2021八年级下册数学教案:函数和它的表示法

合集下载

八年级数学下册 14.2 函数的表示方法教案 北京课改版(2021年整理)

八年级数学下册 14.2 函数的表示方法教案 北京课改版(2021年整理)

八年级数学下册14.2 函数的表示方法教案(新版)北京课改版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册14.2 函数的表示方法教案(新版)北京课改版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册14.2 函数的表示方法教案(新版)北京课改版的全部内容。

14。

2函数的表示方法一、教学目标1、了解表示函数关系的三种主要方法。

2、掌握在已知函数表达式的情况下,已知自变量求函数值或已知函数值求自变量。

3、会根据列表或图象解决一些实际问题。

二、课时安排:1课时。

三、教学重点:表示函数关系的三种主要方法。

四、教学难点:在已知函数表达式的情况下,已知自变量求函数值或已知函数值求自变量。

五、教学过程(一)导入新课在前面,我们曾用s=80t ,y=3x 2-2x+4,231-+=x x y ,…来表示函数关系,其中:t ,x,…都表示自变量;s ,y, …都表示因变量.那么这些表示函数的式子有什么共同特征?函数还有其它的表示方法吗?下面我们学习函数的表示方法.(二)讲授新课在情景导入中的那些式子,它们都是用关于自变量的代数式来表示因变量的式子,应用它们可以由自变量的每一个值,计算出相对应的因变量的值.像这样,用含有表示自变量的字母的代数式表示因变量的式子叫做函数的表达式。

这种表示函数关系的方法称为解析法.利用函数的表达式,既可以由函数的任意一个自变量的值求出相应的函数的值(简称函数值),也可以由某一个确定的函数值求出相应的自变量的值.(三)重难点精讲典例:例、已知两个函数的表达式分别为y=2x-5 和 .212x y = (1)当x=-2时,分别求出这两个函数的函数值. (2)当这两个函数值都为18时,自变量x 分别取什么值?解:(1)把x=—4分别代入这两个函数的表达式,得y=2×(-4)—5=-8-5=-13..81621)4(212122=⨯=-⨯==x y 所以,当x=-4时,函数y=2x —5的函数值为-13,函数221x y =的函数值为8。

人教版八年级数学下册 第2课时 函数的三种表示方法(教案)

人教版八年级数学下册 第2课时 函数的三种表示方法(教案)

第2课时函数的三种表示方法【知识与技能】运用丰富的实例帮助学生全面理解函数的三种表示方法.【过程与方法】通过观察作图,交流,使学生加深对函数三种表示方法的认识,提高把实际问题转化为数学问题的能力.【情感态度】让学生通过实际操作,体会函数表示方法在实际生活中的应用价值,以激发学生对数学的学习兴趣.【教学重点】函数三种表示方法及其应用.【教学难点】函数三种表示方法的应用.一、情境导入,初步认识问题倾斜木板,将小车置于木板顶端,观察小车下滑过程.小车沿斜坡下滑,下滑速度与其下滑时间的关系如图所示.(1)填写下表:(2)写出v与t之间的关系式.【教学说明】教学时,实际演示实验供学生观察,再引导学生阅读图象,从中找出隐含的信息,比如:由图知,小车的速度在2s时间内由0增加到5m/s,表明平均每秒增加2.5m/s.进而推出这个活动过程中包含的函数关系为:v=2.5t.二、思考探究,获取新知问题1请交流列表格、写解析式、画图象三种表示函数关系的方法各有什么优点?小组活动,个人独立思考后小组内交流并作汇总,于课堂上向全班师生汇报.教师引导全班探讨交流,最后总结.列表法直接给出部分函数值,解析式法明显地表示对应规律,图象法明显地表示趋势.【教学说明】表示函数时,要根据具体情况选择适当的方法,为了全面地认识问题,有时需要几种方法同时运用.问题2 一个水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.(1)由记录表推出5小时中水位高度y(单位:米)随时间t(单位:时)变化的函数解析式,并画在函数图象上.(2)据估计这种上涨情况还会持续2小时,预测再过2小时水位高度将达到多少米?【分析】记录表已经通过6组数值反映了时间t与水位y之间的对应关系,现在需要从这些数值找出两个变量之间的一般联系规律,并由此写出函数解析式,再画出图象,预测出水位的结果.解:(1)由表可知,开始水位高10米,以后每隔1小时,水位就升高0.05米,这样的规律可以表示为y=0.05t+10(0≤t≤7),其图象如图.(2)再过2小时的水位高度,就是t=5+2=7时,y=0.05t+10的函数值,故有y=0.05×7+10=10.35,也可利用函数图象估计出这个值.【教学说明】(2)的预测是建立在未来2小时水位上升规律不改变的假设之上的,根据问题的数据及对未来的假设有0≤t≤7,故画出的函数图象是线段,其左右端点的横坐标分别为0和7.三、典例精析,掌握新知例1 如图是某观水站8月上旬记录的水位图,看图回答:(1)8月5日的水位是多少米?8月10日呢?(2)在这10天中,哪一天的水位最高?最高水位是多少?哪一天的水位最低?最低水位是多少?(3)这10天中的水位差(最高水位-最低水位)是多少?从最低水位到最高水位经过几天?最高水位保持了几天?(4)这10天中,有哪几天的水位在上升?有哪几天的水位在下降?有没有水位保持不变的?(5)从图象中,你还能了解哪些信息?能试着分析水位变化的原因吗?【分析】不同背景下的图象的上升、下降等变化所表示的实际意义并不相同,所以,要结合背景材料先分清一些词语的意义,如“水位差”等.【答案】(1)由图可知,8月5日的水位是12m,8月10日的水位是10m;(2)8月7日水位最高,为15.4m,8月3日水位最低,为8.8m;(3)水位差=15.4-8.8=6.6(m),从最低水位到最高水位经过了4天,只有8月7日这一天水位最高,所以最高水位只保持了一天;(4)8月1日至2日、4日至7日水位上升,其余几天水位均下降;(5)4天的时间水位迅速攀升至15.4m,说明这几天水的注入量很大,而在8月7日以后水位下降,说明可能是排水,我国8月份的降雨量一般比较大,这有可能是在一次洪峰经过该观水站时几天里的水位情况.【教学说明】从图象中发掘信息的前提是分辨出图象中横轴、纵轴所表示的意义.同时,因观察者的切入点不同,获取的信息可能会不一样.例 2 某城市为了节约用水,采用分段收费标准.若用户居民的每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图象回答:(1)当每户月用水量不足5吨时,每吨收费多少元?当每户使用超过5吨时,每吨收费多少元?(2)若某户居民每月用3.5吨水,则应交水费多少元?若某月交了水费17元,则该户居民用了多少吨水?【分析】(1)观察图象可以发现,当用水量为5吨时,刚好交水费10元,所以当用水量不足5吨时,每吨交费1025=(元),而当用水量达到8吨时,交水费20.5元,所以超过5吨的部分交水费20.5-10=10.5(元),故超过5吨的部分每吨交水费10.53.5 85=-(元).(2)由(1)可知,用3.5吨水应交3.5×2=7(元),交17元水费,可用水1752573.5-⨯+=(吨).【教学说明】本题的图象变化趋势分为两段,前一段是平稳上升,它表明x在0~5间是平均收费,而后一段上升较快,则可知每吨水收费有所提高.四、师生互动,课堂小结回顾、交流对函数三种表示方法的认识.1.布置作业:从教材“习题19.1”中选取.2.完成练习册中本课时练习.本课教学重在培养学生掌握基本的数学思想,以不同问题的解答引导学生积极参与探索、发现、讨论并形成解决问题的能力,教师引导学生从“练”中“悟”,形成函数意识和自主解题能力.。

八年级函数教学设计

八年级函数教学设计

八年级函数教学设计八年级函数教学设计(通用10篇)函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。

以下是八年级函数教学设计从,欢迎阅读。

八年级函数教学设计篇1一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。

因此反比例函数的概念与意义的教学是基础。

二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式.难点:反比例函数表达式的确立.五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式14631000(2)y= txk可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。

此时y就不是反比例函数了。

举例:下列属于反比例函数的是(1)y= (2)xy=10 (3)y=k-1x (4)y= -此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=k x1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

八年级数学下册《函数的概念》教案、教学设计

八年级数学下册《函数的概念》教案、教学设计
-利用数学软件或动态图象展示函数的变化过程,帮助学生建立起函数图象与实际问题的联系,提高他们分析和识别函数图象的能力。
-设计一系列具有实际背景的问题,如最佳投资方案、最短路径问题等,引导学生运用函数知识构建模型,解决实际问题。
2.针对教学难点,我计划采取以下措施:
-采用“从特殊到一般”的教学方法,先通过具体的一次函数、二次函数等案例,让学生感知函数的单调性、奇偶性等性质,再推广到一般函数。
4.针对不同学生的学习特点,教师应采用差异化教学策略,关注学生的个体差异,激发学生的学习潜能,使他们在函数学习中获得成就感。
5.注重培养学生的合作意识和团队精神,通过小组合作、讨论交流等形式,引导学生相互学习、共同进步。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握函数的定义,能从实际问题中抽象出函数关系,识别函数的三种表示方法(解析式、表格、图象)。
请同学们按时完成作业,并在作业中体现出自己的思考过程。在完成作业的过程中,如遇到问题,可随时与同学、老师交流,共同解决。期待大家在作业中展现出对本节课知识的深刻理解和运用能力!
2.函数图象的分析和识别,特别是对于不同类型函数图象的特点和性质的理解。
3.运用函数知识解决实际问题,特别是将现实问题转化为函数模型的能力。
4.函数单调性、奇偶性等性质的深入理解及其应用。
(二)教学设想
1.对于教学重点的突破,我设想采用以下策略:
-通过引入生活中的实例,如气温变化、物体运动等,让学生感受函数的实际意义,从而加深对函数定义的理解。
2.根据课堂所学的一次函数、二次函数等基本初等函数的性质,分析以下问题:
a.一次函数图象的特点及其在现实生活中的应用。
b.二次函数图象的开口方向、顶点、对称轴等性质,并举例说明。

八年级数学下册函数的图象第2课时函数的表示方法教案

八年级数学下册函数的图象第2课时函数的表示方法教案

第2课时函数的表示方法教学目标1.了解函数的三种不同的表示方法并在实际情境中,会根据不同的需要,选择函数恰当的表示方法;(重点)2.通过具体实例,了解简单的分段函数,并能简单应用.(难点)教学过程一、情境导入问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?二、合作探究探究点一:函数的表示方法【类型一】用列表法表示函数关系有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用h厘米表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克.解析:(1)根据挂重物每克伸长0.5厘米,要伸长5厘米,可得答案;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据函数值,可得所挂重物质量.解:(1)5÷0.5×1=10(克),答:要想使弹簧伸长5厘米,应挂重物10克;(2)函数的表达式:h=10+0.5x(0≤x≤50);(3)当h=25时,25=10+0.5x,x=30,答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.方法总结:列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.【类型二】用图象法表示函数关系如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?解析:根据图象解答即可.解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米);(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时;(3)由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是1.5小时,由此算出平均速度80÷1.5=1603(千米/时);由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时);(4)由横坐标看出4.5-3=1.5小时,返回用了1.5小时.方法总结:图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【类型三】 用解析式法表示函数关系一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下最远能行驶多少千米?解析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值;(3)令y =0,求出x 即可.解:(1)y =-0.6x +48;(2)当x =35时,y =48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y =12时,48-0.6x =12,解得x =60,∴汽车剩油12升时,行驶了60千米;(3)令y =0,-0.6x +48=0,解得x =80,即这辆车在中途不加油的情况下最远能行驶80km.方法总结:解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.探究点二:函数表示方法的综合运用【类型一】 分段函数及其表示为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )解析:根据题意,当0≤x ≤100时,y =0.5x ;当x >100时,y =100×0.5+0.8(x -100)=50+0.8x -80=0.8x -30,所以,y 与x 的函数关系为y =⎩⎪⎨⎪⎧0.5x (0≤x ≤100),0.8x -30(x >100).纵观各选项,只有C 选项图形符合.故选C.方法总结:根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量;②要求关于某个具体点,向横、纵轴作垂线来求得该点的坐标;③在实际问题中,要注意图象与x 轴、y 轴交点坐标代表的具体意义.【类型二】 函数与图形面积的综合运用如图①所示,矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图②所示.(1)求矩形ABCD 的面积;(2)求点M 、点N 的坐标;(3)如果△ABP 的面积为矩形ABCD 面积的15,求满足条件的x 的值.解析:(1)点P 从点B 运动到点C 的过程中,运动路程为4时,面积发生了变化且面积达到最大,说明BC 的长为4;当点P 在CD 上运动时,△ABP 的面积保持不变,就是矩形ABCD 面积的一半,并且运动路程由4到9,说明CD 的长为5.然后求出矩形的面积;(2)利用(1)中所求可得当点P 运动到点C 时,△ABP 的面积为10,进而得出M 点坐标,利用AD ,BC ,CD 的长得出N 点坐标;(3)分点P 在BC 、CD 、AD 上时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式,进而求出x 即可.解:(1)结合图形可知,P 点在BC 上,△ABP 的面积为y 增大,当x 在4~9之间,△ABP 的面积不变,得出BC =4,CD =5,∴矩形ABCD 的面积为4×5=20;(2)由(1)得当点P 运动到点C 时,△ABP 的面积为10,则点M 的纵坐标为10,故点M 坐标为(4,10).∵BC =AD =4,CD =5,∴NO =13,故点N 的坐标为(13,0);(3)当△ABP 的面积为矩形ABCD 面积的15,则△ABP 的面积为20×15=4. ①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x ,y =12AB ·PB =12×5x =5x 2,令5x 2=4,解得x =1.6; ②点P 在CD 上时,4≤x ≤9,点P 到AB 的距离为BC 的长度4,y =12AB ·PB =12×5×4=10(不合题意,舍去);③点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为PA 的长度13-x ,y =12AB ·PA =12×5×(13-x )=52(13-x ),令52(13-x )=4,解得x =11.4, 综上所述,满足条件的x 的值为1.6或11.4.方法总结:函数图象与图形面积是运用数形结合思想的典型问题,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义.三、板书设计1.函数的三种表示方法(1)列表法;(2)图象法;(3)解析式法.2.函数表示方法的综合运用教学反思函数表示法这节课的难点在于针对不同的问题如何选择这三种方法进行表示.针对这个问题,可通过引导学生对例子比较来解决.这样学生通过对不同例子的比较就能很好的区分这三种方法的特点,并能选择合适的方法.这节课的另一个目标是让学生了解分段函数,通过两个例子的介绍,能理解分段函数并按要求进行求值.。

湘教版数学八年级下册4.1.2《函数的表示法》说课稿

湘教版数学八年级下册4.1.2《函数的表示法》说课稿

湘教版数学八年级下册4.1.2《函数的表示法》说课稿一. 教材分析湘教版数学八年级下册4.1.2《函数的表示法》这一节主要介绍了函数的三种表示方法:列表法、关系式法和图象法。

通过这一节的学习,使学生能够理解函数的概念,掌握函数的表示方法,并能够运用这些方法解决实际问题。

二. 学情分析学生在学习这一节之前,已经学习了代数、几何等基础知识,对数学概念有一定的理解。

但是,对于函数这一概念,学生可能还比较陌生,需要通过具体例子和实际操作来加深理解。

同时,学生可能对图象法的理解不够深入,需要通过实际操作和练习来提高。

三. 说教学目标1.知识与技能目标:学生能够理解函数的概念,掌握函数的三种表示方法,并能够运用这些方法解决实际问题。

2.过程与方法目标:学生通过观察、操作、思考、交流等过程,培养抽象思维能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,体验成功,增强对数学学习的兴趣和信心。

四. 说教学重难点1.教学重点:函数的概念,函数的三种表示方法。

2.教学难点:函数图象法的理解和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。

2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何表示两个变量之间的关系。

2.自主学习:学生通过阅读教材,了解函数的概念和三种表示方法。

3.案例分析:教师通过展示典型案例,引导学生分析、讨论函数的表示方法。

4.小组合作:学生分组讨论,总结函数的表示方法,并展示成果。

5.教师讲解:教师针对学生的讨论结果,进行讲解和总结。

6.练习巩固:学生进行课堂练习,巩固所学知识。

7.课堂小结:教师引导学生总结本节课所学内容。

8.课后作业:学生完成课后作业,巩固所学知识。

七. 说板书设计板书设计如下:函数的表示法2.关系式法八. 说教学评价教学评价主要通过以下几个方面进行:1.学生的课堂参与程度:观察学生在课堂上的发言、提问、讨论等情况,了解学生的参与程度。

湘教版数学八年级下册4.1.2《函数的表示法》教学设计

湘教版数学八年级下册4.1.2《函数的表示法》教学设计

湘教版数学八年级下册4.1.2《函数的表示法》教学设计一. 教材分析湘教版数学八年级下册4.1.2《函数的表示法》是学生在学习了初中阶段函数概念之后的一个知识点。

本节内容主要让学生了解函数的表示方法,包括解析法、表格法、图象法,并学会用这些方法表示简单的函数。

通过本节课的学习,学生能更好地理解函数的本质,提高解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了函数的概念,对一些基本的数学运算和几何知识有所了解。

但是,对于函数的表示方法,学生可能还比较陌生,需要通过具体例子和练习来逐步理解和掌握。

三. 教学目标1.让学生了解函数的表示方法,包括解析法、表格法、图象法。

2.让学生学会用这些方法表示简单的函数。

3.培养学生解决实际问题的能力。

四. 教学重难点1.函数的表示方法:解析法、表格法、图象法。

2.如何运用这些方法表示简单的函数。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过具体案例,让学生了解和掌握函数的表示方法;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例和练习题3.函数图象展示软件七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:如何表示一个函数。

引导学生思考:我们可以用什么方法来表示函数呢?2.呈现(15分钟)讲解函数的表示方法,包括解析法、表格法、图象法。

通过具体案例,让学生了解和掌握这些方法。

3.操练(15分钟)让学生分组进行练习,运用所学的方法表示一些简单的函数。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生总结所学的内容,回答以下问题:1)什么是函数的表示方法?2)解析法、表格法、图象法各自的特点是什么?3)如何运用这些方法表示简单的函数?5.拓展(10分钟)让学生运用所学的方法解决一些实际问题,如:求某商品的定价、计算交通流量等。

6.小结(5分钟)对本节课的内容进行总结,强调函数的表示方法在实际问题中的应用。

【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】

【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】

【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】人教版八年级下册数学教案篇一教学目标:一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。

2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。

三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。

2、通过分组讨论,培养学生合作交流意识和探索精神。

教学重点:理解和领会反比例函数的概念。

教学难点:领悟反比例的概念。

教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。

师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。

学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。

教师组织学生讨论,提问学生,师生互动。

在此活动中老师应重点关注学生:①能否积极主动地合作交流。

②能否用语言说明两个变量间的关系。

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。

分析及解答:其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。

二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。

湘教版八年级数学下册第4章 《一次函数》教案

湘教版八年级数学下册第4章 《一次函数》教案
(4)由题意得xx- -12≥ ≠00, ,解得 x≥1 且 x≠2.
方法总结:本题考查了函数自变量的取值范围:有分母的要满足分母不能为 0,有根号
的要满足被开方数为非负数.
【类型二】 实际问题中自变量的取值范围 水箱内原有水 200 升,7:30 打开水龙头,以 2 升/分的速度放水,设经过 t 分钟
(2)当所挂重物为 x 克时,用 h 表示总长度,请写出此时弹簧的总长度的函数表达式;
(3)当弹簧的总长度为 25 厘米时,求此时所挂重物的质量为多少克?
解析:(1)根据挂重物每克弹簧伸长 0.5 厘米,可知要伸长 5 厘米需挂重物质量;
(2)根据挂重物与弹簧伸长的关系,可得函数解析式;
(3)根据题意求出函数值,可得所挂重物质量.
解:(1)5÷0.5×1=10(克), 答:要想使弹簧伸长 5 厘米,应挂重物 10 克; (2)函数的表达式为 h=10+0.5x(0≤x≤50); (3)当 h=25 时,25=10+0.5x,x=30. 答:当弹簧的总长度为 25 厘米时,此时所挂重物的质量为 30 克.
方法总结:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值,
我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票
指数走势图等.
【类型三】 用解析法表示函数关系 一辆汽车油箱内有油 48 升,从某地出发,每行 1km,耗油 0.6 升,如果设剩油量
为 y(升),行驶路程为 x(千米). (1)写出 y 与 x 的关系式; (2)这辆汽车行驶 35km 时,剩油多少升?汽车剩油 12 升时,行驶了多千米? 解析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;
(不唯一)值与其对应,故 y 不是 x 的函数.故选 A.

湘教版八年级数学下册教案-函数的表示法

湘教版八年级数学下册教案-函数的表示法

4.1.2 函数的表示法1.了解函数的三种不同的表示方法;(重点)2.在实际情境中,会根据不同的需要,选择恰当的函数的表示方法;(重点)3.函数三种表示方法的优点的认识.(难点)一、情境导入 问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?二、合作探究探究点:函数的表示方法【类型一】 用列表法表示函数关系有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x 克时,用h 表示总长度,请写出此时弹簧的总长度的函数表达式;(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克?解析:(1)根据挂重物每克弹簧伸长0.5厘米,可知要伸长5厘米需挂重物质量;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据题意求出函数值,可得所挂重物质量.解:(1)5÷0.5×1=10(克),答:要想使弹簧伸长5厘米,应挂重物10克;(2)函数的表达式为h =10+0.5x (0≤x ≤50);(3)当h =25时,25=10+0.5x ,x =30. 答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.方法总结:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.【类型二】 用图象法表示函数关系如图所示,修建高速公路的过程中,施工队在工作了一段时间后,因暴雨被迫停工几天,暴雨过后施工队加快了施工进度,按时完成了工程任务,下面能反映该工程未修建的公路里程y (千米)与时间x (天)之间的函数关系的大致图象是( )解析:∵y 表示未修建的公路里程,x 表示时间,∴y 由大变小,∴选项A 、D 错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,随后加快了施工进度,∴y 随x 的增大减小得比开始的快,线段与x 轴夹角变大.∴选项C 错误,选项B 正确.故选B.方法总结:在选择合适图象时,要先弄清横纵坐标表示的意义,再根据描述找出关键转折点,分析转折前后是否都均匀变化,确定图象的线条是直线还是曲线.变化的趋势是快是慢,则可用与x轴的夹角来表示出来.如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系如图,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米);(2)由横坐标看出,2-1.5=0.5(小时),汽车在行驶途中停留了0.5小时;(3)由纵坐标看出汽车到达D点时的路程是120千米,由横坐标看出到达D点时的时间是3小时,由此算出平均速度120÷3=40(km/h);由纵坐标看出返回的路程是120千米,由横坐标看出,4.5-3=1.5(小时),汽车返回家用了1.5小时,由此算出平均速度是120÷1.5=80(km/h);(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.方法总结:图象法的优点:直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【类型三】用解析法表示函数关系一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?解析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值.解:(1)y=-0.6x+48;(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.方法总结:解析法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.三、板书设计1.函数的三种表示方法及其优点:(1)解析法:可以方便地计算函数值;(2)列表法:自变量取的值与因变量取的值看得很清楚;(3)图象法:直观看出因变量如何随自变量变化.函数表示法这节课的难点在于针对不同的问题如何对这三种方法进行选择.针对这个问题,通过让学生对例子进行比较来解决.这样学生通过对不同例子的比较就能很好的区分这三种方法,并学会选择合适的方法.。

湘教版八年级数学下册函数和它的表示法教案

湘教版八年级数学下册函数和它的表示法教案

4.1.1 变量与函数教学目标知识与技能:借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量。

初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。

初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。

过程与方法:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。

情感态度与价值观:从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。

学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。

重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念难点:怎样理解“唯一对应”教学过程:一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。

例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。

再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。

这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。

二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃。

(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。

A.持续升高B.持续降低C.持续不变思考:(1)气温随 的变化而变化,即T 随 的变化而变化。

(2)当时间t 取定一个确定的值时,对应的温度T 的取值是否唯一确定?2、当正方形的边长x 分别取1、2、3、4、5、6、7,……时,正方形的面积S 分别是多少?3、某城市居民用的天然气,1m 3收费2.88元,使用x m 3天然气应缴纳费用y =2.88x ,当x =10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……)。

八年级数学下册《函数》教案 新人教版

八年级数学下册《函数》教案 新人教版

课题: 114.1.2 函数分管领导课时 1 第 11周第二课时总第37课时教学目标:知识与技能:初步了解函数的概念,在具体情境中分清哪个变量是自变量,谁是谁的函数,回由自变量的值求出函数值过程与方法目标:经历从具体实例中抽象出函数的过程,发展抽象思维能力,感悟运动变化的观点情感与态度目标:通过具体情境中对函数关系式的建立,提高认识变化规律、预测发展趋势的能力重点(1)通过学习使学生掌握函数的概念,了解自变量、函数值的概念。

(2)可以从实际问题中列出函数关系式。

(3)会区分函数和函数值难点对函数函数概念的理解教学过程教师活动学生活动修改意见一观察发现问题1:小明到商店买练习簿,每本单价2.5元,设购买的总数为m本,总金额t元,填写下表:然后回答下列问题:(1)上述问题中,哪些是常量?哪些是变量?(2)能用m的代数式表示t的值吗?问题2:跳远运动员按一定的起跳姿势,其跳远的距离s(米)与助跑的速度v(米/秒)有关。

根据经验,跳远的距离s=0.085v2(0<v<10.5)然后回答下列问题:(1)在上述问题中哪些是常量?哪些是变量?(2)计算当v分别为7.5,8,8.5时,相应的跳远距离s是多少(结果保留3个有效数字)?(3)给定一个v的值,你能求出相应的s的值吗?小组讨论函数的概念:购买数量(m本)2 5 10 20 …费用(t元)学生思考,回答问题。

教师指出:在这个变化过程中,有两个变量x、y,对x的每一个确定的值,y都有唯一确定的值与它对应。

学生交流体会:在这个变化过程中,有两个变量v,s,对v的每一个确定的值,s都有唯一确定的值与它对应.二探究说理1)函数的概念在第一个环节的基础上,教师归纳得出函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应。

那么我们就说x是自变量,y是x的函数。

例如,上面的问题1中,m是t的函数,t是自变量;教师板书函数概念强调注意事项:(1)在“同一个变化过程”问题2中,s是对v的的函数,v是自变量.2)函数的表示法:①解析法:问题1、2中,m=2.5t和2085.0vs 这两个函数用等式来表示,这种表示函数关系的等式,叫做函数解析式,简称函数式.用函数解析式表示函数的方法也叫解析法.②列表法:有时把自变量x的一系列值和函数y的对应值列成一个表.这种表示函数关系的方法是列表法.如下表:表示的是一年内某城市月份m与平均气温t(℃)的函数关系.月份 1 2 3 4平均气温3.8 5.1 9.3 155 6 7 8 9 …20.2 24.4 28.6 28 23③图象法:我们还可以用法来表示函数,例如图7-1中的图象就表示骑车时热量消耗W(焦)与身体质量x(千克)之间的函数关系.解析法、图象法和列表法是函数的三种常用的表示方法.3)函数值概念与自变量对应的值叫做函数值,它与自变量的取值有关,通常函数值随着自变量的变化而变化.若函数用解析法表示,只需把自变量的值代人函数式,就能得到相应的函数值.例如对于函数m=2.5t,当t=4时,把它代人函数解析式,得m=2.5×4=10(元).m=10叫做当自变量t=4时的函数值.若函数用列表法表示.我们可以通过查表得到.例如一年内某城市月份与平均气温的函数关系中,当m=2时,函数值T=5.1;当m=9,函数值T=23若函数用图象法表示.例如骑车时热量消耗W(焦)与身体质量x(千克)之间的函数关系中,对给定的自变量的值,怎样求它的函数值呢?如x=50,我们只要作一直线垂直于x轴,且垂足为点(50,0),这条直线与图象的交点P(50,399)的纵坐标就是就是当函数值x=50时的函数值,即W=399(焦)中“两个变量”(2)y的取值由x的取值确定。

函数的表示方法教案人教版八年级数学下册

函数的表示方法教案人教版八年级数学下册

函数的表示方法一、教学内容分析本课是在学习函数概念和函数图象的基础上,来理解函数的三种表示方法,了解其优缺点.重点是学会综合运用三种方法表示函数关系,学会根据实际情况和要求选择适当的表示方法来解决相关问题,进一步知道函数三种不同表示方法之间可以转化,为下面学习数形结合的函数做好准备.二、教学目标1.了解函数的三种表示方法及其优点;2.能用适当的方式表示简单实际问题中的变量之间的函数关系;3.能对函数关系进行分析,对变量的变化情况进行初步讨论.三、教学重难点【重点】掌握函数的三种表示方法及其优缺点.【难点】能根据实际情况和要求选择适当的表示方法来解决相关问题.四、教学方法问题启发法、观察归纳法、探究法.五、教学过程(一)动手操作导入在计算器上按照下面的程序进行操作:填表:显示的数y是输入的数x的函数吗?为什么?如果是,写出它的解析式.y = 2x+5意图:通过让学生动手操作,理解计算器的程序其本质也是函数中的变量对应关系,加深了对函数概念的理解,又引出了课题.效果:学生通过动手体会函数既可以程序化表示,又可以表格化表示.(二)新课讲授合作探究问题1.下图是某地气象站用自动温度记录仪描出的某一天的温度曲线,气温T是不是时间t的函数?追问:这里是怎样表示气温T与时间t之间的函数关系的?用平面直角坐标系中的一个图象来表示的.问题2.正方形的面积S与边长x的取值如下表,面积S是不是边长x的函数?追问:这里是怎样表示正方形面积S与边长x之间的函数关系的?列表格来表示的.问题3.某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳的费用y(元)为yx.y是不是x的函数?追问:这里是怎样表示缴纳的天然气费y与所用天然气的体积x的函数关系的?用函数解析式yx 来表示.知识要点 函数的三种表示法:图象法、列表法、解析式法.议一议 这三种表示函数的方法各有什么优点?1.解析式法:准确地反映了函数与自变量之间的数量关系.2.列表法:具体地反映了函数与自变量的数值对应关系.3.图象法:直观地反映了函数随自变量的变化而变化的规律.意图:通过三个问题让学生分别理解其中的数量关系,既复习了函数的概念,又对比理解了三种函数表示法,在此基础上,让学生辨析三种表示法的优缺点.效果:学生通过对比观察理解了函数三种表示方法的特点.例 1.一水库的水位在最近5 h 内持续上涨,下表记录了这5 h 内6 个时间点的水位高度,其中 t 表示时间,y 表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你发现水位变化有什么规律?解析:可以看出,这6个点 m ,且每小时水位在同一直线上.由此猜想,在这个时间段中水位可能是以同一速度均匀上升的.(2)水位高度 y 是否为时间 t 的函数?如果是,试写出一个符合表中数据的函数解析式,并画出函数图象.这个函数能表示水位的变化规律吗?解析:由于水位在最近5小时内持续上涨,对于时间t 的每一个确定的值,水位高度y 都有唯一的值与其对应,所以,y 是t 的函数.函数解析式为:yt +3.自变量的取值范围是:0≤t ≤5 . 它表示在这5小时内,水位匀速上升的速度为,这个函数可以近似地表示水位的变化规律.(3)据估计这种上涨规律还会持续2 h ,预测再过2 h 水位高度将达到多少m .解析:如果水位的变化规律不变,按上述函数预测,再持续2小时,水位的高度:. 此时函数图象(线段AB )向右延伸到对应的位置,这时水位高度约为m.做一做 如图,要做一个面积为12 m 2的小花坛,该花坛的一边长为 x m ,周长为 y m .(1)变量 y 是变量 x 的函数吗?如果是,写出自变量的取值范围;(2)能求出这个问题的函数解析式吗?(3)当 x 的值分别为1,2,3,4,5,6 时,请列表表示变量之间的对应关系;(4)能画出函数的图象吗?解:(1)y 是 x 的函数,自变量 x 的取值范围是x >0.(2)y =2(x +x12) (3)列表(4)图象意图:让学生通过对题目的思考,加深对函数的三种表示方法的理解.效果:学生通过题目更加清楚了函数的三中表示方法的特点.(三)课堂练习n边形的内角和m(单位:度)是边数n的函数.解:因为n表示的是多边形的边数,所以n是大于等于3的自然数,列表如下:所以m=(n2)·180°(n≥3,且n为自然数).2.用解析式法与图象法表示等边三角形的周长l是边长a的函数.解:因为等边三角形的周长l是边长a的3倍,所以周长l与边长a的函数关系可表示为:l=3a(a>0).用描点法画函数l=3a的图象.3.一条小船沿直线向码头匀速前进.在0min ,2min,4min,6min时,测得小船与码头的距离分别为200m,150m,100m,50m.(1)小船与码头的距离是时间的函数吗?(2)如果是,写出函数的解析式,并画出函数图象.函数解析式为:s=20025t .列表:画图:意图:考查学生对函数的三种表达方式的掌握和运用情况.效果:检测了学生对本节课知识的掌握和运用情况.(四)课堂小结先让学生自己总结反思,然后同学之间进行交流,再找学生谈谈自己的收获.函数的三种表示方法:1.解析式法:反映了函数与自变量之间的数量关系2.列表法:反映了函数与自变量的数值对应关系3.图象法:反映了函数随自变量的变化而变化的规律意图:总结反思是一节课必不可少的环节,有助于学生巩固所学知识和技能.效果:学生对本节课所学知识有了系统的回顾.(五)作业布置完成配套练习六、板书设计函数的三种表示方法:1.解析式法:反映了函数与自变量之间的数量关系2.列表法:反映了函数与自变量的数值对应关系3.图象法:反映了函数随自变量的变化而变化的规律七、教学反思本节课的教学内容重点是函数的三种表达方法,即解析式法、表格法和图象法.教师用问题启发学生对比函数的三种表示方法,思考函数不同表示法进行相互转化的方法和技巧,从而根据实际需要选择适当的方法解决实际问题.在学生掌握了基本知识点的基础上,通过函数解析式和函数图象之间的转化,来引导学生去体会数形结合的函数思想.。

八年级数学《函数和它的表示法》教案

八年级数学《函数和它的表示法》教案
课题
函数和它的表示法
主备人
备课时间
第1课时
备课组长签名
教研组长签名
教学内容
函数和它的表示法
个性化备课




知识技能
了解函数的概念和意义、了解常量和变量的意义;并能分辨简单实际问题中的变量间是否存在函数关系,哪个变量是自变量,哪个变量是因变量;了解函数的三种表示法:能确定函数中自变量的取值范围。
过程与方法
让学生通过对几个具体问题中的量、量间关系及变化规律的观察分析和比较,归纳抽象出函数的有关概念,再用函数观点去分析认识实际问题。
情感态度价值观
初步认识现实世界中各种量总是变化的,是相互联系的、相互制约的,初步形成用事物变化和相互联系的观点、用函数观点去认识现实世界的意识,体验函数是描述现实世界的有效工具。
进行灵活运用。
达标练习:
1.已知函数 ,x=__________时,y的值时0,x=______时,y的值是1;x=_______时,函数没有意义.
2.已知 ,当x=2时,y=_________.
3.在函数 中,自变量x的取值范围是__________.
4、若等腰三角形的周长为60,一腰长为x,底边长为y.
教学重点
函数的概念和意义的理解
教学难点
对函数概念和函数记号 的理解。函数的三种表示方法。




一、导入新课
我们平常家里用自来水,用的水少所花的钱就要少;用的水多所花的钱也
要多。那这个现实中的问题体现了数学上的什么知识点呢?那今天我们就一起来学习与这有关的数学知识——函数和它的表示法。(板书课题)
二、出示学习目标
这节课我们要达到的学习目标是:

湘教版八年级下册数学教案:4.1函数和它的表示法

湘教版八年级下册数学教案:4.1函数和它的表示法

八年级(下册)数学教案第四章第1课时
应用:
教材P111 例1 (列简单函数关系式)。

学法:P61探究一补例:例1 (函数定义及求函数值)
注意:分析自变量的取值范围。

练习:教材P112“练习”T1、T2。

小结归纳1、函数的有关概念。

2、“一一对应”的关系。

3、自变量和函数值范围确定。

4、数学应用的思想。

作业布置必做:教材习题4.1A组P116 T1;T2;T5;P117 B组T6。

选做:学法P61 “课堂探究”(一);P62“课堂达标”。

板书设计
反思回顾
八年级(下册)数学教案
第四章第2课时
课题函数和它的表示法(2)课时安排2课时
教学目标1、了解函数的三种表示方法(图像法、列表法、解析法);了解各自优缺点。

2、进一步理解函数的概念,能够选择适当的方法表示函数。

3、能根据函数解析式,求相应的函数值。

变量与函数
课件
展示
1、概念
2、一一对应
3、自变量取值
应用:
例1
补例
学生
板演
小结归纳1、函数的三种表示法。

2、优缺点及适用范围。

3、注意图像法的分析。

作业布置必做:教材习题4.1A组P116 T3;T4;P117 B组T7。

选做:学法P61 “课堂探究”(二);P62“课后提升”。

板书设计反思回顾
函数表示法
课件
展示
1、表示法
2、优缺点
3、注意事项
应用:
例2
补例
学生
板演。

北京课改版数学八年级下册14.2《函数的表示法》教学设计

北京课改版数学八年级下册14.2《函数的表示法》教学设计

北京课改版数学八年级下册14.2《函数的表示法》教学设计一. 教材分析《函数的表示法》是北京课改版数学八年级下册第14.2节的内容,本节内容是在学生已经掌握了函数概念的基础上进行授课。

教材通过具体的例子引导学生了解函数的表示方法,主要包括列表法、图象法和解析式法。

本节内容旨在让学生理解并掌握函数的表示方法,能够根据实际情况选择合适的表示方法。

二. 学情分析学生在学习本节内容前,已经掌握了函数的基本概念,对数学函数有一定的认识。

但学生在表示函数方面可能还存在一些困难,特别是在选择合适的表示方法方面。

因此,在教学过程中,需要注重引导学生理解不同表示方法的特点和适用情况。

三. 教学目标1.让学生理解列表法、图象法和解析式法三种函数表示方法的特点和适用情况。

2.培养学生能够根据实际情况选择合适的函数表示方法。

3.提高学生运用函数表示方法解决实际问题的能力。

四. 教学重难点1.重点:让学生掌握列表法、图象法和解析式法三种函数表示方法。

2.难点:培养学生能够根据实际情况选择合适的函数表示方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题来学习函数的表示方法。

2.利用多媒体教学,通过动画和图像展示函数的表示方法,增强学生的直观感受。

3.学生进行小组讨论和合作交流,培养学生的团队协作能力。

六. 教学准备1.准备相关的多媒体教学材料,如动画、图像等。

2.准备一些实际问题,用于引导学生学习函数的表示方法。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“某商场举行打折活动,折扣率与购买金额有关,购买金额每增加100元,折扣率提高1%。

请用合适的数学方法表示这个折扣率与购买金额的关系。

”让学生思考如何表示这个函数关系。

2.呈现(10分钟)讲解列表法、图象法和解析式法三种函数表示方法的特点和适用情况。

通过多媒体展示实例,让学生直观地感受这三种表示方法。

八年级数学下册 4.1.3《函数的表示法(二)》教案 湘教版(2021学年)

八年级数学下册 4.1.3《函数的表示法(二)》教案 湘教版(2021学年)

八年级数学下册 4.1.3《函数的表示法(二)》教案(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册4.1.3《函数的表示法(二)》教案(新版)湘教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册4.1.3《函数的表示法(二)》教案(新版)湘教版的全部内容。

课题:4。

1.3函数的表示法(二)教学目标1、复习函数的三种表示法,进一步理解函数及函数值的概念;会在简单情况下,根据函数的表示式求函数的值。

理解函数的对应关系,会判断两个变量之间是否存在函数关系。

2、理解自变量的取值范围,会确定一个函数的自变量的取值范围.理解函数图像的形成,能用描点法画出函数图像.3、经历回顾思考,训练提高归纳总结能力。

利用数形结合思想,根据具体情况选用适当方法解决问题的能力。

积极参与活动,提高学习兴趣。

重点:确定自变量的取值范围,描点法画函数图像。

难点:自变量的取值范围的意义和求法。

教学过程:一、知识梳理(出示ppt课件)1、函数知识的结构图。

(见课件)2、做一做:写出下列函数解析式:(1)用总长100cm的铁丝折成长方形,求长方形面积S(cm²)与一边长x(cm)之间的函数关系.(2)某游泳池在一次换水前存水936立方米,换水时打开排水孔,设每小时放水312立方米,放水时间为t小时,游泳池内的存水量为Q立方米。

①求Q关于t的函数解析式和自变量t 的取值范围;②放水2时20分后,游泳池内还剩水多少立方米?③放完游泳池内全部水需要多少时间?(3)一个小球有静止开始在一个斜坡上向下滚动,其速度每秒钟增加2米。

人教版八年级下期(教案).1.2函数的表示方法

人教版八年级下期(教案).1.2函数的表示方法
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解函数表示方法的基本概念。列表法、解析式法和图象法是描述两个变量之间关系的三种常见方式。它们在数学建模和问题解决中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。以一次函数为例,通过给定的两点坐标,推导出函数的解析式,并绘制出相应的图象,展示如何在实际问题中使用这些方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了函数的表示方法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

二、核心素养目标
本节课的核心素养目标致力于培养学生的以下能力:
1.数学抽象:通过分析具体问题,抽象出函数的概念,理解并运用不同表示方法表达函数关系,提高学生的数学抽象素养。
2.逻辑推理:培养学生运用逻辑思维,从列表、解析式到图象,探究并理解函数表示方法之间的内在联系,提升逻辑推理素养。
3.数学建模:学会运用所学知识,建立实际问题中的函数模型,通过图象、解析式等方法解决具体问题,增强数学建模素养。
在实践活动方面,我认为整体上是成功的。学生们通过分组讨论和实验操作,对函数表示方法有了更深的理解。但我也观察到,有些小组在实验操作时遇到了一些技术上的问题,比如如何准确地在坐标系上绘制点。这提醒我,在未来的课程中,可能需要提前给学生一些额外的指导,确保他们能够顺利进行实验。
最后,我意识到在总结回顾环节,我可能需要更多地关注学生的反馈。虽然我尽力提供了一些关键点,但我觉得可以更好地利用这个时间来让学生们自己总结他们学到了什么,这样不仅能加深他们的记忆,还能帮助我发现他们可能仍然存在的误解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下册)数学教案第四章第1课时
及求函数值)
注意:分析自变量的取值范围。

练习:教材P112“练习”T1、T2。

小结归纳1、函数的有关概念。

2、“一一对应”的关系。

3、自变量和函数值范围确定。

4、数学应用
的思想。

作业布置必做:教材习题4.1A组P116 T1;T2;T5;P117 B组T6。

选做:学法P61 “课堂探究”(一);P62“课堂达标”。

板书设计
变量与函数
课件
展示
1、概念
2、一一对应
3、自变量取值
应用:
例1
补例
学生
板演
八年级(下册)数学教案第四章第2课时
学法:P61探究二补例:例2 (函数定义及求函数值)
注意:注意图像法的分析。

练习:教材P115“练习”T1、T2、T3。

小结归纳1、函数的三种表示法。

2、优缺点及适用范围。

3、注意图像法的分析。

作业布置必做:教材习题4.1A组P116 T3;T4;P117 B 组T7。

选做:学法P61 “课堂探究”(二);P62“课后提升”。

板书设计
函数表示法
课件
展示
1、表示法
2、优缺点
3、注意事项
应用:
例2
补例
学生
板演。

相关文档
最新文档