪测得A 的仰角分别为α,β,HG=a ,即CD=a.测得测角仪器的高是h ;③(方法一)在△ACD 中,由正弦定理,得ACsinα=CDsin (β-α), 所以AC=CDsinαsin (β-α)=asinαsin (β-α),在Rt △ACE 中,有AE=AC sin β=asinαsinβsin (β-α), 所以建筑物的高度AB=AE+h=asinαsinβsin (β-α)+h. (方法二)在Rt △ADE 中,DE=AEtanα, 在Rt △ACE 中,CE=AEtanβ, 所以CD=DE-CE=AEtanα−AEtanβ=AE (tanβ-tanα)tanαtanβ,所以AE=atanαtanβtanβ-tanα,所以建筑物的高度AB=AE+h=atanαtanβtanβ-tanα+h. (2)①测量工具问题;②两次测量时位置的间距差; ③用身高代替测角仪的高度.6.解 (1)由B=2π3,得A+C=π3,cos(A+C )=cos A cos C-sin A sin C ,即12=cos A cos C-sin A sin C.因为cos A cos C=23,所以sin A sin C=16.因为a sinA =c sinC =√6√32=2√2,所以a=2√2sin A ,c=2√2sin C.所以S △ABC =12·2√2sin A·2√2sin C·sin B=4sin A·sin B sin C=4×16×√32=√33. (2)假设1a +1c =1能成立,所以a+c=ac.由余弦定理,得b 2=a 2+c 2-2ac cos B ,所以6=a 2+c 2+ac.所以(a+c )2-ac=6,所以(ac )2-ac-6=0,所以ac=3或ac=-2(舍去),此时a+c=ac=3. 不满足a+c ≥2√ac ,所以1a +1c =1不成立.7.解 (1)由(b -c )sinCb+a =sin B-sin A ,可得(b-c )sin C=(sin B-sin A )(b+a ),由正弦定理得(b-c )c=(b-a )(b+a ),即b 2+c 2-a 2=bc , 由余弦定理,得cos A=b 2+c 2-a 22bc=12,因为0<A<π,可得A=π3.(2)由(1)知A=π3,设△ABC 的外接圆的半径为R (R>0),可得2R=asinA =4√33, 由余弦定理得a 2=b 2+c 2-2bc cos A=b 2+c 2-bc ≥bc , 即bc ≤a 2=4,当且仅当b=c=2时取等号, 又1tanB +1tanC =cosBsinB +cosCsinC =cosBsinC+sinBcosCsinBsinC =sin (B+C )sinBsinC =sinAsinBsinC =2R ·2RsinA 2RsinB ·2RsinC=2R ·abc =8√33bc ≥8√33×4=2√33,所以1tanB +1tanC 的最小值为2√33.8.解 (1)在△POQ 中,因为∠AQC=2π3,所以∠AQO=π3.又OA=OB=3,所以OQ=√3. 设∠OPQ=α,则∠PQO=π2-α+θ. 由正弦定理,得3sin (π2-α+θ)=√3sinα,即√3sin α=cos(α-θ), 整理得tan α=√3-sinθ,其中θ∈(0,π2).当θ=π3时,tan α=√33.因为α∈(0,π2),所以α=π6. 故当θ=π3时,∠OPQ=π6.(2)设f(θ)=√3-sinθ,θ∈(0,π2),则f'(θ)=-sinθ(√3-sinθ)+cos 2θ(√3-sinθ)2=1-√3sinθ(√3-sinθ)2.令f'(θ)=0,得sin θ=√33,记锐角θ0满足sin θ0=√33,当0<θ<θ0时,f'(θ)>0;当θ0<θ<π2时,f'(θ)<0, 所以f(θ)在θ=θ0处取得极大值亦即最大值.由(1)可知tan α=f(θ)>0,则α∈(0,π2),又y=tan α单调递增,则当tan α取最大值时,α也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sin θ=√33 .。
高考数学复习专题过关测评—三角函数与解三角形(含答案及解析)
高考数学复习专题过关测评—三角函数与解三角形一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·江西临川期中)已知角θ的终边经过点P(√2,a),若θ=-π3,则a=()A.√6B.√63C.-√6 D.-√632.(2021·北京房山区一模)将函数f(x)=sin 2x的图象向左平移π6个单位长度得到函数y=g(x)的图象,则函数g(x)的图象的一条对称轴方程为()A.x=-π6B.x=-π12C.x=π12D.x=π63.(2021·北京西城区一模)在△ABC中,内角A,B,C所对的边分别为a,b,c,且C=60°,a+2b=8,sin A=6sin B,则c=()A.√35B.√31C.6D.54.(2021·山西吕梁一模)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π2)部分图象如图所示,则f(π3)=()A.√32B.12C.-√3D.√35.(2021·北京海淀区模拟)已知sin(π6-α)=13+cos α,则sin(2α+5π6)=()A.-79B.-4√39C.4√39D.796.(2021·福建福州期末)疫情期间,为保障市民安全,要对所有街道进行消毒处理,某消毒装备的设计如图所示,PQ为路面,AB为消毒设备的高,BC为喷杆,AB⊥PQ,∠ABC=2π3,C处是喷洒消毒水的喷头,且喷射角∠DCE=π3,已知AB=2,BC=1,则消毒水喷洒在路面上的宽度DE的最小值为()A.5√2-5B.5√2C.5√33D.5√37.(2021·浙江宁波模拟)在△ABC中,“tan A tan B>1”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2021·安徽淮北一模)函数f(x)=2sin x+π4+cos 2x的最大值为()A.1+√2B.3√32C.2√2D.3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是()A.sin A∶sin B∶sin C=4∶5∶6B.△ABC是钝角三角形C.△ABC的最大内角是最小内角的2倍D.若c=6,则△ABC的外接圆半径R为8√7710.(2021·江苏苏州月考)已知函数f(x)=(sin x+√3cos x)2,则()A.f(x)在区间[0,π6]上单调递增B.f(x)的图象关于点(-π3,0)对称C.f(x)的最小正周期为πD.f(x)的值域为[0,4]11.(2021·辽宁沈阳二模)关于f(x)=sin x·cos 2x的说法正确的为()A.∀x∈R,f(-x)-f(x)=0B.∃T≠0,使得f(x+T)=f(x)C.f(x)在定义域内有偶数个零点D.∀x∈R,f(π-x)-f(x)=012.(2021·山东潍坊统考)在△ABC中,内角A,B,C所对的边分别为a,b,c,若1tanA ,1tanB,1tanC依次成等差数列,则下列结论不一定成立的是()A.a,b,c依次成等差数列B.√a,√b,√c依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列三、填空题:本题共4小题,每小题5分,共20分.13.(2021·安徽合肥期中)已知cos(α+5π4)=-√63,则sin 2α=.14.(2021·北京东城区一模)已知函数f(x)=A sin(2x+φ)(A>0,|φ|<π2),其中x和f(x)部分对应值如下表所示:则A=.15.(2021·广东茂名二模)在矩形ABCD内(包括边界)有E,F两点,其中AB=120 cm,AE=100√3cm,EF=80√3 cm,FC=60√3 cm,∠AEF=∠CFE=60°,则该矩形ABCD的面积为cm2.(答案如有根号可保留)16.(2021·湖南长郡中学二模)如图,某湖有一半径为100 m的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距200 m的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且满足AB=AC,∠BAC=90°.四边形OACB及其内部区域为“直接监测覆盖区域”.设∠AOB=θ,则“直接监测覆盖区域”面积的最大值为m2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021·江西上饶一模)已知f(x)=2cos x·sin x+π3-√3sin2x+sin x cos x.(1)求函数f(x)的单调递增区间;(2)若x∈(-π4,π6),求y=f(x)的值域.18.(12分)(2021·河北石家庄一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2a-b=2c cos B.(1)求角C;(2)若a=2,D是AC的中点,BD=√3,求边c.19.(12分)(2021·广东韶关一模)在①cos C+(cos A-√3sin A)cos B=0;②cos 2B-3cos(A+C)=1;③b cosC+√33c sin B=a这三个条件中任选一个,补充在下面的问题中并解答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,若a+c=1,,求角B和b的最小值. 20.(12分)(2021·山东枣庄二模)已知函数f (x )=sin(ωx+φ)ω>0,0<φ<π2的部分图象如图所示,f (0)=12,f (5π12)=0. (1)求f (x )的解析式;(2)在锐角△ABC 中,若A>B ,f (A -B 2-π12)=35,求cosA -B2,并证明sin A>2√55.21.(12分)(2021·福建宁德期末)在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:若建立平面直角坐标系Oxy 如图所示,则股价y (单位:元)和时间x (单位:天)的关系在ABC 段可近似地用函数y=a sin(ωx+φ)+b (0<φ<π)来描述,从C 点走到今天的D 点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D 点和C 点正好关于直线l :x=34对称.老张预计这只股票未来的走势可用曲线DE 描述,这里DE 段与ABC 段关于直线l 对称,EF 段是股价延续DE 段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A (0,22),点B (12,19),点D (44,16)来确定函数解析式中的常数a ,b ,ω,φ,并且求得ω=π72.(1)请你帮老张算出a ,b ,φ,并回答股价什么时候见顶(即求点F 的横坐标);(2)老张如能在今天以点D 处的价格买入该股票3 000股,到见顶处点F 的价格全部卖出,不计其他费用,这次操作他能赚多少元?22.(12分)(2021·深圳实验学校月考)已知函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1(ω>0,0<φ<π)为奇函数,且f (x )图象的相邻两对称轴间的距离为π2. (1)当x ∈[-π2,π4]时,求f (x )的单调递减区间;(2)将函数f (x )的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数y=g (x )的图象,当x ∈[-π12,π6]时,求函数g (x )的值域;(3)对于第(2)问中的函数g (x ),记方程g (x )=43在区间[π6,4π3]上的根从小到大依次为x 1,x 2,…,x n ,试确定n 的值,并求x 1+2x 2+2x 3+…+2x n-1+x n 的值.答案及解析1.C解析由题意,角θ的终边经过点P(√2,a),可得|OP|=√2+a2(O为坐标原点),又由θ=-π3,根据三角函数的定义,可得cos(-π3)=√2√2+a2=12,且a<0,解得a=-√6.2.C解析将函数f(x)=sin 2x的图象向左平移π6个单位长度,得到y=g(x)=sin[2(x+π6)]=sin(2x+π3),令2x+π3=kπ+π2,k∈Z,解得x=kπ2+π12,k∈Z,结合四个选项可知,函数g(x)的图象的一条对称轴方程为x=π12 .3.B解析因为sin A=6sin B,所以a=6b,又a+2b=8,所以a=6,b=1,因为C=60°,所以c2=a2+b2-2ab cos C,即c2=62+12-2×6×1×12,解得c=√31.4.D解析由题中函数f(x)=A sin(ωx+φ)A>0,ω>0,|φ|<π2的部分图象知,A=2,34T=11π3−2π3=3π,所以T=4π=2πω,所以ω=12.又f(2π3)=2sin(12×2π3+φ)=2,可得12×2π3+φ=2kπ+π2,k∈Z,解得φ=2kπ+π6,k∈Z.∵|φ|<π2,∴φ=π6,∴f(x)=2sin(12x+π6).故f(π3)=2sin(12×π3+π6)=2sinπ3=√3.5.D解析由sin(π6-α)=13+cos α可得sinπ6·cos α-cosπ6·sin α=13+cos α,∴12cos α-√32sinα=13+cos α,∴√32sin α+12cos α=-13,∴sin(α+π6)=-13,∴sin(2α+5π6)=sin[π2+(2α+π3)]=cos(2α+π3)=1-2sin2(α+π6)=79.6.C解析在△CDE中,设定点C到底边DE的距离为h,则h=2+1·sin(2π3-π2)=52,又S△CDE=12DE·h=12CD·CE sinπ3,即5DE=√3CD·CE,利用余弦定理得DE2=CD2+CE2-2CD·CE cosπ3=CD2+CE2-CD·CE≥2CD·CE-CD·CE=CD·CE,当且仅当CD=CE时,等号成立,故DE 2≥CD·CE ,而5DE=√3CD·CE ,所以DE 2≥5√33DE ,则DE ≥5√33,故DE 的最小值为5√33. 7.D 解析 因为tan A tan B>1,所以sinAsinBcosAcosB >1,因为0<A<π,0<B<π,所以sin A sin B>0,cos A cos B>0,故A ,B 同为锐角,因为sin A sin B>cos A cos B ,所以cos A cos B-sin A sin B<0,即cos(A+B )<0,所以π2<A+B<π,因此0<C<π2,所以△ABC 是锐角三角形,不是钝角三角形,所以充分性不满足.反之,若△ABC 是钝角三角形,也推不出“tan A tan B>1”,故必要性不成立,所以为既不充分也不必要条件.8.B 解析 因为f (x )=2sin (x +π4)+cos 2x ,所以f (x )=2sin (x +π4)+sin [2(x +π4)]=2sin x+π4+2sin (x +π4)cos (x +π4). 令θ=x+π4,g (θ)=2sin θ+2sin θcos θ=2sin θ+sin 2θ,则g'(θ)=2cos θ+2cos 2θ=2(2cos 2θ-1)+2cos θ=4cos 2θ+2cos θ-2,令g'(θ)=0,得cos θ=-1或cos θ=12,当-1≤cos θ≤12时,g'(θ)≤0;当12≤cos θ≤1时,g'(θ)≥0,所以当θ∈[-5π3+2kπ,-π3+2kπ](k ∈Z )时,g (θ)单调递减;当θ∈[-π3+2kπ,π3+2kπ](k ∈Z )时,g (θ)单调递增,所以当θ=π3+2k π(k ∈Z )时,g (θ)取得最大值,此时sin θ=√32,所以f (x )max =2×√32+2×√32×12=3√32.9.ACD 解析 因为(a+b )∶(a+c )∶(b+c )=9∶10∶11,所以可设a+b=9x ,a+c=10x ,b+c=11x (其中x>0),解得a=4x ,b=5x ,c=6x ,所以sin A ∶sin B ∶sin C=a ∶b ∶c=4∶5∶6,所以A 中结论正确;由以上解答可知c 边最大,所以三角形中角C 最大,又cos C=a 2+b 2-c 22ab=(4x )2+(5x )2-(6x )22×4x×5x=18>0,所以C 为锐角,所以B 中结论错误;由以上解答可知a 边最小,所以三角形中角A 最小, 又cos A=c 2+b 2-a 22cb=(6x )2+(5x )2-(4x )22×6x×5x=34,所以cos 2A=2cos2A-1=18,所以cos 2A=cos C.由三角形中角C最大且角C为锐角可得2A∈(0,π),C∈(0,π2),所以2A=C,所以C中结论正确;由正弦定理,得2R=csinC(R为△ABC外接圆半径),又sin C=√1-cos2C=3√78,所以2R=3√78,解得R=8√77,所以D中结论正确.10.ACD解析f(x)=(sinx+√3cosx)2=sin2x+3cos2x+2√3sin x cos x=2+cos 2x+√3sin2x=2sin2x+π6+2;对于A选项:∵x∈[0,π6],∴2x+π6∈[π6,π2],∴f(x)=2sin(2x+π6)+2在区间[0,π6]上单调递增,故A正确;对于B选项:f(-π3)=2sin[2×(-π3)+π6]+2=0,由函数f(x)的图象(图略)可知-π3是f(x)的一个极小值点,故B错误;对于C选项:由f(x)=2sin(2x+π6)+2可知,函数的最小正周期T=2π2=π,故C正确;对于D选项,∵sin(2x+π6)∈[-1,1],∴f(x)=2sin(2x+π6)+2∈[0,4],故D正确.11.BD解析对于A,当x=π3时,f(-π3)-f(π3)=sin(-π3)cos2π3-sinπ3cos2π3=-√32×(-12)−√32×(-1 2)=√32≠0,故A错误.对于B,因为f(x+2π)=sin(2π+x)cos[2(x+2π)]=sin x cos 2x,所以∃T=2π≠0,使得f(x+T)=f(x),故B正确.对于C,因为f(-x)=sin(-x)cos(-2x)=-sin x cos 2x=-f(x),所以f(x)为奇函数,因为x=0在定义域内,所以f(0)=0,故f(x)有奇数个零点,故C错误.对于D,f(π-x)-f(x)=sin(π-x)cos[2(π-x)]-sin x cos 2x=sin x cos 2x-sin x cos 2x=0,故D正确.12.ABD 解析 因为1tanA ,1tanB ,1tanC 依次成等差数列,所以2tanB =1tanA +1tanC ,整理得2cosB sinB=cosC sinC +cosAsinA ,所以2·a 2+c 2-b 22abc=a 2+b 2-c 22abc+b 2+c 2-a 22abc ,整理得2b 2=a 2+c 2,即a 2,b 2,c 2依次成等差数列.但数列a ,b ,c 或√a,√b,√c 或a 3,b 3,c 3不一定是等差数列,除非a=b=c ,但题目没有说△ABC 是等边三角形.13.-13 解析 由cos (α+5π4)=-√63可得cos (α+π4)=√63,所以√22(cos α-sin α)=√63,即cos α-sin α=2√33,两边平方可得1-sin 2α=43,故sin 2α=-13.14.4 解析 由题意可得{f (0)=-2√3,f (π4)=2,即{Asinφ=-2√3,Asin (π2+φ)=2,所以{Asinφ=-2√3,Acosφ=2,所以tan φ=-√3,又因为|φ|<π2, 所以φ=-π3,所以A=√3-√32=4. 15.14 400√3 解析 连接AC 交EF 于点O (图略),由∠AEF=∠CFE=60°,得AE ∥FC ,所以△AEO 与△CFO 相似,所以OEOF =AECF =53,所以EO=50√3 cm,FO=30√3 cm,在△AEO 中,由余弦定理得,AO 2=AE 2+EO 2-2AE·EO·cos ∠AEO=(100√3)2+(50√3)2-2×100√3×50√3cos 60°=22 500,所以AO=150 cm,同理CO=90 cm,所以AC=240 cm,从而BC=√AC 2-AB 2=120√3 cm,所以矩形ABCD 的面积为14 400√3 cm 2.16.(10 000√5+25 000) 解析 在△OAB 中,∵∠AOB=θ,OB=100 m,OA=200 m,∴AB 2=OB 2+OA 2-2OB·OA·cos ∠AOB ,即AB=100√5-4cosθ,∴S 四边形OACB =S △OAB +S △ABC =12·OA·OB·sin θ+12AB 2,于是S 四边形OACB =1002(sinθ-2cosθ+52)=1002√5sin(θ-φ)+52(其中tan φ=2),所以当sin(θ-φ)=1时,S 四边形OACB 取最大值10 000(√5+52)=10 000√5+25 000,即“直接监测覆盖区域”面积的最大值为(10 000√5+25 000)m 2.17.解 (1)f (x )=2cos x sin (x +π3)−√32(1-cos 2x )+12sin 2x=2cos x (12sinx +√32cosx)−√32+√32cos 2x+12sin 2x=12sin 2x+√32(2cos 2x-1)+√32cos 2x+12sin 2x=sin 2x+√3cos 2x=2sin (2x +π3), 令2k π-π2≤2x+π3≤π2+2k π,k ∈Z , 解得k π-5π12≤x ≤k π+π12,k ∈Z ,因此,函数f (x )的单调递增区间为[kπ-5π12,kπ+π12],k ∈Z .(2)∵x ∈(-π4,π6),∴-π6<2x+π3<2π3,∴-12<sin (2x +π3)≤1,∴-1<f (x )≤2, 因此当x ∈(-π4,π6)时,y=f (x )的值域为(-1,2].18.解 (1)因为2a-b=2c cos B ,由正弦定理得2sin A-sin B=2sin C cos B ,因为sin A=sin(B+C )=sin B cos C+cos B sin C ,代入上式得,2sin B cos C+2cos B sin C-sin B=2sin C cos B ,即2sin B cos C-sin B=0,即sin B (2cos C-1)=0.因为B ∈(0,π),所以sin B ≠0,所以2cos C=1,即cos C=12,又0<C<π,所以C=π3. (2)依题意,在△CBD 中,CB=2,CD=12b ,BD=√3,C=π3, 利用余弦定理的推论可得,cos C=cos π3=12=4+(12b )2-32×2×12b,即b 2-4b+4=0,解得b=2.在△ABC 中,b=a=2,C=π3,故△ABC 是等边三角形,故c=2.19.解 若选择①:在△ABC 中,有A+B+C=π,则由题意可得cos[π-(A+B )]+(cos A-√3sinA )cos B=0,即-cos(A+B )+cos A cos B-√3sin A cos B=0, sin A sin B-cos A cos B+cos A cos B-√3sin A cos B=0, sin A sin B=√3sin A cos B ,又sin A ≠0,所以sin B=√3cos B ,则tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择②:在△ABC 中,有A+B+C=π,则由题意可得2cos 2B-1-3cos(π-B )=2cos 2B+3cos B-1=1,解得cos B=12或cos B=-2(舍去),又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择③:由正弦定理可将已知条件转化为sin B cos C+√33sin C sin B=sin A , 又sin A=sin[π-(B+C )]=sin(B+C )=sin B cos C+sin C cos B ,所以√33sin C sin B=sin C cos B ,又sin C ≠0,所以sin B=√3cos B ,所以tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 20.解 (1)由f (0)=12,得sin φ=12,又0<φ<π2,所以φ=π6.由f (5π12)=0,得sin (ω·5π12+π6)=0,所以ω·5π12+π6=k π,k ∈Z ,即ω=25(6k-1),k ∈Z . 由ω>0,结合题中函数f (x )的图象可知12·2πω>5π12, 所以0<ω<125,所以有0<25(6k-1)<125,即16<k<76, 又k ∈Z ,所以k=1,从而ω=25×(6×1-1)=2,因此,f (x )=sin (2x +π6). (2)由f (A -B2-π12)=35,得sin(A-B )=35,又由题意可知0<A-B<π2,故cos(A-B )=45,于是cos A -B2=√1+cos (A -B )2=√10,sin A -B2=√10, 又A+B>π2,所以A=A+B 2+A -B 2>π4+A -B2,又因为函数y=sin x 在区间(0,π2)上单调递增,A ∈(0,π2),π4+A -B 2∈(0,π2),所以sin A>sin π4+A -B2=√22×(3√10+1√10)=2√55.21.解 (1)∵点C ,D 关于直线l 对称,∴点C 坐标为(2×34-44,16),即(24,16). 把点A ,B ,C 的坐标分别代入函数解析式,得{22=asinφ+b , ①19=asin (π6+φ)+b ,②16=asin (π3+φ)+b ,③②-①,得a [sin (π6+φ)-sinφ]=-3, ③-①,得a [sin (π3+φ)-sinφ]=-6,∴2sin (π6+φ)-2sin φ=sin (π3+φ)-sin φ, ∴cos φ+√3sin φ=√32cos φ+32sin φ,∴(1-√32)cos φ=(32-√3)sin φ=√3(√32-1)sin φ,∴tan φ=-√33.∵0<φ<π,∴φ=5π6,代入②,得b=19. 将φ=5π6,b=19代入①得,a=6.于是ABC 段对应的函数解析式为y=6sin (π72x +5π6)+19,由对称性得DEF 段对应的函数解析式为y=6sin π72(68-x )+5π6+19.设点F 的坐标为(x F ,y F ),则由π72(68-x F )+5π6=π2,解得x F =92. 因此可知,当x=92时,股价见顶.(2)由(1)可知,y F =6sin [π72×(68-92)+5π6]+19=6sin π2+19=25,故这次操作老张能赚3 000×(25-16)=27 000(元).22.解 (1)由题意,函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1=√3sin(ωx+φ)-cos(ωx+φ)=2sin (ωx +φ-π6),因为函数f (x )图象的相邻两对称轴间的距离为π2, 所以T=π,可得ω=2.又f (x )为奇函数,且f (x )在x=0处有定义,可得f (0)=2sin (φ-π6)=0, 所以φ-π6=k π,k ∈Z ,因为0<φ<π,所以φ=π6, 因此f (x )=2sin 2x.令π2+2k π≤2x ≤3π2+2k π,k ∈Z ,解得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递减区间为[π4+kπ,3π4+kπ],k ∈Z , 又因为x ∈[-π2,π4],故函数f (x )的单调递减区间为[-π2,-π4].(2)将函数f (x )的图象向右平移π6个单位长度,可得y=2sin (2x -π3)的图象,再把横坐标缩小为原来的12,得到函数y=g (x )=2sin 4x-π3的图象,当x ∈[-π12,π6]时,4x-π3∈[-2π3,π3],当4x-π3=-π2时,函数g (x )取得最小值,且最小值为-2,当4x-π3=π3时,函数g (x )取得最大值,且最大值为√3,故函数g (x )的值域为[-2,√3].(3)由方程g (x )=43,即2sin (4x -π3)=43,即sin 4x-π3=23.(*)因为x ∈[π6,4π3],可得4x-π3∈[π3,5π],设θ=4x-π3,其中θ∈[π3,5π],则方程(*)可转化为sin θ=23,结合正弦函数y=sin θ的图象,如图,可得方程sin θ=23在区间[π3,5π]上有5个解,设这5个解分别为θ1,θ2,θ3,θ4,θ5,所以n=5,其中θ1+θ2=3π,θ2+θ3=5π,θ3+θ4=7π,θ4+θ5=9π,即4x 1-π3+4x 2-π3=3π,4x 2-π3+4x 3-π3=5π,4x 3-π3+4x 4-π3=7π,4x 4-π3+4x 5-π3=9π, 解得x 1+x 2=11π12,x 2+x 3=17π12,x 3+x 4=23π12,x 4+x 5=29π12,所以x 1+2x 2+2x 3+2x 4+x 5=(x 1+x 2)+(x 2+x 3)+(x 3+x 4)+(x 4+x 5)=20π3.。
压轴题05 三角函数与解三角形范围与最值问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题05三角函数与解三角形范围与最值问题三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.考向一:ω取值与范围问题考向二:面积与周长的最值与范围问题考向三:长度的范围与最值问题1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.一、单选题1.(2023·浙江金华·模拟预测)已知函数π()sin cos (0)6f x x x ωωω⎛⎫=-+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围是()A .131,6⎡⎤⎢⎥⎣⎦B .713,66⎡⎫⎪⎢⎣⎭C .7,26⎡⎫⎪⎢⎣⎭D .131,6⎡⎫⎪⎢⎣⎭【答案】B【解析】π1()sin cos sin sin 62f x x x x x x ωωωωω⎫⎛⎫=-+=--⎪ ⎪⎪⎝⎭⎝⎭3sin cos 22x x ωω=-1sin cos 22x x ωω⎫=-⎪⎪⎭π6x ω⎛⎫=- ⎪⎝⎭因为()f x 在 [0,π]上仅有2个零点,当 [0,π]x ∈时,πππ,π666x ωω⎡⎤-∈--⎢⎥⎣⎦(0ω>),所以πππ6ππ2π6ωω⎧-≥⎪⎪⎨⎪-<⎪⎩,解得71366ω≤<.故选:B.2.(2023·吉林长春·统考三模)已知函数()π2cos 13f x x ω⎛⎫=-+ ⎪⎝⎭,(0ω>)的图象在区间()0,2π内至多存在3条对称轴,则ω的取值范围是()A .50,3⎛⎤ ⎥⎝⎦B .25,33⎛⎤ ⎥⎝⎦C .57,36⎡⎫⎪⎢⎣⎭D .5,3⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()0,2πx ∈,0ω>,所以πππ,2π333x ωω⎛⎫-∈-- ⎪⎝⎭,画出2cos 1y z =+的图象,要想图象在区间()0,2π内至多存在3条对称轴,则ππ2π,3π33ω⎛⎤-∈- ⎥⎝⎦,解得50,3ω⎛⎤∈ ⎥⎝⎦.故选:A3.(2023·河南·许昌实验中学校联考二模)已知函数())π2sin 06f x x ωω⎛⎫=-> ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个零点,则ω的取值范围是()A .75,93⎛⎤⎥⎝⎦B .75,93⎡⎫⎪⎢⎣⎭C .1010,93⎡⎫⎪⎢⎣⎭D .1010,93⎛⎤⎥⎝⎦【答案】C【解析】由题意知π3sin 62x ω⎛⎫-= ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个解.因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以ππ3ππ,6646x ωω⎡⎤-∈--⎢⎥⎣⎦,则需2π3ππ7π3463ω≤-<,解得101093ω≤<.故选:C4.(2023·广西·统考一模)定义平面凸四边形为平面上每个内角度数都小于180︒的四边形.已知在平面凸四边形ABCD 中,30,105,2A B AB AD ∠=︒==︒∠=,则CD 的取值范围是()A .⎫⎪⎪⎣⎭B .⎣⎭C .⎣⎭D .212⎫⎪⎢⎪⎣⎭【答案】A【解析】在ABD △中,由余弦定理得:2222cos 3422cos301BD AB AD AB AD A =+-⋅=+-⨯=,显然2224AB BD AD +==,即90ABD ∠=o ,60ADB ∠=o ,在BCD △中,1BD =,15CBD ∠= ,因为ABCD 为平面凸四边形,则有0120BDC <∠< ,因此45165BCD <∠< ,而62sin165sin15sin(4530)sin 45cos30cos 45sin 302==-=-=,由正弦定理sin sin CD BD CBD BCD =∠∠得:sin 62sin 4sin BD CBD CD BCD BCD∠==∠∠,当4590BCD <∠≤ 时,sin 12BCD <∠≤,当90165BCD <∠< 时,sin 1BCD <∠<,sin 1BCD <∠≤,11sin BCD ≤<∠1CD ≤<,所以CD 的取值范围是62[4.故选:A5.(2023·全国·校联考二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b =,若2222b a c =+,则△ABC 面积的最大值为()A .2B .34C .1D .32【答案】D【解析】因为2222b a c =+,所以()222cos ,0,π22a c b aB B ac c+-==-∈,所以sin B =42c=,所以△ABC 的面积14sin 24ABCS ac B == =222194122a c a +-⨯()22421122a c +=⨯32=,当且仅当22249c a a -=,即a c ==ABC 面积的最大值为32.故选:D6.(2023·广西柳州·柳州高级中学校联考模拟预测)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知60B = ,4b =,则ABC 面积的最大值为()A .B .C .D .6【答案】B【解析】由余弦定理可得22222162cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,即16ac ≤,当且仅当4a c ==时,等号成立,故1sin 162ABC S ac B ac =⨯= .因此,ABC面积的最大值为故选:B.7.(2023·全国·模拟预测)已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .8【答案】C【解析】因为函数()()sin f x x ωϕ=+的图象关于直线π36x =-对称,所以πππ362n ωϕ-⋅+=+,n ∈Z ,所以ϕ=1π236n ω⎛⎫++ ⎪⎝⎭,n ∈Z ,根据π5π1836x <<,则π5π1836x ωωω<<,所以π5π1836x ωωϕωϕϕ+<+<+,因为()()sin f x x ωϕ=+是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数.所以ππ2π,1825π3π2π,362k k k k ωϕωϕ⎧+≥+∈⎪⎪⎨⎪+≤+∈⎪⎩Z Z ,所以π1ππ2π,,1823625π13ππ2π,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,即112,,1823625132,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,解得()()122621k n k n ω-≤≤-+,n ∈Z ,k ∈Z ,因为0ω>,所以20k n -=或21k n -=,当20k n -=时,06ω<≤,当21k n -=时,1212ω≤≤;由于π7π5π187236<<,且f (x )的一个零点是7π72x =,所以()7π21π72m ωϕ⨯+=+,m ∈Z ,所以()7π1π21π72236n m ωω⎛⎫⨯+++=+ ⎪⎝⎭,m ∈Z ,n ∈Z ,即()824m n ω=-+,m ∈Z ,n ∈Z .根据06ω<≤或1212ω≤≤,可得4ω=,或12ω=,所以ω的最小值为4.故选:C.二、多选题8.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D正确;故选:ABD三、填空题9.(2023·青海·校联考模拟预测)在锐角ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且()2sin 2sin cos sin 2c B A a A B b A -=+,则ca的取值范围是______.【答案】()1,2【解析】由正弦定理和正弦二倍角公式可得()2sin sin 2sin sin cos sin sin 2C B A A A B B A-=+()2sin sin cos 2sin sin cos 2sin sin cos sin cos A A B B A A A A B B A =+=+()2sin sin A A B =+,因为π0<<,π2C C A B -=+,所以()()0s s in s in πin C A C B =-=≠+,可得()sin sin B A A -=,因为ππ0022A B <<<<,,所以ππ22B A -<-<,所以2B A =,π3C A =-,由202πB A <=<,203ππC A <<=-可得ππ64A <<,cos 22A <<,213cos 24A <<,由正弦定理得()sin 2sin sin 3sin 2cos cos 2sin sin sin sin sin A A c C A A A A Aa A A A A++====()222cos cos 24cos 11,2A A A =+=-∈.故答案为:()1,2.10.(2023·上海金山·统考二模)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.【答案】506ω<≤【解析】因为0ω>,()0,πx ∈,所以ππππ333x ωω-<-<-,又因为函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,所以πππ32ω-≤,解得506ω<≤,所以ω的取值范围是506ω<≤故答案为:506ω<≤.11.(2023·全国·校联考二模)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin b B a A a C =+,则3b ca-的取值范围是______.【答案】132,]4【解析】由sin sin sin b B a A a C =+,得22b a ac =+,由余弦定理得2222cos 222b c a c ac a cA bc bc b+-++===,由正弦定理得sin sin cos 22sin a c A C A b B++==,即s sin 2sin c i o n s C B A A +=,又()sin sin C A B =+,所以sin sin cos cos sin 2cos sin A A B A B A B ++=,即sin sin os sin cos A Bc A A B =-,所以()sin sin A B A =-,因为,A B 为ABC 的内角,所以πB A A -+=(舍去)或B A A -=,所以2B A =.由正弦定理得33sin sin 3sin 2sin()3sin 2sin 3sin sin sin b c B C A B A A Aa A A A---+-===因为()2sin 3sin 2sin 2cos cos 2sin 2sin cos cos 2sin A A A A A A A A A A A =+=+=+,又(0,π),sin 0A A ∈≠,所以236sin cos 2sin cos cos 2sin sin b c A A A A A Aa A---=2226cos 2cos cos 26cos 2cos 2cos 1A A A A A A =--=--+223134cos 6cos 14(cos )44A A A =-++=--+,由于π2(0,)2B A =∈得π(0,)4A ∈,由πππ3(0,)2C A B A =--=-∈,得ππ(,)63A ∈,则ππ(,)64A ∈,所以2cos 2A ∈,当3cos 4A =时,23134(cos )44A --+取最大值134,当cos A =23134(cos )44A --+等于2,当cos A =23134(cos )44A --+等于1,而21>,所以3b ca -取值范围是132,]4,故答案为:132,]412.(2023·上海嘉定·统考二模)如图,线段AB 的长为8,点C 在线段AB 上,2AC =.点P 为线段CB 上任意一点,点A 绕着点C 顺时针旋转,点B 绕着点P 逆时针旋转.若它们恰重合于点D ,则CDP △的面积的最大值为__________.【答案】【解析】由题意可知,6C AB C B A =-=,即6PC PB +=.在CDP △中,有CD AC 2==,DP PB =,所以6PC DP +=.由余弦定理可得,()222224cos 22PC DP PC DP PC DP CD CPD PC DP PC DP+-⋅-+-∠==⋅⋅3624162PC DP PC DP PC DP PC DP-⋅--⋅==⋅⋅,所以22sin 1cos CPD CPD ∠=-∠2161PC DP PC DP -⋅⎛⎫=- ⎪⋅⎝⎭2221632PC DP PC DP -+⋅=⋅,所以有221sin 2CDPS PC PD CPD ⎛⎫=⋅∠ ⎪⎝⎭△22221256324PC DPPC DP PC DP -+⋅=⋅⋅⋅⋅864PC DP =⋅-2864896482PC DP +⎛⎫≤-=⨯-= ⎪⎝⎭,当且仅当3PC PB ==时,等号成立.所以,28CDP S ≤△,所以,CDP S ≤△CDP △的面积的最大值为故答案为:四、解答题13.(2023·湖南益阳·统考模拟预测)ABC 中,角,,A B C 的对边分别为,,a b c ,从下列三个条件中任选一个作为已知条件,并解答问题.①sin sin 2B Cc a C +=;②sin 1cos a C A=-;③ABC )222b c a +-.(1)求角A 的大小;(2)求sin sin B C 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)选择①:由正弦定理可得,sin cossin sin 2AC A C =,因为(0,π),sin 0C C ∈>,所以cossin 2A A =,即cos 2sin cos 222A A A =,因为π022A <<,所以cos 02A >,所以1sin 22A =,所以π26A =,即π3A =;选择②sin 1cos a CA=-,则sin cos a C A =,由正弦定理得sin sin cos A C C C A =-,因为(0,π),sin 0C C ∈>,所以sin A A =,即π3sin 32A ⎛⎫+= ⎪⎝⎭,因为0πA <<,所以ππ4π333A <+<,所以π2π33A +=,即π3A =;选择③:由()2221sin 42ABC S b c a bc A =+-= ,222sin 2b c a A bc+-=sin A A =,所以tan A =0πA <<,故π3A =.(2)方法一:πsin sin sin sin 3B C B B ⎛⎫=⋅+ ⎪⎝⎭1sin sin cos 22B B B ⎛⎫=+ ⎪ ⎪⎝⎭21sin sin cos 22B B B =+11cos244B B =-11πsin 2426B ⎛⎫=+- ⎪⎝⎭因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以11π3024264B ⎛⎫<+-≤ ⎪⎝⎭,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.方法二:由余弦定理,222222cos a b c bc A b c bc =+-=+-,再由正弦定理,222sin sin sin sin sin A B C B C =+-,因为π3A =,所以223sin sin sin sin 2sin sin sin sin 4B C B C B C B C =+-≥-,即3sin sin 4B C ≥,当且仅当sin sin 2B C ==时“=”成立.又因为sin 0B >,sin 0C >,所以30sin sin 4B C <≤,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.14.(2023·陕西榆林·统考三模)已知,,a b c 分别为ABC 的内角,,A B C 所对的边,4AB AC ⋅=,且sin 8sin ac B A =.(1)求A ;(2)求sin sin sin A B C 的取值范围.【解析】(1)cos 4AB AC bc A ⋅==,由sin 8sin ac B A =及正弦定理,得8abc a =,得8bc =,代入cos 4bc A =得1cos 2A =,又因为(0,π)A ∈,所以π3A =.(2)由(1)知π3A =,所以2ππ3C A B B =--=-.所以2ππsin sin sin sin sin 33A B C B B B B ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭213cos sin sin cos sin 22244B B B B B B ⎛⎫=+=+ ⎪ ⎪⎝⎭3sin 228B B =+π2468B ⎛⎫=-+ ⎪⎝⎭,因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以3π333024688B ⎛⎫<-+ ⎪⎝⎭,故sin sin sin A B C 的取值范围是⎛ ⎝⎦.15.(2023·上海浦东新·统考二模)已知,0R ωω∈>,函数cos y x x ωω-在区间[0,2]上有唯一的最小值-2,则ω的取值范围为______________.【解析】πcos 2sin 6y x x x ωωω⎛⎫=-=- ⎪⎝⎭,因为[]0,2x ∈,0ω>,所以πππ,2666x ωω⎡⎤-∈--⎢⎥⎣⎦,因为函数π2sin 6y x ω⎛⎫=- ⎪⎝⎭在[]0,2x ∈上有唯一的最小值-2,所以π3π7π2,622ω⎡⎫-∈⎪⎢⎣⎭,解得5π11π,66ω⎡⎫∈⎪⎢⎣⎭,故ω的取值范围是5π11π,66⎡⎫⎪⎢⎣⎭.故答案为:5π11π,66⎡⎫⎪⎢⎣⎭16.(2023·浙江金华·模拟预测)在ABC 中,角A ,B ,C 所对应的边为a ,b ,c .已知ABC 的面积4ac S =,其外接圆半径2R =,且()224cos cos ()sin A B b B -=.(1)求sin A ;(2)若A 为钝角,P 为ABC 外接圆上的一点,求PA PB PB PC PC PA ⋅+⋅+⋅的取值范围.【解析】(1)由1sin 42ac S ac B ==,得1sin 2B =,()()()()2222224cos cos 41sin 1sin 4sin sin A B A B B A ⎡⎤-=---=-⎣⎦,由正弦定理24sin sin a bR A B===,4sin ,4sin a A b B ==,则2()sin 4sin 4sin b B B A B =-,由()224cos cos ()sin A B b B -=,得()2224sin sin 4sin 4sin B A B A B -=-,化简得2sin sin A A B =,由()0,πA ∈,sin 0A ≠,解得sin A B =,因此sin A =.(2)由(1)得,若A 为钝角,则120A =o ,则3030B C == ,,如图建立平面直角坐标系,则(0,2),(A B C ,设(2cos ,2sin )P θθ.则(2cos ,22sin )PA θθ=-- ,(2cos ,12sin )PB θθ=- ,2cos ,12sin )PC θθ=-,有66sin PA PB θθ⋅=-+ ,66sin PA PC θθ⋅=-- ,24sin PB PC θ⋅=-,则1416sin PA PB PA PC PB PC ⋅+⋅+⋅=-θ.由sin [1,1]θ∈-,则1416sin [2,30]-∈-θ,所以PA PB PB PC PC PA ⋅+⋅+⋅的取值范围为[2,30]-.17.(2023·山西·校联考模拟预测)已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象是由π2sin 6y x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度得到的.(1)若()f x 的最小正周期为π,求()f x 的图象与y 轴距离最近的对称轴方程;(2)若()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,求ω的取值范围.【解析】(1)由2ππω=,得2ω=,所以()πππ2sin 22sin 2666f x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令ππ2π62x k -=+,k ∈Z ,解得ππ23k x =+,k ∈Z ,取0k =,得π3x =,取1k =-,得π6x =-,因为ππ63-<,所以与y 轴距离最近的对称轴方程为π6x =-.(2)由已知得()()1πππ2sin 2sin666f x x x ωωω-⎡⎤⎡⎤⎛⎫=-+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦,令()1ππ6x k ωω-+=,k ∈Z ,解得61π6k x ωω+-=,k ∈Z .因为()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,所以π613ππ26267ππ<62653ππ>62k k k ωωωωωω+-⎧≤≤⎪⎪+-⎪⎨⎪++⎪⎪⎩()k ∈Z 所以616182676528k k k k ωω--⎧≤≤⎪⎪⎨-+⎪<<⎪⎩.因为0ω>,所以616102861026567082k k k k k --⎧-≥⎪⎪⎪->⎨⎪⎪+-->⎪⎩,解得133618k <<,k ∈Z ,所以1k =,解得51188ω≤<,即ω的取值范围为511,88⎡⎫⎪⎢⎣⎭.18.(2023·山东德州·统考一模)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos c b A b -=.(1)求证:2A B =;(2)若A 的角平分线交BC 于D ,且2c =,求ABD △面积的取值范围.【解析】(1)因为2cos c b A b -=,由正弦定理得sin 2sin cos sin C B A B -=又πA B C ++=,所以()()sin 2sin cos sin cos cos sin sin sin A B B A A B A B A B B+-=-=-=因为ABC 为锐角三角形,所以π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭,ππ,22A B ⎛⎫-∈- ⎪⎝⎭又sin y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以A B B -=,即2A B =;(2)由(1)可知,2A B =,所以在ABD △中,ABC BAD ∠=∠,由正弦定理得:()2sin sin π2sin2AD AB B B B ==-,所以1cos AD BD B==,所以1sin sin tan 2cos ABD BS AB AD B B B=⨯⨯⨯== .又因为ABC 为锐角三角形,所以π02B <<,0π22B <<,0π3π2B <-<,解得π6π4B <<,所以tan B ⎫∈⎪⎪⎝⎭,即ABD △面积的取值范围为⎫⎪⎪⎝⎭.19.(2023·江西吉安·统考一模)在直角坐标系xOy 中,M 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭(1)求M 的普通方程;(2)若D 为M 上一动点,求D 到l 距离的取值范围.【解析】(1)由22sin cos 1θθ+=得M 的普通方程为2214y x +=.(2)直线l 即sin cos 4ρθρθ+=,由cos ,sin x y ρθρθ==得直线l 的普通方程为40x y +-=,设(cos ,2sin )D θθ,则d =其中cos ϕϕ==因为cos()[1,1]θϕ-∈-,⎤⎥⎣⎦,所以D 到l 距离的取值范围为4210421022⎡⎢⎣⎦.20.(2023·江西九江·统考二模)在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知()()0a b c a b c ab -+--+=,sin 3cos 3cos bc C c A a C =+.(1)求c ;(2)求a b +的取值范围.【解析】(1)()()0a b c a b c ab -+--+= ,222a b c ab ∴+-=,即222122a b c ab +-=,1cos 2C ∴=,又0πC << ,π3C ∴=,sin C ∴=,sin 3cos 3cos bc C c A a C =+,sin C=sin 3(sin cos sin cos )3sin()3sin 2B cC A A C A C B∴⋅⋅=+=+=,0πB << ,即sin 0B ≠,32c =,解得c =.(2)由正弦定理得,4sin sin sin a b c A B C ===,∴4sin a A =,4sin b B =,∴4sin 4sin a b A B +=+,πA B C ++=,π3C =,∴2π3B A =-则2π4sin 4sin 3a b A A ⎛⎫+=+-⎪⎝⎭14(sin cos sin )2A A A =+6sin A A=+π6A ⎛⎫=+ ⎪⎝⎭,ABC 为锐角三角形,∴π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭∴ππ,62A ⎛⎫∈ ⎪⎝⎭∴ππ2π,633A ⎛⎫+∈ ⎪⎝⎭,∴πsin ,162A ⎛⎤⎛⎫+∈⎥ ⎪ ⎝⎭⎝⎦,∴(π6,6A ⎛⎫+∈ ⎪⎝⎭,即(6,a b +∈.21.(2023·广东汕头·金山中学校考模拟预测)在锐角ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin sin sin B A Cb c b a-=-+.(1)求角A 的值;(2)若2c =,求a b +的取值范围.【解析】(1)由正弦定理sin sin sin a b cA B C==得:b a cb c b a-=-+,整理得:222b c a bc +-=,由余弦定理得:2221cos 222b c a bc A bc bc +-===,∵(0,π)A ∈,则π3A =.(2)由(1)可得:π3A =,且2c =,锐角ABC 中,由正弦定理得:sin sin sin a b cA B C==,可得π2sin sin sin 31sin sin sin C c A c B a b C C C ⎛⎫+ ⎪⋅⋅⎝⎭====则)21cos 21111sin 2sin cos tan 222CC a b C C C C ++=++=+=+∵ABC 锐角三角形,且π3A =,则π02π02C B ⎧<<⎪⎪⎨⎪<<⎪⎩,即π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62C <<,即ππ1224C <<,且ππtantanπππ34tan tan 2ππ12341tan tan 34-⎛⎫=-==- ⎪⎝⎭+⋅可得()tan 22C ∈,则(114tan 2C++,故a b +的范围是(14+.22.(2023·湖南长沙·湖南师大附中校考一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知7b =,且sin sin sin sin a b A Cc A B+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【解析】(1)由正弦定理,sin sin sin sin a b A C a cc A B a b+--==--,可得222,b a c ac =+-再由余弦定理,1cos 2B =,又()0,πB ∈,所以π3B =.因为2sin3bRB==,所以3R=.(2)由(1)可知:2249a c ac+-=,则2()493a c ac+=+.()11sin22ABCS ac B a b c r==++⋅则)23()497277ac a cr a ca c a c+-===+-++++.在ABC中,由正弦定理,sin sin sina c bA C B===,sina A c C,则)1431432πsin sin sin sin333a c A C A A⎡⎤⎛⎫+=+=+-⎪⎢⎥⎝⎭⎣⎦14331sin cos sin322A A A⎛⎫=+⎪⎪⎝⎭31πsin cos14sin cos14sin226A A A A A⎫⎛⎫⎛⎫==+⋅=+⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,又ππ2π0,,333A⎛⎫⎛⎫∈⋃⎪ ⎪⎝⎭⎝⎭,所以ππππ5π,,66226A⎛⎫⎛⎫+∈⋃⎪⎝⎭⎝⎭,所以π1sin,162A⎛⎫⎛⎫+∈⎪ ⎪⎝⎭⎝⎭,()π14sin7,146A⎛⎫+∈⎪⎝⎭,所以r⎛∈⎝⎭.23.(2023·黑龙江哈尔滨·哈尔滨市第六中学校校考一模)在锐角ABC中,设边,,a b c 所对的角分别为,,A B C,且22a b bc-=.(1)求角B的取值范围;(2)若4c=,求ABC中AB边上的高h的取值范围.【解析】(1)因为22a b bc-=,所以2222cos 222b c a c bc c bA bc bc b+---===,所以2cos c b b A -=,sin sin 2sin cos C B B A -=,又()πC A B =-+,所以()sin sin 2sin cos A B B B A =+-,整理可得()sin sin A B B -=,所以A B B -=或πA B B -+=(舍去),所以2A B =,又ABC 为锐角三角形,所以π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,所以64ππ,B ⎛⎫∈ ⎪⎝⎭;(2)由题可知11sin 22S ch ac B ==,即sin h a B =,又()sin 2sin sin π3a b cB B B ==-,所以4sin 2sin 3Ba B=,所以4sin 2sin 4sin 2sin sin sin 3sin 2cos cos 2sin B B B Bh a B B B B B B===+248tan 81133tan tan tan tan 2tan B B B B B B===-+-,由64ππ,B ⎛⎫∈ ⎪⎝⎭,可得tan B ⎫∈⎪⎪⎝⎭,所以3tan tan B B ⎛-∈ ⎝⎭,所以)4h ∈,即ABC 中AB 边上的高h 的取值范围是)4.24.(2023·辽宁鞍山·统考二模)请从①2sin cos cos cos a B B C B =;②()22sin sin sin sin sin A C B A C -=-;③sin 1cos Aa B=+这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若___________,(1)求角B 的大小;(2)若△ABC 为锐角三角形,1c =,求22a b +的取值范围.【解析】(1)若选①因为2sin cos cos cos a B B C B =,由正弦定理得2sin sin cos cos cos A B B B C C B =,即sin sin (sin cos sin cos )A B B B C C B +sin()B B C =+,所以sin sin sin A B B A =,由(0,π)A ∈,得sin 0A ≠,所以sin B B =,即tan B =因为(0,π)B ∈,所以π3B =.若选②由22(sin sin )sin sin sin A C B A C -=-,化简得222sin sin sin sin sin A C B A C +-=.由正弦定理得:222a cb ac +-=,即222122a cb ac +-=,所以1cos 2B =.因为(0,π)B ∈,所以π3B =.若选③sin A =sin sin (1cos )B A A B =+,因为0πA <<,所以sin 0A ≠,1cos B B =+,所以π1sin 62B ⎛⎫-= ⎪⎝⎭,又因为ππ5π666B -<-<,所以π3B =.(2)在ABC 中,由正弦定理sin sin a c A C =,得sin sin c A a C =,sin sin 2sin c B b C C ==由(1)知:π3B =,又с=1代入上式得:222223sin 3sin 3sin()22cos 12()cos 1cos 1cos sin sin sin sin A A B C a b c ab C C C CC C C C ++=+=+⨯=+=+22π1sin()3321cos 1cos 1sin 2tan C C C C C +=+==+因为ABC 为锐角三角形,所以π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ,62C ⎛⎫∈ ⎪⎝⎭,所以tan C1tan C ∴∈,所以()2222331711,72tan 2tan 2tan 68a b C C C ⎛+=++=++∈ ⎝⎭.25.(2023·福建·统考模拟预测)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅=,求四边形ABCD 面积的最大值.【解析】(1)因为π2sin 6b c A ⎛⎫=+ ⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B AC ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 122A C A C C A A ⎫+=+⎪⎪⎝⎭,即sin cos 0n sin A C C A =,因为sin 0A ≠,故cos C C =,即tan C =又因为()0,πC ∈,所以π6C =.(2)解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△111222AB BC xyAD CD =+⋅=⋅22112222x y +≤+⋅=,当且仅当x y ==时,等号成立.所以四边形ABCD1+.解法二:如图1设ABC 的外接圆的圆心为O ,半径为R ,BD 在BA上的投影向量为BA λ ,所以()2BA BD BA BA BA λλ⋅=⋅= .又22BA BD BA BA ⋅== ,所以1λ=,所以BD 在BA 上的投影向量为BA ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =,在ABD △中,AD =.设四边形ABCD 的面积为S ,CBD θ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cos CB θ=,2sin CD θ=,所以ABD CBD S S S =+△△1122B AD CD AB C =⋅⋅+sin 22θ=+,当π22θ=时,S 最大,所以四边形ABCD1.解法三:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=2h =+,当1h R ==时,S 最大,所以四边形ABCD1.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则12A ⎛ ⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以122BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得11cos 122ββ-+=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则11sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为12+.26.(2023·山西·校联考模拟预测)如图,在四边形ABCD 中,已知2π3ABC ∠=,π3BDC ∠=,AB BC ==(1)若BD =AD 的长;(2)求ABD △面积的最大值.【解析】(1)在BCD △中,由余弦定理,得2222cos BC BD DC BD DC BDC =+-⋅⋅∠,∴222π2cos 3CD CD =+-⨯⋅,整理得2720CD --=,解得CD =CD =-∴2222221c os27BD BC CD DBC BD BC +-∠===⋅,而2π(0,)3DBC ∠∈,故sin DBC ∠=,∴2π1311cos cos cos sin 32214ABD DBC DBC DBC ⎛⎫∠=-∠=-∠+∠= ⎪⎝⎭,故在ABD △中,2222cos AD AB BD AB BD ABD=+-⋅⋅∠221125714=+-⨯=,∴AD =(2)设,2π(0,)3CBD θθ∠=∈,则在BCD △中,sin sin BC BD BDC BCD=∠∠,则2πsin()sin π314sin()2πsin 3sin 3BC BCD BD BDCθθ-∠===+∠,所以π2π11sin sin 2214sin()()33ABD S AB BD ABD θθ=+=⨯⨯∠-⋅△2π34()θ=+,当2πsin (13θ+=,即π6θ=时,ABD △面积取到最大值27.(2023·湖南·校联考二模)在ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足236sin02A Ba b b +-+=.(1)求证:3cos 0a b C +=;(2)求tan A 的最大值.【解析】(1)∵236sin02A Ba b b +-+=,∴22π36sin36cos 022C Ca b b a b b --+=-+=,∴1cos 3602Ca b b +-+⋅=,∴3cos 0a b C +=.(2)由(1)可得:sin 3sin cos 0A B C +=,且C 为钝角,即4sin cos cos sin 0B C B C +=,即4tan tan 0B C +=,tan 4tan C B =-,()2tan tan 3tan 3tan tan 11tan tan 4tan 14tan tan B C B A B C B C B B B+=-+=-==-++34=,当且仅当14tan tan B B =,即1tan 2B =时取等号.故tan A 的最大值为34.28.(2023·黑龙江大庆·铁人中学校考二模)在ABC 中,a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,且sin sin sin sin b a c A C B C-=+-.(1)求角A 的大小;(2)记ABC 的面积为S ,若12BM MC = ,求2AMS的最小值.【解析】(1)因为sin sin sin sin b a c A C B C -=+-,即sin sin sin sin B C a cA C b--=+由正弦定理可得,b c a ca c b--=+,化简可得222a b c bc =+-,且由余弦定理可得,2222cos a b c bc A =+-,所以1cos 2A =,且()0,πA ∈,所以π3A =.(2)因为12BM MC = ,则可得1233AM AC AB =+ ,所以222212144cos 33999AM AC AB AC AC AB A AB ⎛⎫=+=+⋅+ ⎪⎝⎭22142999b c =++且1sin 2S bc A ==,即2221424299999b c bc bc bcAM S+++= 当且仅当1233b c =,即2b c =时,等号成立.所以2minAM S ⎛⎫ ⎪=⎪ ⎪⎝⎭ 29.(2023·云南·统考二模)ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,π3A =.(1)若2b =,3c =.求证:tan sin a bA B+=(2)若D 为BC 边的中点,且ABC的面积为AD 长的最小值.【解析】(1)证明:π3A =Q ,2b =,3c =,由余弦定理可得22212cos 4922372a b c bc A =+-=+-⨯⨯⨯=,a ∴=ππtan sin tan sin tan sin 33a b a a A B A A ∴+=+.(2)由1sin 24ABC S bc A bc ===V 24bc =.D 为边BC 的中点,则0DB DC +=,()()2AB AC AD DB AD DC AD ∴+=+++=,所以,()222222π422cos3AD AB ACAB AC AB AC c b cb =+=++⋅=++222372b c bc bc bc bc =++≥+==,即AD ≥当且仅当b c ==AD 长的最小值为30.(2023·广西·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足(2)cos cos 0b a C c B ++=.(1)求C ;(2)若角C 的平分线交AB 于点D ,且2CD =,求2a b +的最小值.【解析】(1)因为(2)cos cos 0b a C c B ++=,由正弦定理得(sin 2sin )cos sin cos 0B A C C B ++=,即sin cos sin cos 2sin cos B C C B A C +=-,所以()sin sin 2sin cos B C A A C +==-,又()0,πA ∈,则sin 0A >,所以1cos 2C =-,又因()0,πC ∈,所以2π3C =;(2)因为角C 的平分线交AB 于点D ,所以π3ACD BCD ∠=∠=,由ABC ACD BCD S S S =+△△△,得12π1π1πsinsin sin 232323ab CD b CD a =⋅+⋅,即22a b ab +=,所以221ab+=,则()222422666b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭当且仅当24b a a b=,即2b ==时取等号,所以2a b +的最小值为6+.31.(2023·安徽宣城·统考二模)设ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B--=.(1)判断ABC 的形状,并说明理由;(2)求2254cos a a c c B-的最小值.【解析】(1)ABC 为钝角三角形,证明如下:由21sin 1cos 22sin sin cos sin 22sin cos cos A B B B A B B B B--===,则有cos sin cos sin cos B A B B A -=,所以cos sin()B A B =+,因为()0,πA B +∈,所以()cos sin 0B A B =+>,则B 为锐角.所以()cos sin sin 2πB B A B ⎛⎫=-=+⎪⎝⎭,所以π2B A B -=+或()2πB A B π⎛⎫-++= ⎪⎝⎭,则22πA B +=或π2A =,由题意知cos 0A ≠,所以π2A ≠,所以22πA B +=,所以,22C πA B B πππ⎛⎫=--=+∈ ⎪⎝⎭,故ABC 为钝角三角形.(2)由(1)知22πA B +=,π2C B =+,由正弦定理,有22225sin 5sin 4cos sin 4sin cos a a A Ac c B C C B-=-22sin 25sin 222sin 4sin cos 22B B B B B ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭222cos 25cos 2cos 4cos B B B B =-222222cos 15(2cos 1)cos 4c ()os B B B B --=-42224cos 4cos 155cos 4cos 2B B B B -+=+-229134cos 4cos 2B B =+-132≥12=-当且仅当2294cos 4cos B B=时等号成立,由B 为锐角,则cos 2B =,所以当π6B =时取最小值12-.32.(2023·全国·模拟预测)已知ABC 是斜三角形,角A ,B ,C 满足cos(2)cos sin 2A B A B ++=.(1)求证:cos sin 0C B +=;(2)若角A ,B ,C 的对边分别是边a ,b ,c ,求22245a b c+的最小值,并求此时ABC 的各个内角的大小.【解析】(1)由()cos 2cos sin2A B A B ++=得cos cos2sin sin2cos sin2A B A B A B -+=,所以()()cos 1cos21sin sin2A B A B +=+,所以()22cos cos 21sin sin cos A B A B B =+.因为ABC 是斜三角形,所以cos 0B ≠,所以()cos cos 1sin sin A B A B =+,所以cos cos sin sin sin 0A B A B B --=,所以()cos sin 0A B B +-=,又A B C π++=,所以cos sin 0C B +=.(2)在ABC 中,有sin 0B >,由(1)知cos sin 0C B +=,所以cos 0C <,于是角C 为钝角,角B 为锐角,根据cos cos 2C B π⎛⎫=+⎪⎝⎭,所以2C B π=+.由正弦定理,得()2222222222224sin 25sin 4sin 5sin 454sin 5sin 22sin sin sin C C B C B a b A B c C C Cππ⎛⎫⎛⎫-+- ⎪ ⎪++++⎝⎭⎝⎭===()()2222242222412sin 55sin 4cos 25cos 16sin 21sin 9sin sin sin CCC CC C CCC-+-+-+===,22916sin 21213sin C C=+-≥=,当且仅当22916sin sin C C =,即23sin 4C =,sin 2C =时等号成立,又角C 为钝角,所以120C =︒时,等号成立,由2C B π=+,得30B =︒,由180A B C ++=︒,得30A =︒,因此22245a b c +的最小值为3,此时三角形ABC 的各个内角为30A =︒,30B =︒,120C =︒.33.(2023·吉林·统考三模)如图,圆O 为ABC 的外接圆,且O 在ABC 内部,1OA =,2π3BOC ∠=.(1)当π2AOB ∠=时,求AC ;(2)求图中阴影部分面积的最小值.【解析】(1)法一:由题意可知,π2π5π2π236AOC ∠=--=,在AOC 中,由余弦定理得2222311211cos 22AC OA OC OA O AOC C ⎛∠=+-⨯⨯⨯-=+⎭-⎝=+⋅∴622AC =.法二:在ABC 中,π2π5π2π236AOC ∠=--=,1OA =,1π24ACB AOB ∠=∠=,15π212ABC AOC ∠=∠=,AB =由正弦定理得sin sin AB ACACB ABC=∠∠,∴π5πsin sin 412AC=,5πππππππsin sin()sin cos cos sin 124646464=+=+=,∴2AC =.(2)设AOB θ∠=,则4π3AOC θ∠=-114π1π11sin 11sin sin sin 22323AOB AOC S S θθθθ⎡⎤⎛⎫⎛⎫+=⨯⨯⨯+⨯⨯⨯-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△△13πsin sin 22226θθθ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,设阴影部分面积为S ,优弧 BC所对的扇形BOC 面积为S 扇形,则212π2π12π233S ⎛⎫=⨯⨯-= ⎪⎝⎭扇形,∴()π2πsin 263AOB AOC S S S S θ⎛⎫=-+=-+ ⎪⎝⎭扇形△△,∵点O 在ABC 内部,∴ππ3θ<<,∴ππ5π666θ<-<,当ππ62θ-=时,即2π3θ=时,min 2π3S =-。
专题解析:三角恒等变换与解三角形
三角恒等变换与解三角形核心考点(一)三角恒等变换【核心知识】1.两角和与差的余弦、正弦及正切公式①cos (α+β)=cos αcos β-sin αsin β②cos (α-β)=cos αcos β+sin αsin β③sin (α+β)=sin αcos β+cos αsin β④sin (α-β)=sin αcos β-cos αsin β⑤tan (α+β)=tan α+tan β1-tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α+β≠k π+π2,k ∈Z )⑥tan (α-β)=tan α-tan β1+tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α-β≠k π+π2,k ∈Z )2.二倍角公式:①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α③tan2α=2tan α1-tan 2α(α≠k π+π2,k ∈Z ,2α≠k π+π2,k ∈Z ,α≠k π±π4,k ∈Z )3.辅助角公式:a cos x +b sin x x +ba 2+b 2sin 令sin θ=aa 2+b 2,cos θ∴a cos x +b sin x =a 2+b 2sin (x +θ),其中θ为辅助角,tan θ=ab .4.降幂公式①sin 2α=1-cos2α2②cos 2α=1+cos2α2③sin αcos α=12sin 2α【典例引领·研明】【典例】(1)(2020·全国卷Ⅲ)已知sin θ+sin 1,则sin ()A .12B .33C .23D .22解析:选B .∵sin θ+sin =32sin θ+32cos θ=3sin 1,∴sin =33.故选B .(2)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值为黄金比值(即黄金分割值5-12,该值恰好等于2sin 18˚),则sin 100˚cos 26˚+cos 100˚sin 26˚=()A .-5+24B .5+24C .-5+14D .5+14解析:选D .由已知可得2sin 18˚=5-12,故sin 18˚=5-14,则sin 100˚cos 26˚+cos 100˚sin 26˚=sin 126˚=sin (36˚+90˚)=cos 36˚=1-2sin 218˚=1-2×(5-14)2=5+14.故选D .(3)(多选)下列各式中值为12的是()A .1-2cos 275°B .sin135°cos 15°-cos 45°cos 75°C .tan 20°+tan 25°+tan 20°tan 25°D .cos 35°1-sin 20°2cos 20°解析:选BD.对于A ,1-2cos 275°=-cos 150°=cos 30°=32,A 错误;对于B ,sin 135°cos 15°-cos 45°cos 75°=sin 45°sin 75°-cos 45°cos 75°=-cos 120°=12,B 正确;对于C ,∵tan 45°=1=tan 20°+tan 25°1-tan 20°tan 25°,∴1-tan 20°tan 25°=tan 20°+tan 25°,∴tan20°+tan 25°+tan 20°tan 25°=1,C 错误;对于D ,cos 35°1-sin 20°2cos 20°=cos 35°(cos 10°-sin 10°)22(cos 10°+sin 10°)(cos 10°-sin 10°)=cos 35°2(cos 10°+sin 10°)=cos 45°cos 10°+sin 45°sin 10°2(cos 10°+sin 10°)=22(cos 10°+sin 10°)2(cos 10°+sin 10°)=12,D 正确;故选BD.(4)(2022·浙江高考)若3sin α-sin β=10,α+β=π2,则sin α=______,cos 2β=____________.解析:∵α+β=π2,∴sin β=cos α,∵3sin α-cos α=10,α-1010cos =10,令sin θ=1010,cos θ=31010,则10sin (α-θ)=10,∴α-θ=π2+2k π,k ∈Z ,即α=θ+π2+2k π,∴sin α=sin +π2+2k cos θ=31010,则cos 2β=2cos 2β-1=2sin 2α-1=45.答案:3101045【解题方法】———————————————————————————————●1.三角函数求值的类型及方法(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次.(4)弦、切互化:一般是切化弦.【对点集训·练透】1.(2021·全国高考甲卷)若αtan2α=cos α2-sin α,则tan α=()A .1515B .55C .53D .153解析:选A .∵tan 2α=cos α2-sin α,∴tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α=cos α2-sin α,∵αcos α≠0,∴2sin α1-2sin 2α=12-sin α,解得sin α=14,∴cos α=1-sin 2α=154,∴tan α=sin αcos α=1515.故选A .2.(2022·江苏盐城二模)计算2cos 10°-sin 20°cos 20°所得的结果为()A .1B .2C .3D .2解析:选C .2cos 10°-sin 20°cos 20°=2cos (30°-20°)-sin 20°cos 20°=3cos 20°+sin 20°-sin 20°cos 20°=3.3.已知αsin +=13,则tan α的值为____________.解析:∵sin 2cos 2α=13,α∴sin α=1-cos 2α2=33,cos α=1+cos 2α2=63,∴tan α=sin αcos α=22.答案:224.(2022·湖南郴州二模)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P -35,,则sin 2α+cos 2α+11+tan α=________.解析:由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2=1825.答案:1825核心考点(二)利用正、余弦定理解三角形【核心知识】1.正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径).【变形】a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c 2R.a ∶b ∶c =sin A ∶sin B ∶sin C .2.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .【推论】cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab.【变形】b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =a cos B +b cos A ,称为“射影定理”.4.面积公式S△ABC=12bc sin A=12ac sin B=12ab sin C.角度1利用正、余弦定理进行边角计算【例1】(2021·福建漳州模拟)在△ABC中,角A,B,C的对边分别为a,b,c,已知(2b -c)cos A=a cos C,则A=()A.π6B.π3C.2π3D.5π6解析:选B.法一∵(2b-c)cos A=a cos C,∴由正弦定理得(2sin B-sin C)cos A=sin A cos C,∴2sin B cos A=sin A cos C+sin C cos A=sin(A+C)=sin B,∵0<B<π,∴cos A=12,又0<A<π,∴A=π3.法二∵(2b-c)cos A=a cos C,∴2b cos A=a cos C+c cos A=b,∴cos A=12,又0<A<π,∴A=π3.【例2】已知△ABC的内角A,B,C的对边分别为a,b,c,且3a cos C-c sin A=3b.(1)求角A;(2)若c=2,且BC边上的中线长为3,求b.解:(1)由题意,3a cos C-c sin A=3b,由正弦定理得3sin A cos C-sin C sin A=3sin B,因为B=π-A-C,所以3sin A cos C-sin C sin A=3sin(A+C),得3sin A cos C-sin C sin A=3sin A cos C+3cos A sin C,得-sin C sin A=3cos A sin C,因为sin C≠0,所以sin A=-3cos A,即tan A=-3,又A∈(0,π),所以A=2π3.(2)在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=b2+4+2b①,cos B=a2+c2-b22ac=a2+4-b24a.设BC的中点为D,则在△ABD中,cos B2×a2×c=a24+12a,所以a 2+4-b 24a =a 24+12a ,得a 2+4-2b 2=0②,由①②可得,b 2-2b -8=0,所以b =4.【解题方法】———————————————————————————————●(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A 或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(5)常常应用A +B +C =π减少未知角的个数.【对点练】1.(2022·山西大同二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin (A +B )=sin B +sin A ·cos B +cos A sin B ,于是sin B =sin (A -B ).又A ,B ∈(0,π),故0<A -B ,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以,A =2B .(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos (A +B )=-cos A cos B +sin A sin B =2227.2.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A cos C +c sin A cos B =15a4.(1)求sin A ;(2)若a =32,b =4,求c .解:(1)因为b sin A cos C +c sin A cos B =15a4,所以由正弦定理,得sin B sin A cos C +sin C sin A cos B =15sin A4,因为sin A ≠0,所以sin B cos C +sin C cos B =154,所以sin (B +C )=154,所以sin (π-A )=154,所以sin A =154.(2)因为△ABC 为锐角三角形,所以A 为锐角,因为sin A =154,所以cos A =14.因为a =32,b =4,由余弦定理得(32)2=42+c 2-2×4×c ×14,所以c 2-2c -2=0,所以c =3+1.角度2与面积和周长有关的问题【例3】(2022·北京高考)在△ABC 中,sin 2C =3sin C .(1)求∠C ;(2)若b =6,且△ABC 的面积为63,求△ABC 的周长.解:(1)因为C ∈(0,π),则sin C >0,由已知可得3sin C =2sin C cos C ,可得cos C =32,因此,C =π6.(2)由三角形的面积公式可得S △ABC =12ab sin C =32a =63,解得a =4 3.由余弦定理可得c 2=a 2+b 2-2ab cos C =48+36-2×43×6×32=12,∴c =23,所以,△ABC 的周长为a +b +c =63+6.【例4】(2022·湖南益阳二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0.解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sinπ612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.【解题方法】———————————————————————————————●(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含该角的公式.(2)与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.三角形面积公式还可用其他几何量表示:S =12(a +b +c )r ,其中a +b +c 为三角形的周长,r 为三角形内切圆的半径.【对点练】3.(2021·新高考全国Ⅱ卷)在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且满足b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求a ;若不存在,说明理由.解:(1)2sin C =3sin A ⇒2c =3a ,∵c =a +2,∴2(a +2)=3a ,∴a =4,∴b =a +1=5,c =a +2=6,∴cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,∴sin A =1-cos 2A =74,∴S △ABC =12bc sin A =12×5×6=1574.(2)存在.由于c >b >a ,故要使△ABC 为钝角三角形,只能是C 为钝角.cos C =a 2+b 2-c 22ab <0⇒a 2+b 2<c 2⇒a 2+(a +1)2<(a +2)2⇒a 2-2a -3<0⇒-1<a <3,又a >0,∴a ∈(0,3).考虑构成△ABC 的条件,可得a +b >c ⇒a +(a +1)>a +2⇒a >1.综上,a ∈(1,3).又a 为正整数,∴a =2,∴存在a =2,使得△ABC 为钝角三角形.4.(2022·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解:(1)由于cos C =35,0<C <π,则sin C =45.因为4a =5c ,由正弦定理知4sin A =5sin C ,则sin A =54sin C =55.(2)因为4a =5c ,由余弦定理,得cos C =a 2+b 2-c 22ab=a 2+121-165a 222a =11-a 252a=35,即a 2+6a -55=0,解得a =5,而sin C =45,b =11,所以△ABC 的面积S =12ab sin C =12×5×11×45=22.角度3最值与范围问题【例5】(2019·全国高考Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.解:(1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C=32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是(38,32).【例6】(2022·河北沧州二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan Bcos A.(1)证明:a +b =2c ;(2)求cos C 的最小值.解:(1)证明:由题意知=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin (A +B )=sin A +sin B ,因为A +B +C =π,所以sin (A +B )=sin (π-C )=sin C .从而sin A +sin B =2sin C .由正弦定理得a +b =2c .(2)由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab =2ab -14≥12,当且仅当a =b 时,等号成立.故cos C 的最小值为12.【解题方法】———————————————————————————————●求解三角形中最值、范围问题的方法(1)函数法:建立有关的函数关系式,利用角的范围求解;(2)基本不等式法:当三角形中一组边角成对已知时,一般考虑余弦定理,转化为圆内接三角形,利用不等式可求周长最大值问题.【对点练】5.(2021·内蒙古包头一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 2B -sin 2A -sin 2C =sin A sin C .(1)求B ;(2)若b =3,当△ABC 的周长最大时,求它的面积.解:(1)由正弦定理得b 2-a 2-c 2=ac ,∴cos B =a 2+c 2-b 22ac =-12,∵B ∈(0,π),∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac +ac =(a +c )2-ac =9,∴ac =(a +c )2-9(当且仅当a =c 时取等号),∴a +c ≤23,∴当a =c =3时,△ABC 周长取得最大值,此时S △ABC =12ac sin B =32×32=334.6.(2022·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B 1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c 2的最小值.解:(1)因为cos A 1+sin A =sin 2B 1+cos 2B=2sin B cos B 2cos 2B =sin Bcos B ,即sin B =cos A cos B -sin A sin B =cos (A +B )=-cos C =12,而0<B <π2,所以B =π6.(2)由(1)知,sin B =-cos C >0,所以π2<C <π,0<B <π2,而sin B =-cos C =sin所以C =π2+B ,即有A =π2-2B ,所以a 2+b 2c 2=sin 2A +sin 2Bsin 2C=cos 22B +1-cos 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 2B +2cos 2B -5≥28-5=42-5,当且仅当cos 2B =22时取等号,所以a 2+b 2c2的最小值为42-5.核心考点(三)解三角形的综合应用角度1与平面几何有关的解三角形问题【例1】(2020·全国Ⅰ卷)如图,在三棱锥P ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.解析:在△ABC 中,AB ⊥AC,AC =1,AB =3,所以BC =2.在△ABD 中,AB ⊥AD,AD =3,AB =3,所以BD = 6.在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ·AE ·cos ∠CAE =1+3-2×1×3×32=1,所以CE =1.在△BCF 中,BC =2,FC =CE =1,BF =BD =6,由余弦定理得cos ∠FCB =FC 2+BC 2-FB 22FC ·BC =1+4-62×1×2=-14.答案:-14【例2】(2021·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .解:(1)证明:由题设,BD =a sinC sin ∠ABC,由正弦定理知c sin C =b sin ∠ABC ,即sin C sin ∠ABC =c b,∴BD =acb ,又b 2=ac ,∴BD =b ,得证.(2)由题意知,BD =b ,AD =2b3,DC =b 3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠CDB =b 2+b 29-a 22b ·b 3=10b 29-a 22b 23,∵∠ADB =π-∠CDB ,∴13b 29-c 24b 23=a 2-10b 292b 23,整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,由余弦定理知,cos ∠ABC =a 2+c 2-b 22ac=43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意;当a 2b 2=32时,cos ∠ABC =712.综上,cos ∠ABC =712.【解题方法】———————————————————————————————●(1)分析平面几何图形,寻找一个含有三个独立条件的三角形并求解,将解得的边、角再用于求解其他三角形.(2)如果两个三角形有共同的边或角,也可列方程求解.【对点练】1.(2022·山东临沂一模)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin (∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49,所以AC =7.2.(2022·湖南株洲二模)如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值;(2)求BE 的长.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC .于是由题设知,7=CD 2+1+CD ,即CD 2+CD -6=0.解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC=CDsin α.于是,sin α=CD ·sin2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =coscos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB=2714=47.角度2正、余弦定理的实际应用【例3】如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15˚、北偏东45˚方向,再往正东方向行驶40n mile 至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60˚方向,则A ,B 两处岛屿间的距离为()A .206n mileB .406n mileC .20(1+3)n mileD .40n mile解析:选A .在△ACD 中,∠ADC =15˚+90˚=105˚,∠ACD =30˚,所以∠CAD =45˚,由正弦定理可得:CD sin ∠CAD =ADsin ∠ACD,解得AD =CD sin ∠ACDsin ∠CAD=40×1222=20 2.在Rt △DCB 中,∠BDC =45˚,所以BD =2CD =40 2.在△ABD 中,由余弦定理可得:AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =800+3200-2×202×402×12=2400,解得AB =20 6.【例4】如图,小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为(153-15)m ,在它们之间的地面上的点M (B ,M ,D 三点共线)处测得楼顶A ,教堂顶C 的仰角分别是15˚和60˚,在楼顶A 处测得塔顶C 的仰角为30˚,则小明估算索菲亚教堂的高度为()A .20mB .30mC .203mD .303m解析:选D .由题意知:∠CAM =45˚,∠AMC =105˚,所以∠ACM =30˚.在Rt △ABM 中,AM =AB sin ∠AMB =ABsin 15˚,在△ACM 中,由正弦定理得AM sin 30˚=CMsin 45˚,所以CM =AM ·sin 45˚sin 30˚=AB ·sin 45˚sin 15˚·sin 30˚,在Rt △DCM 中,CD =CM ·sin 60˚=AB ·sin 45˚·sin 60˚sin 15˚·sin 30˚=(153-15)×22×326-24×12=30 3.【解题方法】———————————————————————————————●应用三角知识解决实际问题的模型【对点练】3.小明去海边钓鱼,将鱼竿AB摆成如图所示的样子.已知鱼竿=4.2m,海平面EC与地面AM相距0.9m,鱼竿甩出后,BC,CD均为钓鱼线,线长共5m,鱼竿尾端离岸边0.3m,即AM=0.3m,假设水下钓鱼线CD与海平面垂直,水面上的钓鱼线BC与海平面的夹角为45˚,鱼竿与地面的夹角为30˚,则鱼钩D到岸边的距离约为________.(结果保留两位小数,3≈1.732)解析:如图,过点B作BN⊥CE,垂足为N,过点A作AG⊥BN,垂足为G.∵AB=4.2m,鱼竿与地面的夹角为30˚,∴BG=2.1m,AG=2.13m.∵海平面EN与地面AM相距0.9m,∴BN=2.1+0.9=3m,∵水面上的钓鱼线BC45˚,∴CN=BN=3m,∴C到岸边的距离为3+2.13-0.3≈6.34m.又水下钓鱼线CD与海平面垂直,∴鱼钩D到岸边的距离约为6.34m.答案:6.34m。
2024年新高考版数学专题1_5.4 解三角形(分层集训)
+1=5,c=a+2=6,∴cos A= b2 c2 a2 = 52 62 42 = 3 ,∴sin A= 1 cos2 A= 7 ,
2bc
256 4
4
∴S△ABC= 1 bcsin A= 1 ×5×6× 7 =15 7 .
2
2
44
(2)由已知得c>b>a,若△ABC为钝角三角形,则角C为钝角,∴cos C=
3
1
1
1
2
A. 9 B. 3 C. 2 D. 3
答案 A
3.(2021全国甲文,8,5分)在△ABC中,已知B=120°, AC= 19, AB=2,则BC= () A.1 B. 2 C. 5 D.3 答案 D
4.(2023届湖湘名校教育联合体大联考,14)△ABC的内角A,B,C的对边分别
为a,b,c,已知b-c= 1 a,2sin B=3sin C,则cos A的值为
5.(2020课标Ⅱ文,17,12分)△ABC的内角A,B,C的对边分别为a,b,c,已知
cos2
2
A +cos
A=
5.
4
(1)求A;
(2)若b-c= 3 a,证明:△ABC是直角三角形.
3
解析
(1)由已知得sin2A+cos
A=
5 4
,即cos2A-cos
A+
1=0.所以
4
cos
A
1 2
2=0,
问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A= 3sinB,
C= ,
?
6
注:如果选择多个条件分别解答,按第一个解答计分.
解析 方案一:选条件①.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有宛田,下周三十步,径十六步,问为田几何?”意思说:现有扇形田,弧长三十步,直径十六步,问面积
多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以 4 .在此问题中,扇
形的圆心角的弧度数是( )
4
A.
15
15
B.
8
【答案】C
C. 15 4
D. 120
【解析】由题意,根据给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以 4 ,
1 sin cos
,去分母得, sin
cos
cos
cos
sin
,所以
sin cos
cos sin
cos ,sin(
) cos
sin(
) ,又因为
,
2
2
2
0 ,所以 ,即 2 ,选 C
2
2
2
2
3.(2020 届山东济宁市兖州区高三网络模拟考)直线 l : 2x y e 0 的倾斜角为 ,则
一、单选题
1.(2020 届山东省高考模拟)若 sin 75 2 ,则 cos 30 2 ( ) 3
4
A.
9
B. 4 9
5
C.
9
D. 5 9
【答案】D
【解析】令 75 ,则 75 由 sin 75 2 ,可得 sin 2
3
3
cos 30 2 cos 30 2 75 cos 180 2 cos 2为(
)
A. 2 5
【答案】D
B. 1 5
【解析】由已知得 tan 2 ,
1
C.
5
2
D.
5
则
sin
sin
2
sin
cos
sin cos sin2 cos2
tan tan2 1
2 22 1
2
.故选:D.
5
4.(2020·2020 届山东省烟台市高三模拟)刘徽(约公元 225 年-295 年),魏晋期间伟大的数学家,中国古典 数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周 合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正 n 边形等分 成 n 个等腰三角形(如图所示),当 n 变得很大时,这 n 个等腰三角形的面积之和近似等于圆的面积,运用割 圆术的思想,得到 sin 2 的近似值为( )
1 2
,所以最小正周期为
.
故选:D
8.(2020·山东滕州市第一中学高三 3 月模拟)已知角 的终边经过点 P( sin 470, cos 470 ),则 sin( 130 )=
1
A.
2
B. 3 2
C. 1 2
【答案】A
【解析】由题意可得三角函数的定义可知:
D. 3 2
sin
sin 2
cos 47 47 cos2
再由扇形的弧长公式,可得扇形的圆心角 l 30 15 (弧度),故选 C. r8 4
7.(2020·山东高三下学期开学)函数
f
(x)
cos2
x
3
的最小正周期为(
)
A.
4
【答案】D
B. 2
C.
2
D.
【解析】因为
f
(x)
cos2
x
3
cos
2
x
2
2 3
1
1 2
cos
2x
2 3
专题 5 三角函数与解三角形
1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等 变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中 三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以 下为主. 2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理, 以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等 变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数 学应用意识、数形结合思想等. 预测 2021 年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.
A. π 90
【答案】A
B. π 180
C. π 270
D. π 360
【解析】由割圆术可知当 n 变得很大时,这 n 个等腰三角形的面积之和近似等于圆的面积,
设圆的半径为 r ,每个等腰三角形的顶角为 360 ,所以每个等腰三角形的面积为 1 r 2 sin 360 ,
n
2
n
所以圆的面积为 r2 n 1 r2 sin 360 ,即 sin 360 2 ,
2
n
nn
所以当 n 180 时,可得 sin 360 sin 2 2 ,故选:A
180
180 90
5.(2020·山东高三模拟)设函数
f
(x)
sin x
5
(
0)
,若
f
(x)
在[0, 2 ] 上有且仅有
5
个零点,
则 的取值范围为( )
A.
12 5
,
29 10
B.
12 5
,
29 10
47
cos 47 , cos
sin 2
sin 47 47 cos2
47
sin 47
,则:
sin 13 sin cos13 cos sin13
cos 47 cos13 sin 47 sin13
cos 47 13 cos 60 1. 2
本题选择 A 选项.
9.(2020·山东滕州市第一中学高三
1
2
2 3
2
5 9
故选
D.
2.(2020 届山东省潍坊市高三下学期开学考试)设 (0, ), (0, ), 且 tan
2
2
1 sin cos
, 则(
)
A. 3 2
【答案】C
B. 3 2
C. 2 2
D. 2 2
【解析】由已知得, tan
sin cos
3
月模拟)函数
f
(x)
4sin x
3
(
0) 的最小正周期是 3
,则
其图象向左平移 个单位长度后得到的函数的一条对称轴是(
6
A. x 4
C.
12 5
,
29 10
D.
12 5
,
29 10
【答案】A
【解析】当 x Î
[0, 2 ] 时, x
5
5
, 2
5
,∵
f
x 在0, 2 上有且仅有
5
个零点,
∴ 5
2
6
12
,∴
29
.故选:A.
5
5
10
6.(2020 届山东省六地市部分学校高三 3 月线考)《九章算术》是我国古代数学名著,其中有这样一个问题:“今