基于PLC和变频器的物料搅拌控制系统设计

合集下载

基于PLC技术的混凝土搅拌站控制系统设计

基于PLC技术的混凝土搅拌站控制系统设计

基于PLC技术的混凝土搅拌站控制系统设计摘要:随着PLC技术的不断发展,它的软件编程、硬件配置、通信连接以及模拟控制等都取得了长足的进步,使得混凝土搅拌站电气控制系统的设计和应用更加先进,已经成为现代生产过程中的重要发展趋势。

因此,本文将重点介绍基于PLC技术的混凝土搅拌站控制系统设计策略,以期为有关从业者提供有价值的参考。

关键词:PLC技术;混凝土搅拌站;控制系统设计引言:采用上位机和下位机控制系统的搅拌站控制系统,已经取得显著的效果,它们能够有效地满足搅拌站的生产要求,但也存在一些挑战,例如,其可扩展性有限,建设成本增加,以及通信能力的不稳定。

随着PLC技术的飞速进步,它以其低廉的价格、高效的运行以及极大的灵活性,已经被普遍应用于多个行业。

因此,本文旨在探索以PLC技术为基础的混凝土搅拌站控制系统的设计。

一、混凝土搅拌站控制系统分析通过结合工控机+PLC+触摸屏技术,能够更加有效地控制混凝土搅拌站,满足不同的生产要求,并且能够提供准确的指令,使得整个生产过程更加高效、精准。

PLC是一种高级的自动控制设备,它能够精确地调节和监测搅拌站的运行状态,通过模拟量模块的运算,实现对各个环节的自动调节,确保整个系统的高效运行。

此外,触摸屏监控器也为用户提供便捷的人机交互体验,确保搅拌站的运行稳定,同时也大大降低操作的复杂度。

二、混凝土搅拌站的生产流程在混凝土搅拌站的运行中,搅拌、配送和输送是三个关键步骤,它们共同构成一个完整的生产系统。

首先,根据设定的配比,把各种尺寸的沙子、石粒等投入到骨料秤上;其次,根据需要,把水和外加剂分别装入水箱和外加剂箱,以确保施工质量。

通过使用螺旋机和四只拉力传感器悬挂的皮带秤,能够精确地测量水泥和砂石骨料的含量。

当皮带秤接收到骨料车的下限位信号时,它会自动启动,并将这些物质投放到料车内,达到精确测量的目的。

皮带秤延迟三秒钟后,骨料车朝上移动,上位机发出冲击,使得料车门被打开,随即,在搅拌罐内加入外加剂、水泥、砂石料以及适量的清水,并且按照规定的时间进行搅拌,完成混凝土的搅拌[1]。

基于plc搅拌机控制系统的设计_毕业设计论文

基于plc搅拌机控制系统的设计_毕业设计论文

毕业设计论文基于PLC搅拌机控制系统的设计摘要随着我国十二五规划的进一步推进,国家对各项基础设施投资力度的进一步加大,市场对优质刨花板的需求将进一步提高。

为此,如何提供优质、廉价、性能可靠、节能环保、维护方便的刨花板生产设备,已成了设备厂商急需解决的问题。

本文应用了西门子S7-300系列PLC完成该系统刨花拌胶、搅拌控制。

搅拌机控制系统的刨花由螺旋给料机供给,压力传感器检测刨花量。

胶由胶泵抽给,电磁流量计检测胶流量;刨花和胶按一定的比例送到搅拌机内搅拌,然后将混合料供给下一道工序蒸压成型。

要求刨花量和胶流量恒定,并有一定的比例关系。

双轴搅拌机采用双轴对向搅拌,搅拌机的喷胶器使胶呈雾状喷射到刨花中。

该系统配备的混胶器可以使固化剂与胶在其中混合,而不是把固化剂加到调胶罐中。

本系统具有搅拌均匀、施胶量低等功能。

调胶系统采用PLC集中控制,PLC根据各部传感器得到刨花的重量、含水率,来调整施胶量的固体含量。

使施胶后的刨花含水率控制在理想的状态上。

这样的优点是在生产线临时停机时,可以避免胶的浪费。

因此,为企业及国家节省了大量的资金和生产原料。

关键词:PLC;PID;S7-300;变频器The Design Of the MixerControl System Based on PLCABSTRACTAs the 12th five-year plan is further on, the state goes on increasing the infrastructure investment ,and the market will need the more high-class particleboard . So how to provide cheap ,reliable performance, energy saving and easy maintenance particleboard production equipment needs to be resolved . Siemens PLC application series s7-300 series is to complete the system control. PC. Mixer control system by two-stage spiral feeder supplies pressure sensor detection processes, quantity. By glue pumps to glue, glue with electromagnetic flowmeter test flow; Particle and glue to at a certain rate to stir the mixer, and then will mixing supply a process under autoclave to shape. Paring quantity and plastic flow, and a certain constant relationship of scale. Dual axle mixer used for mixing, blender to further the spray adhesive glue is an hazy spray into the particle. The rubber mixing system equipped with the machine can make curing agent and the rubber in the mix of, rather than the curing agent added to the glue tank. This system has a stir well, glue low quantity function. Adjustable glue system USES PLC centralized control, PLC according to get the weight of each sensor pre-press, moisture content, to adjust the amount of glue solid content. Make glue of moisture content in pre-press after control ideal state. Such advantages in production line is temporary, can avoid glue when stop waste. Therefore, the enterprise and government to save a lot of money anraw material.key words:PLC;PID;S7-300;Frequency Converter目录摘要 (I)ABSTRACT (I)目录........................................................ I II1 绪论 (1)2 搅拌机控制系统的技术概述 (4)2.1PLC技术概述 (4)2.1.1可编程控制器 (4)2.1.2PLC的结构 (5)2.1.3 PLC的特点 (6)2.1.4PLC的基本功能 (7)2.1.5 PLC软件系统 (9)2.1.6PLC的发展趋势 (9)2.2变频器简介 (10)2.3西门子S7-300软件概述 (10)2.3.1西门子S7-300系列PLC的一般特性 (10)2.3.2 西门子S7-300系列PLC的基本硬件组成 (11)2.3.3STEP 7- V5.4(西门子S7-300编程软件) (144)3 搅拌机控制系统的设计方案 (16)3.1控制系统的工艺过程及控制要求 (16)3.2系统的控制方案 (18)3.3基于PLC的拌胶机控制系统的特点 (19)3.3.1施胶机具有如下主要特点 (19)3.3.2拌胶机对比传统拌胶系统特点 (20)4搅拌机硬件系统设计 (20)4.1PLC的选型 (20)4.2控制系统的仪表选用 (21)5 搅拌控制系统软件设计 (23)5.1可编程控制器在模拟量闭环控制中的应用 (23)5.1.1PID控制器的数字化 (24)5.1.2回路输入输出变量的转化与标准化 (26)5.2搅拌机系统程序流程图 (23)总结 (28)致谢 (29)参考文献 (30)附录:程序 (31)1 绪论刨花板又叫微粒板、蔗渣板,由木材或其他木质纤维素材料制成的碎料,施加胶粘剂后在热力和压力作用下胶合成的人造板。

基于PLC的混凝土搅拌机设计

基于PLC的混凝土搅拌机设计

前言可编程序逻辑控制器(PLC)自它诞生以来至今,以其极高的性能价格比以及一系列人所共识的优点,受到越来越多的工程技术人员的重视。

它现在被广泛用于汽车生产、石油生产、IT制造、家电制造厂等工业控制系统场所,是现代制造业发展的重要技术之一。

它对工业的生产提供了良好的控制系统,它的广泛使用才使得人民不断增长的物质需求得到有利保障。

1969年美国DEC公司研制的第一台PDP-14型PLC。

随后,在二十世纪七十至八十年代一直简称为PC。

由于到90年代,个人计算机发展起来,也简称为PC;可编程序范围很大,所以美国AB公司首次将可编程序控制器定名为可编程序逻辑控制器(Programmable Logic Controller),简称为PLC。

PLC在控制领域的应用是保持了广泛的增长趋势。

随着我国经济建设的高速发展,许多大型的基础工程及建筑工程相继开工。

建设优质的工程需要高品质的混凝土,而且随着人们环保意识的加强,为了减少城市噪音和污染,交通和建筑处理部门要求施工用的混凝土集中生产和管理。

这样不仅要求,混凝土的配料精度高,而目要求生产速度快,因此,混凝土生产过程中搅拌设备自动控制系统日益受到人们的重视。

可编程控制器(PLC)具有可靠性高、功能完善、编程简单且直观,能够有效地弥补继电器控制系统的缺陷。

从1903年德国建造世界上第一座预拌混凝土搅拌站以来,商品混凝土作为独立的产业己有100多年的历史。

随后,美国于1913年,法国于1933年建立了自己的搅拌站。

二次大战后,尤其是60年代到70年代,由于各国抓紧发展经济,医治战争的创伤,混凝土搅拌站得到了快速发展。

目前,德国、美国、意大利、日本等国家的搅拌站在技术水平和可靠性方面处于领先地位。

国外生产的搅拌站一般生产率在50m3/ h~300m3/h,对于商品混凝土生产,搅拌站形式应用比较普遍,尤其在大型工程中被采用。

我国混凝土搅拌站(楼)的研制是从50年代开始的,在其发展过程中,型式的选取和主要技术参数基本上是根据用户要求和参考国外产品的自由状态。

基于PLC的混凝土搅拌站控制系统设计

基于PLC的混凝土搅拌站控制系统设计

基于PLC的混凝土搅拌站控制系统设计【摘要】在整个控制系统中,实现的功能是判断沙料、石料、水泥的重量是否符合要求,接着就是判断水的重量。

对于这个问题,在硬件选择方面选择了重量传感器和水流量传感器来解决这个问题。

对于西门子S7-200 CPU226控制的混凝土搅拌站的设计创意,最突出的地方是可以根据客户的要求选择混凝土所需总重量以及混凝土所需各材料的比例。

然后在程序内部实现数据的转换,从而使得传送带运送所需材料的重量,达到各条件下所需的混凝土。

【关键词】混凝土搅拌站PLC配料精度1基于PLC的混凝土搅拌站控制系统设计1.1混凝土搅拌站控制系统的选择控制系统被看作是搅拌站的核心,主要按照预定的混凝土配比控制搅拌站完成运转。

早期由于混凝土搅拌站的称量系统通常使用杠杆秤来进行称重,所以控制系统采用的控制方式是继电器加接触器。

随着传感器技术及电子技术的发展,称量系统采用了高精度电位器,于是便出现了穿孔卡形式的控制系统。

目前搅拌站的控制系统一般为计算机控制主要,这样不仅能够更好地完成测量任务,还能够大大提升测量的准确性。

混凝土搅拌站控制系统的主要目的是保证配料系统,搅拌系统能够正常稳定的工作,从而完成各种物料的精确配比,控制混凝土的出机温度。

混凝土搅拌站控制系统的选择主要考虑以下因素:混凝土生产工艺和质量要求:需要根据实际需求选择对应的控制系统,确保能够满足混凝土生产过程的要求。

设备配置水平:市面上常见的品牌有上海思伟等,根据整套设备的配置高低,可以选用不同标准的搅拌站控制系统,应根据实际设备配置水平进行选择。

精度要求:控制系统配备有精准的配料机设备,可以同时控制几条独立配料线,每条配料线上可按用户要求设置称重点。

应选择精度满足混凝土生产的要求的控制系统。

目前计算机控制的方式有多种形式,大概有物料仪和工控机组合、工控机控制、物料仪和可编程控制器组合、单片机和工控机组合这四种。

考虑到工地环境的恶劣,很显然单片机结构与PLC结构控制方式较为适合工地现场的恶劣环境[14]。

基于PLC的自动搅拌系统设计

基于PLC的自动搅拌系统设计

电气控制课程设计专业:班级:姓名:学号:指导教师:基于S7—300PLC的多罐体液体自动混合搅拌系统1 控制要求采用PLC设计一个三个罐体的液体自动混合搅拌系统,具体要求如下:储液罐1为一个5L储液罐,其分别有两个进液阀A和B,一个出液阀C(均为电磁阀,下同)。

罐体上有三个传感器,分别为低液位传感器L,中液位传感器I,高液位传感器H。

启动系统之前,容器是空的,各阀门关闭,传感器H=I=L=OFF,搅拌电动机M0=OFF。

首先,按下启动按钮,自动打开阀门A使液体A流入。

当液面到达传感器I的位置时,关闭阀门A,同时打开阀门B使液体B流入。

当液面到达传感器H位置时,关闭阀门B,同时启动搅拌电动机搅拌1分钟。

搅拌完毕后,打开放液阀门C。

当液面低于传感器L的位置时,再继续放液10秒后关闭放液阀门C.随后再将阀门A打开,如此循环下去.若停止后罐内依旧存在液体,可利用出液阀C手动按钮将液体排出。

当启动按钮按下时,同时低速启动搅拌机M0。

当进液阀B打开时,切除电动机所串入电阻,使其正常运行.当电磁阀C打开时,再时搅拌机M0低速运行,若不按下停止按钮,使系统循环进行。

在工作中如果按下停止按钮,搅拌机M0不立即停止工作,只有当前混合操作处理完毕,才停止工作,即停在初始状态。

当初始状态下,按下停止按钮,搅拌机M0将进行反接制动,最终利用速度继电器,将反接制动切除。

储液罐2为一个3L储液罐,其分别有两个进液阀D和E,一个出液阀F。

罐体上有两个传感器分别为低液位传感器N和高液位传感器K。

当储液罐1的电磁阀B打开时,同时打开储液罐2的进液阀D和E.延迟10秒后,启动搅拌机M1进行搅拌1分钟,当罐内液面到达高液位传感器K时,自动关闭进液阀D和E。

搅拌时间到后,打开岀液阀F。

当液面低于低液位传感器N时,延迟5秒,之后同时关闭搅拌机M1和岀液阀F。

储液罐3为一个10L储液罐,罐体上有一个高液位传感器P,当由储液罐1和储液罐2放出的液体液面达到传感器P的液面高度时,启动搅拌机M2同时延迟20秒打开岀液阀G,放液3分钟到储液塔中,时间到后自动关断搅拌机M2和出液阀G。

基于PLC的混凝土搅拌站控制系统设计

基于PLC的混凝土搅拌站控制系统设计
screen
PLC plus touch
and display instrument is proposed in this paper.According
structure of
to
the requirement,the software and hardware and designed.
At first,the background paper
论文成果归广东工业大学所有。
申请学位论文与资料若有不实之处,本人承担一切相关责任,特此声明。
指导教师签字:
论文作者签字:
周秀善
z卯窘年多月么日
第一章绪论
第一章绪论
1.1选题背景及意义
混凝土搅拌站最初是以单机的形式出现,各工地自拌自用,随着基础设施建 设大规模的开展,商品混凝土的销售逐渐增大。随着计算机技术和测控技术的发 展,高可靠、高自动化的自动控制系统便成了混凝土搅拌站的发展方向。 在混凝土搅拌站自动控制系统中,系统的稳定性、数据采集处理的精确性直 接影响到混凝土的质量。而在市场竞争日趋激烈的今天,搅拌站自动控制系统的 性价比也与企业的生存紧密的联系在一起。因此,研究一种低成本、高可靠性的 新型搅拌站自动控制系统,具有极为广阔的市场前景。 混凝土搅拌站包括贮料、配料、物料称量、搅拌及卸料等过程,是一个受多 环节制约的复杂系统,物料的配比和称重精度等因素都直接影响混凝土的质量。 由于PLC运算速度高、指令丰富、功能强大、可靠性高、使用方便、编程灵活及 抗干扰能力强等特点,如今成为工业控制领域的主要控制设备,始终处于工业自 动化控制领域的主战场,为各种各样的自动化控制设备提供了安全可靠和比较完 善的控制应用;但由于其本身不具备人机交互功能,在工艺参数较多,需要人机 交互时,使用具有触摸操作功能的触摸屏是一种很好的选择,通过触摸屏和PLC 结合使用,可以在触摸屏中直接设定目标值与实际值进行比较,并可实时监控到 系统实际值的大小,实现报警等功能;配料控制器性能可靠、性价比高,可方便 地利用通信接口扩展成计算机控制系统。综上所述,本系统采用“PLC+触摸屏+ 显示仪表"这样一种控制方式的搅拌站系统有着重要的意义,适应当今技术发展

基于plc搅拌机控制系统的设计

基于plc搅拌机控制系统的设计

基于PLC搅拌机控制系统的设计摘要随着我国十二五规划的进一步推进,国家对各项基础设施投资力度的进一步加大,市场对优质刨花板的需求将进一步提高。

为此,如何提供优质、廉价、性能可靠、节能环保、维护方便的刨花板生产设备,已成了设备厂商急需解决的问题。

本文应用了西门子S7-300系列PLC完成该系统刨花拌胶、搅拌控制。

搅拌机控制系统的刨花由螺旋给料机供给,压力传感器检测刨花量。

胶由胶泵抽给,电磁流量计检测胶流量;刨花和胶按一定的比例送到搅拌机内搅拌,然后将混合料供给下一道工序蒸压成型。

要求刨花量和胶流量恒定,并有一定的比例关系。

双轴搅拌机采用双轴对向搅拌,搅拌机的喷胶器使胶呈雾状喷射到刨花中。

该系统配备的混胶器可以使固化剂与胶在其中混合,而不是把固化剂加到调胶罐中。

本系统具有搅拌均匀、施胶量低等功能。

调胶系统采用PLC集中控制,PLC根据各部传感器得到刨花的重量、含水率,来调整施胶量的固体含量。

使施胶后的刨花含水率控制在理想的状态上。

这样的优点是在生产线临时停机时,可以避免胶的浪费。

因此,为企业及国家节省了大量的资金和生产原料。

关键词:PLC;PID;S7-300;变频器The Design Of the MixerControl System Based on PLCABSTRACTAs the 12th five-year plan is further on, the state goes on increasing the infrastructure investment ,and the market will need the more high-class particleboard . So how to provide cheap ,reliable performance, energy saving and easy maintenance particleboard production equipment needs to be resolved . Siemens PLC application series s7-300 series is to complete the system control. PC. Mixer control system by two-stage spiral feeder supplies pressure sensor detection processes, quantity. By glue pumps to glue, glue with electromagnetic flowmeter test flow; Particle and glue to at a certain rate to stir the mixer, and then will mixing supply a process under autoclave to shape. Paring quantity and plastic flow, and a certain constant relationship of scale. Dual axle mixer used for mixing, blender to further the spray adhesive glue is an hazy spray into the particle. The rubber mixing system equipped with the machine can make curing agent and the rubber in the mix of, rather than the curing agent added to the glue tank. This system has a stir well, glue low quantity function. Adjustable glue system USES PLC centralized control, PLC according to get the weight of each sensor pre-press, moisture content, to adjust the amount of glue solid content. Make glue of moisture content in pre-press after control ideal state. Such advantages in production line is temporary, can avoid glue when stop waste. Therefore, the enterprise and government to save a lot of money anraw material.key words:PLC;PID;S7-300;Frequency Converter目录摘要 (I)ABSTRACT (I)目录........................................................ I II1 绪论 (1)2 搅拌机控制系统的技术概述 (4)2.1PLC技术概述 (4)2.1.1可编程控制器 (4)2.1.2PLC的结构 (5)2.1.3 PLC的特点 (6)2.1.4PLC的基本功能 (7)2.1.5 PLC软件系统 (8)2.1.6PLC的发展趋势 (9)2.2变频器简介 (9)2.3西门子S7-300软件概述 (9)2.3.1西门子S7-300系列PLC的一般特性 (9)2.3.2 西门子S7-300系列PLC的基本硬件组成 (11)2.3.3STEP 7- V5.4(西门子S7-300编程软件) (144)3 搅拌机控制系统的设计方案 (15)3.1控制系统的工艺过程及控制要求 (15)3.2系统的控制方案 (17)3.3基于PLC的拌胶机控制系统的特点 (19)3.3.1施胶机具有如下主要特点 (19)3.3.2拌胶机对比传统拌胶系统特点 (19)4搅拌机硬件系统设计 (20)4.1PLC的选型 (20)4.2控制系统的仪表选用 (20)5 搅拌控制系统软件设计 (22)5.1可编程控制器在模拟量闭环控制中的应用 (22)5.1.1PID控制器的数字化 (23)5.1.2回路输入输出变量的转化与标准化 (25)5.2搅拌机系统程序流程图 (22)总结 (27)致谢 (28)参考文献 (30)附录:程序 (31)1 绪论刨花板又叫微粒板、蔗渣板,由木材或其他木质纤维素材料制成的碎料,施加胶粘剂后在热力和压力作用下胶合成的人造板。

基于PLC的搅拌器控制系统设计

基于PLC的搅拌器控制系统设计

基于PLC的搅拌器控制系统设计摘要随着PLC等许多处理器的发展,自动控制模式的电动机的数量越来越多。

传统的控制方式因技术手段落后、生产效率低等弊端已不能适应企业生产的需要。

本文主要介绍采用西门子PLC实现对液体搅拌系统进行自动控制。

基于PLC构成的用于两种液体自动混合、自动搅拌和自动放料系统的控制目标、硬件组成、软件设计及系统功能,能模拟显示液体搅拌系统的全部工作过程。

系统硬件主要由S7-300可编程控制器、电磁阀、泵以及液位变送器等组成,编程软件采用采用西门子编程软件STEP7。

系统通过液位变送器将采集到的现场液位高度传送给西门子PLC,并由PLC对现场数据逻辑处理后,发出相应的控制指令,完成系统的自动控制。

最后,系统使用RS-232接口与上位机相连实现PLC与计算机的通讯。

系统不仅自动化程度高,灵活性强, 还具有在线修改功能,可满足不同的生产工艺要求。

关键字:PLC,液体搅拌系统,液位变送器,电磁阀DESIGN OF INDUSTRIAL MIXING PROCESS CONTROLSYSTEM BASED ON PLCABSTRACTWith the development of PLC, there are more and more automatic control electromotor. The traditional way of controlling can not meet the needs of enterprise production for its in low efficiency and low productivity. This paper introduces the rational application of SIEMENS PLC in the automatic control system of liquid mixer. PLC-based liquid composition for the two auto-mixing, automatic mixing and automatic discharge system, control objectives, hardware components, software design and system capabilities of liquid mixing system simulation show that all the work process.The System hardware is mainly formed by the S7-300 programmable logic controller, electromagnetic valve, pump and liquid location sensor, programming software using Siemens STEP7. The System through the liquid location sensor collected level information to Siemens PLC and then the PLC deal with on-site data, and sending corresponding control command to complete the system of automatic control. At last system is realized the communication between PLC and the upper computer by using the connection of RS-232.This system not only has high automation level and great mobility but also can alter the parameter on line, it can use in kinds of liquid location control systems.Key words: PLC,liquid mixing system,liquid location sensor,electromagnetic valve目录1. 绪论 -------------------------------------------------------------------------------------------------- 11.1 液体搅拌系统的简介 ---------------------------------------------------------------------- 11.2 液体搅拌系统组成 ------------------------------------------------------------------------- 21.3 PLC在液体搅拌系统中的应用----------------------------------------------------------- 22. 可编程控制器 -------------------------------------------------------------------------------------- 42.1 可编程控制器的发展 ---------------------------------------------------------------------- 42.1.1 PLC技术发展概况 ------------------------------------------------------------------ 52.1.2 可编程控制器在我国的发展 ----------------------------------------------------- 62.2 PLC的分类----------------------------------------------------------------------------------- 72.3 PLC的工作原理----------------------------------------------------------------------------- 82.4 可编程控制器实现控制的要点 --------------------------------------------------------- 102.4.1 可编程控制器基本特点----------------------------------------------------------- 112.5 PLC的主要技术指标及抗干扰分析 --------------------------------------------------- 132.5.1 干扰源及干扰一般分类----------------------------------------------------------- 142.5.2 PLC控制系统中电磁干扰的主要来源----------------------------------------- 142.5.3 PLC控制系统工程应用的抗干扰设计----------------------------------------- 172.5.4 主要抗干扰措施-------------------------------------------------------------------- 172.6 西门子S7-300可编程控制器简述----------------------------------------------------- 182.7 SIMATIC S7-300系列PLC系统基本构成 ------------------------------------------- 182.7.1 SIMATIC S7-300的组成 ---------------------------------------------------------- 192.7.2 S7-300的扩展能力 ----------------------------------------------------------------- 202.7.3 S7-300模块地址的确定----------------------------------------------------------- 202.8 S7—300式PLC的CPU简介 ---------------------------------------------------------- 21 3.控制系统硬件设计 ------------------------------------------------------------------------------ 243.1 系统工业流程 ------------------------------------------------------------------------------ 243.2 液位变送器的选择 ------------------------------------------------------------------------ 243.3 电磁阀的介绍 ------------------------------------------------------------------------------ 253.3.1 电磁阀的分类及特点-------------------------------------------------------------- 253.3.2 电磁阀的选择----------------------------------------------------------------------- 263.4 接触器及选用 ------------------------------------------------------------------------------ 273.4.1 接触器的分类和结构-------------------------------------------------------------- 283.4.2 接触器的工作原理及选用-------------------------------------------------------- 283.5 中间继电器 --------------------------------------------------------------------------------- 293.6 PLC选型------------------------------------------------------------------------------------- 303.7 系统主电路工作原理 --------------------------------------------------------------------- 313.8 系统控制电路工作原理 ------------------------------------------------------------------ 32 4.控制系统软件设计 ------------------------------------------------------------------------------ 344.1 PLC编程软件STEP7 --------------------------------------------------------------------- 344.2 PLC控制流程------------------------------------------------------------------------------- 354.3 系统的程序设计 --------------------------------------------------------------------------- 35 结论 ----------------------------------------------------------------------------------------------------- 43 致谢 ----------------------------------------------------------------------------------------------------- 44 参考文献----------------------------------------------------------------------------------------------- 451. 绪论1.1液体搅拌系统的简介目前,我国的液体搅拌系统大部分采用传统的继电器进行控制,这种方法耗能大,浪费大,搅拌效果不好,给工厂浪费很多资金,同时对噪声污染也很严重。

基于PLC的搅拌机控制系统的设计

基于PLC的搅拌机控制系统的设计

基于PLC的搅拌机控制系统的设计搅拌机是一种常见的工业设备,它用于混合和搅拌各种物料,包括粉末、液体、颗粒等。

传统的搅拌机控制系统通常采用传感器和继电器进行控制,但这种方式存在一些问题,例如控制精度低、响应时间长、可靠性差等。

为了提高搅拌机的控制性能和可靠性,我们可以采用基于PLC的控制系统。

PLC是可编程逻辑控制器的缩写,它是一种专用的计算机控制设备,具有高速、高可靠性、易于编程和配置的特点。

基于PLC的控制系统可以通过将传感器和执行器与PLC连接,实现对搅拌机的精确控制。

搅拌机控制系统的设计需要以下几个步骤:1.确定控制需求:根据搅拌机的工作要求,确定需要控制的参数,例如转速、时间、温度等。

2.选择传感器和执行器:根据控制需求选择合适的传感器和执行器。

例如,可以使用旋转编码器或霍尔传感器测量搅拌机的转速,使用温度传感器测量搅拌机的温度。

3.设计控制逻辑:根据控制需求和传感器的反馈信号,设计PLC的控制逻辑。

例如,可以使用PID控制算法来控制搅拌机的转速,根据传感器测量的实际转速和设定值,调整搅拌机的驱动器。

4.编程PLC:根据设计的控制逻辑,使用PLC编程软件编写PLC程序。

PLC程序主要包括输入输出的配置、控制逻辑的实现和报警功能的设置。

6.性能优化:根据测试结果和用户反馈,对控制系统进行性能优化。

例如,可以调整PID控制算法的参数,优化控制精度和响应时间。

1.高可靠性:PLC具有高可靠性和抗干扰能力,能够稳定地工作在恶劣的工业环境下。

2.高精度控制:PLC的计算和控制速度快,能够实现对搅拌机的高精度控制,提高产品质量。

3.易于配置和扩展:PLC具有模块化的设计,可以根据需求进行灵活配置和扩展。

4.易于维护和诊断:PLC的编程和配置工具友好易用,能够快速诊断和修复故障。

总结:基于PLC的搅拌机控制系统能够提高搅拌机的控制性能和可靠性,增加生产效率和产品质量。

设计和实施这样的控制系统需要仔细考虑搅拌机的工作要求、选择合适的传感器和执行器、设计控制逻辑、编程PLC、调试和测试,并进行性能优化。

基于PLC的物料搅拌系统设计

基于PLC的物料搅拌系统设计

题目:基于PLC的物料搅拌系统设计青岛理工大学毕业设计评阅意见表2.计算出总分。

若总分<60分,“设计质量”<24分,建议不能提交论文评阅乃至答辩。

该设计须限期修改合格后重新申请答辩。

3.评阅意见栏不够可另附页。

摘要本文介绍的物料搅拌系统以PLC作为控制核心,结合变频器等完成物料搅拌的自动控制系统,能够较好的满足搅拌系统的要求。

本设计运用了变频电机M1,恒速电机M2,液位传感器,搅拌电机M3,皮带秤等主要器件,以PLC为控制核心,选用了西门子公司的S7-200系列机PLC,西门子生产的变频器MM440,ZDSN型电子式电动双调节阀,SS.45-HSP-100型静压式液位变送器,ICS-ST4型电子皮带称,还有断路器,熔断器,热继电器等多种电路保护元件,运用PLC编程语言,以及人机界面控制面板,用PLC的S7_200的仿真软件进行仿真,实现了对不同的物料按预先设定的程序进行混合搅拌的功能。

关键词:可编程控制器PLC;变频器;电动调节阀;物料搅拌系统;PID控制;电动调节阀ABSTRACTW ith the development of modern industrial technology, material mixing technology has been rapid development, it is widely used and the chemical technology and production, but in the application, the traditional material mixing process also exists serious problems and capacity constraints。

Computer technology as the core of PLC in the general automatic control equipment, it is a kind of program to change control function of the computer. As microprocessors, computer and communication technology, the rapid development of PLC programmable controller has widely applied in industrial control, and the proportion of the rapid rise in. PLC mainly consists of CPU module, input and output module and programming module device. It is applied in industry, mixing equipment mixing process realized automation control, and improved the stability, agitate equipment work for the mixing machine smoothly, orderly, accurate working creates powerful guarantee. In this paper, the material mixing system with PLC as control core, combined with frequency converter, etc material stirring of the automatic control system.Key words: PLC programmable controller;frequency converter;material mixing system;PID control; Electric control valve目录绪论.............................................................................................. 错误!未定义书签。

搅拌机基于plc的设计

搅拌机基于plc的设计
采用通用计算机控制,尽管可以达到控制精度,但成本高,对工作环境要求高,对现场操作人员要求也高。
搅拌机基于plc的设计
搅拌机基于plc的设计第1章绪论1.1课题的目的、意义及现状目前,我国的液体搅拌机控制系统大部分采用传统的继电器进行控制,这种方法耗能大,浪费大,搅拌效果不好,给工厂浪费很多资金,同时对噪声污染也很严重。
而且,在炼油、化工、制药等行业中,多种液体混合是必不可少的工序,但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作。
本次设计的搅拌机为立式容器中心搅拌机,其结构形式如图1-2所示。
此搅拌机将搅拌装置安装在立式设备筒体的中心线上,驱动方式为齿轮传动,用普通电机直接联接。
一般认为功率3.7kW一下为小型,5.5~22kW为中型。
本次设计中所采用的电机功率为18.5kW,故为中型电机。
本次设计主要进行的是搅拌机控制系统的设计,对搅拌机的机械部分直接进行简单的结构设计。
1、电动机2、减速器3、进料口1 4、封头5、筒体6、夹套7、搅拌器叶片8、出料口9、进料口2 10、搅拌轴图1-2搅拌机的结构形式1.3.2搅拌机控制系统的组成为实现液位的采样、自动控制,系统必须包括硬件部分和软件部分。
硬件部分由可编程控制器、液位变送器、电磁阀、电机、泵、A/D转换器、RS-232电缆接口组成。
(2)系统软件组成:
PLC编程软件:
由于系Байду номын сангаас采用三菱的PLC,故也是使用三菱PLC编程软件GX Developer,用于编写PLC控制程序。
1.3.3 PLC在液体搅拌系统中的应用在化工、机械等行业的生产过程中,液体搅拌是十分重要也是必不可少的重要环节,液体搅拌的关键是保证混料过程中原料的准确性和比例以及保证原料的充分混合。

基于PLC的搅拌机控制系统

基于PLC的搅拌机控制系统

厦门工学院本科生毕业设计(论文)题目:基于PLC的搅拌机控制系统姓名:刘佳盛学号: 1208102022系别:电气工程专业:电气工程及其自动化年级: 12级电气2班指导教师:黄永杰年月日基于PLC的搅拌机控制系统摘要搅拌机作为现代工业中不可缺少的部分,在现代技术的支持下搅拌机得到了较大的发展,以前的搅拌机都是由继电器控制组成,系统相对来说比较复杂,响应速度缓慢。

由于现代PLC控制技术的迅速发展,采用软件就可以取代继电器系统,所以,越来越多的企业和工厂都选用PLC作为对搅拌机的系统的控制。

该课题设计的主要控制是运用可编程控制的技术来实现的。

先是根据需求画出工艺流程图,再按照工艺流程图来设计硬件配置,最后是根据设计要求进行系统的主要电路和控制电路的设计,从而达到系统的控制要求。

然后再按照控制的要求进行软件部分的设计,为了将自动化控制加入系统中,该设计是运用PLC 来控制主要的电路。

其中包括PLC、电动机、电磁阀、泵、液位变送器等元件的选型。

其中液位传送器负责收集搅拌容器中液位的实时高度,再将采集到的信息转化后送给PLC,PLC再对数据进行分析,然后根据程序输出控制命令,进而促使整个系统按要求进程。

从而达到降低制造成本和维护成本的目的。

关键词:PLC,搅拌机,液位变送器,自动控制Based on PLC the mixer control systemAbstractMixer as an integral part of the modern industry, with the support of modern technology blender got greater development, previous mixer is composed of relay control, system is relatively complicated, the response speed is slow. Due to the rapid development of modern PLC control technology, the software could replace relay system, therefore, more and more companies and factories all use PLC as the control of the mixer system.This design is to use PLC technology to realize the main control of the mixing system. First is carries on the process of system design, hardware configuration according toprocess flow design, and then design the system of the main circuit, control circuit, so as to achieve control requirements. Then according to the requirement of the control software design, in order to achieve the automatic control of the liquid mixing system PLC control technologyare adopted in this design. Including PLC, motor, solenoid valve, pump, liquid level transmitter components selection, etc. Collected in the liquid level transmitter site liquid level heightwill be transmitted to the PLC, and through the PLC logic of data processing, and then send the requirements of the control command, prompting the complete command control system. So as to achieve the aim of reducing manufacturing costs and maintenance costs.Key words: PLC,Mixer,Liquid level transmitter,automatic control目录第一章绪论 01.1设计搅拌机控制系统的目的 01.2 设计搅拌机控制系统的意义 01.3 本设计的主要工作 (1)第二章基于PLC的搅拌机控制系统总体方案 (2)2.1 搅拌机控制系统的组成 (2)2.2 搅拌机控制系统的设计内容 (2)2.3 搅拌机控制系统总体结构设计方案 (2)2.4 搅拌机控制系统的基本运行原理 (3)2.5 搅拌机控制系统的需求分析 (4)2.6 搅拌机控制的自动化控制概述 (4)2.6.1 PLC应用方面的特点 (4)第三章基于PLC的搅拌机控制系统的硬件部分 (6)3.1 搅拌机控制系统的硬件选型 (6)3.1.1搅拌机控制系统的PLC选型 (6)3.1.2 电磁阀的选择 (6)3.1.3 液位传感器的选择 (7)3.1.4 变频器的选择 (7)3.1.5 搅拌电动机的选择 (8)3.2 搅拌机系统硬件结构 (8)3.3 搅拌机控制系统的主电路设计 (9)3.3.1 搅拌机控制系统的检测电路 (10)3.3.2 搅拌机控制系统的控制部分 (10)第四章搅拌机控制系统的软件设计 (11)4.1 搅拌机控制系统的工作流程 (11)4.2 PLC的I/O分配 (12)4.3 搅拌机控制系统梯形图的设计 (12)4.3.1 系统的启动停止 (13)4.3.2 系统的自动入液控制 (13)4.3.3 系统的自动加热部分 (14)4.3.4搅拌机出液控制 (15)4.3.5 检测电路 (15)第五章仿真及调试 (17)5.1 仿真软件的简介 (17)5.2 软件编程的仿真 (18)5.2.1 系统的正确运行 (18)5.2.2 仿真调试的误区 (19)5.3 仿真调试结果 (20)总结 (21)参考文献 (22)谢辞 (23)附录基于PLC的搅拌机控制系统程序梯形图 (24)第一章绪论随着工业发展速度的加快,人们越来越注重科学、稳定、简便以及安全的工业生产方式。

基于PLC的混凝土搅拌站控制系统设计

基于PLC的混凝土搅拌站控制系统设计

基于PLC的混凝土搅拌站控制系统设计混凝土搅拌站是建筑工地中必不可少的设备之一,它的作用是将水泥、砂子、石子等材料进行混合,制成混凝土,用于建筑工程中的浇筑。

然而,在传统的搅拌站中,操作人员需要手动控制各种设备和机械进行生产,不仅效率低下,而且存在一定的安全隐患。

为了提高生产效率和安全性,在本文中我们将基于PLC技术设计一个自动控制系统来管理混凝土搅拌站。

本文将从以下几个方面进行论述:首先介绍PLC技术在自动化控制领域的应用背景和意义;然后分析混凝土搅拌站存在的问题及需求;接着详细介绍基于PLC的混凝土搅拌站控制系统设计方案;最后进行系统实施和效果评估。

一、PLC技术在自动化控制领域中的应用背景和意义随着科技进步和工业发展,自动化控制成为现代工业生产过程中不可或缺的一部分。

而PLC(Programmable Logic Controller)作为现代自动化控制系统的核心设备之一,其应用范围越来越广泛。

PLC具有可编程性、可靠性、稳定性等优点,能够实现各种自动化控制任务,因此在工业领域得到了广泛应用。

在混凝土搅拌站中,传统的人工操作方式不仅效率低下,而且存在一定的安全隐患。

因此,引入PLC技术来实现自动化控制具有重要意义。

通过PLC技术可以实现混凝土搅拌站的自动化生产过程,并能够对各种设备和机械进行精确控制和监测,提高生产效率和安全性。

二、混凝土搅拌站存在的问题及需求分析传统的混凝土搅拌站存在以下问题:一是操作人员需要手动控制各种设备和机械进行生产,操作复杂且容易出错;二是无法对生产过程进行实时监测和数据记录;三是无法根据不同工程需求进行灵活调整;四是存在一定的安全隐患。

因此,在设计基于PLC的混凝土搅拌站控制系统时需要考虑以下需求:一是实现自动化生产过程,减少人工操作;二是实时监测和数据记录,方便生产管理和质量控制;三是实现工程需求的灵活调整,提高生产适应性;四是提高安全性,减少事故发生的可能性。

基于plc技术的混凝土搅拌站控制系统设计

基于plc技术的混凝土搅拌站控制系统设计

227中国设备工程Engineer ing hina C P l ant中国设备工程 2020.02 (上)搅拌站控制系统在生产过程中的作用良好,将上位机和下位机控制系统应用到主流混凝土搅拌站控制系统中。

此系统虽然能够使混凝土搅拌站生产的需求得到满足,但是还存在部分问题,比如,可扩展性较差、提高建设成本、通信能力不稳定等。

在PLC 技术的不断发展中,其成本低、高效且灵活的优势被广泛应用到各领域。

因此,本文就实现将PLC 技术作为基础的混凝土搅拌站控制系统设计。

1 混凝土搅拌站的生产流程在混凝土搅拌站工作的过程中,搅拌、配送、输送为主要的工艺流程,系统通过砂石骨料能够以配比要求,使不同规格的沙子、石粒等放到骨料称中投放。

以设置的配比要求,使水和外加剂输送到水箱、外加剂箱中。

通过螺旋机,水泥能够以实际的配比要求输送到水泥称重中。

砂石骨料称能够通过四只拉力传感器悬挂皮带秤实现称重,在骨料称重后,对骨料车下限位信号进行接收,皮带在此过程中运转,将砂石骨料投入料车中。

骨料车在皮带秤延时运行三秒后向上运行,上位机撞击后将料车门打开,在搅拌罐中添加外加剂、水泥、砂石料和水,共同搅拌到要求时间后,实现混凝土搅拌。

2 混凝土搅拌站的控制系统设计2.1 控制系统的硬件设计系统中的称重系统通过电子秤创建,其所提供的模拟量与其他安全监测传感器提供开关量,使其成为PLC 精准控制根据。

模拟输入量的重量为砂石、水泥、粉煤灰、外加剂等,搅拌机门开关为开关的输入量。

PLC 开关量的输出为水称阀、骨料门给料、螺旋机开关等,利用功率放大信号后,使执行机基于PLC 技术的混凝土搅拌站控制系统设计谷成银(中交一航局第一工程有限公司,天津 300456)摘要:在自控技术不断发展的过程中,将自动控制系统应用到搅拌站设备中,能够使混凝土生产效率与质量得到提高。

实现基于PLC 控制系统的设计,能够使骨料计量精度与设备自动化水平得到提高。

本文重点介绍了基于PLC 技术的混凝土搅拌站控制系统设计思路及原理。

基于PLC的搅拌机控制系统的设计

基于PLC的搅拌机控制系统的设计

基于PLC的搅拌机控制系统的设计摘要液体搅拌已成为现代工厂中必不可少的环节,以往的搅拌机都是由继电器控制的,其系统较为复杂,响应速度缓慢。

基于PLC控制技术的飞速发展,用软件就可以取代继电器系统中的触点和接线,因此,选用PLC对搅拌机的控制系统进行设计。

本设计主要采用PLC控制技术实现对液体搅拌系统的自动控制。

首先设计系统的工艺流程,根据工艺流程进行硬件配置,主要包括PLC、电动机、电磁阀、泵、液位变送器等元件的选型。

然后对控制系统的主电路、控制电路进行设计,从而达到控制要求。

最后根据控制要求进行软件设计,通过液位变送器将采集到的现场液位高度传送给PLC,并由PLC对现场数据逻辑处理后,发出相应的控制指令,完成系统的自动控制。

该设计在保证其功能的前提下,对其结构进行了尽量的简化,从而达到降低制造成本和维护成本的目的。

关键字:PLC, 液体搅拌,控制系统,自动控制The design of the Mixer Control System based on PLCAbstractLiquid mixing has become an indispensable part of the modern factories, past mixer is controlled by relay, the system is more complicated, the speed of response is slow. Based on the rapid development of PLC control technology, using the software can replace the contact and connection in relay system, therefore, this article chooses PLC to design the control system of mixer.This design mainly uses the PLC control technology to realize automatic control of liquid mixing system. Firstly, designing process of the system which can determine the hardware configuration , mainly including PLC, motor, solenoid valve, pump, liquid level transmitter components selection, etc. Then so as to achieve the requirements of the control, designing the control system of main circuit, control circuit. At last, according to the control requirements for software design, through the liquid level transmitter will be collected the water height transmitted to PLC, and after processing by PLC to field data logic, a corresponding control instruction, complete the automatic control system. The design under the premise of function, try to achieve aim of lowering costs manufacturing and maintenance, thereby simplify the structure of system.Keywords: PLC, Liquid mixing, Control system,automatic control目录第一章绪论 (1)1.1 设计背景 (1)1.2 研究目的与意义 (2)第二章搅拌机控制系统总体方案设计 (3)2.1 控制系统的简介 (3)2.1.1 控制方式的确定 (3)2.1.2 控制系统的优点 (4)2.1.3 控制系统的组成 (4)2.2 系统设计内容及需求分析 (5)2.2.1 系统设计内容 (5)2.2.2 系统需求分析 (6)2.3 系统设计的基本步骤 (6)第三章控制系统的硬件设计 (7)3.1 系统的工艺流程设计 (7)3.2 PLC的工作原理 (7)3.3 硬件模块的设计 (9)3.3.1 可编程控制器的选用 (9)3.3.2 液位变送器的选用 (12)3.3.3 电磁阀的选用 (13)3.4 系统主电路的设计 (14)3.5 系统控制回路的设计 (16)第四章系统的软件设计 (17)4.1 程序设计思想 (17)4.2 系统初始化程序及主程序设计 (17)4.3 报警电路程序的设计 (18)4.4 断电保护程序的设计 (19)4.5 系统控制过程分析 (20)第五章总结 (21)参考文献 (22)谢辞 (23)附录 (24)第一章绪论目前,我国的液体搅拌系统大部分采用传统的继电器进行控制,这种方法耗能大、浪费大、搅拌效果不好,给工厂浪费很多资金,同时噪声污染也很严重。

基于PLC的物料搅拌系统设计

基于PLC的物料搅拌系统设计

基于PLC的物料搅拌系统设计PLC(可编程逻辑控制器)是一种用于自动化控制的可编程电子设备。

在物料搅拌系统中,PLC可以实现对搅拌过程的自动控制和监控。

首先,我们需要设计一个适合的控制系统架构。

该架构可以根据所需的搅拌操作来选择合适的PLC型号和组件。

基于PLC的物料搅拌系统可以分为以下几个部分:1.用户界面:这是操作员与PLC进行交互的界面。

可以使用人机界面(HMI)或其他控制面板来实现。

用户界面提供搅拌参数设置、运行/停止操作、报警和故障信息显示等功能。

2.传感器:用于监测搅拌过程中的各项参数,例如温度、压力、电流等。

传感器将这些数据反馈给PLC,以便进行实时监控和调整。

3.执行器:包括电机、气动阀等设备,用于控制搅拌过程中的运动和流量。

PLC通过输出信号控制执行器的操作,以实现所需的搅拌效果。

4.PLC控制程序:这是PLC的核心部分,其中包含了各种逻辑和算法来实现搅拌过程的控制。

PLC通过读取传感器数据、检查用户设置和执行逻辑来控制执行器,并根据需要发送报警和故障信息。

在PLC控制程序的设计中,我们需要考虑以下几个方面:1.控制逻辑:根据搅拌过程中的需要,编写相应的控制逻辑。

例如,可以设置参数范围、搅拌速度成分和停止条件等。

2.安全性:在设计过程中要考虑到安全性,确保系统在出现异常情况下可以进行紧急停止,并提供相应的报警信息。

3.稳定性:要确保搅拌过程中的稳定性和精度,使得搅拌效果一致且可重复。

4.用户界面设计:用户界面应该简洁直观,操作方便。

操作员可以通过界面设置搅拌参数,同时可以实时监控搅拌过程中的各项参数。

5.报警和故障处理:当系统检测到异常或故障时,应及时报警并采取相应措施。

PLC可以通过输出信号来控制报警灯、蜂鸣器等设备,并在用户界面上显示相应的信息。

综上所述,基于PLC的物料搅拌系统设计可以提高搅拌过程的自动化程度和控制精度。

通过合理地选择PLC型号和组件,并优化控制程序的设计,可以实现高效、稳定和安全的物料搅拌操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要随着近代工业技术的发展,物料混合技术技术也得到了迅速的发展,它广泛应用与化学工艺与生产中,但在应用中,传统的物料搅拌工艺也存在严重的问题和产能的制约。

PLC是以计算机技术为核心的通用自动控制装置,也可以说它是一种用程序来改变控制功能的计算机。

随着微处理器、计算机和通信技术的飞速发展,可编程序控制器PLC已在工业控制中得到广泛应用,而且所占比重在迅速的上升。

PLC主要由CPU模块、输入模块、输出模块和编程装置组成。

它应用于工业混合搅拌设备,使得搅拌过程实现了自动化控制、并且提升了搅拌设备工作的稳定性,为搅拌机械顺利、有序、准确的工作创造了有力的保障。

本文介绍的物料搅拌系统以PLC作为控制核心,结合变频器等完成物料搅拌的自动控制系统,能够较好的满足搅拌系统的要求。

关键词:可编程控制器PLC;变频器;电动调节阀;物料搅拌系统;PID控制;电动调节阀AbstractW ith the development of modern industrial technology, material mixing technology has been rapid development, it is widely used and the chemical technology and production, but in the application, the traditional material mixing process also exists serious problems and capacity constraints。

Computer technology as the core of PLC in the general automatic control equipment, it is a kind of program to change control function of the computer. As microprocessors, computer and communication technology, the rapid development of PLC programmable controller has widely applied in industrial control, and the proportion of the rapid rise in. PLC mainly consists of CPU module, input and output module and programming module device. It is applied in industry, mixing equipment mixing process realized automation control, and improved the stability, agitate equipment work for the mixing machine smoothly, orderly, accurate working creates powerful guarantee. In this paper, the material mixing system with PLC as control core, combined with frequency converter, etc material stirring of the automatic control system.Key words: PLC programmable controller;frequency converter;material mixing system;PID control; Electric control valve目录第一章绪论I V1.1 引言1 1.2 传统的物料混合设备的控制存在的问题1 1.3 物料设备的发展趋势用PLC来代替传统物料混合设备控制 2 1.4 引入PLC来实现其物料混合设备的控制功能3第二章总体方案设计 42.1 总体方案论证 4 2.2 系统方案的设计思想 6 2.3、系统设计 6第三章硬件设计 103.1 硬件系统构成原理 10 3.2 硬件系统器件选型 11 3.3、硬件系统设计 22 3.4、系统安全性,可靠性、实用性设计 31第四章程序设计 394.1 PLC编程语言 39 4.2设计程序的流程图 40 4.3 程序梯形图 41 4.4程序设计语句 49 4.5 人机界面设计 52 第五章系统调试 555.1 系统模拟调试 55 5.2 系统联机调试 57第六章总结 586.1、本设计的功能和优点 58 6.2、本次设计的心得体会 58结论 60 致谢 61 参考文献 62 外文文献 63第一章绪论搅拌作为工艺过程的基础操作单元,广泛应用于石油、化工、医药、食品、油漆、涂料等许多行业。

但是,由于这些行业中所用到的材料,多为易燃易爆、有毒有腐蚀性的介质, 以致于现场工作环境十分恶劣,不适合人工现场操作,另外生产要求该系统要具有混合精确、控制可靠、工作效率高等特点,这也是人工操作和半自动化控制所难以实现的。

基于PLC可靠性高、抗干扰能力强、系统的设计和建造工作量小、维护方便、容易改造的特点,设计以PLC作为控制核心,结合变频器等完成物料搅拌的自动控制系统。

1.1 引言作为一种面向工业生产应用型技术,PLC与CAD/CAM、NC技术并成为现代工业的三大支柱技术。

PLC专为在工业现场设计,采用可编程的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字或模拟的I/O接口控制各种类型的机械或生产过程。

PLC是微处理器技术与传统的继电接触技术相结合的产物,他克服了继电接触控制系统中机械触点的接线复杂、可靠性低、功耗低、通用性和灵活性比较差等缺点,充分利用了微处理器的优点;本次设计采用PLC也是充分考虑了PLC的优越性,以及他在工业控制环境中的优异表现。

1.2 传统的物料混合设备的控制存在的问题鉴于搅拌设备的广泛应用,随着近年来工业技术的发展,物料混合技术在上世纪60到80年代期间得到了迅猛发展,其重点主要是对于常规搅拌桨在低粘和高粘非牛顿均相体系、固液悬浮和气液分散等非均相体系中的搅拌功耗、混合时间等宏观量进行实验研究。

长期以来,虽然有大量设计经验和关联式可用于分析和预测混合体系,但将搅拌反应器从实验室规模直接放大到工业规模,仍是十分危险的,至今仍然需要通过逐级放大来达到搅拌设备所要求的传质、传热和混合。

这种方法不但耗费巨额的资金和大量的人力物力,而且设计周期很长。

据统计,在工业高度发达的美国,化学工业由于搅拌反应器设计不合理所造成的损失每年约为10—100亿美元。

因此,从更微观更本质的角度,例如采用先进的测试手段和建立合理的数学模型,获取搅拌槽中的速度场、温度场和浓度场,不仅对开发新型搅拌设备,而且对搅拌设备的优化设计具有十分重要的经济意义,对放大和混合的基础研究具有现实的理论意义。

而对于搅拌设备的研究,除功率问题外,有关搅拌的流体力学研究具有重要意义。

这方面已做了许多工作,但尚需扩大和深入。

在液体中进行搅拌时,搅拌器的功能不仅引起液体的整个运动,而且要在液体中产生湍动,湍动程度与搅拌器使液体旋转而产生的旋涡现象有密切关系。

这些旋涡因经常地互相撞击和破裂,使液体受到剧烈的搅拌。

由此可见在搅拌操作中,对于流体力学理论的研究是极其重要的。

1.3 物料设备的发展趋势用PLC来代替传统物料混合设备控制近代化学工业中,流动的物料不再只是一些低粘度的牛顿型流体,许多高粘度流体也常常遇到,尤其是各种各样的高分子溶液以及混有催化剂粒子的浆状流体等非牛顿型流体的应用日益广泛。

它们与通常的牛顿型流体具有不同的流动特性,所以对于非牛顿型液体的研究是当今的一个重要课题。

对高粘度流体,特别是非牛顿型流体的搅拌传热的研究,也是近年来的一个方向。

聚合釜的传热特性与其中所用的搅拌器的型式关系甚大。

随着科学技术的发展。

设备有大型化发展的趋势,也需求搅拌设备大型化。

如国外聚合釜的容积已由最初的8~40m3扩大到60~100m3,最火的已达到140m3。

采用大型聚台釜可大大减少操作和检修人员,有利于自动化,减少投资,提高生产率,稳定产品质量。

随着容积的大型化,釜型逐渐由细长型向矮胖型发展。

而且采用底部搅拌的方式越采越多,多用三叶后掠式搅拌器。

三叶后掠式搅拌器是目前大型聚合釜采用的一种较好搅拌器。

因它排出量大,釜内液相循环充分,每分钟可达5~10次,能促使釜内反应均匀一致。

搅拌也可以在管路中进行,采用在管路中安装装置的办法对气-液系和液-液系进行混合。

例如采用喷射泵对水及醋酸丁酯进行混合;在石油精制中,也采用使液体流过设置在管路中的锐孔板或挡板,以便使两种液体进行接触。

还有在管道中放入搅拌器的,即所谓管道搅拌。

可见,科学技术的发展带动了搅拌应用面的扩大。

搅拌技术的发展又使得搅拌设备大型化。

为了提高搅拌的全自动化和稳定性能,就需要一个功能更强、性能更好的系统做支持。

在本设计中我将引入PLC来实现其搅拌控制功能。

1.4 引入PLC来实现其物料混合设备的控制功能本设计基于采用可编程序控制器(PLC)的设计方案,实现对物料混合搅拌的控制。

以PLC S7-200为主要控制器。

根据搅拌设备的功能特性、运作顺序等,设计中可选用电磁阀、时间继电器来实现液体的流入和时间上的延时,从而满足其控制要求。

根据控制要求,可以看出此程序是一个很典型的顺序控制问题。

这样就可以先按照搅拌设备的先后运行顺序画出相应的顺序功能图,然后在根据顺序功能图画梯形图,最后再用仿真软件对其进行调试仿真。

这样就可以实现PLC对混合搅拌控制程序的设计。

第三章总体方案设计2.1 总体方案论证就目前的现状有以下几种控制方式满足系统的要求:继电器控制系统、单片机控制、工业控制计算机控制、可编程序控制器控制。

1、继电器控制系统控制功能是用硬件继电器实现的。

继电器串接在控制电路中根据主电路中的电压、电流、转速、时间及温度等参量变化而动作,以实现电力拖动装置的自动控制及保护。

系统复杂,在控制过程中,如果某个继电器损坏,都会影响整个系统的正常运行,查找和排除故障往往非常困难,虽然继电器本身价格不太贵,但是控制柜的安装接线工作量大,因此整个控制柜价格非常高,灵活性差,响应速度慢。

2、单片机控制单片机作为一个超大规模的集成电路,机构上包括CPU、存储器、定时器和多种输入/输出接口电路。

其低功耗、低电压和很强的控制功能,成为功控领域、尖端武器、日常生活中最广泛的计算机之一。

相关文档
最新文档